2016-2017年四川省成都七中七年级(上)期末数学试卷和参考答案
成都七中初中学校七年级上册数学期末试题及答案解答
(2)若点B为原点,AC=6,求m的值.
(3)若原9.全民健身运动已成为一种时尚,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:
A.射线OA上B.射线OB上C.射线OC上D.射线OD上
7.方程3x﹣1=0的解是( )
A.x=﹣3B.x=3C.x=﹣ D.x=
8.﹣3的相反数是()
A. B. C. D.
9.下列各数中,绝对值最大的是()
A.2B.﹣1C.0D.﹣3
10.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是()
(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为,取得最佳值最小值的数列为(写出一个即可);
(3)将2,-9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a的值.
A.两点确定一条直线B.两点之间,线段最短
C.直线可以向两边延长D.两点之间线段的长度,叫做这两点之间的距离
11.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )
A.45人B.120人C.135人D.165人
12.如果 ,那么 的值是()
A. B. C. D.
二、填空题
13.已知方程 的解为 ,则 的值为__________.
14.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米.
15.单项式 的系数是________.
16.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元.
成都七中实验学校七年级上学期数学期末试卷及答案-百度文库
成都七中实验学校七年级上学期数学期末试卷及答案-百度文库一、选择题 1.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 2.﹣3的相反数是( )A .13- B .13 C .3- D .33.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .4.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠ 5.下列选项中,运算正确的是( ) A .532x x -=B .2ab ab ab -=C .23a a a -+=-D .235a b ab += 6.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或57.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( )A .1个B .2个C .3个D .4个8.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() mA.21.0410-⨯B.31.0410-⨯C.41.0410-⨯D.51.0410-⨯9.在下边图形中,不是如图立体图形的视图是()A.B.C.D.10.下列四个数中最小的数是()A.﹣1 B.0 C.2 D.﹣(﹣1)11.﹣3的相反数是()A.13-B.13C.3-D.312.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x人到甲处,则所列方程是()A.2(30+x)=24﹣x B.2(30﹣x)=24+xC.30﹣x=2(24+x)D.30+x=2(24﹣x)13.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( )A.不赔不赚B.赚了9元C.赚了18元D.赔了18元14.下列计算正确的是()A.-1+2=1 B.-1-1=0 C.(-1)2=-1 D.-12=115.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1二、填空题16.若|x |=3,|y |=2,则|x +y |=_____.17.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.18.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.19.=38A ∠︒,则A ∠的补角的度数为______.209________21.写出一个比4大的无理数:____________.22.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.23.当a=_____时,分式13a a --的值为0. 24.小马在解关于x 的一元一次方程3232a x x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.25.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________. 26.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x 人,依题意列方程得_____.27.﹣225ab π是_____次单项式,系数是_____. 28.当x= 时,多项式3(2-x )和2(3+x )的值相等.29.4是_____的算术平方根.30.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.三、压轴题31.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.32.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ的长.(用含x的代数式表示);(3)若P、Q两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t(秒),当t为多少时PQ=2cm?33.已知多项式3x6﹣2x2﹣4的常数项为a,次数为b.(1)设a与b分别对应数轴上的点A、点B,请直接写出a=,b=,并在数轴上确定点A、点B的位置;(2)在(1)的条件下,点P以每秒2个单位长度的速度从点A向B运动,运动时间为t 秒:①若PA﹣PB=6,求t的值,并写出此时点P所表示的数;②若点P从点A出发,到达点B后再以相同的速度返回点A,在返回过程中,求当OP=3时,t为何值?34.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.35.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.36.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.37.问题一:如图1,已知A,C两点之间的距离为16 cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).(1)当甲追上乙时,x = .(2)请用含x的代数式表示y.当甲追上乙前,y= ;当甲追上乙后,甲到达C之前,y= ;当甲到达C之后,乙到达C之前,y= .问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.38.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据选项进行一一排除即可得出正确答案.【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错;B 中、8-6y=0x ,可得出43x y =,故B 错;C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y =,交叉相乘得到34x y =,故D 对. 故答案为:D.【点睛】 本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.2.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.3.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o ;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等.4.A解析:A【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可.【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意,故选:A.【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.5.B解析:B【解析】【分析】根据整式的加减法法则即可得答案.【详解】A.5x-3x=2x ,故该选项计算错误,不符合题意,B.2ab ab ab -=,计算正确,符合题意,C.-2a+3a=a ,故该选项计算错误,不符合题意,D.2a 与3b 不是同类项,不能合并,故该选项计算错误,不符合题意,故选:B.【点睛】本题考查整式的加减,熟练掌握合并同类项法则是解题关键.6.D解析:D【解析】【分析】如图,根据点A 、B 表示的数互为相反数可确定原点,即可得出点B 表示的数,根据两点间的距离公式即可得答案.【详解】如图,设点C 表示的数为m ,∵点A 、B 表示的数互为相反数,∴AB 的中点O 为原点,∴点B 表示的数为3,∵点C 到点B 的距离为2个单位,∴3m-=2,∴3-m=±2,解得:m=1或m=5,∴m的值为1或5,故选:D.【点睛】本题考查了数轴,熟练掌握数轴上两点间的距离公式是解题关键. 7.C解析:C【解析】【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:在3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)35-π、0.1313313331…(每2个1之间依次多一个3)这3个,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000104=1.04×10−4.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.C解析:C【解析】【分析】直接利用简单组合体的三视图进而判断得出答案.【详解】解:A选项为该立体图形的俯视图,不合题意;B选项为该立体图形的主视图,不合题意;C选项不是如图立体图形的视图,符合题意;D选项为该立体图形的左视图,不合题意.故选:C.【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.10.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.11.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.12.D解析:D【解析】【分析】设应从乙处调x人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】设应从乙处调x人到甲处,依题意,得:30+x=2(24﹣x).故选:D.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.13.D解析:D【解析】试题分析:设盈利的这件成本为x元,则135-x=25%x,解得:x=108元;亏本的这件成本为y元,则y-135=25%y,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.考点:一元一次方程的应用.14.A解析:A【解析】解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A;B,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C,底数为-1,一个负数的偶次方应为正数(-1)2=1;D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.15.B解析:B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,n+,下边三角形的数字规律为:1+2,222+, (2)∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.二、填空题16.1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3解析:1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3,y=2时,|x+y|=|3+2|=5(2)x=3,y=﹣2时,|x+y|=|3+(﹣2)|=1(3)x=﹣3,y=2时,|x+y|=|﹣3+2|=1(4)x=﹣3,y=﹣2时,|x+y|=|(﹣3)+(﹣2)|=5故答案为:1或5.【点睛】此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.17.伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与解析:伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与“中”是相对面,“的”与“梦”是相对面.故答案为:伟.【点睛】本题主要考查了正方体与展开图的面的关系,掌握相对的面之间一定相隔一个正方形是解答本题的关键.18.【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC 的中点求出AD的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴B解析:【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD 的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴BC=8.∴AC=AB+BC=12.∵D是AC的中点,∴AD=12AC=6.∴BD=AD﹣AB=6﹣4=2.故答案为:2.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.19.【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:,的补角的度数为:,故答案为:.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.解析:142︒【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:∠=,38A∴A∠的补角的度数为:18038142-=,故答案为:142︒.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.20.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】=,3;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.21.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.22.-3【解析】【分析】根据题意将代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将代入方程得到,变形得到,所以=故填-3.【点睛】本题考查利用方程的对代数式求值,将方解析:-3【解析】【分析】根据题意将1x =-代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以241a b -+=2(2)1 3.a b -+=-故填-3.【点睛】本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可. 23.1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.24.3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.25.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-= 9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 26.8+x =(30+8+x ).【解析】设还要录取女生人,则女生总人数为人,数学活动小组总人数为人,根据女生人数占数学活动小组总人数的列方程.【详解】解:设还要录取女生人,根据题意得:解析:8+x =13(30+8+x ). 【解析】【分析】设还要录取女生x 人,则女生总人数为8x +人,数学活动小组总人数为308x ++人,根据女生人数占数学活动小组总人数的13列方程. 【详解】解:设还要录取女生x 人,根据题意得:18(308)3x x +=++. 故答案为:18(308)3x x +=++. 【点睛】此题考查了由实际问题抽象出一元一次方程,关键是准确表示还要录取后女生的人数及总人数.27.三 ﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- .故答案为:三,25π-.【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键.28.【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.29.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.30.404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有解析:404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有5×3-1=14个黑棋子;图4有5×4-1=19个黑棋子;…图n 有5n-1个黑棋子,当5n-1=2019,解得:n=404,故答案:404.【点睛】本题考查探索与表达规律——图形类规律探究.能根据题中已给图形找出黑棋子的数量与序数之间的规律是解决此题的关键.三、压轴题31.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7=情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t)解得:22t 13= 情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.32.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示: .(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.33.(1)﹣4,6;(2)①4;②1319,22或 【解析】【分析】 (1)根据多项式的常数项与次数的定义分别求出a ,b 的值,然后在数轴上表示即可; (2)①根据PA ﹣PB =6列出关于t 的方程,解方程求出t 的值,进而得到点P 所表示的数;②在返回过程中,当OP =3时,分两种情况:(Ⅰ)P 在原点右边;(Ⅱ)P 在原点左边.分别求出点P 运动的路程,再除以速度即可.【详解】(1)∵多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b ,∴a =﹣4,b =6.如图所示:故答案为﹣4,6;(2)①∵PA =2t ,AB =6﹣(﹣4)=10,∴PB =AB ﹣PA =10﹣2t .∵PA ﹣PB =6,∴2t ﹣(10﹣2t )=6,解得t =4,此时点P 所表示的数为﹣4+2t =﹣4+2×4=4;②在返回过程中,当OP =3时,分两种情况:(Ⅰ)如果P 在原点右边,那么AB+BP =10+(6﹣3)=13,t =132; (Ⅱ)如果P 在原点左边,那么AB+BP =10+(6+3)=19,t =192. 【点睛】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.34.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值;(4)由线段中点的性质可求MN 的值不变.【详解】解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.35.(1)3456;45678S S =+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】【分析】先找出前几项的钢管数,在推出第n 项的钢管数.【详解】(1)3456;45678S S =+++=++++(2)方法不唯一,例如:。
2016-2017学年四川省成都市武侯区七年级上期末数学试卷有答案AlPUqM
四川省成都市武侯区2016—2017学年七年级(上)期末数学试卷A 卷(共100分)一、选择题;(每小题3分,共30分) 1. 7-的绝对值是( )A .7B .﹣7C .17D .17-2.计算32-的结果是( )A .8B .6C .8-D .6-3.神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( )A .2.8×103B .28×103C .2.8×104D .0.28×1054.用一个平面分别去做一下几何体,截面形状可能是三角形的是( )A .①②B .②③C .③④D .①③5.数a 、b 在数轴上的位置如图所示,则b a -是( )A .正数B .零C .负数D .都有可能6.下列计算正确的是( )A .23325x x x +=B .2221a a -=C .0ab ab --=D .220xy xy -+=7.下列调查中,最适宜采用普查方式的是( )A .对成都市中学生每天学习所用时间的调查B .对四川省中学生心理健康现状的调查C .对成都市中学生课外阅读量的调查D .对某班学生进行“父亲节”是6 月的第3 个星期日知晓情况的调查8.如图,将两块三角板的直角顶点重合后叠放在一起,若∠1=40°,则∠2的度数为( )A .60°B .50°C .40°D .30°9.若||4(5)6k k x --=是关于x 的一元一次方程,则k 的值为( )A .5B .﹣5C .5 或﹣5D .4 或﹣410.如图所示,把同样大小的黑色棋子分别摆放在正多边形(正三角形、正四边形、正五边形、正六①正方体 ②球体③圆锥 ④圆柱12① ② ③ ④边形…)的边上,按照这样的规律继续摆放下去…,则第5个图形需要黑色棋子的个数是( )A .30B .33C .35D .42二、填空题:(每小题3分,共16分) 11.比较大小: (1)5 ﹣10; (2)12-13-(请选填“>、<或=”) 12.若2x +y =5,则代数式6x +3y ﹣8的值为 .13.若x =5 是关于x 的一元一次方程ax ﹣3=x +7的解,则a = . 14.若2115m ab -与32n m a b --是同类项,则m n -= .三、解答题:(本大题共6个小题,共54分) 15.(30分)(1)计算:3﹣(﹣8)+(﹣5)+6;(2)计算:(﹣1)2﹣32×[﹣2×5+(﹣3)2﹣9;(3)解方程:4x ﹣3(20﹣x )=3; (4)解方程: 23211510x x -+-=。
成都七中七年级上册数学期末试卷(带答案)-百度文库
成都七中七年级上册数学期末试卷(带答案)-百度文库一、选择题1.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .2.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠3.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3 B .﹣3 C .1 D .﹣1 4.下列各数中,有理数是( )A .2B .πC .3.14D .375.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱6.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( ) A .两点确定一条直线 B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离7.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .8.已知105A ∠=︒,则A ∠的补角等于( ) A .105︒B .75︒C .115︒D .95︒9.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( ) A .45010⨯ B .5510⨯C .6510⨯D .510⨯10.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( ) A .①②④ B .①②③C .②③④D .①③④11.下列计算正确的是( )A .3a +2b =5abB .4m 2 n -2mn 2=2mnC .-12x +7x =-5xD .5y 2-3y 2=212.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1二、填空题13.把53°30′用度表示为_____. 14.36.35︒=__________.(用度、分、秒表示)15.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.16.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.17.因式分解:32x xy -= ▲ .18.如果一个数的平方根等于这个数本身,那么这个数是_____. 19.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111119 11223349101010 =-+-+-++-=-=则1111 10010110110210210320192020++++=⨯⨯⨯⨯_________.20.五边形从某一个顶点出发可以引_____条对角线.21.如图,在平面直角坐标系中,动点P按图中箭头所示方向从原点出发,第1次运动到P1(1,1),第2次接着运动到点P2(2,0),第3次接着运动到点P3(3,-2),…,按这的运动规律,点P2019的坐标是_____.22.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.23.观察“田”字中各数之间的关系:则c的值为____________________.24.若4a+9与3a+5互为相反数,则a的值为_____.三、压轴题25.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1) 若b=-4,则a的值为__________.(2) 若OA=3OB,求a的值.(3) 点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.26.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.27.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.28.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?29.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d(d≥0),则称d 为点P 到点Q 的d 追随值,记作d[PQ].例如,在数轴上点P 表示的数是2,点Q 表示的数是5,则点P 到点Q 的d 追随值为d[PQ]=3. 问题解决:(1)点M,N都在数轴上,点M表示的数是1,且点N到点M的d追随值d[MN]=a(a≥0),则点N表示的数是_____(用含a的代数式表示);(2)如图,点C表示的数是1,在数轴上有两个动点A,B都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数是b,设运动时间为t(t>0).①当b=4时,问t为何值时,点A到点B的d追随值d[AB]=2;②若0<t≤3时,点A到点B的d追随值d[AB]≤6,求b的取值范围.30.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.31.如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为-20和40.(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.①求整个运动过程中,P点所运动的路程.②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.32.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数x的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A.点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式.2.C解析:C【解析】【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果.【详解】解:由图知:∠1+∠2=180°,∴12(∠1+∠2)=90°,∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1).故选:C.【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.解析:D 【解析】 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩,121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.4.C解析:C 【解析】 【分析】根据有理数及无理数的概念逐一进行分析即可得. 【详解】B. π是无理数,故不符合题意;C. 3.14是有理数,故符合题意;D. 故选C. 【点睛】本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键.5.A解析:A 【解析】试题分析:根据四棱锥的侧面展开图得出答案. 试题解析:如图所示:这个几何体是四棱锥. 故选A.考点:几何体的展开图.解析:A【解析】【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.故答案为:A.【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.7.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D.【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.8.B解析:B【解析】【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A的补角=180°-105°=75°.故选:B.【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.9.B解析:B【解析】【分析】科学记数法的表示形式为10na 的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】将50万用科学记数法表示为5510⨯,故B 选项是正确答案. 【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.10.B解析:B 【解析】 【分析】根据圆锥、圆柱、球、五棱柱的形状特点判断即可. 【详解】圆锥,如果截面与底面平行,那么截面就是圆; 圆柱,如果截面与上下面平行,那么截面是圆; 球,截面一定是圆;五棱柱,无论怎么去截,截面都不可能有弧度. 故选B .11.C解析:C 【解析】试题解析:A.不是同类项,不能合并.故错误. B. 不是同类项,不能合并.故错误. C.正确.D.222 532.y y y -=故错误. 故选C.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.12.A解析:A 【解析】 【分析】根据A 、D 两点在数轴上所表示的数,求得AD 的长度,然后根据2AB=BC=3CD ,求得AB 、BD 的长度,从而找到BD 的中点E 所表示的数. 【详解】 解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD , ∴AB=1.5CD , ∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4,∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.二、填空题13.5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:5330’用度表示为53.5,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以解析:5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53︒30’用度表示为53.5︒,故答案为:53.5︒.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.14.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点解析:3621'o【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点睛】本题主要考查了度分秒的换算,相对比较简单,注意以60为进制,熟记1°=60′,1′=60″.15.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a∥b,∠2=2∠1,∴∠3=∠1+∠CAB,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.17.x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y),故答案为x(x﹣y)(x+y).18.0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵±=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】解析:0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.19.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-=9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 20.2【解析】【分析】从n 边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记知识点(从n边形的一个顶点出发有(n−3)条对角线)是解此题的关键.21.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.22.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.23.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。
成都七中(高新校区)人教版(七年级)初一上册数学期末测试题及答案
成都七中(高新校区)人教版(七年级)初一上册数学期末测试题及答案一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是( ) A .30° B .40° C .50° D .90° 2.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103B .3.84×104C .3.84×105D .3.84×1063.下列判断正确的是( ) A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.4.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,35.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或736.下列分式中,与2x yx y---的值相等的是() A .2x yy x +-B .2x yx y+-C .2x yx y--D .2x yy x-+ 7.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( ) A .﹣4B .﹣5C .﹣6D .﹣78.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cm B .3cm C .3cm 或6cm D .4cm 9.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( ) A .1 B .﹣1 C .3 D .﹣3 10.如果a ﹣3b =2,那么2a ﹣6b 的值是( )A .4B .﹣4C .1D .﹣1 11.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米B .向北走3米C .向东走3米D .向南走3米12.如果代数式﹣3a 2m b 与ab 是同类项,那么m 的值是( ) A .0B .1C .12D .3二、填空题13.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米.14.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.15.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.16.若3750'A ∠=︒,则A ∠的补角的度数为__________. 17.﹣30×(1223-+45)=_____. 18.如图,若12l l //,1x ∠=︒,则2∠=______.19.16的算术平方根是 .20.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.21.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________. 22.五边形从某一个顶点出发可以引_____条对角线.23.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号)24.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.三、解答题25.计算:﹣6÷2+11()34-×12+(﹣3)2.26.解方程3142125x x -+=-.27.滴滴快车是一种便捷的出行工具,其计价规则如图:(注:滴滴快车车费由里程费、时长费、远途费三部分构成,其中里程费按行车的具体时段标准和实际里程计算:时长费按具体时段标准和行车的实际时间计算,远途费的收取方式:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.3元)(1)小红早上7:00从家出发乘坐滴滴快车到学校,行驶里程2公里,用时8分钟,需付车费元,傍晚17:00放学乘坐滴滴快车到妈妈单位,行驶里程5公里,用时20分钟,需付车费元;(2)某人06:10出发,乘坐滴滴快车到某地,行驶里程20公里,用时40分钟,需付车费多少元?(3)某人普通时段乘坐演滴快车到某地,用时30分钟,共花车费39.8元,求他行驶的里程?28.某水果店用500元购进甲、乙两种水果共50kg,这两种水果的进价、售价如下表所示品名甲种乙种进价(元/kg)712售价(元/kg)1016()1求这两种水果各购进多少千克?()2如果这批水果当天售完,水果店除进货成本外,还需其它成本0.1元/kg,那么水果店销售完这批水果获得的利润是多少元?(利润=售价-成本)29.甲队原有工人65人,乙队原有工人40人,现又有30名工人调入这两队,为了使乙队人数是甲队人数的12,应调往甲、乙两队各多少人? 30.如图,已知数轴上有、、A B C 三个点,它们表示的数分别是24,10,10--.(1)填空:AB = ,BC = .(2)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC AB -的值是否随着时间t 的变化而改变? 请说明理由。
七年级上册成都七中数学期末试卷测试题(Word版 含解析)
七年级上册成都七中数学期末试卷测试题(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=________°;(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.【答案】(1)20(2)解:如图②,∵OC平分∠EOB,∠BOC=70°,∴∠EOB=2∠BOC=140°,∵∠DOE=90°,∴∠BOD=∠BOE-∠DOE=50°,∵∠BOC=70°,∴∠COD=∠BOC-∠BOD=20°(3)解:∠COE-∠BOD=20°,理由是:如图③,∵∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°,∴(∠COE+∠COD)-(∠BOD+∠COD)=∠COE+∠COD-∠BOD-∠COD=∠COE-∠BOD=90°-70°=20°,即∠COE-∠BOD=20°【解析】【解答】⑴如图①,∠COE=∠DOE-∠BOC=90°-70°=20°;【分析】(1)根据角度的换算可知∠COE和∠BOC互余,那么根据∠COB=70°可得∠COE=20°;(2)根据角平分线和∠BOC可得∠BOE=140°,∠COE=∠BOC=90°,所以它的余角∠COD=20°;(3)一个是直角∠EOD,,一个是70°∠BOC,这两个角里都包含了同一个角∠COD,那么大家都减去这个∠COD的度数,剩下的两角差与原两角差是一致的,所以可得出结论∠COE-∠BOD=20°。
2016~2017学年四川成都温江区初一上学期期末数学试卷(解析)
请你根据图中提供的信息,解答下列问题:
我市若干天空气质量情况条形统计图 天数
我市若干天空气质量情况扇形统计图
优
量 优 良轻微轻度中度重度空气质量
良
重度污染
中度污染
轻度污染 轻微污染
(1) 计算被抽取的天数.
