4.5 相似三角形判定定理的证明 导学案

合集下载

4.5相似三角形判定定理的证明(教案)

4.5相似三角形判定定理的证明(教案)
3.重点难点解析:在讲授过程中,我会特别强调SSS、SAS和ASA定理的应用条件和步骤。对于难点部分,我会通过图形示例和逐步推导来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形判定定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如通过测量实际物体的相似三角形来应用判定定理。
我也注意到,在小组讨论环节,学生们积极参与,但有些小组在分析问题时思路不够清晰。这可能是因为他们对定理的应用还不够熟练,或者是小组合作分工不够明确。针对这一点,我计划在未来的教学中加强对小组合作的引导,比如提前给出讨论指导,明确每个小组成员的职责,确保讨论能够更加高效和有深度。
实践活动环节,学生们通过实验操作来应用相似三角形判定定理,这个过程对他们来说是一个很好的巩固机会。但我观察到有些学生在操作过程中仍然感到困惑,特别是在如何从实际问题中抽象出几何模型方面。这可能提示我在未来的教学中需要更多关注学生从理论到实践的能力转换,提供更多指导和支持。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似三角形判定定理的基本概念。相似三角形是指具有相同形状但大小不同的三角形。判定定理包括SSS、SAS和ASA定理,它们是解决几何问题的重要工具,可以帮助我们确定三角形的未知边长和角度。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何使用SSS定理来判定两个三角形相似,并通过这个定理解决实际问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“相似三角形判定定理的证明”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断两个三角形是否相似的情况?”比如,在设计图案或测量物体大小时。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似三角形判定定理的奥秘。

《相似三角形的性质》 导学案

《相似三角形的性质》 导学案

《相似三角形的性质》导学案一、学习目标1、理解相似三角形的对应角相等,对应边成比例。

2、掌握相似三角形的周长比、面积比与相似比之间的关系。

3、能运用相似三角形的性质解决简单的实际问题。

二、学习重点1、相似三角形的性质的理解和应用。

2、相似三角形周长比、面积比与相似比的关系。

三、学习难点相似三角形性质的综合应用,以及在实际问题中的灵活运用。

四、知识回顾1、什么是相似三角形?相似三角形是指对应角相等,对应边成比例的三角形。

2、如何判定两个三角形相似?(1)两角分别相等的两个三角形相似。

(2)两边成比例且夹角相等的两个三角形相似。

(3)三边成比例的两个三角形相似。

五、新课讲解(一)相似三角形的对应角相等,对应边成比例例 1:已知△ABC∽△DEF,∠A = 50°,∠B = 70°,则∠D =____,∠F =____。

解:因为△ABC∽△DEF,所以∠D =∠A = 50°,∠F = 180°∠D ∠E = 180° 50° 70°= 60°(二)相似三角形的周长比等于相似比例 2:若△ABC∽△A'B'C',相似比为 2:3,△ABC 的周长为 12,则△A'B'C'的周长为____。

解:因为相似三角形的周长比等于相似比,所以△ABC 的周长:△A'B'C'的周长= 2:3。

设△A'B'C'的周长为 x,则 12:x = 2:3,解得x = 18。

(三)相似三角形的面积比等于相似比的平方例 3:两个相似三角形的相似比为 1:4,它们的面积比为____。

解:因为相似三角形的面积比等于相似比的平方,所以面积比为1²:4²= 1:16。

六、课堂练习1、已知△ABC∽△A'B'C',相似比为 3:5,AB = 9,则 A'B' =____。

九年级数学 相似三角形的判定(教案、导学案)

九年级数学 相似三角形的判定(教案、导学案)

