黄昆版固体物理课件第一章

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

32
2
a 1 a b c a i j k
12
2
a 1 a b c a i j k
22
2
a 1 a b c a i j k
32
2
4. 晶格的分类
➢ 简单晶格:每个晶格原胞中只含有一个原子, 晶格中所有原子在化学、物理和几何环境 上都是完全等同的。
沿晶向的位移: ua vb wc
[011]
u: v: w l : m: n
D
l、m、n 为互质整数 晶向指数: [l m n]
c b
0
aA
等效晶向(等效方向): l m n
[ 001]
[10 0 ]
等效方向: 100 2. 晶面指数:
[ 010]
[ 100]
[ 001]
[ 010]
1
:
1 :
例:Na、Cu、Al等晶格均为简单晶格
➢ 复式晶格:每个晶格原胞中含有两个或两个以上的 原子或离子。
简单晶格必须由同种原子组成;反之,由同种原子组成 的晶格却不一定是简单晶格。
如:金刚石、Mg、Zn 和NaCl等晶格都是复式晶格
1 2
3
1
1
4
41
2
1
32
4
4
1 2
➢ 复式晶格可以看成是多个简单晶格穿套而成。
六方 唯一6 或 6
立方 四个3
晶胞参数
所属点群
Bravais格子
ab c
ab c ==90º
ab c = == 90º
a=b=c = = 90º
a=b c = == 90º
a=b c = = 90º=120º
a=b=c = == 90º
C1、Ci
C2、CS、C2h
D2、C2V、D2h
a1
2
a2 a3 a2 a3
a1 a2 a3
2
va
2
,va是 正
a2 a3

va
子原胞
的体
ai b j 2ij
i, j=1, 2, 3
b1
2 a 2 a3
a1 a2 a3
2 a 2 a3
va
b2
2 a3 a1
a1 a2 a3
Βιβλιοθήκη Baidu
2 a3 a1
va
b3
2 a1 a 2
为基矢。对于一个空间点阵,基矢的选择不是唯一的,可 以有多种不同的选择方式。
a2 0 a1
3. 原胞 ➢ 空间点阵原胞
• 空间点阵最小的重复单元 • 每个空间点阵原胞中只含有一个格点 • 对于同一空间点阵,原胞有多种不同的取法,但
原胞的体积均相等
原胞体积: va a1 a 2 a 3
➢ Wigner-Seitz原胞(对称原胞)
晶体结构=空间点阵+基元
不同的晶体结构可以有相同的空间点阵
Cu和NaCl都是面心立方晶格(空间点阵) Cu:基元是一个Cu原子 NaCl:基元是一个Na+ 和一个Cl-
二、基矢和原胞 a2 0 a1
1. 格矢: Rl 2. 基矢:
任一格矢 Rl l1a1 l2 a 2 l3 a3 ,
如果所有l1、l2和l3均为整数,则称这组坐标基 a1、a 2 和a3
《固体物理学》