答 案 被抽取60天. 解 析 扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,
−
2B中不含有x2项和y项,求nm
+
mn的值.
答 案 . −1
目录
单项选择题 填空题 解答题
解析
学生版
∵ , , 2 A = 2x − xy + my − 8
2 B = −nx + xy + y + 7
教师版
答案版
∴2
2
A − 2B = 2x − xy + my − 8 + 2nx − 2xy − 2y − 14
3
6
去分母,得: , 2(17 − 20x) − 6 = 8 + 10x
去括号,得: , 34 − 40x − 6 = 8 + 10x
移项、合并同类项,得:−50x = −20 ,
2018/12/12 系数化为1,得:x = 2 , 5
根据题意,将x
=
2 代入方程 3 [(a −
5 )x +
1 ]
=
学生版
教师版
答案版
编辑
10. 某商场把一个双肩背包按进价提高50%标价,然后再按标价八折出售,这样商场每卖出一个书包就可盈利8元.设每个双肩
背包的进价是x元,根据题意列一元一次方程,正确的是( ).
A. (1 + 50%)x ⋅ 80% − x = 8
2016-2017年四川省成都市龙泉驿区七年级(上)期末数学试卷和参考答案
2016-2017学年四川省成都市龙泉驿区七年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.(3分)下列计算正确的是()A.(﹣3)2=﹣9 B.﹣32=﹣6 C.﹣3﹣(﹣2)=﹣5 D.2﹣3=﹣13.(3分)下面的图形经过折叠不能围成一正方体的是()A.B.C.D.4.(3分)2014年11月11日零点至2014年11月12日零点,马云旗下的“淘宝”销售额近6370000万元,在这里,用科学记数法表示“6370000”为()A.637×104B.6.37×106C.0.637×107D.0.0637×1085.(3分)若单项式﹣x2m﹣1y的次数是2,则常数m的值是()A.B.﹣ C.1 D.6.(3分)已知a、b、c在数轴上表示如图所示,则下列正确的是()A.ac<0 B.c+b<0 C.a+b>0 D.a﹣c>07.(3分)对下面问题的调查,适合用普查方式的是()A.班级同学中哪个月出生的人数最多B.某批次冷饮的质量是否合格C.京剧在全校同学中受欢迎的程度D.大邑县人口的平均寿命8.(3分)下列说法正确的是()A.图1中,点C在线段AB的延长线上B.射线OA与射线AO是同一条射线C.在图2中,∠AOB=∠AOC+∠BOCD.若AM=MB,则M是线段AB的中点9.(3分)某校七年级男生a个人,女生占总数的48%,则女生人数是()A.B.(1﹣48%)×a C.(1+48%)×a D.48%×a 10.(3分)下列在解方程的过程中,变形正确的是()A.将“”去分母,得“3x﹣(x﹣2)=1”B.将“2x﹣(x﹣2)=1”去括号,得“2x﹣x﹣2=1”C.将“x+1=2x﹣3”移项,得“x﹣2x=﹣1﹣3”D.将“2x=3”,系数化为1,得“x=”二、填空题(每小题4分,共16分)11.(4分)对于字母x,y表示的数量关系“2x+y”的一个实际问题可以是.12.(4分)如图,将长方形ABCD绕AB边旋转一周,得到的几何体是.13.(4分)关于x的方程3x﹣a=x+1的解是x=2,则﹣2+a=.14.(4分)如图所示,用围棋子摆放正方形,要求每条边上的围棋子数相同,第1个正方形需要4颗围棋子,第2个正方形需要8颗围棋子,按照这个规律,则第5个正方形需要颗围棋子,若第n个正方形需要2036颗围棋子(其中n≥1,n为自然数)则n=.三、解答题(共54分)15.(10分)计算求值:(1)﹣5+3+(﹣8)﹣(﹣3)(2)(﹣1)2014﹣(1+0.5)×+|﹣6|÷2.16.(10分)求解下列方程:(1)3(x﹣5)﹣(3﹣5x)=5﹣3x;(2).17.(7分)化简求值,先化简代数式:3×(a2b﹣ab2+1)﹣(ab2﹣2a2b),再求a=,b=2时代数式的值.18.(4分)如图1,在同一平面上有两个点A、B;如图2,在同一个平面内有四个点A、B、C、D,请用直尺按下列要求作图(不写作图步骤).(1)作射线AB;(2)作直线AC与线段BD相交于点O,并在所作图中标出点O.19.(6分)如图,已知∠ABC是直角,∠DBC=30°,BF、BE分别是∠ABD、∠CBD 的平分线,求∠EBF.20.(10分)某商店在某一时间以每件60元的价格卖出甲乙两件衣服,其中衣服甲盈利25%,衣服乙亏损25%.(1)分别求甲乙两件衣服的进价.(2)请你通过计算说明该商店通过买卖甲乙两件衣服后的受益情况.(本题约定:销售价﹣进货价为正数时,商店盈利;销售价﹣进货价为负数或零时,商店亏损).四、填空题(共5小题,每小题4分,满分20分)21.(4分)已知x﹣3y﹣4=0,则3y﹣x+7=.22.(4分)如图所示,线段AB=m,BC=n,点E、F分别是线段AB、BC的中点,则EF=(用含m、n的代数式表示).23.(4分)如果x、y都是不为0的有理数,则代数式的最大值是.24.(4分)在实数的原有运算法则中我们定义一个新运算“★”如下:x≤y时,x★y=x2;x>y时,x★y=y.则当z=﹣3时,代数式(﹣2★z)•z﹣(﹣4★z)的值为.25.(4分)一个长方体水箱从里面量得长、宽、高分别是50cm、40cm和30cm,此时箱中水面高8cm,放进一个棱长为20cm的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是cm3.二、解答题(共30分)26.(8分)类比推理是一种推理方法,根据两种事物在某些特征上相似,得出它们在其他特征上也可能相似的结论.在异分母的分数的加减法中,往往先化作同分母,然后分子相加减,例如:,我们将上述计算过程倒过来,得到,这一恒等变形过程在数学中叫做裂项,类似地对于可以用裂项的方法变形为:,类比上述方法解决以下问题.(1)=.(2)求解关于x 的方程:=﹣2x.27.(10分)在学习了第四章《基本的平面图形》的知识后,小明将自己手中的一副三角板的两个直角顶点叠放在一起拼成如下的图形1和图形2.(1)在图1中,当AD平分∠BAC时,小明认为此时AB也应该平分∠FAD,请你通过计算判断小明的结论是否正确.(2)小明还发现:只要AD在∠BAC的内部,当△ABC绕直角顶点A旋转时,总有∠FAB=∠DAC(见图2),请你判断小明的发现是否正确,并简述理由.(3)在图2中,当∠FAC=x,∠BAD=y,请你探究x与y的关系.28.(12分)某地移动公司推出了移动电话的两种计费方式(见下表)温馨提示:1、若选用方式甲,每月固定缴费58元,当主动打出电话月累计时间不超过150分钟,不再额外收费;当超过150分钟时,超过部分每分钟加收0.25元.2、电信计费中的主叫:甲打给乙,甲为主叫,乙为被叫,运营商在收费时只针对主叫计时收费,被叫免费接听.设一个月内使用移动电话主叫的时间为t分(t为正整数),请根据上表中提供的信息回答下列问题:(1)用含t的式子填写下表:(2)当150<t≤350时,t是否有某个值使得两种计费方式费用相等,如果相等请求出t的值,如果没有请说明理由.(3)如果顾客A每月的使用电话的主叫时间t满足0<t≤350时,结合你在(2)中的解答,回答该顾客选用哪种计费方式省钱,并说明理由.2016-2017学年四川省成都市龙泉驿区七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)﹣2的相反数是()A.2 B.﹣2 C.D.﹣【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.(3分)下列计算正确的是()A.(﹣3)2=﹣9 B.﹣32=﹣6 C.﹣3﹣(﹣2)=﹣5 D.2﹣3=﹣1【解答】解:A、(﹣3)2=9,此选项错误;B、﹣32=﹣9,此选项错误;C、﹣3﹣(﹣2)=﹣3+2=﹣1,此选项错误;D、2﹣3=2+(﹣3)=﹣1,此选项正确;故选:D.3.(3分)下面的图形经过折叠不能围成一正方体的是()A.B.C.D.【解答】解:由展开图可知:A、B、C能围成正方体;D围成几何体时,有两个面重合,故不能围成正方体.故选:D.4.(3分)2014年11月11日零点至2014年11月12日零点,马云旗下的“淘宝”销售额近6370000万元,在这里,用科学记数法表示“6370000”为()A.637×104B.6.37×106C.0.637×107D.0.0637×108【解答】解:用科学记数法表示“6370000”为6.37×106,故选:B.5.(3分)若单项式﹣x2m﹣1y的次数是2,则常数m的值是()A.B.﹣ C.1 D.【解答】解:∵单项式﹣x2m﹣1y的次数是2,∴2m﹣1+1=2,解得:m=1.故选:C.6.(3分)已知a、b、c在数轴上表示如图所示,则下列正确的是()A.ac<0 B.c+b<0 C.a+b>0 D.a﹣c>0【解答】解:由数轴上点的位置,得a<﹣2<c<﹣1<0<b<1,A、∵a<0,c<0,∴ac>0,故A不符合题意;B、∵c<﹣1,b<1,∴c+b<0,故B符合题意;C、a<﹣2,b<1,a+b<0,故C不符合题意;D、∵a<c,∴a﹣c<0,故D不符合题意;故选:B.7.(3分)对下面问题的调查,适合用普查方式的是()A.班级同学中哪个月出生的人数最多B.某批次冷饮的质量是否合格C.京剧在全校同学中受欢迎的程度D.大邑县人口的平均寿命【解答】解:A、要了解班级同学中哪个月出生的人数最多,数量小,准确度高,往往选用全面调查;B、要了解某批次冷饮的质量是否合格,数量大,范围广,宜采用抽查方式;C、要了解京剧在全校同学中受欢迎的程度,数量大,范围广,宜采用抽查方式;D、要了解D大邑县人口的平均寿命,数量大,范围广,宜采用抽查方式;故选:A.8.(3分)下列说法正确的是()A.图1中,点C在线段AB的延长线上B.射线OA与射线AO是同一条射线C.在图2中,∠AOB=∠AOC+∠BOCD.若AM=MB,则M是线段AB的中点【解答】解:A、图1中,点C在线段BA的延长线上,故本选项错误;B、射线OA与射线AO的方向相反,不是同一条射线,故本选项错误;C、在图2中,∠AOB=∠AOC+∠BOC,故本选项正确;D、若点A、M、B三点共线且AM=MB时,则M是线段AB的中点,故本选项错误.故选:C.9.(3分)某校七年级男生a个人,女生占总数的48%,则女生人数是()A.B.(1﹣48%)×a C.(1+48%)×a D.48%×a【解答】解:∵某校七年级男生a个人,女生占总数的48%,∴七年级学生总人数是,女生人数是×48%.故选:A.10.(3分)下列在解方程的过程中,变形正确的是()A.将“”去分母,得“3x﹣(x﹣2)=1”B.将“2x﹣(x﹣2)=1”去括号,得“2x﹣x﹣2=1”C.将“x+1=2x﹣3”移项,得“x﹣2x=﹣1﹣3”D.将“2x=3”,系数化为1,得“x=”【解答】解:A、将“x﹣=1”去分母,得“3x﹣(x﹣2)=6”,错误;B、将“2x﹣(x﹣2)=1”去括号,得“2x﹣x+2=1”,错误;C、将“x+1=2x﹣3”移项,得“x﹣2x=﹣1﹣3”,正确;D、将“2x=3”,系数化为1,得“x=”,错误,故选:C.二、填空题(每小题4分,共16分)11.(4分)对于字母x,y表示的数量关系“2x+y”的一个实际问题可以是答案不唯一,如已知钢笔2元,一只铅笔1元,购买x只铅笔和y支钢笔共计(2x+y)元.【解答】解:2x+y赋予一个实际意义:如已知钢笔2元,一只铅笔1元,购买x 只铅笔和y支钢笔共计(2x+y)元.故答案为:答案不唯一,如已知钢笔2元,一只铅笔1元,购买x只铅笔和y支钢笔共计(2x+y)元.12.(4分)如图,将长方形ABCD绕AB边旋转一周,得到的几何体是圆柱.【解答】解:将长方形ABCD绕AB边旋转一周,得到的几何体是圆柱体,故答案为:圆柱.13.(4分)关于x的方程3x﹣a=x+1的解是x=2,则﹣2+a=1.【解答】解:把x=2代入方程得:6﹣a=2+1,解得:a=3,则原式=﹣2+3=1,故答案为:114.(4分)如图所示,用围棋子摆放正方形,要求每条边上的围棋子数相同,第1个正方形需要4颗围棋子,第2个正方形需要8颗围棋子,按照这个规律,则第5个正方形需要20颗围棋子,若第n个正方形需要2036颗围棋子(其中n≥1,n为自然数)则n=509.【解答】解:第1个图形需要的棋子颗数为4×2﹣4=4×1=4,第2个图形需要的棋子颗数为4×3﹣4=4×2=8,第3个图形需要的棋子颗数为4×4﹣4=4×3=12,…所以第n个图形需要的棋子颗数为4n.n=5时,需要20颗围棋子,由题意4n=2036,解得n=509,故答案为20,509.三、解答题(共54分)15.(10分)计算求值:(1)﹣5+3+(﹣8)﹣(﹣3)(2)(﹣1)2014﹣(1+0.5)×+|﹣6|÷2.【解答】解:(1)原式=﹣5+3﹣8+3=﹣13+6=﹣7;(2)原式=1﹣×+3=1﹣+3=.16.(10分)求解下列方程:(1)3(x﹣5)﹣(3﹣5x)=5﹣3x;(2).【解答】解:(1)去括号得:3x﹣15﹣3+5x=5﹣3x,移项合并同类项得:11x=23,解得:x=;(2)去分母得:2(x+1)﹣4=8+2﹣x,移项合并同类项得:3x=12,解得:x=4.17.(7分)化简求值,先化简代数式:3×(a2b﹣ab2+1)﹣(ab2﹣2a2b),再求a=,b=2时代数式的值.【解答】解:原式=3a2b﹣3ab2+3﹣ab2+2a2b=5a2b﹣4ab2+3,当a=,b=2时,原式=﹣8+3=﹣.18.(4分)如图1,在同一平面上有两个点A、B;如图2,在同一个平面内有四个点A、B、C、D,请用直尺按下列要求作图(不写作图步骤).(1)作射线AB;(2)作直线AC与线段BD相交于点O,并在所作图中标出点O.【解答】解:(1)如图1所示,(2)如图2所示,点O即为所求.19.(6分)如图,已知∠ABC是直角,∠DBC=30°,BF、BE分别是∠ABD、∠CBD 的平分线,求∠EBF.【解答】解:∵BF、BE分别是∠ABD、∠CBD的角平分线,∴∠FBD=∠ABD,∠EBD=∠CBD,∴∠EBF=∠FBD+∠EBD=(∠ABD+∠CBD)=∠ABC=45°.20.(10分)某商店在某一时间以每件60元的价格卖出甲乙两件衣服,其中衣服甲盈利25%,衣服乙亏损25%.(1)分别求甲乙两件衣服的进价.(2)请你通过计算说明该商店通过买卖甲乙两件衣服后的受益情况.(本题约定:销售价﹣进货价为正数时,商店盈利;销售价﹣进货价为负数或零时,商店亏损).【解答】解:(1)设衣服甲的进价为x元,衣服乙的进价为y元,根据题意得:(1+25%)x=60,(1﹣25%)y=60,解得:x=48,y=80.答:衣服甲的进价为48元,衣服乙的进价为80元.(2)60×2﹣48﹣80=﹣8(元).答:该商店通过买卖甲乙两件衣服亏损8元.四、填空题(共5小题,每小题4分,满分20分)21.(4分)已知x﹣3y﹣4=0,则3y﹣x+7=3.【解答】解:∵x﹣3y﹣4=0,∴x﹣3y=4,∴3y﹣x+7=﹣(x﹣3y)+7=﹣4+7=3.故答案为:3.22.(4分)如图所示,线段AB=m,BC=n,点E、F分别是线段AB、BC的中点,则EF=(m+n)(用含m、n的代数式表示).【解答】解:∵点E、F分别是线段AB、BC的中点,∴BE=AB,BF=BC,∴EF=BE+BF=AB+BC=(AB+BC),∵AB=m,BC=n,∴EF=(m+n).故答案为:(m+n).23.(4分)如果x、y都是不为0的有理数,则代数式的最大值是1.【解答】解:①当x,y中有二正,=1+1﹣1=1;②当x,y中有一负一正,=1﹣1+1=1;③当x,y中有二负,=﹣1﹣1﹣1=﹣3.故代数式的最大值是1.故答案为:1.24.(4分)在实数的原有运算法则中我们定义一个新运算“★”如下:x≤y时,x★y=x2;x>y时,x★y=y.则当z=﹣3时,代数式(﹣2★z)•z﹣(﹣4★z)的值为﹣7.【解答】解:根据题中的新定义得:当z=﹣3时,原式=(﹣2)★(﹣3)×(﹣3)﹣(﹣4)★(﹣3)=9﹣16=﹣7,故答案为:﹣725.(4分)一个长方体水箱从里面量得长、宽、高分别是50cm、40cm和30cm,此时箱中水面高8cm,放进一个棱长为20cm的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是4000cm3.【解答】解:设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10.则水箱中露在水面外的铁块的高度为:20﹣10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm3).故答案是:4000.二、解答题(共30分)26.(8分)类比推理是一种推理方法,根据两种事物在某些特征上相似,得出它们在其他特征上也可能相似的结论.在异分母的分数的加减法中,往往先化作同分母,然后分子相加减,例如:,我们将上述计算过程倒过来,得到,这一恒等变形过程在数学中叫做裂项,类似地对于可以用裂项的方法变形为:,类比上述方法解决以下问题.(1)=.(2)求解关于x的方程:=﹣2x.【解答】解:(1)原式=1﹣+﹣+﹣+﹣=1﹣=;故答案为:;(2)已知等式整理得:﹣(﹣+﹣+…+﹣)=﹣2x,即﹣=﹣2x,解得:x=.27.(10分)在学习了第四章《基本的平面图形》的知识后,小明将自己手中的一副三角板的两个直角顶点叠放在一起拼成如下的图形1和图形2.(1)在图1中,当AD平分∠BAC时,小明认为此时AB也应该平分∠FAD,请你通过计算判断小明的结论是否正确.(2)小明还发现:只要AD在∠BAC的内部,当△ABC绕直角顶点A旋转时,总有∠FAB=∠DAC(见图2),请你判断小明的发现是否正确,并简述理由.(3)在图2中,当∠FAC=x,∠BAD=y,请你探究x与y的关系.【解答】解:(1)小明的结论正确,理由如下:∵AD平分∠BAC,∠BAD+∠CAD=90°,∴∠BAD=∠CAD=45°.∵∠FAB+∠BAD=90°,∴∠FAB=45°,∴∠FAB=∠BAD,∴AB平分∠FAD.(2)小明的结论正确,理由如下:∵∠BAD+∠CAD=90°,∠FAB+∠BAD=90°,∴∠FAB=∠DAC.(3)∵∠FAC=∠FAB+90°,∴∠FAB=∠FAC﹣90°.∵∠BAD=90°﹣∠FAB,∴∠BAD=180°﹣∠FAC,即y=180°﹣x(90<x<180°).28.(12分)某地移动公司推出了移动电话的两种计费方式(见下表)温馨提示:1、若选用方式甲,每月固定缴费58元,当主动打出电话月累计时间不超过150分钟,不再额外收费;当超过150分钟时,超过部分每分钟加收0.25元.2、电信计费中的主叫:甲打给乙,甲为主叫,乙为被叫,运营商在收费时只针对主叫计时收费,被叫免费接听.设一个月内使用移动电话主叫的时间为t分(t为正整数),请根据上表中提供的信息回答下列问题:(1)用含t的式子填写下表:(2)当150<t≤350时,t是否有某个值使得两种计费方式费用相等,如果相等请求出t的值,如果没有请说明理由.(3)如果顾客A每月的使用电话的主叫时间t满足0<t≤350时,结合你在(2)中的解答,回答该顾客选用哪种计费方式省钱,并说明理由.(1)当t>150时,计费方式甲的费用为58+0.25×(t﹣150)=0.25t+20.5【解答】解:元,当t>350时,计费方式乙的费用为88+0.19×(t﹣350)=0.19t+21.5元.故答案为:0.25t+20.5;0.25t+20.5;0.19t+21.5.(2)根据题意得:0.25t+20.5=88,解得:t=270.答:当t为270分时,两种计费方式费用相等.(3)当0.25t+20.5<88时,150<t<270;当0.25t+20.5=88时,t=270;当0.25t+20.5>88时,270<t≤350.综上所述:当150<t<270时,选择计费方式甲省钱;当t=270时,选择两种计费方式费用相等;当270<t≤350时,选择计费方式乙省钱.。
2016-2017学年四川省成都七中七年级(上)期末数学试卷(解析版)
2019-2019学年四川省成都七中七年级(上)期末数学试卷一、选择题:(每小题3分,共30分)1.(3分)9的算术平方根是()A.3 B.﹣3 C.±3 D.±92.(3分)下列实数中是无理数的是()A.B.0.212121 C.D.﹣3.(3分)下列计算正确的是()A.=B.=6 C.D.4.(3分)等腰三角形的底边长为12,底边上的中线长为8,它的腰长为()A.6 B.8 C.10 D.35.(3分)数据5,7,5,8,6,13,5的中位数是()A.5 B.6 C.7 D.86.(3分)下列命题中是真命题的是()A.对顶角相等B.内错角相等C.同旁内角互补D.同位角相等7.(3分)二元一次方程组的解是()A.B.C.D.8.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于y轴的对称点在第()象限.A.一B.二C.三D.四9.(3分)对于一次函数y=x+6,下列说法错误的是()A.y的值随着x值的增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)10.(3分)如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑了12米;④8秒钟后,甲超过了乙其中正确的说法是()A.①②B.②③④C.②③D.①③④二、填空题:(每小题4分,共16分)11.(4分)若x m+2﹣2y=5是关于x,y的二元一次方程,则m=.12.(4分)函数y=中,自变量x的取值范围是.13.(4分)已知实数x,y满足+(3x﹣y)2=0,则的值为.14.(4分)一次函数y=﹣2x+b与x轴交于点(3,0),则它与直线y=x的交点坐标为.三、计算与解方程(组)(15、16每小题10分,17题6分,共26分)15.(10分)计算:(1)(2).16.(10分)解方程(组)(1)4(x﹣1)2=25(2).17.(6分)已知x=,y=,求x2﹣xy+y2的值.18.(8分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.(1)求证:四边形ACED是平行四边形;(2)若AC=2,CE=4,求四边形ACEB的周长.19.(10分)七中育才学校为调查本校学生周末平均每天学习所用时间的情况,随机调查了50名同学,下图是根据调查所得数据绘制的统计图的一部分,请根据以上信息,解答下列问题:(1)请把统计图补充完整;(2)在这次调查的数据中,学习所用时间的众数是,中位数是,平均数是;(3)若该校共有1000名学生,根据以上调查结果估计该校全体学生每天学习时间在3小时内(含3小时)的同学共有多少人?20.(10分)已知在平行四边形ABCD中,AB=6,BC=10,∠BAD=120°,E为线段BC上的一个动点(不与B,C重合),过E作直线AB的垂线,垂足为F,FE 与DC的延长线相交于点G,(1)如图1,当AE⊥BC时,求线段BE、CG的长度.(2)如图2,点E在线段BC上运动时,连接DE,DF,△BEF与△CEG的周长之和是否是一个定值,若是请求出定值,若不是请说明理由.(3)如图2,设BE=x,△DEF的面积为y,试求出y关于x的函数关系式.一、填空题(每小题4分,共20分)21.(4分)若整数m满足条件=m且m<﹣1,则m的值是.22.(4分)a、b、c为△ABC的三条边,满足条件点(a﹣c,a)与点(0,﹣b)关于x轴对称,判断△ABC的形状.23.(4分)如图,小明要给正方形桌子买一块正方形桌布.铺成图1时,四周垂下的桌布,其长方形部分的宽均为20cm;铺成图2时,四周垂下的桌布都是等腰直角三角形,且桌面四个角的顶点恰好在桌布边上,则要买桌布的边长是cm.(提供数据:≈1.4,≈1.7)24.(4分)如图,直线OD与x轴所夹的锐角为30°,OA的长为2,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三边形,点A1、A2、A3…A n﹣1在x轴正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B2的坐标为,点B n的坐标为.25.(4分)正方形OABC的边长为1,把它放在如图所示的直角坐标系中,点M (t,0)是x轴上一个动点(t≥1),连接BM,在BM的右侧作正方形BMNP;直线DE的解析式为y=2x+b,与x轴交于点D,与y轴交于点E,当△PDE为等腰直角三角形时,点P的坐标是.二、解答题(本大题共3小题,26题8分,27题10分,28题12分). 26.(8分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信息:(水价计费=自来水销售费用+污水处理费用)自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.80超过17吨不超过30吨的部分b0.80超过30吨的部分 6.000.80已知小王家2019年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值.(2)小王家6月份交水费184元,则小王家6月份用水多少吨?27.(10分)运用“同一个图形的面积用不同方式表示”可以证明一类含有线段的等式,这种解决问题的方法我们称之为等面积法.学有所用:在等腰三角形ABC 中,AB=AC,其一腰上的高BD=h,M是底边BC上的任意一点,M到腰AB的距离ME=h1,M到腰AC的距离MF=h2.(1)请你结合图形1来证明:h1+h2=h;(2)当点M在BC的延长线上时,h1、h2、h之间又有什么样的结论,请你在图2中画出图形;(3)请利用以上结论解答下列问题,如图3,在平面直角坐标系中有两条直线l1:y=,l2:y=﹣3x+3,若l2上的一点M到l1的距离是1,求点M的坐标.28.(12分)如图,已知一次函数y=﹣x+6的图象与坐标轴交于A、B两点,AE平分∠BAO,交x轴于点E.