27.2相似三角形27.2.1 相似三角形的判定第1课时相似三角形的判定(1)【知识与技能】1.了解相似三角形的概念及其表示方法;2.掌握平行线分线段成比例定理及平行于三角形一边的直线的性质定理;3.掌握相似三角形判定的预备定理.【过程与方法】经历从探究到归纳证明的过程,发展学生的合情推理能力和逻辑思维能力.【情感态度】体验从一般到特殊及由特殊到一般的认知规律,发展辩证思维能力. 【教学重点】平行线分线段成比例定理及判定三角形相似的预备定理.【教学难点】探索平行线分线段成比例定理的过程.一、情境导入,初步认识问题1相似多边形的性质是否也适用于相似三角形呢?问题2如果△ABC与△A1B1C1相似,能类似于两个三角形全等,给出一种相似表示方法吗?△ABC 与△A 1B 1C 1的相似比为k ,那么△A 1B 1C 1与△ABC 的相似比也是k 吗?问题3 如何判定两个三角形相似呢?【教学说明】通过上述三个问题的设置,既帮助学生认识了相似三角形的一些基本知识,又为引出平行线分线段成比例定理作些铺塾,教师可釆用自问自答形式讲述这部分内容. 二、思考探究,获取新知问题1 如图,任意画两条直线l 1,l 2,再画三条与l 1,l 2相交的平行线l 3,l 4,l 5分别度量AB ,BC ,DE ,EF 长度,则EFDEBC AB 与相等吗?呢?与DF DE AC AB 呢?与DFEFCA BC【教学说明】教师可让学生在自己准备的 白纸上画出类似图形,测出所截各条线段的长度(尽可能准确些),然后求出相应比值的近似值,便于作出说明.教师巡视,发现问题及时引导.对出现比值相差较大情形,帮助他们分析,找出原因,尽量让学生们获得对应线段的比值近似相等这一结果,形成感性认知.最后,教师可综合大多数同学的认知,给予总结,得出结论.平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段的比相等.【教学说明】这一结论不要求学生证明,只需形成感性认识.为了便于记忆,上述定理的结论可使用下面形象化的语言,如:.等全下全下,全上全上,上下上下,下上下上==== 问题 2 如图,当l 1//l 2//l 3时,在(1)中是否仍有呢?,,AF EFAC BCAF AE AC AB EF AE BC AB ===在(2)中是否仍有呢?,,DFBFACBCDF DB AC AB BF DB BC AB ===【教学说明】针对问题2,教师应引导学生利用“平行线分线段成比例定理”来进行说明,不可继续用测量方法得到,这样就由感性认识 上升到理性思考.这里建议将学生进行分组,小组讨论,相互交流,形成认识,最后教师再与全 班同学一道分析,得出结论.平行于三角形一边的直线截其他两边(或两边的延长线),所得到的对应线段的比相等.问题3 如图,在△ABC 中,DE// BC ,DE 分别交AB 、AC 于D 、E ,则△ABC 与△ADE 能相似吗?为什么?问题4如图,已知DE//BC,DE分别交AB.AC的反向延长线于D、E,则△ADE与△ABC能相似吗?为什么?【教学说明】将全班学生分成两组,分别完成问题3、4的探究,教师应先给予点拨,突破难点(即添加辅助线,达到两个三角形的三边的比能相等的目的),然后学生自主完成,锻炼逻辑思维能力和推理能力.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 (相似三角形判定的预备定理).三、运用新知,深化理解1.如图,DE//BC,EF//AB,请尽可能多地找出图中的相似三角形,并用符号表示出来.2.如图D 为△ABC 中BC 边的中点,E 为AD 中点,连接并延长BE 交 AC 于F.过E 作EG//AC 交BC 于G. (1) 求AC EG 的值;(2)求CF EG 的值;(3)求FCAF的值.3.如图,已知在△ABC 中,DE//BC ,AD=EC ,BD=1cm ,AE=4cm ,BC=5cm , 求 DE 的长.【教学说明】 让学生自主完成,也可合作完成,在练习中加深理解.教师巡视指导,及时点拨.在完成上述题目后,教师引导学生完成创 优作业中本课时的“名师导学”部分.【答案】1.解:△ADE ~△ABC ,△CEF ~△CAB, △ADE ~△EFC. 2.解:(1)∵EG//AC ,∴△DGE ~△DCA ,∴21==DA DE AC EG . (2)∵EG//AC ,E 是AD 的中点,∴G 是CD 的中点,即CG=DG.