主讲教师: 材料物理系 贾冲

Email: chongjia@ustc.edu
前言
➢ 固体材料是材料科学最主要的研究对象
➢ 材料科学研究的主要内容

1、探索新材料

2、研究其物性

3、开发其应用
➢ 《固体物理学》的研究内容

1、固体材料的内部结构

2、微观粒子(原子、电子等)的运动规律
2. 简单化合物晶体(填隙) ➢ NaCl结构(八面体间隙)
Cl-
典型晶体:NaCl、LiF、KBr
➢ CsCl结构(六面体间隙) 典型晶体:CsCl、CsBr、CsI
➢ 闪锌矿结构(四面体间隙) 典型晶体:ZnS、CdS、GaAs
➢ 纤锌矿结构(四面体间隙)
S Cd
典型晶体:ZnS、CdS
问题1:堆积系数越高晶体越稳定
错。晶体的稳定性还与原子之间的结合方式有关,如金刚 石原子之间靠非常强的共价键结合,所以很稳定。
问题2:碳原子若以fcc或hcp晶格排列,结构会比金刚石更 稳定
错。碳原子外面有4个价电子,只能形成配位数为4的4个共 价键,若以fcc或hcp晶格排列,则碳原子之间靠微弱的范德 华力结合,其结构将变得很不稳定。
C:底心Bravais格子 F:面心Bravais格子 H: 六方Bravais格子
P
Triclinic
P
C
Monoclinic
P
C
I
F
Orthorhombic
R
Rhombohedral
P
I
Tetragonal
H
P
Hexagonal
I
F
Cubic
82
Carbon1和Carbon2在体对角线方向相切,
且其距离为对角线长度的1/4(?),即:
2r
1 4
3a r
3a 8
堆积系数
3
8 4 r 3
3
8
4 3
3 8
a
3 0.34
a3
a3
16
元素晶体 配位数
堆积系数
sc bcc fcc hcp 金刚石
6
8
12 12
4
0.52 0.68 0.74 0.74 0.34
1
h:k:l
TSU
h、k、l 为互质整数
c
b
S
U
晶面指数:(hkl)
0
Ta
C
D
(101)
c
B
b
0
aA
等效晶面:{hkl}
(001) (010)
(100)
等效晶面:{100}
三、晶系(7个) 根据晶体的对称性特征划分
晶系 对称性特征 三斜 只有1或 i 单斜 唯一2或 m 正交 三个2或 m
三方 唯一3 或 3 四方 唯一4 或 4
➢ Schönflies符号:用主轴+脚标表示
主轴:Cn、Dn、Sn、T和O Cn:n次旋转轴 Sn : n次旋转-反映轴 Dn:n次旋转轴加上一个与之垂直的二次轴 T: 四面体群 O: 八面体群
脚标:h、v、d h:垂直于n次轴(主轴)的水平面为对称面 v:含n次轴(主轴)在内的竖直对称面 d:垂直于主轴的两个二次轴的平分面为对称面
a1 a2 a3
2 a1 a 2
va
倒格矢:Gn n1b1 n2 b2 n3b3 , n1、n2、n3都是整数。
倒格子原胞体积:
b b1 b2 b3
vab 8 3
Rl G n 2 h h为整数
§1.3 晶体的宏观对称性
➢ 对称操作:若一个空间图形经过一空间操作 (线性变换),其性质复原,则称此 空间操作为对称操作——正交变换
E
cos m
2
m 2 2 1 0 1
3600 1800 1200 900 600
n 1 2 3 4 6
三、晶体中八种独立的对称要素 ➢ 旋转对称轴 Cn (真旋转)
C1 (1)
C2 (2)
C3 (3)
C4 (4)
C6 (6)
➢ 旋转-反演轴 n (旋转与反演的复合操作)
1或i
2或m
3 = 3+i
固 晶态
体 (晶体) 更多的没有规则外形(多晶)

如金属、合金、陶瓷

需要借助电子显微镜观察
MnS
非晶态 只有很少数,如玻璃、橡胶、塑料
如何从材料的内在本质上对晶体下定义?
规则网络
无规网络
➢ 晶 体: 组成固体的原子(或离子)在微观上的 排列具有长程周期性结构
➢ 非晶体:组成固体的粒子只有短程序,但无长程 周期性
C3、S6、D3 C3V、D3d
C4、S4、C4h、D4 C4V、D2d、D4h C6、C3h、C6h、 D6、C6V、D3h、
D6h T、Th、Td
O、Oh
P P、C P、C、I、F
R P、I
H P、I、F
四、Bravais格子(14种)
P:简单Bravais格子 I:体心Bravais格子 R: 三方Bravais格子
➢ 点对称操作:在对称操作过程中至少有一点保持不动 ➢ 点对称操作要素:点对称操作凭借的几何要素
点:对称中心;线:对称轴;面:对称面
二、晶体的对称轴定理
:基转角; n 360 :对称轴的轴次
晶体的对称轴定理:晶体中只有1,2,3,4和6五种 对称轴
C
A B
D
AE mAB
mZ
2AB cos AC AB
➢ 国际符号:以特征方向的对称性来表示
§1.4 晶系和Bravais格子
一、晶胞与晶胞基矢坐标系
➢ 晶胞:既能反映晶格周期性(平移对称性)又能体现晶 体的对称性特征的重复单元
➢ 晶胞基矢:a 、b 、c
c
➢ 晶胞参量:a、 b、 c、、、
b
0
a
二、晶胞基矢坐标系中的方向指数和面指数
1. 晶向指数
❖ 本课程的内容主要分为两部分:
{ 晶格理论
晶体的结构(第一章) 固体的结合(第二章)
晶格的振动(第三章)
{ 电子理论
金属的自由电子论(第六章) 半导体的能带理论(第四章)
外场中电子的运动(第五章)
第一章 晶体结构
§1.1 几种常见的晶体结构
一、晶体的定义
少数具有规则外形(单晶)
如食盐、水晶、金刚石
➢ 面心立方(face-centered cubic, fcc)堆积
3 1
2 4
5
排列方式: ABCABC
典型晶体:Ca、Sr、Al、Cu、Ag
6
8 7
b. 较松散的堆积 ➢ 体心立方(body-centered cubic, bcc)
堆积
典型晶体:Li、Na、K、-Fe
➢ 简单立方(simple cubic, sc)堆积 典型晶体:Po
➢ 金刚石结构
23
1
4
0
1 2
0
3
1
4
4
1 2
0
1 2
1
3
4
4
0
1 2
0
典型晶体:金刚石、Si、Ge
配位数:一个原子周围最近邻原子的数目
4
8
1
{6 a
12
堆积系数 =
晶胞中原子所占的体积 晶胞体积
例:求金刚石晶胞的堆积系数
解:设金刚石原子半径为r,晶胞体积为a3,
每个晶胞所含原子数
8 1 6 1 41 8
11 3
1
42 4
4
3
1
4
1
3
4 14
2
2
1
3
1
4
4
4
1 2
三、倒格子
倒格子的定义: ai b j 2ij
b2
a1
a2
i, j=1, 2, 3
b令 a11 bb11a2和 BB11aa3, (2a1aa2a3, 2 aB3a13是) a待 2和 2定a3系