(1)求点B的坐标及直线AE的表达式;(2)过点B作BF⊥AE,垂足为F,在y轴上有一点P,使线段PE+PF的值最小,求点P的坐标;(3)若将已知条件“AE平分∠BAO,交x轴于点E”改变为“点E是线段OB上的一个动点(点E不与点O、B重合)”,过点B作BF⊥AE,垂足为F,以EF为边作正方形EFMN,当点M落在坐标轴上时,求E点坐标.2019-2019学年四川省成都七中七年级(上)期末数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)1.(3分)9的算术平方根是()A.3 B.﹣3 C.±3 D.±9【解答】解:9的算术平方根是3.故选:A.2.(3分)下列实数中是无理数的是()A.B.0.212121 C.D.﹣【解答】解:,﹣,0.212121是有理数,是无理数,故选:C.3.(3分)下列计算正确的是()A.=B.=6 C.D.【解答】解:A、原式=2﹣=,正确;B、原式==,错误;C、+为最简结果,错误;D、原式==2,错误,故选:A.4.(3分)等腰三角形的底边长为12,底边上的中线长为8,它的腰长为()A.6 B.8 C.10 D.3【解答】解:如图所示:AB=AC,AD为BC边的中线,AD=8,BC=12,∴BD=CD=6,AD⊥BC,在Rt△ABD中,BD=6,AD=8,根据勾股定理得:AB==10,则等腰三角形的腰长为10.故选:C.5.(3分)数据5,7,5,8,6,13,5的中位数是()A.5 B.6 C.7 D.8【解答】解:将数据5,7,5,8,6,13,5按从小到大依次排列为:5,5,5,6,7,8,13,位于中间位置的数为6.故中位数为6.故选:B.6.(3分)下列命题中是真命题的是()A.对顶角相等B.内错角相等C.同旁内角互补D.同位角相等【解答】解:A、对顶角相等是真命题,故本选项正确;B、只有两直线平行,才有内错角相等,故本选项错误;C、只有两直线平行,才有同旁内角互补,故本选项错误;D、只有两直线平行,才有同位角相等,故本选项错误.故选:A.7.(3分)二元一次方程组的解是()A.B.C.D.【解答】解:,①+②得,3x=3,解得x=1,把x=1代入①得,1+y=2,解得y=1,所以,方程组的解是.故选:B.8.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于y轴的对称点在第()象限.A.一B.二C.三D.四【解答】解:点P(﹣3,5)关于y轴的对称点是(3,5),点(3,5)在第一象限.故选:A.9.(3分)对于一次函数y=x+6,下列说法错误的是()A.y的值随着x值的增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)【解答】解:∵y=x+6中k=1>0,∴y随x的增大而增大,故A正确;令x=0可得y=6,令y=0可求得x=﹣6,∴直线与x轴交于点(﹣6,0),与y轴交于点(0,6),∴函数图象与x轴的正方向成45°角,故B、C正确;D错误;故选:D.10.(3分)如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑了12米;④8秒钟后,甲超过了乙其中正确的说法是()A.①②B.②③④C.②③D.①③④【解答】解:根据函数图象的意义,①已知甲的速度比乙快,故射线O B表示甲的路程与时间的函数关系;错误;②甲的速度比乙快1.5米/秒,正确;③甲让乙先跑了12米,正确;④8秒钟后,甲超过了乙,正确;故选:B.二、填空题:(每小题4分,共16分)11.(4分)若x m+2﹣2y=5是关于x,y的二元一次方程,则m=﹣1.【解答】解:由题意,得m+2=1,解得m=﹣1,故答案为:﹣1.12.(4分)函数y=中,自变量x的取值范围是x≥2.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.13.(4分)已知实数x,y满足+(3x﹣y)2=0,则的值为2.【解答】解:根据题意得,x﹣2=0,3x﹣y=0,解得x=2,y=6,所以,==2.故答案为:2.14.(4分)一次函数y=﹣2x+b与x轴交于点(3,0),则它与直线y=x的交点坐标为(2,2).【解答】解:∵点(3,0)在直线y=﹣2x+b,∴﹣6+b=0,解得b=6,∴一次函数解析式为y=﹣2x+6,∵方程组的解为,∴两直线的交点坐标为(2,2).故答案为(2,2).三、计算与解方程(组)(15、16每小题10分,17题6分,共26分)15.(10分)计算:(1)(2).【解答】解:(1)原式=2+2﹣﹣2(2)原式=++2=4++2=4+3.16.(10分)解方程(组)(1)4(x﹣1)2=25(2).【解答】解:(1)∵4(x﹣1)2=25,∴(x﹣1)2=,则x﹣1=或x﹣1=﹣,解得:x=或x=﹣;(2),①+②,得:4x=20,解得:x=5,将x=5代入①,得:5﹣y=8,解得:y=﹣3,所以方程组的解为.17.(6分)已知x=,y=,求x2﹣xy+y2的值.【解答】解:因为x==,y==,把代入x2﹣xy+y2中,可得:=5+2﹣3+2+5﹣2=9.18.(8分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.(1)求证:四边形ACED是平行四边形;(2)若AC=2,CE=4,求四边形ACEB的周长.【解答】解:(1)证明:∵∠ACB=90°,DE⊥BC,∴AC∥DE又∵CE∥AD∴四边形ACED是平行四边形.(2)∵四边形ACED是平行四边形.∴DE=AC=2.在Rt△CDE中,由勾股定理得CD=.∵D是BC的中点,∴BC=2CD=4.在△ABC中,∠ACB=90°,由勾股定理得AB=.∵D是BC的中点,DE⊥BC,∴EB=EC=4.∴四边形ACEB的周长=AC+CE+EB+BA=10+2.19.(10分)七中育才学校为调查本校学生周末平均每天学习所用时间的情况,随机调查了50名同学,下图是根据调查所得数据绘制的统计图的一部分,请根据以上信息,解答下列问题:(1)请把统计图补充完整;(2)在这次调查的数据中,学习所用时间的众数是3小时,中位数是3小时,平均数是3小时;(3)若该校共有1000名学生,根据以上调查结果估计该校全体学生每天学习时间在3小时内(含3小时)的同学共有多少人?【解答】解:(1)每天作业用时是4小时的人数是:50﹣6﹣12﹣16﹣8=8(人),则众数是3小时,中位数是3小时,平均数是=3小时,故答案为:3小时、3小时、3小时;(2)1000×=680(人),答:估计该校全体学生每天学习时间在3小时内(含3小时)的同学共有680人.20.(10分)已知在平行四边形ABCD中,AB=6,BC=10,∠BAD=120°,E为线段BC上的一个动点(不与B,C重合),过E作直线AB的垂线,垂足为F,FE与DC的延长线相交于点G,(1)如图1,当AE⊥BC时,求线段BE、CG的长度.(2)如图2,点E在线段BC上运动时,连接DE,DF,△BEF与△CEG的周长之和是否是一个定值,若是请求出定值,若不是请说明理由.(3)如图2,设BE=x,△DEF的面积为y,试求出y关于x的函数关系式.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠BAD+∠B=180°,∵∠BAD=120°,∴∠B=60°,∵AE⊥BC于E,在Rt△ABE中,∠BAE=30°,AB=6,∴BE=3,AE=3,∵EF⊥AB,∴∠BFE=90°,在Rt△BEF中,∠BEF=30°,∴BF=BE=,EF=,∵S▱ABCD=BC×AE=AB×FG,∴10×3=6FG,∴FG=5,∴EG=FG﹣EF=;(2)如图2,过点A作AH⊥BC于H,∵∠B=60°,∴BH=3,AH=3,∵∠AHB=∠BFE=90°,∠B=∠B,∴△ABH∽△EBF,设BE=a,∴BF=a,EF=a,∵AB∥CD,∴△BEF∽△CEG,∴CG=(10﹣a),EG=(10﹣a),∴C△BEF +C△CEG=BE+BF+EF+CE+CG+EG=a+a+a+10﹣a+(10﹣a)+(10﹣a)=10+5+5=15+5;(3)同(2)的方法得,EF=x,CG=(10﹣x),∴DG=CD+CG=6+5﹣x=11﹣x,∴S△DEF=EF×DG=×x×(11﹣x)=﹣x2+(0<x<10).一、填空题(每小题4分,共20分)21.(4分)若整数m满足条件=m且m<﹣1,则m的值是0或1.【解答】解:∵=m,∴m≥0.∵m<﹣1,且m为整数,∴m=0或1.故答案为:0或1.22.(4分)a、b、c为△ABC的三条边,满足条件点(a﹣c,a)与点(0,﹣b)关于x轴对称,判断△ABC的形状等边三角形.【解答】解:∵点(a﹣c,a)与点(0,﹣b)关于x轴对称,∴a﹣c=0,a=b,∴a=b=c,∴△ABC是等边三角形,故答案为:等边三角形.23.(4分)如图,小明要给正方形桌子买一块正方形桌布.铺成图1时,四周垂下的桌布,其长方形部分的宽均为20cm;铺成图2时,四周垂下的桌布都是等腰直角三角形,且桌面四个角的顶点恰好在桌布边上,则要买桌布的边长是136cm.(提供数据:≈1.4,≈1.7)【解答】解:设桌子边长为xcm,则根据勾股定理,桌子对角线长为=xcm,当x=20时,x=10,由勾股定理得:等腰三角形的直角边长是=10,即桌布边长为(x+40)cm,由于四周垂下的桌布都是等腰直角三角形,则等腰三角形直角边长为cm,列方程得x=x+40,解可得x=40+40;于是桌布长为40+40+40=80+40≈136(cm).故要买桌布的边长是136cm.24.(4分)如图,直线OD与x轴所夹的锐角为30°,OA的长为2,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三边形,点A1、A2、A3…A n﹣1在x轴正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B2的坐标为(3,),点B n的坐标为(3×2n﹣2,×2n﹣2).【解答】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠B1OA2=30°,∴∠B1OA2=∠A1B1O=30°,可求得OA2=2OA1=2,同理可求得OA n=2n﹣1,∵∠B n OA n+1=30°,∠B n A n A n+1=60°,∴∠B n OA n+1=∠OB n A n=30°∴B n A n=OA n=2n﹣1,即△A n B n A n+1的边长为2n﹣1,则可求得其高为×2n﹣1=×2n﹣2,∴点B n的横坐标为×2n﹣1+2n﹣1=×2n﹣1=3×2n﹣2,∴点B n的坐标为(3×2n﹣2,×2n﹣2),点B2的坐标为(3,).故答案为:(3,);(3×2n﹣2,×2n﹣2).25.(4分)正方形OABC的边长为1,把它放在如图所示的直角坐标系中,点M (t,0)是x轴上一个动点(t≥1),连接BM,在BM的右侧作正方形BMNP;直线DE的解析式为y=2x+b,与x轴交于点D,与y轴交于点E,当△PDE为等腰直角三角形时,点P的坐标是(4,4)或(4,2).【解答】解:如图,过点P作PF⊥BC交CB的延长线于点F,∵四边形OABC与四边形BMNP都是正方形,∴∠ABM+∠MBF=90°,∠FBP+∠MBF=90°,∴∠ABM=∠FBP,在△ABM和△FBP中,,∴△ABM≌△FBP(AAS),∴BF=AB,PF=AM,∵正方形OABC的边长为1,点M(t,0),∴B F=1,PF=t﹣1,点P到x轴的距离为t﹣1+1=t,∴点P的坐标为(2,t),又∵当y=0时,2x+b=0,解得x=﹣,当x=0时,y=b,∴点D(﹣,0),E(0,b),①DE是斜边时,PD2=(+2)2+t2,PE2=(b﹣t)2+22,DE2=()2+b2,∵△PDE是等腰直角三角形,∴PD2=PE2,且PD2+PE2=DE2,即(+2)2+t2=(b﹣t)2+22,且(+2)2+t2+(b﹣t)2+22=()2+b2,b2+2b+4+t2=b2﹣2bt+t2+4,且b2+2b+4+t2+b2﹣2bt+t2+4=b2+b2,整理得,b=(t+2)且t2﹣b(t﹣2)+16=0,∴t2﹣(t+2)(t﹣2)+16=0,整理得,t2=16,解得t1=4,t2=﹣4(舍去),∴点P的坐标是(4,4);②PD是斜边时,∵△PDE是等腰直角三角形,∴PE⊥DE,且PE=DE,过点P作PF⊥y轴于点F∵∠DEO+∠PEO=90°,∠DEO+∠EDO=90°,∴∠PEO=∠EDO,在△EDO和△PEF中,∴△EDO≌△PEF(AAS),∴EF=DO=,PC=EO=b,又∵点P(4,t),∴b=4,b﹣t=,解得t==×4=2,∴点P坐标为(4,2),此时点C、F重合,点M、A重合,综上所述,点P的坐标为(4,4)或(4,2).故答案为:(4,4)或(4,2).二、解答题(本大题共3小题,26题8分,27题10分,28题12分). 26.(8分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信息:(水价计费=自来水销售费用+污水处理费用)自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.80超过17吨不超过30吨的部分b0.80超过30吨的部分 6.000.80已知小王家2019年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值.(2)小王家6月份交水费184元,则小王家6月份用水多少吨?【解答】解:(1)根据题意可得,解得,,即a的值是2.2,b的值是4.4;(2)设小王家6月份用水x吨,根据题意知,30吨的水费为:17×2.2+13×4.2+30×0.8=116,∵184>116,∴小王家6月份计划用水超过了30吨∴6.0(x﹣30)+116+0.80×(x﹣30)=184,解得,x=40即小王家6月份用水量40吨.27.(10分)运用“同一个图形的面积用不同方式表示”可以证明一类含有线段的等式,这种解决问题的方法我们称之为等面积法.学有所用:在等腰三角形ABC 中,AB=AC,其一腰上的高BD=h,M是底边BC上的任意一点,M到腰AB的距离ME=h1,M到腰AC的距离MF=h2.(1)请你结合图形1来证明:h1+h2=h;(2)当点M在BC的延长线上时,h1、h2、h之间又有什么样的结论,请你在图2中画出图形;(3)请利用以上结论解答下列问题,如图3,在平面直角坐标系中有两条直线l1:y=,l2:y=﹣3x+3,若l2上的一点M到l1的距离是1,求点M的坐标.【解答】(1)证明:连接AM,由题意得h1=ME,h2=MF,h=BD,∵S△ABC =S△ABM+S△AMC,S△ABM=×AB×ME=×AB×h1,S△AMC=×AC×MF=×AC×h2,又∵S△ABC=×AC×BD=×AC×h,AB=AC,∴×AC×h=×AB×h1+×AC×h2,∴h1+h2=h.(2)解:如图所示:h1﹣h2=h.(3)解:在y=x+3中,令x=0得y=3;令y=0得x=﹣4,所以A(﹣4,0),B(0,3)同理求得C(1,0).AB==5,AC=5,所以AB=AC,即△ABC为等腰三角形.①当点M在BC边上时,由h1+h2=h得:1+M y=OB,M y=3﹣1=2,把它代入y=﹣3x+3中求得:M x=,所以此时M(,2).②当点M在CB延长线上时,由h1﹣h2=h得:M y﹣1=OB,M y=3+1=4,把它代入y=﹣3x+3中求得:M x=﹣,所以此时M(﹣,4).③当点M在BC的延长线上时,h1=1<h,不存在;综上所述:点M的坐标为M(,2)或(﹣,4).28.(12分)如图,已知一次函数y=﹣x+6的图象与坐标轴交于A、B两点,AE平分∠BAO,交x轴于点E.(1)求点B的坐标及直线AE的表达式;(2)过点B作BF⊥AE,垂足为F,在y轴上有一点P,使线段PE+PF的值最小,求点P的坐标;(3)若将已知条件“AE平分∠BAO,交x轴于点E”改变为“点E是线段OB上的一个动点(点E不与点O、B重合)”,过点B作BF⊥AE,垂足为F,以EF为边作正方形EFMN,当点M落在坐标轴上时,求E点坐标.【解答】解:(1)如图1中,∵一次函数y=﹣x+6的图象与坐标轴交于A、B点,∴A(0,6),B(8,0),设OE=x,作EM⊥AB于M.∵AE平分∠OAB,OE⊥OA,∴OE=EM=x,在△AEO和△AEM中,∴△AEO≌△AEM,∴AM=AO=6,∵OA=6,OB=8,∠AOB=90°,∴AB===10,∴BM=4,在Rt△EBM中,∵EM2+BM2=EB2,∴x2+42=(8﹣x)2,∴x=3,∴E(3,0),设直线AE的解析式为y=kx+b则解得,∴直线AE的解析式为y=﹣2x+6.(2)如图2中,作点E关于y轴的对称点E′,连接FE′交y轴于P,此时PE+PF 的值最小.∵BF⊥AE,∴直线BF的解析式为y=x﹣4,由解得,∴F(4,﹣2),∴直线FE′的解析式为y=﹣x﹣,∴P(0,﹣).(3)①如图3中,当点M在y轴上时,作FP⊥OB于P,FQ⊥OM于Q.∵四边形EFMN是正方形,∴FE=FM,∠EFM=∠PFQ,∴∠EFP=∠MFQ,∵∠FPE=∠FQM=90°,∴△FPE≌△FQM,∴FP=FQ,四边形OPFQ是正方形,设边长为x.∵∠AEO=∠BEF,∠AOE=∠PFE=90°,∴∠FAQ=∠FBP,∵∠AQF=∠BPF=90°,∴△AQF≌△BPF,∴AQ=BP,∴6+x=8﹣x∴x=1,∴F(1,﹣1),∴直线AF的解析式为y=﹣7x+6,∴E(,0).②如图4中,当点M在x轴上时,易知OA=OE=6,可得E(6,0).综上所述,满足条件的点E坐标为(,0)或(6,0).。
2016_2017四川省成都市金牛区期末考试七年级上数学试题与答案(word版)
七年级上数学期末试题(16—17金牛区)A 卷100分一、选择题(每小题3分,共30分)1、32-的倒数是( ) 32233223--、、、、D C B A2、如图所示的几何体是由一些小正方体组成的,那么从左边看它的图形是( )3、城市轨道交通的建设为市民的出行提供了很多便利,根据市城市轨道交通第三期的建设规定(2016至2020年),至2020年,我市将形成13条线路,总长508000米的轨道交通网。
将508000用科学记数法表示为( )A 、5.08×106B 、5.08×105C 、0.508×106D 、50.8×104 4、下列计算正确的是( )A 、3x 2-x 2=3B 、3a 2+2a 2=5a 4C 、-0.25ab +41ab =0 D 、3+x =3x 5、某中学七年级共400人,在期末统考后对本次考试中数学测验情况进行抽样了解,下列抽取的样本最合理的是( )A 、抽取前50名同学的数学成绩B 、抽取后50名同学的数学成绩C 、抽取5班同学的数学成绩D 、抽取各班学号为5的倍数的同学的数学成绩 6、如图是一个简单的数值运算程序,当输入的x 的值为2时,则输出的值为( )A 、6B 、-8C 、8D 、-6 7、有理数-32,(-3)2,|-33|按从小到大的顺序排列是( )A 、|-33|<-32< (-3)2B 、|-33|<(-3)2<-32C 、-32<|-33|<(-3)2D 、-32<(-3)2<|-33| 8、某商品在元旦假日准备开展促销活动,商品的标价为1000元,4折销售后 任可赚80元,则该商品的成本价为( )A 、400元B 、440元 B 、320元 D 、270元 9、如图,甲从A 点出发向北偏东70°走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( ) A 、125° B 、160° C 、85°D 、105°10、如图,已知线段AB=6cm ,在线段AB 的延长线上(即B 点右侧)有一点C ,且BC=4cm ,若点M 、N 分别为AB 、BC 的中点,那么M 、N 两点之间的距离为( ) A 、1cm B 、4cm C 、5cm D 、无法确定二、填空题(每小题4分,共16分) 11、比较大小:30.15° 30°15′(用>、=、<填空)12、已知方程2x m -1-3=0是关于x 的一元一次方程,则m 的值是 13、若代数式-3a 2x -1和243+x a 是同类项,则x = 14、已知m 、n 满足|2m +4|+(n -3)2=0,那么(m +n )2017的值为 。
成都七中七年级上册数学期末试卷(带答案)-百度文库
成都七中七年级上册数学期末试卷(带答案)-百度文库 一、选择题1.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( )A .1B .2C .3D .4 2.-2的倒数是( )A .-2B .12-C .12D .23.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③ B .①② C .②④ D .③④ 4.若21(2)0x y -++=,则2015()x y +等于( )A .-1B .1C .20143D .20143-5.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式6.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1) B .(3,3) C .(2,3) D .(3,2)7.点()5,3M 在第( )象限.A .第一象限B .第二象限C .第三象限D .第四象限8.不等式x ﹣2>0在数轴上表示正确的是( )A .B .C .D .9.下列等式的变形中,正确的有( )①由5 x =3,得x = 53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得m n=1. A .1个B .2个C .3个D .4个 10.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+11.如图的几何体,从上向下看,看到的是( )A .B .C .D .12.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1二、填空题13.已知x=5是方程ax ﹣8=20+a 的解,则a= ________14.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.15.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单日期 交易明细10.16 乘坐公交¥ 4.00-10.17 转帐收入¥200.00+10.18 体育用品¥64.00-10.19 零食¥82.00-10.20餐费¥100.00-16.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.17.将520000用科学记数法表示为_____.18.化简:2x+1﹣(x+1)=_____.19.A 学校有m 个学生,其中女生占45%,则男生人数为________.20.﹣225ab π是_____次单项式,系数是_____. 21.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.22.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .23.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.24.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.三、压轴题25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.26.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.27.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.28.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒.①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数29.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d(d≥0),则称d 为点P 到点Q 的d 追随值,记作d[PQ].例如,在数轴上点P 表示的数是2,点Q 表示的数是5,则点P 到点Q 的d 追随值为d[PQ]=3.问题解决:(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2;②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.30.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.31.如图,在数轴上点A 表示数a,点B 表示数b,AB 表示A 点和B 点之间的距离,且a,b 满足|a+2|+(b+3a)2=0.(1)求A,B 两点之间的距离;(2)若在线段AB 上存在一点C,且AC=2BC,求C 点表示的数;(3)若在原点O 处放一个挡板,一小球甲从点A 处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t 秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t 的代数式表示) ②求甲乙两小球到原点距离相等时经历的时间.32.已知:如图,点A 、B 分别是∠MON 的边OM 、ON 上两点,OC 平分∠MON ,在∠CON 的内部取一点P (点A 、P 、B 三点不在同一直线上),连接PA 、PB .(1)探索∠APB 与∠MON 、∠PAO 、∠PBO 之间的数量关系,并证明你的结论;(2)设∠OAP=x°,∠OBP=y°,若∠APB 的平分线PQ 交OC 于点Q ,求∠OQP 的度数(用含有x 、y 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】 【分析】点在原点的右边,则这个数一定是正数,根据演要求判断几个数即可得到答案.