又D 是BC 的中点,∴BD=CD ,∴BG=3CG ,BC=4CG ,∴34BG BC = . ∵EG//FC, ∴△BEG ~△BFC,∴43==BC BG FC FG . (3)过D 点作DH//CF ,交BF 于H.易得DH=AF ,∴21==FC DH FC AF . 3.解:∵DE//BC ,∴ECAEDB AD =,又AD=CE ,∴AD 2=4,∴AD=2,∴AB=3.由DE//BC 可知△ADE ~△ABC ,∴)(cm 310352=⨯==BC DE AB AD . 四、师生互动,课堂小结 1.这节课你学到了哪些知识? 2.你还有哪些疑惑?【教学说明】师生以交谈方式回顾本节知识,重点应关注哪些内容,还有什么地方不太明白,及时解疑.完成创优作业中本课时的“课时作业”部分.本课时教学思路应从探究、猜想、验证归纳出发,遵循学生的理解认知能力,由浅入深、逐步推进,激发学生自主探究的学习热情,培养学生的自主学习能力.27.2 相似三角形 27.2.1 相似三角形的判定 第1课时 相似三角形的判定(1)一、新课导入 1.课题导入问题1:我们学过哪些判定两个三角形全等的方法?问题2:类比上面这些方法,猜一猜判定两个三角形相似的方法有哪些? 由此导入课题(板书课题). 2.学习目标(1)能用符号表示两个三角形相似,能确定它们的相似比、对应边和对应角.(2)能叙述平行线分线段成比例定理及其推论,并能结合图形写出正确的比例式.(3)能用平行线分线段成比例定理的推论证明三角形相似的判定引理. 3.学习重、难点重点:平行线分线段成比例定理及其推论. 难点:正确理解定理中的“对应线段”. 二、分层学习1.自学指导(1)自学内容:教材P29~P30思考上面的内容. (2)自学时间:8分钟.(3)自学方法:学生分小组采用度量的方法和已学知识探究平行线分线段成比例定理,并完成自学参考提纲.(4)自学参考提纲:①三个角相等,三条边成比例的两个三角形相似.在△ABC 和△A′B′C′中, 如果∠A=∠A′, ∠B=∠B′, ∠C=C′,AB BC CAk A B B C C A ==='''''', 那么△ABC 和△A′B′C′相似,记作△ABC ∽△A′B′C′,△ABC与△A′B′C′的相似比为k,△A′B′C′与△ABC的相似比为1 k .全等三角形也是相似三角形, 它们的相似比为1.②相似三角形的对应角相等,对应边成比例.③完成教材P29探究:a.如图1,量一量,算一算,ABBC与DEEF相等吗?BCAB与EFDE呢?ABAC与DEDF呢?BCAC与EFDF呢?b.由上一步可得:∵l3∥l4∥l5,∴ABBC=DEEF,BCAB=EFDE,ABAC=DEDF,BC AC =EFDF.c.平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例.d.指出图1中的所有对应线段(如AB与DE):BC与EF,AC与DF.④把平行线分线段成比例定理应用到三角形中,会出现图2和图3两个基本图形:在这两个图形中,把DE看成平行于△ABC的边BC的直线,截其他两边(如图1)或其他两边的延长线(如图2),于是可得推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.即:∵DE∥BC,∴ADDB=AEEC,ADAB=AEAC,BDAB=CEAC.2.自学:结合自学指导进行自学.3.助学(1)师助生:①明了学情:能否正确理解“对应线段”,尤其是在推论的两个图形中.②差异指导:根据学情,指导学生结合图形理解“对应线段”.(2)生助生:小组交流、研讨.4.强化(1)分清平行线分线段成比例定理的条件与结论,弄清哪些是“对应线段”.(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等(强调“对应”).1.自学指导(1)自学内容:教材P30思考~P31.(2)自学时间:6分钟.(3)自学方法:学生分小组对不同类型的相似三角形进行证明,并完成自学参考提纲.(4)自学参考提纲:①已知DE∥BC,运用定义证明△ADE∽△ABC(如图1,作EF∥AB).证三个角相等:∠A公共,由DE∥BC可得∠ADE=∠B,∠AED=∠C.证三条边成比例:由DE∥BC可得ADAB=AEAC,由EF∥AB可得BFBC=AEAC.由DE∥BC,EF∥AB可得四边形BFED是平行四边形,所以BF=DE.故DE BCADAB=AEAC=BFBC.所以△ADE∽△ABC.②如图2, DE∥BC分别交BA、CA的延长线于点D、E,那么△ADE与△ABC 相似吗?能否给予证明?相似.∵DE ∥BC,∴∠E=∠C,∠D=∠B.