b1
B1
b1
2
体心立方的基矢和Wigner-Seitz原胞
面心立方基矢、原胞和Wigner-Seitz原胞
立方晶系的基矢
c
fcc:
a1
0
a2
b a3 a
c
bcc:
a1
a2
b
0
a
a3
a 1 b c a j k
12
2
a 1 c a a k i
22
2
a 1 a b a i j

3、结构、运动规律和物理性质之间的联系
➢《固体物理学》先修课程:
《数学物理方法》、《普通物理》、 《热力学与统计物理》、《理论力学》、 《电动力学》、 《量子力学》、 《结晶学》
➢ 培养三种思维方式:活学活用、换位思维、逆向思维
结构、运动规律和 材
理 论

规修
律课

物性之间的联系
固体物理学
料材

1
5
3
2
4
简单化合物晶体实例
PbS 闪锌矿结构
ZnS 纤锌矿结构
小结
一、定义


晶体:长程周期性

非晶:只有短程序

准晶:只有取向序

配位数

堆积系数
二、常见晶体结构(9种,熟记)
hcp fcc
bcc sc
金刚石
NaCl CsCl 闪锌矿 纤锌矿
§1.2 晶格的周期性
一、晶格与空间点阵
1. 晶格:晶体中原子(或离子)排列的具体形式
4
6 = 3+m
➢ 旋转-反映轴 Sn(旋转与反映的复合操作)
S1或CS (m)
S2或Ci (i)
S3=C3+CS
S4
➢ 晶体中独立的对称要素:
C1 (1)、C2 (2)、C3 (3)、C4 (4)、C6 (6)、 Ci (i)、 CS (m)和 S4( 4 )
S6=C3+Ci
四、点群(32种)
2. 空间点阵
A
B
➢ 等同点系:晶格中所有与起始点在化学、物理和 几何环境完全相同的点的集合
➢ 空间点阵:由等同点系所抽象出来的一系列在空间 中周期排列的几何点的集合体
➢格 ➢基
点:空间点阵中周期排列的几何点
元:一个格点所代表的物理实体 基元可以是一个原子、一个分子,也可以 是若干个原子或分子所组成的原子团或分 子团。
晶体
?
非晶体
Al65Co25Cu10合金
➢ 准 晶: 有长程的取向序,但无长程周期性
二、几种常见的晶体结构 1. 元素晶体 a. 密堆积:
一维 二维
二维密排结构
三维 ➢ 密排六方( hexagonal close-packed, hcp )结构
排列方式: ABAB
1
典型晶体:Be、Mg、Zn、Cd、Ti
料 物
学性


主要参考书:
❖ 1、黄昆,韩汝琦 《固体物理学》,1988,高等教育出版社; ❖ 2、方俊鑫,陆栋 《固体物理学》,1988,上海科学技术出版社; ❖ 3、C.K. Kittel(美),项金钟 吴兴惠译 ❖ 《Introduction to Solid State Physics》, 2006,化学工业出版社。
相关文档
最新文档