【详解】()32-=-8,613⎛⎫- ⎪⎝⎭=1719,25-=-25 ,0,21m +≥1 在原点右边的数有613⎛⎫- ⎪⎝⎭和 21m +≥1 故选B【点睛】此题重点考察学生对数轴上的点的认识,抓住点在数轴的右边是解题的关键. 2.B解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-12故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握3.A解析:A【解析】【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误;根据客车数列方程,应该为2554045n n++=,③正确,②错误;所以正确的是①③.故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.4.A解析:A【解析】(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y)2015=(1﹣2)2015=﹣1.故选A5.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A.为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C.为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.C【解析】【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案.【详解】∵(1,2)表示教室里第1列第2排的位置,∴教室里第2列第3排的位置表示为(2,3),故选C.【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键.7.A解析:A【解析】【分析】根据平面直角坐标系中点的坐标特征判断即可.【详解】∵5>0,3>0,∴点()5,3M 在第一象限.故选A.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.8.C解析:C【解析】【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.【详解】移项得,x >2,在数轴上表示为:故选:C .【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.9.B【解析】①若5x=3,则x=35,故本选项错误;②若a=b,则-a=-b,故本选项正确;③-x-3=0,则-x=3,故本选项正确;④若m=n≠0时,则nm=1,故本选项错误.故选B.10.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】方程212134x x-+=-两边同时乘12得:4(21)123(2)x x-=-+故选:D.【点睛】本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.11.A解析:A【解析】【分析】根据已知图形和空间想象能力,从上面看图形,根据看的图形选出即可.【详解】从上面看是水平方向排列的两列,上一列是二个小正方形,下一列是右侧一个正方形,故A符合题意,故选:A.【点睛】本题考查了简单组合体的三视图的应用,主要培养学生的观察能力和空间想象能力.12.B解析:B【解析】【分析】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,n+,下边三角形的数字规律为:1+2,222+, (2)∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.二、填空题13.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.14.2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.15.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解.16.三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.17.2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数解析:2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将520000用科学记数法表示为5.2×105.故答案为:5.2×105.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.19.【解析】【分析】将男生占的比例:,乘以总人数就是男生的人数.【详解】男生占的比例是,则男生人数为55%,故答案是55%.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其解析:55%m【解析】【分析】将男生占的比例:145%-,乘以总人数就是男生的人数.【详解】男生占的比例是145%55%-=,则男生人数为55%m ,故答案是55%m .【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其中的运算关系,正确地列出代数式.20.三 ﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π- .【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键.21.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.22.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.解析:5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.23.6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.24.404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有解析:404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有5×3-1=14个黑棋子;图4有5×4-1=19个黑棋子;…图n 有5n-1个黑棋子,当5n-1=2019,解得:n=404,故答案:404.【点睛】本题考查探索与表达规律——图形类规律探究.能根据题中已给图形找出黑棋子的数量与序数之间的规律是解决此题的关键.三、压轴题25.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t的值为,2或27或2213.【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.26.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;(2)依题意设∠2=x,列等式,解方程求出即可;(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.【详解】解:(1)∵∠BOC=30°,∠AOB=45°,∴∠AOC=75°,∴∠AOC+∠BOC+∠AOB=150°;答:由射线OA,OB,OC组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x,则∠1=3x+30°,∵∠1+∠2=90°,∴x+3x+30°=90°,∴x=15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,∴∠MOF=12∠COM=82.5°,∠MOE=12∠MOB=67.5°,∴∠EOF=∠MOF﹣∠MOE=15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.27.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257=1767.位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.28.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.29.(1)1+a或1-a;(2)12或52;(3)1≤b≤7.【解析】【分析】(1)根据d追随值的定义,分点N在点M左侧和点N在点M右侧两种情况,直接写出答案即可;(2)①分点A在点B左侧和点A在点B右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②【详解】解:(1)点N在点M右侧时,点N表示的数是1+a;点N在点M左侧时,点N表示的数是1-a;(2)①b=4时,AB 相距3个单位,当点A 在点B 左侧时,t=(3-2)÷(3-1)=12, 当点A 在点B 右侧时,t=(3+2)÷(3-1)=52; ②当点B 在点A 左侧或重合时,即d ≤1时,随着时间的增大,d 追随值会越来越大, ∵0<t≤3,点A 到点B 的d 追随值d[AB]≤6,∴1-d+3×(3-1)≤6,解得d ≥1,∴d=1,当点B 在点A 右侧时,即d>1时,在AB 重合之前,随着时间的增大,d 追随值会越来越小,∵点A 到点B 的d 追随值d[AB]≤6,∴d ≤7∴1<d ≤7,综合两种情况,d 的取值范围是1≤d ≤7.故答案为(1)1+a 或1-a ;(2)①12或52;②1≤b≤7. 【点睛】本题考查了数轴上两点之间的距离和动点问题.30.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm ,BD=4cm .∵AB=12cm ,AM=4cm ,∴BM=8cm ,∴AC=AM ﹣CM=2cm ,DM=BM ﹣BD=4cm . 故答案为2,4;(2)当点C 、D 运动了2 s 时,CM=2 cm ,BD=4 cm .∵AB=12 cm ,CM=2 cm ,BD=4 cm ,∴AC+MD=AM ﹣CM+BM ﹣BD=AB ﹣CM ﹣BD=12﹣2﹣4=6 cm ;(3)根据C 、D 的运动速度知:BD=2MC .∵MD=2AC ,∴BD+MD=2(MC+AC ),即MB=2AM .∵AM+BM=AB ,∴AM+2AM=AB ,∴AM=13AB=4. 故答案为4;(4)①当点N 在线段AB 上时,如图1.∵AN﹣BN=MN.又∵AN﹣AM=MN,∴BN=AM=4,∴MN=AB﹣AM﹣BN=12﹣4﹣4=4,∴MNAB=412=13;②当点N在线段AB的延长线上时,如图2.∵AN﹣BN=MN.又∵AN﹣BN=AB,∴MN=AB=12,∴MNAB=1212=1.综上所述:MNAB=13或1.【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.31.2+t6-2t或2t-6【解析】分析:(1)、先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B 两点之间的距离;(2)、设BC的长为x,则AC=2x,根据AB的长度得出x的值,从而得出点C所表示的数;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0<t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.详解:(1)、由题意知a=-2,b=6,故AB=8.(2)、设BC的长为x,则AC=2x, ∵BC+AC=AB,∴x+2x=8,解得x=83,∴C点表示的数为6-8 3=103.(3)①2+t;6-2t或2t-6.②当2+t=6-2t时,解得t=43,当2+t=2t-6时,解得t=8.∴t=43或8.点睛:本题考查了非负数的性质,方程的解法,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键.32.(1)见解析;(2)∠OQP=180°+12x°﹣12y°或∠OQP=12x°﹣12y°.【解析】。
2016-2017学年成都市成华区七年级(上)期末数学试卷(含解析)
2016-2017学年成都市成华区七年级(上)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一.选择题(每小题3分,共30分)1.﹣3的绝对值是()A.﹣B.C.﹣3 D.32.如图是由6个相同的小正方体搭成的几何体,从上看到的形状图是()A.B.C.D.3.2016年11月12日息:今日0点,阿里巴巴“双11”全球狂欢节正式结束,在“双11”当天阿里巴巴旗下各平台总交易额达到1207亿元,1207亿元用科学记数法表达是()A.1.207×108B.1.207×109C.1.207×1010D.1.207×10114.下列关系式正确的是()A.35.5°=35°5′B.35.5°=35°50′C.35.5°<35°5′D.35.5°>35°5′5.若﹣2x m+1y2与3x3y n﹣1是同类项,则m+n的值()A.3 B.4 C.5 D.66.下列调查中,①调查本班同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟9号”的成功发射,对其零部件进行检查;④对乘坐某班次客车的乘客进行安检.其中适合采用抽样调查的是()A.①B.②C.③D.④7.如图,将两块直角三角板的直角顶点重合,如图所示,若∠AOD=128°,则∠BOC=()A.52°B.45°C.30°D.20°8.如图,小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间线段最短D.经过两点有且仅有一条直线9.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120 元B.100 元C.80 元D.60 元10.已知线段AB=8,在直线AB上取一点C,使BC=2.点D是AC的中点,则线段CD的长是()A.3 B.4 C.5 D.3或5二、填空题(每小题4分,共16分)11.单项式的系数是,次数是.12.若|2x+2|+(y﹣3)2=0,则x y=.13.小明同学根据全班同学的血型制作了如图所示的扇形统计图,则O型血所在扇形的圆心角度数是.14.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,第n个图案需要根火柴棒.三、解答题《共54分)15.(10分)计算:(1)(﹣2)3﹣|3﹣22|+3÷;(2)(﹣)×(﹣8+﹣)+(﹣3)2×0.16.(10分)(1)化简:﹣4(a3﹣36)+(﹣2b+5a3)(2)先化简,再求值:﹣4y2+2(x2+y﹣x)﹣2(x2﹣2y2),其中x=﹣2,y=﹣.17.(10分)解方程:(1)5x+2=3(x+2);(2).18.(7分)如图,已知O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB平分线,求∠DOE的度数.19.(7分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷词查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有600名学生,请你估计,该中学最喜爱律师职业的学生有多少名?20.(10分)以绿色”为主题的第十六届“西博会”已于2016年11月3﹣14日在成都举行,作为东道主的成都一共签订了境外与省外境内投资合作项目共135个,其中境外投资合作项目个数的2倍比省外境内投资合作项目多51个.(1)成都市签订的国外投资合作项目和国内投资合作项目分别有多少个?(2)若境外、省内提投投合作项目平均每个项目引进资金分别为11亿元、16亿,在这次”西博会”中,东道主成都市共引进资金多少亿元?B卷(50分)一、填空题(每小题4分,共20分)21.已如方程(m﹣4)x|m|﹣3=6是关于x的一元一次方程,则m=.22.若|m﹣n|=n﹣m,且|m|=4,|n|=3,则(m+n)2=.23.我国著名数学家华罗庚曾说过,“数形结合百般好,隔离分家万事非”如图,在一个边长为1的正方形纸板上,依次贴上面积为,,……的长方形彩色纸片,请你用“数形结合”的数学思想,计算++++++=.24.若关于x的方程3(x﹣a)=ax﹣3a+3有整数解且a为整数,则满足条件的所有a的值和为.25.一列数a1,a2,a3,…满足条件:a1=,a n=(n≥2,且n为整数),则a2016=.二、解答题(共30分)26.(8分)(1)解方程:+++…+=99.(2)已知当x=2,y=﹣4时,代数式ax3++10=2016,求当x=﹣4,y=﹣时,代数式3ax﹣24by3+5026的值.27.(10分)如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE=cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变.28.(12分)已知将一副三角板(直角三角板OAB和直角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=30°)(1)如图1摆放,点O、A、C在一条直线上,∠BOD的度数是;(2)如图2,变化摆放位置将直角三角板COD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC 的度数是;(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC.射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.参考答案与试题解析一.选择题1.【解答】解:﹣3的绝对值是3,即|﹣3|=3.故选:D.2.【解答】解:从上边看第一列是2个小正方形,第1列的第二个小正方形在下边,第二列是2个小正方形,第2列的第二个小正方形在上边,第三列是1个小正方形.故选:B.3.【解答】解:1207亿元用科学记数法表达是1.207×1011.故选:D.4.【解答】解:A、35.5°=35°30′,35°30′>35°5′,故A错误;B、35.5°=35°30′,35°30′<35°50′,故B错误;C、35.5°=35°30′,35°30′>35°5′,故C错误;D、35.5°=35°30′,35°30′>35°5′,故D正确;故选:D.5.【解答】解:∵﹣2x m+1y2与3x3y n﹣1是同类项,∴m+1=3,n﹣1=2,解得:m=2,n=3,∴m+n=5.故选:C.6.【解答】解:①适合普查,故①不适合抽样调查;②调查具有破坏性,适合抽样调查,故②符合题意;③调查要求准确性,适合普查,故③不适合抽样调查;④安检适合普查,故④不适合抽样调查;故选:B.7.【解答】解:∠BOC=∠DOB+∠COA﹣∠AOD=90°+90°﹣128°=52°.故选:A.8.【解答】解:小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:C.9.【解答】解:设这件商品的进价为x元,根据题意得:200×0.5﹣x=20,解得:x=80.答:这件商品的进价为80元.故选:C.10.【解答】解:①当点C在线段AB上时,由线段的和差,得AC=AB﹣BC=8﹣2=6.∵点D是AC的中点,∴AD=AC=3,∴CD=AC﹣AD=3;②当点C在线段AB的延长线上时,由线段的和差,得AC=AB+BC=8+2=10.∵点D是AC的中点,∴AD=AC=5,∴CD=AC﹣AD=5,综上所述,线段CD的长是3或5.故选:D.二、填空题11.【解答】解:单项式的系数是﹣,次数是7.故答案为:﹣,7.12.【解答】解:∵|2x+2|+(y﹣3)2=0,∴2x+2=0,y﹣3=0,解得x=﹣1,y=3.∴x y=(﹣1)3=﹣1.故答案为:﹣1.13.【解答】解:∵O型血所在扇形对应的百分比为1﹣(40%+30%+10%)=20%,∴O型血所在扇形的圆心角度数是360°×20%=72°,故答案为:72°.14.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;故答案为:7n+1.三、解答题15.【解答】解:(1)(﹣2)3﹣|3﹣22|+3÷=﹣8﹣|3﹣4|+9=﹣8﹣1+9=0;(2)(﹣)×(﹣8+﹣)+(﹣3)2×0=(﹣)×(﹣8)+(﹣)×)+(﹣)×(﹣)+9×0 =6﹣++0=5.16.【解答】解:(1)原式=﹣4a3+144﹣2b+5a3=﹣4a3+5a3﹣2b+144=a3﹣2b+144;(2)﹣4y2+2(x2+y﹣x)﹣2(x2﹣2y2)=﹣4y2+2x2+2y﹣2x﹣2x2+4y2=2y﹣2x;当x=﹣2,y=﹣时,原式=2×(﹣)﹣2×(﹣2)=﹣1+4=3.17.【解答】解:(1)去括号得:5x+2=3x+6,移项合并得:2x=4,解得:x=2;(2)去分母得:3x﹣21﹣20x﹣32=12,移项合并得:﹣17x=65,解得:x=﹣.18.【解答】解:O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB平分线,∴∠AOB=180°,∠DOC=∠AOC,∠EOC=∠BOC,∠DOE=∠DOC+∠EOC=∠AOC+∠BOC=(∠AOC+∠BOC)=∠AOB=90°.故答案为:90°.19.【解答】解:(1)本次调查共抽取学生12÷20%=60(名);(2)在被调查的学生中,最喜爱教师职业的人数为60﹣(12+9+6+24)=9(名),补全图形如下:(3)估计该中学最喜爱律师职业的学生有600×=60(名).20.【解答】解:(1)设境外投资合作项目个数为x个,根据题意得出:2x﹣(135﹣x)=51,解得:x=62,故国内投资合作项目为:135﹣62=73(个).答:成都市签订的国外投资合作项目和国内投资合作项目分别有62个、73个.(2)∵境外、省内提投投合作项目平均每个项目引进资金分别为11亿元、16亿,∴东道主成都市共引进资金:11×62+73×16=682+1168=1850(亿元).答:东道主成都市共引进资金1850亿元21.【解答】解:∵方程(m﹣4)x|m|﹣3=6是关于x的一元一次方程,∴m﹣4≠0且|m|﹣3=1,解得:m=﹣4,故答案为:﹣4.22.【解答】解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=49.故答案为:49或123.【解答】解:++++++=1﹣=,故答案为:.24.【解答】解:解方程3(x﹣a)=ax﹣3a+3,去括号,得3x﹣3a=ax﹣3a+3,移项、合并同类项得(3﹣a)x=3,系数化为1,得x=.因为x是整数,且a也是整数,所以3﹣a=±1或±3,解得a=0,2,4,6.则0+2+4+6=12.故答案为12.25.【解答】解:a1=,a2==2,a3==﹣1,a4==…可以发现:数列以,2,﹣1循环出现,2016÷3=672,所以a2016=﹣1.故答案为﹣1.26.【解答】解:(1)+++…+=99,整理,得:x(﹣+﹣+﹣+…+﹣)=99,即:x(1﹣)=99,x=99,系数化为1,得:x=100;(2)把x=2,y=﹣4代入ax3++10=2016得:8a﹣2b+10=2016,即8a﹣2b=2006,∴4a﹣b=1003,当x=﹣4,y=﹣时,3ax﹣24by3+5026=﹣12a+3b+5026=﹣12a+3b+5026=﹣3(4a﹣b)+5026=﹣3×1003+5026=2017.27.【解答】解:(1)∵AB=12cm,点D、E分别是AC和BC的中点,C点为AB的中点,∴AC=BC=6cm,∴CD=CE=3cm,∴DE=CD+CE=6cm,故答案为:6.(2)∵AB=12cm,AC=4cm,∴BC=8cm,∵点D、E分别是AC和BC的中点,∴CD=2cm,CE=4cm,∴DE=6cm,(3)设AC=acm,∵点D、E分别是AC和BC的中点,∴DE=CD+CE=(AC+BC)=AB=6cm,∴不论AC取何值(不超过12cm),DE的长不变,28.【解答】解:(1)∵∠AOB=90°,∠COD=30°,∴∠BOD=∠AOB﹣∠COD=60°;(2)∵OB恰好平分∠COD,∴∠COB=∠COD=×30°=15°,∴∠AOC=∠AOB﹣∠COB=90°﹣15°=75°;故答案为:60°;75°;(3)∠MON的度数不发生变化,∠MON=60°.理由如下:∵OM平分∠AOC,ON平分∠BOD,∴∠DON=∠BOD,∠COM=∠AOC,∴∠DON+∠COM=(∠BOD+∠AOC)=(∠AOB﹣∠COD),∴∠MON=∠DON+∠COM+∠COD=(∠AOB+∠COD)=×(90°+30°)=60°。
成都七中实验学校七年级上学期数学期末试卷及答案-百度文库
成都七中实验学校七年级上学期数学期末试卷及答案-百度文库一、选择题1.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .122.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( ) A .49 B .59 C .77D .1393.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线 C .垂线段最短 D .两点之间直线最短4.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30B .45︒C .60︒D .75︒5.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或56.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π7.若多项式229x mx ++是完全平方式,则常数m 的值为() A .3B .-3C .±3D .+68.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③D .④9.方程3x +2=8的解是( ) A .3B .103C . 2D .1210.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cmB .2cmC .8cm 或2cmD .以上答案不对11.估算15在下列哪两个整数之间( ) A .1,2B .2,3C .3,4D .4,512.下列方程的变形正确的有( ) A .360x -=,变形为36x = B .533x x +=-,变形为42x = C .2123x -=,变形为232x -= D .21x =,变形为2x =二、填空题13. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.14.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________15.写出一个比4大的无理数:____________. 16.如图,在长方形ABCD 中,10,13.,,,AB BC E F G H ==分别是线段,,,AB BC CD AD 上的定点,现分别以,BE BF 为边作长方形BEQF ,以DG 为边作正方形DGIH .若长方形BEQF 与正方形DGIH 的重合部分恰好是一个正方形,且,BE DG =,Q I 均在长方形ABCD 内部.记图中的阴影部分面积分别为123,,s s s .若2137S S =,则3S =___17.因式分解:32x xy -= ▲ . 18.15030'的补角是______. 19.16的算术平方根是 .20.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______. 21.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.22.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x 人,依题意列方程得_____. 23.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____. 24.-2的相反数是__.三、解答题25.计算 (1)32527- (2)()3335+-26.如图,AB 和CD 相交于点O ,∠A=∠B ,∠C=75°求∠D 的度数.27.如图,把△ABC 先向上平移3个单位长度,再向右平移2个单位长度,得到△A 1B 1C 1.(1)在图中画出△A 1B 1C 1,并写出点A 1、B 1、C 1的坐标; (2)连接A 1A 、C 1C ,则四边形A 1ACC 1的面积为______.28.先化简后求值:2(x 2y +xy )﹣3(x 2y ﹣xy )﹣5xy ,其中x =﹣2,y =1.29.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角.如图1,若1COD AOB 2∠∠=,则COD ∠是AOB ∠的内半角.()1如图1,已知AOB 70∠=,AOC 25∠=,COD ∠是AOB ∠的内半角,则BOD ∠=______;()2如图2,已知AOB 60∠=,将AOB ∠绕点O 按顺时针方向旋转一个角度α(0α60)<<至COD ∠,当旋转的角度α为何值时,COB ∠是AOD ∠的内半角.()3已知AOB 30∠=,把一块含有30角的三角板如图3叠放,将三角板绕顶点O 以3度/秒的速度按顺时针方向旋转(如图4),问:在旋转一周的过程中,射线OA ,OB ,OC ,OD 能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由. 30.已知A =3x 2+x+2,B =﹣3x 2+9x+6. (1)求2A ﹣13B ; (2)若2A ﹣13B 与32C -互为相反数,求C 的表达式;(3)在(2)的条件下,若x =2是C =2x+7a 的解,求a 的值.四、压轴题31.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?32.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。
成都七中初中学校七年级上册数学期末试题及答案解答
成都七中初中学校七年级上册数学期末试题及答案解答一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3B .13C .13-D .32.如果一个角的补角是130°,那么这个角的余角的度数是( ) A .30°B .40°C .50°D .90°3.﹣3的相反数是( ) A .13-B .13C .3-D .34.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( ) A .0.1289×1011 B .1.289×1010 C .1.289×109D .1289×1075.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)36.将图中的叶子平移后,可以得到的图案是()A .B .C .D .7.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( ) A .9a 9b -B .9b 9a -C .9aD .9a -8.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=40°时,∠BOD的度数是()A.50°B.130°C.50°或 90°D.50°或 130°9.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是()A.设B.和C.中D.山10.下列计算正确的是()A.3a+2b=5ab B.4m2n-2mn2=2mnC.-12x+7x=-5x D.5y2-3y2=211.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()A.2 B.1C.0 D.-112.把1,3,5,7,9, 排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是()A.1685 B.1795 C.2265 D.2125二、填空题13.如图,线段AB被点C,D分成2:4:7三部分,M,N分别是AC,DB的中点,若MN=17cm,则BD=__________cm.14.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____.15.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.16.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.17.若a a -=,则a 应满足的条件为______.18.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 19.|﹣12|=_____. 20.方程x +5=12(x +3)的解是________. 21.8点30分时刻,钟表上时针与分针所组成的角为_____度. 22.观察“田”字中各数之间的关系:则c 的值为____________________.23.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.24.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.三、压轴题25.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.26.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.27.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题:(1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为,取得最佳值最小值的数列为(写出一个即可);(3)将2,-9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a的值.28.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.29.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.30.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.31.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.32.问题一:如图1,已知A ,C 两点之间的距离为16 cm ,甲,乙两点分别从相距3cm 的A ,B 两点同时出发到C 点,若甲的速度为8 cm/s ,乙的速度为6 cm/s ,设乙运动时间为x (s ), 甲乙两点之间距离为y (cm ). (1)当甲追上乙时,x = . (2)请用含x 的代数式表示y . 当甲追上乙前,y = ;当甲追上乙后,甲到达C 之前,y = ; 当甲到达C 之后,乙到达C 之前,y = .问题二:如图2,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB=30°.(1)分针OD 指向圆周上的点的速度为每分钟转动 cm ;时针OE 指向圆周上的点的速度为每分钟转动 cm .(2)若从4:00起计时,求几分钟后分针与时针第一次重合.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵3>13>13->﹣3,∴在数3,﹣3,13,13-中,最小的数为﹣3.故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.B解析:B【解析】【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案.【详解】解:∵一个角的补角是130︒,∴这个角为:50︒,∴这个角的余角的度数是:40︒.故选:B.【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.3.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.A解析:A【解析】【分析】根据乘方和绝对值的性质对各个选项进行判断即可.【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故选A.6.A解析:A【解析】【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案.【详解】解:根据平移不改变图形的形状、大小和方向,将所示的图案通过平移后可以得到的图案是A,其它三项皆改变了方向,故错误.故选:A.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.7.C【解析】 【分析】分别表示出愿两位数和新两位数,进而得出答案. 【详解】解:由题意可得,原数为:()10a b b ++; 新数为:10b a b ++,故原两位数与新两位数之差为:()()10a b b 10b a b 9a ++-++=. 故选C . 【点睛】本题考查列代数式,正确理解题意得出代数式是解题关键.8.D解析:D 【解析】 【分析】根据题意画出图形,再分别计算即可. 【详解】根据题意画图如下; (1)∵OC ⊥OD , ∴∠COD=90°, ∵∠AOC=40°,∴∠BOD=180°﹣90°﹣40°=50°, (2)∵OC ⊥OD , ∴∠COD=90°, ∵∠AOC=40°,∴∠BOD=180°﹣50°=130°,故选D .【点睛】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.9.A解析:A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“设”是相对面,“和”与“中”是相对面,“建”与“山”是相对面.故选:A .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.10.C解析:C【解析】试题解析:A.不是同类项,不能合并.故错误.B. 不是同类项,不能合并.故错误.C.正确.D.222 532.y y y -=故错误.故选C.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.11.A解析:A【解析】【分析】根据A 、D 两点在数轴上所表示的数,求得AD 的长度,然后根据2AB=BC=3CD ,求得AB 、BD 的长度,从而找到BD 的中点E 所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD ,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4, ∴|6-E|=4, ∴点E 所表示的数是:6-4=2.∴离线段BD 的中点最近的整数是2.故选:A .【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.12.B解析:B【解析】【分析】寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9.【详解】解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,A 选项51685,357a a ==,可以作为中间数;B 选项51795,359a a ==,不能作为中间数;C 选项52265,453a a ==,可以作为中间数;D 选项52125,425a a ==,可以作为中间数.故选:B【点睛】本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.二、填空题13.14【解析】因为线段AB 被点C,D 分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N 分别是AC,DB 的中点,所以CM=,DN=,因为mn=17cm,所以x+4x+=1解析:14因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N分别是AC,DB的中点,所以CM=12AC x=,DN=1722BD x=,因为mn=17cm,所以x+4x+72x=17,解得x=2,所以BD=14,故答案为:14.14.-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、解析:-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,所以最小的整数是﹣3.故答案为:﹣3.【点睛】本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.15.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.解:设小长方形卡片的长为2m ,则宽为m ,依题意,得:2m +2m =4,解得:m =1,∴2m =2.再设盒子底部长方形的另一边长为x ,依题意,得:2(4+x ﹣2):2×2(2+x ﹣2)=5:6,整理,得:10x =12+6x ,解得:x =3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.16.-3【解析】【分析】根据题意将代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将代入方程得到,变形得到,所以=故填-3.【点睛】本题考查利用方程的对代数式求值,将方解析:-3【解析】【分析】根据题意将1x =-代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以241a b -+=2(2)1 3.a b -+=-故填-3.【点睛】本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可.17.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.解析:a 0≥【解析】【分析】根据绝对值的定义和性质求解可得.【详解】 解:a a -=,a 0∴≥,故答案为a 0≥.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.18.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.19.【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣|=.故答案为:【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0解析:1 2【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣12|=12.故答案为:1 2【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.20.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.21.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.22.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。
成都七中初中学校七年级上册数学期末试题及答案解答
成都七中初中学校七年级上册数学期末试题及答案解答一、选择题1.当x取2时,代数式(1)2x x-的值是()A.0 B.1 C.2 D.32.,3-,(3)--,化简后结果为3-的是()A B C.3-D.(3)--3.在222,7-四个数中,属于无理数的是()A.0.23B C.2-D.22 74.下列方程变形正确的是()A.方程110.20.5x x--=化成1010101025x x--=B.方程 3﹣x=2﹣5(x﹣1),去括号,得 3﹣x=2﹣5x﹣1 C.方程 3x﹣2=2x+1 移项得 3x﹣2x=1+2D.方程23t=32,未知数系数化为 1,得t=15.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A.①④B.②③C.③D.④6.按一定规律排列的单项式:x3,-x5,x7,-x9,x11,……第n个单项式是( )A.(-1)n-1x2n-1B.(-1)n x2n-1C.(-1)n-1x2n+1D.(-1)n x2n+17.下列各数中,有理数是( )A B.πC.3.14 D8.如果代数式﹣3a2m b与ab是同类项,那么m的值是( )A.0 B.1 C.12D.39.已知∠A=60°,则∠A的补角是()A.30°B.60°C.120°D.180°10.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x人到甲处,则所列方程是()A.2(30+x)=24﹣x B.2(30﹣x)=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x ) 11.下列方程的变形正确的有( )A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x = 12.下列调查中,调查方式选择正确的是( )A .为了了解1 000个灯泡的使用寿命,选择全面调查B .为了了解某公园全年的游客流量, 选择抽样调查C .为了了解生产的一批炮弹的杀伤半径,选择全面调查D .为了了解一批袋装食品是否含有防腐剂,选择全面调查13.下列各数中,比73-小的数是( ) A .3-B .2-C .0D .1- 14.若2m ab -与162n a b -是同类项,则m n +=( )A .3B .4C .5D .7 15.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1二、填空题16.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 .17.如果实数a ,b 满足(a-3)2+|b+1|=0,那么a b =__________.18.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________19.写出一个比4大的无理数:____________.20.﹣30×(1223-+45)=_____. 21.计算:()222a -=____;()2323x x ⋅-=_____.22.若a a -=,则a 应满足的条件为______.23.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.24.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.25.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.26.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 27.数字9 600 000用科学记数法表示为 .28.用“>”或“<”填空:13_____35;223-_____﹣3. 29.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.30.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、压轴题31.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值.32.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.33.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.34.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.35.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.36.如图,在数轴上从左往右依次有四个点,,,A B C D,其中点,,A B C表示的数分别是0,3,10,且2CD AB=.(1)点D表示的数是;(直接写出结果)(2)线段AB以每秒2个单位长度的速度沿数轴向右运动,同时线段CD以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t(秒),当两条线段重叠部分是2个单位长度时.①求t的值;②线段AB上是否存在一点P,满足3BD PA PC-=?若存在,求出点P表示的数x;若不存在,请说明理由.37.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x++-时,可令10x+=和20x-=,分别求得1x=-,2x=(称1-、2分别为|1|x+与|2|x-的零点值).在有理数范围内,零点值1x=-和2x=可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x<-;(2)1-≤2x<;(3)x≥2.从而化简代数式|1||2|x x++-可分为以下3种情况:(1)当1x<-时,原式()()1221x x x=-+--=-+;(2)当1-≤2x<时,原式()()123x x=+--=;(3)当x≥2时,原式()()1221x x x=++-=-综上所述:原式21(1)3(12)21(2)x xxx x-+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x+与|4|x-的零点值分别为;(2)化简式子324x x-++.38.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;(2)设∠OAP=x°,∠OBP=y°,若∠APB 的平分线PQ 交OC 于点Q ,求∠OQP 的度数(用含有x 、y 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】把x 等于2代入代数式即可得出答案.【详解】解:根据题意可得:把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B.【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.2.B解析:B【解析】【分析】由题意直接利用求平方根和立方根以及绝对值的性质和去括号分别化简得出答案.【详解】解:9,故排除A;327-=3-,选项B 正确;C. 3-=3,故排除C;D. (3)--=3,故排除D.故选B.【点睛】本题主要考查求平方根和立方根以及绝对值的性质和去括号原则,正确掌握相关运算法则是解题关键.3.B解析:B【解析】【分析】根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可.【详解】0.23是有限小数,是有理数,不符合题意,是开方开不尽的数,是无理数,符合题意,-2是整数,是有理数,不符合题意,227是分数,是有理数,不符合题意,故选:B.【点睛】本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.4.C解析:C【解析】【分析】各项中方程变形得到结果,即可做出判断.【详解】解:A、方程x1x10.20.5--=化成10x1010x25--=1,错误;B、方程3-x=2-5(x-1),去括号得:3-x=2-5x+5,错误;C、方程3x-2=2x+1移项得:3x-2x=1+2,正确,D、方程23t32=,系数化为1,得:t=94,错误;所以答案选C.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.5.A解析:A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确; ②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A .【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.6.C解析:C【解析】【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得.【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n ,∴第n 个单项式是 (-1)n -1x 2n +1 ,故选C.【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.7.C解析:C【解析】【分析】根据有理数及无理数的概念逐一进行分析即可得.【详解】B. π是无理数,故不符合题意;C. 3.14是有理数,故符合题意;D.故选C.【点睛】本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键.8.C解析:C【解析】【分析】根据同类项的定义得出2m=1,求出即可.【详解】解:∵单项式-3a2m b与ab是同类项,∴2m=1,∴m=12,故选C.【点睛】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.9.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.10.D解析:D【解析】【分析】设应从乙处调x人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】设应从乙处调x人到甲处,依题意,得:30+x=2(24﹣x).故选:D.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.11.A解析:A【解析】【分析】根据等式的基本性质对各项进行判断后即可解答.【详解】选项A ,由360x -=变形可得36x =,选项A 正确;选项B ,由 533x x +=-变形可得42x =-,选项B 错误;选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A.【点睛】本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键. 12.B解析:B【解析】选项A 、C 、D ,了解1000个灯泡的使用寿命,了解生产的一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,不适于全面调查,适用于抽样调查.选项B ,了解某公园全年的游客流量,工作量大,时间长,需要用抽样调查.故选B .13.A解析:A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C ,再根据两个负数,绝对值大的反而小进行判断即可.【详解】解:根据两个负数,绝对值大的反而小可知-3<73-. 故选:A .【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小. 14.C解析:C【解析】【分析】根据同类项的概念求得m 、n 的值,代入m n +即可.【详解】解:∵2m ab -与162n a b -是同类项,∴2m=6,n-1=1,∴m=3,n=2,则325m n +=+=.故选:C .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.15.A解析:A【解析】【分析】根据A 、D 两点在数轴上所表示的数,求得AD 的长度,然后根据2AB=BC=3CD ,求得AB 、BD 的长度,从而找到BD 的中点E 所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD ,∴AB=1.5CD ,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4, ∴|6-E|=4, ∴点E 所表示的数是:6-4=2.∴离线段BD 的中点最近的整数是2.故选:A .【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.二、填空题16.3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离. 解:2﹣(﹣1)=3.故答案为3考点:数轴.17.-1;【解析】解:由题意得:a-3=0,b+1=0,解得:a=3,b=-1,∴=-1. 故答案为-1. 点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0. 解析:-1;【解析】解:由题意得:a -3=0,b +1=0,解得:a =3,b =-1,∴3(1)a b =-=-1. 故答案为-1.点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.18.-5【解析】【分析】合并同类项后,由结果与x 的取值无关,则可知含x 各此项的系数为0,求出a 与b 的值即可得出结果.【详解】解:根据题意得:=(a-1)x2+(b-6)x+1,由结果与x 取值解析:-5【解析】【分析】合并同类项后,由结果与x 的取值无关,则可知含x 各此项的系数为0,求出a 与b 的值即可得出结果.【详解】解:根据题意得:2261x bx ax x -++-+=(a-1)x 2+(b-6)x+1,由结果与x 取值无关,得到a-1=0,b-6=0,解得:a=1,b=6.∴a-b=-5.【点睛】此题考查了整式的加减,熟练掌握运算法则以及理解“与x的取值无关”的意义是解本题的关键.19.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.20.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)×=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223-+45) =﹣30×12+(﹣30)×(23-)+(﹣30)×45 =﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键. 21.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a -=44a()2323x x ⋅-=56x - 【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键22.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.解析:a0≥【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:a a-=,a0∴≥,故答案为a0≥.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.23.6×【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 0解析:6×910【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.24.26,5,【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若解析:26,5,4 5【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若经过二次输入结果得131,则5(5x+1)+1=131,解得x=5;若经过三次输入结果得131,则5[5(5x+1)+1]+1=131,解得x=45;若经过四次输入结果得131,则5{5[5(5x+1)+1]+1}+1=131,解得x=−125(负数,舍去);故满足条件的正数x值为:26,5,45.【点睛】本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x的值.25.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=解析:(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.26.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.27.6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a |<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是解析:6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).9 600 000一共7位,从而9 600 000=9.6×106.28.<>【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:<;>﹣3.故答解析:<>【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】 解:13<35;223->﹣3. 故答案为:<、>.【点睛】 此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小. 29.11【解析】【分析】对整式变形得,再将2a ﹣b=4整体代入即可.【详解】解:∵2a﹣b=4,∴=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已解析:11【解析】【分析】对整式423a b -+变形得2(2)3a b -+,再将2a ﹣b=4整体代入即可.【详解】解:∵2a ﹣b=4,∴423a b -+=2(2)324311a b -+=⨯+=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已知条件对代数式进行适当变形是解决此题的关键.30.2【解析】【分析】根据同类项的定义列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4yn 是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n解析:2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4y n是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n=-1+3=2.故答案为:2.【点睛】本题考查同类项的定义. 所含字母相同,并且相同字母的指数相等的项叫做同类项.三、压轴题31.(1)107秒或10秒;(2)1413或11413.【解析】【分析】(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.【详解】(1)∵|a-20|+|c+10|=0,∴a-20=0,c+10=0,∴a=20,c=﹣10.设点B对应的数为b.∵BC=2AB,∴b﹣(﹣10)=2(20﹣b).解得:b=10.当运动时间为t秒时,点P对应的数为20+2t,点Q对应的数为﹣10+5t.∵Q到B的距离与P到B的距离相等,∴|﹣10+5t﹣10|=|20+2t﹣10|,即5t﹣20=10+2t或20﹣5t=10+2t,解得:t=10或t=107.答:运动了107秒或10秒时,Q 到B 的距离与P 到B 的距离相等.(2)当点R 运动了x 秒时,点P 对应的数为20+2(x +2)=2x +24,点Q 对应的数为﹣10+5(x +2)=5x ,点R 对应的数为20﹣x ,∴AQ =|5x ﹣20|.∵点M 为线段PR 的中点,点N 为线段RQ 的中点,∴点M 对应的数为224202x x ++-=442x +, 点N 对应的数为2052x x -+=2x +10, ∴MN =|442x +﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25.分三种情况讨论:①当0<x <4时,12﹣1.5x +20﹣5x =25,解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25, 解得:x 31141=. 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.32.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]=(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.33.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;。
成都七中七年级上册数学期末试卷(带答案)-百度文库
成都七中七年级上册数学期末试卷(带答案)-百度文库一、选择题1.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .122.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( ) A .1B .2C .3D .43.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b4.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠5.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( ) A .1B .2C .3D .46.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( ) A .23(30)72x x +-= B .32(30)72x x +-= C .23(72)30x x +-=D .32(72)30x x +-=7.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或738.﹣2020的倒数是( ) A .﹣2020B .﹣12020C .2020D .120209.已知一个多项式是三次二项式,则这个多项式可以是( )A .221x x -+B .321x +C .22x x -D .3221x x -+10.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =11.估算15在下列哪两个整数之间( ) A .1,2 B .2,3C .3,4D .4,512.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .150二、填空题13.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 14.已知x=5是方程ax ﹣8=20+a 的解,则a= ________15.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.16.16的算术平方根是 .17.若a a -=,则a 应满足的条件为______.18.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)19.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).20.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm . 21.8点30分时刻,钟表上时针与分针所组成的角为_____度.22.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.23.一个水库的水位变化情况记录:如果把水位上升5cm记作+5cm,那么水位下降3cm 时水位变化记作_____.24.线段AB=2cm,延长AB至点C,使BC=2AB,则AC=_____________cm.三、解答题25.(1)先化简,再求值:当(x﹣2)2+|y+1|=0时,求代数式4(12x2﹣3xy﹣y2)﹣3(x2﹣7xy﹣2y2)的值;(2)关于x的代数式(x2+2x)﹣[kx2﹣(3x2﹣2x+1)]的值与x无关,求k的值.26.先化简,再求值:已知2(3xy﹣x2)﹣3(xy﹣2x2)﹣xy,其中x,y满足|x+2|+(y﹣3)2=0.27.知图①,在数轴上有一条线段AB,点,A B表示的数分别是2-和11-.(1)线段AB=____________;(2)若M是线段AB的中点,则点M在数轴上对应的数为________;(3)若C为线段AB上一点.如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A的右边点B'处,若15AB B C''=,求点C在数轴上对应的数是多少?28.计算:|﹣2|+(﹣1)2019+19×(﹣3)229.解方程:x﹣2=2 3 x+30.如图,在平面直角坐标系中,已知△ABC,点A的坐标是(4,0),点B的坐标是(2,3),点C在x轴的负半轴上,且AC=6.(1)直接写出点C的坐标.(2)在y轴上是否存在点P,使得S△POB=23S△ABC若存在,求出点P的坐标;若不存在,请说明理由.(3)把点C往上平移3个单位得到点H,作射线CH,连接BH,点M在射线CH上运动(不与点C、H重合).试探究∠HBM,∠BMA,∠MAC之间的数量关系,并证明你的结论.四、压轴题31.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?32.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.33.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】 利用max{}2,,x x x 的定义分情况讨论即可求解.【详解】 解:当max {}21,,2x x x =时,x ≥0 x 12,解得:x =14x >x >x 2,符合题意; ②x 2=12,解得:x =22x x >x 2,不合题意; ③x =12x x >x 2,不合题意; 故只有x =14时,max {}21,,2x x x =. 故选:C . 【点睛】此题主要考查了新定义,正确理解题意分类讨论是解题关键.2.B解析:B 【解析】 【分析】点在原点的右边,则这个数一定是正数,根据演要求判断几个数即可得到答案. 【详解】()32-=-8,613⎛⎫- ⎪⎝⎭=1719,25-=-25 ,0,21m +≥1在原点右边的数有613⎛⎫-⎪⎝⎭和21m+≥1故选B【点睛】此题重点考察学生对数轴上的点的认识,抓住点在数轴的右边是解题的关键. 3.D解析:D【解析】【分析】根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论.【详解】解:∵由图可知a<0<b,∴ab<0,即-ab>0又∵|a|>|b|,∴a<﹣b.故选:D.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.4.C解析:C【解析】【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果.【详解】解:由图知:∠1+∠2=180°,∴12(∠1+∠2)=90°,∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1).故选:C.【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.5.B解析:B【解析】【分析】根据线段中点的性质,可得AC的长.【详解】解:由线段中点的性质,得AC=12AB=2.故选B.【点睛】本题考查了两点间的距离,利用了线段中点的性质.6.A解析:A【解析】【分析】设女生x人,男生就有(30-x)人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可.【详解】设女生x人,∵共有学生30名,∴男生有(30-x)名,∵女生每人种2棵,男生每人种3棵,∴女生种树2x棵,男生植树3(30-x)棵,∵共种树72棵,∴2x+3(30-x)=72,故选:A.【点睛】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.7.A解析:A【解析】【分析】先求出方程的解,把x的值代入方程得出关于m的方程,求出方程的解即可.【详解】解:(x+3)2=4,x﹣3=±2,解得:x=5或1,把x=5代入方程mx+3=2(m﹣x)得:5m+3=2(m﹣5),解得:m=13,把x=﹣1代入方程mx+3=2(m﹣x)得:﹣m+3=2(1+m),解得:m=﹣1,故选:A.【点睛】本题考查了解一元一次方程的解的应用,能得出关于m的方程是解此题的关键.8.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是1 2020 -,故选:B.【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.9.B解析:B【解析】A. 2x2x1-+是二次三项式,故此选项错误;B. 32x1+是三次二项式,故此选项正确;C. 2x2x-是二次二项式,故此选项错误;D. 32x2x1-+是三次三项式,故此选项错误;故选B.10.A解析:A【解析】试题分析:将原方程移项合并同类项得:3x=3,解得:x=1.故选A.考点:解一元一次方程.11.C解析:C【解析】【分析】.【详解】∵9<15<16,∴,故选C.【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C.【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.二、填空题13.3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.14.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a 的一元一次方程,从而可求出a 的值. 解:把x=5代入方程ax ﹣8=20+a 得:5a ﹣8=20+a ,解析:7 【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a 的一元一次方程,从而可求出a 的值. 解:把x=5代入方程ax ﹣8=20+a 得:5a ﹣8=20+a , 解得:a=7. 故答案为7. 考点:方程的解.15.【解析】 【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可. 【详解】解:算出一个正方形方框的面积为:, 桌面被这些方框盖住部分的面积则为: 故填:. 【点睛】 本题结合求 解析:60200a -【解析】 【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可. 【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦故填:60200a -. 【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键.16.【解析】 【分析】 【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为4解析:【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为417.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.解析:a 0≥【解析】【分析】根据绝对值的定义和性质求解可得.【详解】 解:a a -=,a 0∴≥,故答案为a 0≥.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.18.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.19.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.20.5或11【解析】【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+解析:5或11【解析】【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于11cm或5cm.21.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.22.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.23.﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3解析:﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3cm.【点睛】此题主要考查有理数的应用,解题的关键是熟知有理数的意义.24.6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.三、解答题25.(1)﹣x2+9xy+2y2,﹣20;(2)k=4.【解析】【分析】(1)根据|x﹣2|+(y+1)2=0可以求得x、y的值,然后将题目中所求式子化简,再将x、y的值代入化简后的式子即可解答本题.(2)利用多项式的值与x无关,得出x的系数和为0,即可得出k的值,进而求出答案.【详解】解:(1)∵(x﹣2)2+|y+1|=0,∴x=2、y=﹣1,则原式=2x2﹣12xy﹣4y2﹣3x2+21xy+6y2=﹣x2+9xy+2y2=﹣22+9×2×(﹣1)+2×(﹣1)2=﹣4﹣18+2=﹣20;(2)原式=x2+2x﹣kx2+3x2﹣2x+1=(4﹣k)x2+1∵代数式的值与x无关,∴k=4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.26.2xy+4x2,4.【解析】【分析】把所给的整式去括号后合并同类项得到最简结果,再利用非负数的性质求出x、y的值,代入即可求解.【详解】解:原式=6xy﹣2x2﹣3xy+6x2﹣xy,=2xy+4x2,∵|x+2|+(y﹣3)2=0,∴x+2=0且y﹣3=0,解得:x=﹣2、y=3,则原式=2×(﹣2)×3+4×(﹣2)2,=﹣12+16,=4.【点睛】本题考查了整式的加减﹣化简求值及非负数的性质,熟练运用整式的加减运算法则把所给的整式化为最简是解本题的关键.27.(1)9;(2)-6.5;(3)-6.【解析】【分析】(1)根据数轴上两点间的距离公式解决即可;(2)根据中点的性质,计算即可;(3)设AB'为x,根据题AB'与B'C的关系,将B'C用x表示出来,然后根据AC、AB、BC的关系,将AB用x表示出来,计算出x的值,即可求出AC的值,然后根据点A的坐标求出点C在数轴上的对应的数即可.【详解】(1)AB的长度为2(11)9---=.(2)M是线段AB的中点,所以M点在数轴上对应的点为2(11)6.52-+-=-.(3)设AB'=x,∵AB'=15B'C,则B'C=5x.∴由题意BC=B'C=5x,∴AC=B'C-AB'=4x,∴AB=AC+BC=AC+B'C=9x,即99x=,∴1x=,∴AC=4,又∵点A表示的数为-2,∴-2-4=-6,∴点C表示的数为-6.【点睛】本题考查了数轴上两点间的距离,中点的性质,线段折叠问题,解决本题的关键是正确理解题意,熟练掌握中点的性质,能够根据线段折叠找到线段之间的内在关系.28.2【解析】【分析】直接利用绝对值的性质以及有理数的混合运算法则计算得出答案.【详解】解:原式1 2199=-+⨯11=+2=.【点睛】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.29.x=4【解析】【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】解:去分母得:3x﹣6=x+2,移项合并得:2x=8,解得:x=4.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.30.(1)C(-2,0);(2)点P坐标为(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,证明见解析.【解析】【分析】(1)由点A坐标可得OA=4,再根据C点x轴负半轴上,AC=6即可求得答案;(2)先求出S△ABC=9,S△BOP=OP,再根据S△POB=23S△ABC,可得OP=6,即可写出点P的坐标;(3)先得到点H的坐标,再结合点B的坐标可得到BH//AC,然后根据点M在射线CH上,分点M在线段CH上与不在线段CH上两种情况分别进行讨论即可得.【详解】(1)∵A(4,0),∴OA=4,∵C点x轴负半轴上,AC=6,∴OC=AC-OA=2,∴C(-2,0);(2)∵B(2,3),∴S△ABC=12×6×3=9,S△BOP=12OP×2=OP,又∵S△POB=23S△ABC,∴OP=23×9=6,∴点P坐标为(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,证明如下:∵把点C往上平移3个单位得到点H,C(-2,0),∴H(-2,3),又∵B(2,3),∴BH//AC;如图1,当点M在线段HC上时,过点M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠BMN+∠AMN,∴∠BMA=∠HBM+∠MAC;如图2,当点M在射线CH上但不在线段HC上时,过点M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠AMN-∠BMN,∴∠BMA=∠MAC-∠HBM;综上,∠BMA=∠MAC±∠HBM.【点睛】本题考查了点的坐标,三角形的面积,点的平移,平行线的判定与性质等知识,综合性较强,正确进行分类并准确画出图形是解题的关键.四、压轴题31.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.32.(1)13;(2)P出发23秒或43秒;(3)见解析.【解析】【分析】(1)由题意可知运动t秒时P点表示的数为-3+2t,Q点表示的数为1-t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度, 此时点P 表示的数为-3+2×23=-53,Q 点表示的数为1-(1+23)=-23, 设此时数轴上存在-个点C ,点C 表示的数为a ,由题意得 AC+PC+QC=|a+3|+|a+53|+|a+23|, 要使|a+3|+|a+53|+|a+23|最小, 当点C 与P 重合时,即a=-53时,点C 到点A 、点P 和点Q 这三点的距离和最小; ②若点P 和点Q 在相遇后相距1个单位长度, 此时点P 表示的数为-3+2×43=-13,Q 点表示的数为1-(1+43)=-43, 此时满足条件的点C 即为Q 点,所表示的数为43-,综上所述,点C所表示的数分别为-53和-43.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想.33.(1)见解析;(2)∠OQP=180°+12x°﹣12y°或∠OQP=12x°﹣12y°.【解析】【试题分析】(1)分下面两种情况进行说明;①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,(2)分两种情况讨论,如图3和图4.【试题解析】(1)分两种情况:①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,证明:∵四边形AOBP的内角和为(4﹣2)×180°=360°,∴∠APB=360°﹣∠MON﹣∠PAO﹣∠PBO;②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,证明:延长AP交ON于点D,∵∠ADB是△AOD的外角,∴∠ADB=∠PAO+∠AOD,∵∠AP B是△PDB的外角,∴∠APB=∠PDB+∠PBO,∴∠APB=∠MON+∠PAO+∠PBO;(2)设∠MON=2m°,∠APB=2n°,∵OC平分∠MON,∴∠AOC=∠MON=m°,∵PQ平分∠APB,∴∠APQ=∠APB=n°,分两种情况:第一种情况:如图3,∵∠OQP=∠MOC+∠PAO+∠APQ,即∠OQP=m°+x°+n°①∵∠OQP+∠CON+∠OBP+∠BPQ=360°,∴∠OQP=360°﹣∠CON﹣∠OBP﹣∠BPQ,即∠OQP=360°﹣m°﹣y°﹣n°②,①+②得2∠OQP=360°+x°﹣y°,∴∠OQP=180°+x°﹣y°;第二种情况:如图4,∵∠OQP+∠APQ=∠MOC+∠PAO,即∠OQP+n°=m°+x°,∴2∠OQP+2n°=2m°+2x°①,∵∠APB=∠MON+∠PAO+∠PBO,∴2n°=2m°+x°+y°②,①﹣②得2∠OQP=x°﹣y°,∴∠OQP=x°﹣y°,综上所述,∠OQP=180°+x°﹣y°或∠OQP=x°﹣y°.。
成都七中七年级上册数学期末试卷(带答案)-百度文库
成都七中七年级上册数学期末试卷(带答案)-百度文库一、选择题1.根据等式的性质,下列变形正确的是( ) A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3bD .若23a b=,则2a =3b 2.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .33.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .592 4.计算(3)(5)-++的结果是( ) A .-8 B .8C .2D .-25.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=6.计算32a a ⋅的结果是( ) A .5a ;B .4a ;C .6a ;D .8a .7.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() m A .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯8.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程() A .10050062x x += B .1005006x 2x += C .10040062x x += D .1004006x 2x+= 9.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cmB .2cmC .8cm 或2cmD .以上答案不对10.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .111.15( ) A .1,2B .2,3C .3,4D .4,512.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x ) 13.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒14.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( ) A .45010⨯B .5510⨯C .6510⨯D .510⨯15.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1二、填空题16.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.17.已知方程22x a ax +=+的解为3x =,则a 的值为__________.18.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.19.已知单项式245225n m xy x y ++与是同类项,则m n =______.20.多项式2x 3﹣x 2y 2﹣1是_____次_____项式. 21.若3750'A ∠=︒,则A ∠的补角的度数为__________.22.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.23.4是_____的算术平方根.24.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.25.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.26.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______. 27.观察“田”字中各数之间的关系:则c 的值为____________________.28.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.29.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)30.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.三、压轴题31.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).32.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点P ,Q 仍然以(1)中的速度分别从A ,C 两点同时出发向右运动,2 秒后,动点R 从A点出发向左运动,点R 的速度为1个单位长度/秒,点M 为线段PR 的中点,点N为线段RQ的中点,点R运动了x 秒时恰好满足MN +AQ = 25,请直接写出x的值.33.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个. 34.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示); ②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.35.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a +24|+|b +10|+(c -10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由.36.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.37.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.38.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用等式的性质对每个式子进行变形即可找出答案. 【详解】解:A 、根据等式性质2,2a =3b 两边同时除以2得a =32b ,原变形错误,故此选项不符合题意;B 、根据等式性质1,等式两边都加上1,即可得到a+=b+1,原变形错误,故此选项不符合题意;C 、根据等式性质1和2,等式两边同时除以﹣3且加上2应得2﹣3a =2﹣3b,原变形正确,故此选项符合题意;D 、根据等式性质2,等式两边同时乘以6,3a =2b ,原变形错误,故此选项不符合题意. 故选:C . 【点睛】本题主要考查等式的性质.解题的关键是掌握等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.2.C解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB =12BQ 时,t =12或20,故③错误; 故选:C .【点睛】本题考查两点间的距离,解题的关键是求出P 到达B 点时的时间,以及点P 与Q 重合时的时间,涉及分类讨论的思想.3.C解析:C【解析】【分析】由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项.【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++,第二行四个数分别为7,8,9,10x x x x ++++,第三行四个数分别为14,15,16,17x x x x ++++,第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C.【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.4.C解析:C【解析】 【分析】根据有理数加法法则计算即可得答案. 【详解】(3)(5)-++=5+-3-=2故选:C.【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.5.C解析:C【解析】【分析】方程两边都乘以2,再去括号即可得解.【详解】3532x x --= 方程两边都乘以2得:6-(3x-5)=2x ,去括号得:6-3x+5=2x ,故选:C.【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.6.A解析:A【解析】此题考查同底数幂的乘法运算,即(0)m n m n a a aa +⋅=>,所以此题结果等于325a a +=,选A ; 7.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000104=1.04×10−4.故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.8.D解析:D【解析】【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x个零件,根据题意得:1004006 x2x+=故选:D.【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.9.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.10.B解析:B【解析】【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.【详解】解:由题意可得,当x=1时,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,第六次输出的结果是1,第七次输出的结果是4,第八次输出的结果是2,第九次输出的结果是1,第十次输出的结果是4,……,∵2020÷3=673…1,则第2020次输出的结果是4,故选:B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.11.C解析:C【解析】【分析】.【详解】∵9<15<16,∴,故选C.【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.D解析:D【解析】【分析】设应从乙处调x人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】设应从乙处调x人到甲处,依题意,得:30+x=2(24﹣x).故选:D .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.13.B解析:B【解析】【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A 的补角=180°-105°=75°.故选:B .【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.14.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将50万用科学记数法表示为5510⨯,故B 选项是正确答案.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.15.B解析:B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.二、填空题16.8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点解析:8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.17.2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a 的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.18.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.19.9【解析】【分析】根据同类项的定义进行解题,则,解出m 、n 的值代入求值即可.【详解】解:和是同类项且,【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出 解析:9【解析】【分析】根据同类项的定义进行解题,则25,24n m +=+=,解出m 、n 的值代入求值即可.【详解】解:242n x y +和525m x y +是同类项∴25n +=且24m +=∴3n =,2m =∴239m n ==【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出m 、n 的值即可.20.四 三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2解析:四 三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x 2y 2,次数为4,一共有3个项,所以多项式2x 3﹣x 2y 2﹣1是四次三项式.故答案为:四,三.【点睛】此题主要考查了多项式的定义.解题的关键是理解多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.21.【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵,∴的补角=180°-=.故填.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒解析:14210'︒【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵3750'A ∠=︒,∴A ∠的补角=180°-3750'︒=14210'︒.故填14210'︒.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒是60进制.22.2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x 的值,使得输入的数和第2次输出的数相等即可.【详解】解析:2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x 的值,使得输入的数和第2次输出的数相等即可.【详解】解:∵第1次输出的结果为7+3=10,第2次输出的结果为12×10=5, 第3次输出结果为5+3=8,第4次输出结果为12×8=4,第5次输出结果为12×4=2,第6次输出结果为12×2=1,第7次输出结果为1+3=4,第8次输出结果为12×4=2,……∴输出结果除去前3个数后,每3个数为一个周期循环,∵(2018﹣3)÷3=671…2,∴第2018次输出的数是2,如图,若x=14x,则x=0;若x=12x+3,则x=6;若x=12(x+3),则x=3;故答案为:2、0或3或6.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.23.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.24.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.25.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.26.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.27.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。
成都七中初中学校七年级上册数学期末试题及答案解答
A.3a2bc 与 bca2 不是同类项
B. 2m2n 的系数是 2 5
C.单项式﹣x3yz 的次数是 5
D.3x2﹣y+5xy5 是二次三项式
3.以下选项中比-2 小的是( )
A.0
B.1
C.-1.5
D.-2.5
4.在 0.23, 3, 2, 22 四个数中,属于无理数的是( ) 7
A. 0.23
1 步,从点 M 开始运动 t 个单位长度至点 Q1 处;第 2 步,从点 Q1 继续运动 2t 单位长度至 点 Q2 处;第 3 步,从点 Q2 继续运动 3t 个单位长度至点 Q3 处…例如:当 t 3 时,点 Q1 、
Q2 、 Q3 的位置如图 2 所示.
A.132°
B.134°
C.136°
D.138°
8.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的
个位数字的规律,猜测 32018﹣1 的个位数字是( )
A.2
B.8
C.6
D.0
9.下列方程变形正确的是( )
A.方程 x 1 x 1化成 10x 10 10x 10
22.当 a=_____时,分式 a 1 的值为 0. a3
23.按照下面的程序计算:
如果输入 x 的值是正整数,输出结果是 166,那么满足条件的 x 的值为___________.
24.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每 两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.
A.在点 A, C 右边 B.在点 A, C 左边 C.在点 A, C 之间
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年四川省成都七中七年级(上)期末数学试卷一、选择题:(每小题3分,共30分)1.(3分)9的算术平方根是()A.3 B.﹣3 C.±3 D.±92.(3分)下列实数中是无理数的是()A.B.0.212121 C.D.﹣3.(3分)下列计算正确的是()A.=B.=6 C.D.4.(3分)等腰三角形的底边长为12,底边上的中线长为8,它的腰长为()A.6 B.8 C.10 D.35.(3分)数据5,7,5,8,6,13,5的中位数是()A.5 B.6 C.7 D.86.(3分)下列命题中是真命题的是()A.对顶角相等B.内错角相等C.同旁内角互补D.同位角相等7.(3分)二元一次方程组的解是()A.B.C.D.8.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于y轴的对称点在第()象限.A.一B.二C.三D.四9.(3分)对于一次函数y=x+6,下列说法错误的是()A.y的值随着x值的增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)10.(3分)如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑了12米;④8秒钟后,甲超过了乙其中正确的说法是()A.①②B.②③④C.②③D.①③④二、填空题:(每小题4分,共16分)11.(4分)若x m+2﹣2y=5是关于x,y的二元一次方程,则m=.12.(4分)函数y=中,自变量x的取值范围是.13.(4分)已知实数x,y满足+(3x﹣y)2=0,则的值为.14.(4分)一次函数y=﹣2x+b与x轴交于点(3,0),则它与直线y=x的交点坐标为.三、计算与解方程(组)(15、16每小题10分,17题6分,共26分)15.(10分)计算:(1)(2).16.(10分)解方程(组)(1)4(x﹣1)2=25(2).17.(6分)已知x=,y=,求x2﹣xy+y2的值.18.(8分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.(1)求证:四边形ACED是平行四边形;(2)若AC=2,CE=4,求四边形ACEB的周长.19.(10分)七中育才学校为调查本校学生周末平均每天学习所用时间的情况,随机调查了50名同学,下图是根据调查所得数据绘制的统计图的一部分,请根据以上信息,解答下列问题:(1)请把统计图补充完整;(2)在这次调查的数据中,学习所用时间的众数是,中位数是,平均数是;(3)若该校共有1000名学生,根据以上调查结果估计该校全体学生每天学习时间在3小时内(含3小时)的同学共有多少人?20.(10分)已知在平行四边形ABCD中,AB=6,BC=10,∠BAD=120°,E为线段BC上的一个动点(不与B,C重合),过E作直线AB的垂线,垂足为F,FE与DC的延长线相交于点G,(1)如图1,当AE⊥BC时,求线段BE、CG的长度.(2)如图2,点E在线段BC上运动时,连接DE,DF,△BEF与△CEG的周长之和是否是一个定值,若是请求出定值,若不是请说明理由.(3)如图2,设BE=x,△DEF的面积为y,试求出y关于x的函数关系式.一、填空题(每小题4分,共20分)21.(4分)若整数m满足条件=m且m<﹣1,则m的值是.22.(4分)a、b、c为△ABC的三条边,满足条件点(a﹣c,a)与点(0,﹣b)关于x轴对称,判断△ABC的形状.23.(4分)如图,小明要给正方形桌子买一块正方形桌布.铺成图1时,四周垂下的桌布,其长方形部分的宽均为20cm;铺成图2时,四周垂下的桌布都是等腰直角三角形,且桌面四个角的顶点恰好在桌布边上,则要买桌布的边长是cm.(提供数据:≈1.4,≈1.7)24.(4分)如图,直线OD与x轴所夹的锐角为30°,OA的长为2,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三边形,点A1、A2、A3…A n﹣1在x轴正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B2的坐标为,点B n的坐标为.25.(4分)正方形OABC的边长为1,把它放在如图所示的直角坐标系中,点M (t,0)是x轴上一个动点(t≥1),连接BM,在BM的右侧作正方形BMNP;直线DE的解析式为y=2x+b,与x轴交于点D,与y轴交于点E,当△PDE为等腰直角三角形时,点P的坐标是.二、解答题(本大题共3小题,26题8分,27题10分,28题12分). 26.(8分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信息:(水价计费=自来水销售费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值.(2)小王家6月份交水费184元,则小王家6月份用水多少吨?27.(10分)运用“同一个图形的面积用不同方式表示”可以证明一类含有线段的等式,这种解决问题的方法我们称之为等面积法.学有所用:在等腰三角形ABC 中,AB=AC,其一腰上的高BD=h,M是底边BC上的任意一点,M到腰AB的距离ME=h1,M到腰AC的距离MF=h2.(1)请你结合图形1来证明:h1+h2=h;(2)当点M在BC的延长线上时,h1、h2、h之间又有什么样的结论,请你在图2中画出图形;(3)请利用以上结论解答下列问题,如图3,在平面直角坐标系中有两条直线l1:y=,l2:y=﹣3x+3,若l2上的一点M到l1的距离是1,求点M的坐标.28.(12分)如图,已知一次函数y=﹣x+6的图象与坐标轴交于A、B两点,AE平分∠BAO,交x轴于点E.(1)求点B的坐标及直线AE的表达式;(2)过点B作BF⊥AE,垂足为F,在y轴上有一点P,使线段PE+PF的值最小,求点P的坐标;(3)若将已知条件“AE平分∠BAO,交x轴于点E”改变为“点E是线段OB上的一个动点(点E不与点O、B重合)”,过点B作BF⊥AE,垂足为F,以EF为边作正方形EFMN,当点M落在坐标轴上时,求E点坐标.2016-2017学年四川省成都七中七年级(上)期末数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)1.(3分)9的算术平方根是()A.3 B.﹣3 C.±3 D.±9【解答】解:9的算术平方根是3.故选:A.2.(3分)下列实数中是无理数的是()A.B.0.212121 C.D.﹣【解答】解:,﹣,0.212121是有理数,是无理数,故选:C.3.(3分)下列计算正确的是()A.=B.=6 C.D.【解答】解:A、原式=2﹣=,正确;B、原式==,错误;C、+为最简结果,错误;D、原式==2,错误,故选:A.4.(3分)等腰三角形的底边长为12,底边上的中线长为8,它的腰长为()A.6 B.8 C.10 D.3【解答】解:如图所示:AB=AC,AD为BC边的中线,AD=8,BC=12,∴BD=CD=6,AD⊥BC,在Rt△ABD中,BD=6,AD=8,根据勾股定理得:AB==10,则等腰三角形的腰长为10.故选:C.5.(3分)数据5,7,5,8,6,13,5的中位数是()A.5 B.6 C.7 D.8【解答】解:将数据5,7,5,8,6,13,5按从小到大依次排列为:5,5,5,6,7,8,13,位于中间位置的数为6.故中位数为6.故选:B.6.(3分)下列命题中是真命题的是()A.对顶角相等B.内错角相等C.同旁内角互补D.同位角相等【解答】解:A、对顶角相等是真命题,故本选项正确;B、只有两直线平行,才有内错角相等,故本选项错误;C、只有两直线平行,才有同旁内角互补,故本选项错误;D、只有两直线平行,才有同位角相等,故本选项错误.故选:A.7.(3分)二元一次方程组的解是()A.B.C.D.【解答】解:,①+②得,3x=3,解得x=1,把x=1代入①得,1+y=2,解得y=1,所以,方程组的解是.故选:B.8.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于y轴的对称点在第()象限.A.一B.二C.三D.四【解答】解:点P(﹣3,5)关于y轴的对称点是(3,5),点(3,5)在第一象限.故选:A.9.(3分)对于一次函数y=x+6,下列说法错误的是()A.y的值随着x值的增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)【解答】解:∵y=x+6中k=1>0,∴y随x的增大而增大,故A正确;令x=0可得y=6,令y=0可求得x=﹣6,∴直线与x轴交于点(﹣6,0),与y轴交于点(0,6),∴函数图象与x轴的正方向成45°角,故B、C正确;D错误;故选:D.10.(3分)如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑了12米;④8秒钟后,甲超过了乙其中正确的说法是()A.①②B.②③④C.②③D.①③④【解答】解:根据函数图象的意义,①已知甲的速度比乙快,故射线OB表示甲的路程与时间的函数关系;错误;②甲的速度比乙快1.5米/秒,正确;③甲让乙先跑了12米,正确;④8秒钟后,甲超过了乙,正确;故选:B.二、填空题:(每小题4分,共16分)11.(4分)若x m+2﹣2y=5是关于x,y的二元一次方程,则m=﹣1.【解答】解:由题意,得m+2=1,解得m=﹣1,故答案为:﹣1.12.(4分)函数y=中,自变量x的取值范围是x≥2.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.13.(4分)已知实数x,y满足+(3x﹣y)2=0,则的值为2.【解答】解:根据题意得,x﹣2=0,3x﹣y=0,解得x=2,y=6,所以,==2.故答案为:2.14.(4分)一次函数y=﹣2x+b与x轴交于点(3,0),则它与直线y=x的交点坐标为(2,2).【解答】解:∵点(3,0)在直线y=﹣2x+b,∴﹣6+b=0,解得b=6,∴一次函数解析式为y=﹣2x+6,∵方程组的解为,∴两直线的交点坐标为(2,2).故答案为(2,2).三、计算与解方程(组)(15、16每小题10分,17题6分,共26分)15.(10分)计算:(1)(2).【解答】解:(1)原式=2+2﹣﹣2=;(2)原式=++2=4++2=4+3.16.(10分)解方程(组)(1)4(x﹣1)2=25(2).【解答】解:(1)∵4(x﹣1)2=25,∴(x﹣1)2=,则x﹣1=或x﹣1=﹣,解得:x=或x=﹣;(2),①+②,得:4x=20,解得:x=5,将x=5代入①,得:5﹣y=8,解得:y=﹣3,所以方程组的解为.17.(6分)已知x=,y=,求x2﹣xy+y2的值.【解答】解:因为x==,y==,把代入x2﹣xy+y2中,可得:=5+2﹣3+2+5﹣2=9.18.(8分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.(1)求证:四边形ACED是平行四边形;(2)若AC=2,CE=4,求四边形ACEB的周长.【解答】解:(1)证明:∵∠ACB=90°,DE⊥BC,∴AC∥DE又∵CE∥AD∴四边形ACED是平行四边形.(2)∵四边形ACED是平行四边形.∴DE=AC=2.在Rt△CDE中,由勾股定理得CD=.∵D是BC的中点,∴BC=2CD=4.在△ABC中,∠ACB=90°,由勾股定理得AB=.∵D是BC的中点,DE⊥BC,∴EB=EC=4.∴四边形ACEB的周长=AC+CE+EB+BA=10+2.19.(10分)七中育才学校为调查本校学生周末平均每天学习所用时间的情况,随机调查了50名同学,下图是根据调查所得数据绘制的统计图的一部分,请根据以上信息,解答下列问题:(1)请把统计图补充完整;(2)在这次调查的数据中,学习所用时间的众数是3小时,中位数是3小时,平均数是3小时;(3)若该校共有1000名学生,根据以上调查结果估计该校全体学生每天学习时间在3小时内(含3小时)的同学共有多少人?【解答】解:(1)每天作业用时是4小时的人数是:50﹣6﹣12﹣16﹣8=8(人),则众数是3小时,中位数是3小时,平均数是=3小时,故答案为:3小时、3小时、3小时;(2)1000×=680(人),答:估计该校全体学生每天学习时间在3小时内(含3小时)的同学共有680人.20.(10分)已知在平行四边形ABCD中,AB=6,BC=10,∠BAD=120°,E为线段BC上的一个动点(不与B,C重合),过E作直线AB的垂线,垂足为F,FE与DC的延长线相交于点G,(1)如图1,当AE⊥BC时,求线段BE、CG的长度.(2)如图2,点E在线段BC上运动时,连接DE,DF,△BEF与△CEG的周长之和是否是一个定值,若是请求出定值,若不是请说明理由.(3)如图2,设BE=x,△DEF的面积为y,试求出y关于x的函数关系式.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠BAD+∠B=180°,∵∠BAD=120°,∴∠B=60°,∵AE⊥BC于E,在Rt△ABE中,∠BAE=30°,AB=6,∴BE=3,AE=3,∵EF⊥AB,∴∠BFE=90°,在Rt△BEF中,∠BEF=30°,∴BF=BE=,EF=,∵S▱ABCD=BC×AE=AB×FG,∴10×3=6FG,∴FG=5,∴EG=FG﹣EF=;(2)如图2,过点A作AH⊥BC于H,∵∠B=60°,∴BH=3,AH=3,∵∠AHB=∠BFE=90°,∠B=∠B,∴△ABH∽△EBF,∴,设BE=a,∴,∴BF=a,EF=a,∵AB∥CD,∴△BEF∽△CEG,∴,∴CG=(10﹣a),EG=(10﹣a),∴C△BEF +C△CEG=BE+BF+EF+CE+CG+EG=a+a+a+10﹣a+(10﹣a)+(10﹣a)=10+5+5=15+5;(3)同(2)的方法得,EF=x,CG=(10﹣x),∴DG=CD+CG=6+5﹣x=11﹣x,∴S△DEF=EF×DG=×x×(11﹣x)=﹣x2+(0<x<10).一、填空题(每小题4分,共20分)21.(4分)若整数m满足条件=m且m<﹣1,则m的值是0或1.【解答】解:∵=m,∴m≥0.∵m<﹣1,且m为整数,∴m=0或1.故答案为:0或1.22.(4分)a、b、c为△ABC的三条边,满足条件点(a﹣c,a)与点(0,﹣b)关于x轴对称,判断△ABC的形状等边三角形.【解答】解:∵点(a﹣c,a)与点(0,﹣b)关于x轴对称,∴a=b=c,∴△ABC是等边三角形,故答案为:等边三角形.23.(4分)如图,小明要给正方形桌子买一块正方形桌布.铺成图1时,四周垂下的桌布,其长方形部分的宽均为20cm;铺成图2时,四周垂下的桌布都是等腰直角三角形,且桌面四个角的顶点恰好在桌布边上,则要买桌布的边长是136cm.(提供数据:≈1.4,≈1.7)【解答】解:设桌子边长为xcm,则根据勾股定理,桌子对角线长为=xcm,当x=20时,x=10,由勾股定理得:等腰三角形的直角边长是=10,即桌布边长为(x+40)cm,由于四周垂下的桌布都是等腰直角三角形,则等腰三角形直角边长为cm,列方程得x=x+40,解可得x=40+40;于是桌布长为40+40+40=80+40≈136(cm).故要买桌布的边长是136cm.24.(4分)如图,直线OD与x轴所夹的锐角为30°,OA的长为2,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三边形,点A1、A2、A3…A n﹣1在x轴正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B2的坐标为(3,),点B n的坐标为(3×2n﹣2,×2n﹣2).【解答】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠B1OA2=30°,∴∠B1OA2=∠A1B1O=30°,可求得OA2=2OA1=2,同理可求得OA n=2n﹣1,∵∠B n OA n+1=30°,∠B n A n A n+1=60°,∴∠B n OA n+1=∠OB n A n=30°∴B n A n=OA n=2n﹣1,即△A n B n A n+1的边长为2n﹣1,则可求得其高为×2n﹣1=×2n﹣2,∴点B n的横坐标为×2n﹣1+2n﹣1=×2n﹣1=3×2n﹣2,∴点B n的坐标为(3×2n﹣2,×2n﹣2),点B2的坐标为(3,).故答案为:(3,);(3×2n﹣2,×2n﹣2).25.(4分)正方形OABC的边长为1,把它放在如图所示的直角坐标系中,点M (t,0)是x轴上一个动点(t≥1),连接BM,在BM的右侧作正方形BMNP;直线DE的解析式为y=2x+b,与x轴交于点D,与y轴交于点E,当△PDE为等腰直角三角形时,点P的坐标是(4,4)或(4,2).【解答】解:如图,过点P作PF⊥BC交CB的延长线于点F,∵四边形OABC与四边形BMNP都是正方形,∴∠ABM+∠MBF=90°,∠FBP+∠MBF=90°,∴∠ABM=∠FBP,在△ABM和△FBP中,,∴△ABM≌△FBP(AAS),∴BF=AB,PF=AM,∵正方形OABC的边长为1,点M(t,0),∴BF=1,PF=t﹣1,点P到x轴的距离为t﹣1+1=t,∴点P的坐标为(2,t),又∵当y=0时,2x+b=0,解得x=﹣,当x=0时,y=b,∴点D(﹣,0),E(0,b),①DE是斜边时,PD2=(+2)2+t2,PE2=(b﹣t)2+22,DE2=()2+b2,∵△PDE是等腰直角三角形,∴PD2=PE2,且PD2+PE2=DE2,即(+2)2+t2=(b﹣t)2+22,且(+2)2+t2+(b﹣t)2+22=()2+b2,b2+2b+4+t2=b2﹣2bt+t2+4,且b2+2b+4+t2+b2﹣2bt+t2+4=b2+b2,整理得,b=(t+2)且t2﹣b(t﹣2)+16=0,∴t2﹣(t+2)(t﹣2)+16=0,整理得,t2=16,解得t1=4,t2=﹣4(舍去),∴点P的坐标是(4,4);②PD是斜边时,∵△PDE是等腰直角三角形,∴PE⊥DE,且PE=DE,过点P作PF⊥y轴于点F∵∠DEO+∠PEO=90°,∠DEO+∠EDO=90°,∴∠PEO=∠EDO,在△EDO和△PEF中,,∴△EDO≌△PEF(AAS),∴EF=DO=,PC=EO=b,又∵点P(4,t),∴b=4,b﹣t=,解得t==×4=2,∴点P坐标为(4,2),此时点C、F重合,点M、A重合,综上所述,点P的坐标为(4,4)或(4,2).故答案为:(4,4)或(4,2).二、解答题(本大题共3小题,26题8分,27题10分,28题12分). 26.(8分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信息:(水价计费=自来水销售费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值.(2)小王家6月份交水费184元,则小王家6月份用水多少吨?【解答】解:(1)根据题意可得,,解得,,即a的值是2.2,b的值是4.4;(2)设小王家6月份用水x吨,根据题意知,30吨的水费为:17×2.2+13×4.2+30×0.8=116,∵184>116,∴小王家6月份计划用水超过了30吨∴6.0(x﹣30)+116+0.80×(x﹣30)=184,解得,x=40即小王家6月份用水量40吨.27.(10分)运用“同一个图形的面积用不同方式表示”可以证明一类含有线段的等式,这种解决问题的方法我们称之为等面积法.学有所用:在等腰三角形ABC 中,AB=AC,其一腰上的高BD=h,M是底边BC上的任意一点,M到腰AB的距离ME=h1,M到腰AC的距离MF=h2.(1)请你结合图形1来证明:h1+h2=h;(2)当点M在BC的延长线上时,h1、h2、h之间又有什么样的结论,请你在图2中画出图形;(3)请利用以上结论解答下列问题,如图3,在平面直角坐标系中有两条直线l1:y=,l2:y=﹣3x+3,若l2上的一点M到l1的距离是1,求点M的坐标.【解答】(1)证明:连接AM,由题意得h1=ME,h2=MF,h=BD,∵S=S△ABM+S△AMC,△ABCS△ABM=×AB×ME=×AB×h1,S△AMC=×AC×MF=×AC×h2,=×AC×BD=×AC×h,AB=AC,又∵S△ABC∴×AC×h=×AB×h1+×AC×h2,∴h1+h2=h.(2)解:如图所示:h1﹣h2=h.(3)解:在y=x+3中,令x=0得y=3;令y=0得x=﹣4,所以A(﹣4,0),B(0,3)同理求得C(1,0).AB==5,AC=5,所以AB=AC,即△ABC为等腰三角形.①当点M在BC边上时,由h1+h2=h得:1+M y=OB,M y=3﹣1=2,把它代入y=﹣3x+3中求得:M x=,所以此时M(,2).②当点M在CB延长线上时,由h1﹣h2=h得:M y﹣1=OB,M y=3+1=4,把它代入y=﹣3x+3中求得:M x=﹣,所以此时M(﹣,4).③当点M在BC的延长线上时,h1=1<h,不存在;综上所述:点M的坐标为M(,2)或(﹣,4).28.(12分)如图,已知一次函数y=﹣x+6的图象与坐标轴交于A、B两点,AE平分∠BAO,交x轴于点E.(1)求点B的坐标及直线AE的表达式;(2)过点B作BF⊥AE,垂足为F,在y轴上有一点P,使线段PE+PF的值最小,求点P的坐标;(3)若将已知条件“AE平分∠BAO,交x轴于点E”改变为“点E是线段OB上的一个动点(点E不与点O、B重合)”,过点B作BF⊥AE,垂足为F,以EF为边作正方形EFMN,当点M落在坐标轴上时,求E点坐标.【解答】解:(1)如图1中,∵一次函数y=﹣x+6的图象与坐标轴交于A、B点,∴A(0,6),B(8,0),设OE=x,作EM⊥AB于M.∵AE平分∠OAB,OE⊥OA,∴OE=EM=x,在△AEO和△AEM中,,∴△AEO≌△AEM,∴AM=AO=6,∵OA=6,OB=8,∠AOB=90°,∴AB===10,∴BM=4,在Rt△EBM中,∵EM2+BM2=EB2,∴x2+42=(8﹣x)2,∴x=3,∴E(3,0),设直线AE的解析式为y=kx+b则,解得,∴直线AE的解析式为y=﹣2x+6.(2)如图2中,作点E关于y轴的对称点E′,连接FE′交y轴于P,此时PE+PF 的值最小.∵BF⊥AE,∴直线BF的解析式为y=x﹣4,由解得,∴F(4,﹣2),∴直线FE′的解析式为y=﹣x﹣,∴P(0,﹣).(3)①如图3中,当点M在y轴上时,作FP⊥OB于P,FQ⊥OM于Q.∵四边形EFMN是正方形,∴FE=FM,∠EFM=∠PFQ,∴∠EFP=∠MFQ,∵∠FPE=∠FQM=90°,∴△FPE≌△FQM,∴FP=FQ,四边形OPFQ是正方形,设边长为x.∵∠AEO=∠BEF,∠AOE=∠PFE=90°,∴∠FAQ=∠FBP,∵∠AQF=∠BPF=90°,∴△AQF≌△BPF,∴AQ=BP,∴6+x=8﹣x∴x=1,∴F(1,﹣1),∴直线AF的解析式为y=﹣7x+6,∴E(,0).②如图4中,当点M在x轴上时,易知OA=OE=6,可得E(6,0).综上所述,满足条件的点E坐标为(,0)或(6,0).。