过E 作EF ∥BD 交CB 的延长线于点F. ∵DE ∥BC ,EF ∥BD ,∴,AE AD BF AEAC AB BC AC==. 又∵四边形BDEF 是平行四边形,∴DE=BF,∴AE AD DEAC AB BC==. ∴△ADE ∽△ABC.③如图3,△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC. ∵DE ∥BC ,EF ∥AB ,∴∠CEF=∠A,∠ADE=∠B=∠EFC,AD AE DB EC =,BF AEFC EC=. 又∵四边形BDEF 是平行四边形, ∴BD=EF,DE=BF. ∴AD AE DEEF EC FC==, ∴△ADE ∽△EFC.④如图4,DE ∥FG ∥BC ,找出图中所有的相似三角形. 由DE ∥FG ∥BC ,易知△ADE ∽△AFG ∽△ABC. 2.自学:结合自学指导进行自学. 3.助学 (1)师助生:①明了学情:看学生能否添加辅助线构造比例线段进行转化. ②差异指导:根据学情指导学生弄清引理的证明思路和方法. (2)生助生:小组交流、研讨. 4.强化(1)判定三角形相似的预备定理及其两个基本图形. (2)点两名学生板演自学参考提纲中第③、④题,并点评. 三、评价1.学生学习的自我评价:这节课你有什么收获?还有哪些不足?2.教师对学生的评价:(1)表现性评价:从学生的课堂参与程度、思维状况、小组协作等方面的课堂表现去评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时先给出相似三角形的定义,说明有关概念,明确相似三角形的符号表示和相似比的意义.由于三角形的相似与比例线段密不可分,因此在形成相似三角形的概念之后,主要安排学习比例线段,进而讨论平行于三角形一边的平行线的性质与判定以及平行线分线段成比例定理,为研究相似三角形提供了必要的知识准备.教学过程中应遵循学生的理解认知能力,由浅入深,逐步推进.一、基础巩固(70分)1.(10分)如图,在△ABC中,DE∥BC, 且AD=3,DB=2.图中的相似三角形是△ADE∽△ABC,其相似比是35.第1题图第2题图2.(10分)如图,DE∥BC,DF∥AC,则图中相似三角形一共有(C)A.1对B.2对C.3对D.4对3.(10分)如图,DE∥BC,12ADDB,则AEAC=(B)A.12B.13C.23D.32第3题图第4题图4.(10分)如图,已知AB ∥CD ∥EF ,那么下列结论正确的是(A )5.(10分)如图,AB ∥CD ∥EF,AF 与BE 相交于点G ,且AG=2,GD=1,DF=5,求BC CE .解:∵AB ∥CD ∥EF,∴35BC AD AG GD CE DF DF +===. 6.(20分)如图,DE ∥BC.(1)如果AD=5,DB=3,求DE ∶BC 的值;(2)如果AD=15,DB=10,AC=15,DE=7,求AE 和BC 的长.解:(1)∵DE ∥BC ,∴△ADE ∽△ABC,∴58DE AD BC AB ==. (2)AE AD AC AB =,即151525AE =,求得 AE=9. DE AD BC AB =,即71525BC =,求得 BC=353. 二、综合应用(20分)7.(20分)如图,△ABC ∽△DCA ,AD ∥BC ,∠B=∠DCA.(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6,求AD 、DC 的长.解:(1)BC AB AC CA DC DA==; (2)∠BAC=∠CDA,∠B=∠ACD,∠ACB=∠DAC; (3)由(1)中的结论和已知条件可知121066DC AD==,求得AD=3,DC=5. 三、拓展延伸(10分)8.(10分)如图,在△ABC 中,DE ∥BC 分别交AB 、AC 于点D 、E ,试证明:ADAB=DOCO.证明:∵DE ∥BC ,∴△ADE ∽△ABC,△DOE ∽△COB,∴,AD DE DO DE AB BC CO CB==. ∴AD DO AB CO =.。

《相似三角形判定定理的证明》 教学设计

《相似三角形判定定理的证明》 教学设计

《相似三角形判定定理的证明》教学设计一、教学目标1、知识与技能目标学生能够理解相似三角形判定定理的内容。

掌握相似三角形判定定理的证明方法,提高逻辑推理能力。

2、过程与方法目标通过探究相似三角形判定定理的证明过程,培养学生的观察、分析和解决问题的能力。

经历“猜想验证证明”的数学探究过程,体会数学思维的严谨性。

3、情感态度与价值观目标激发学生对数学的兴趣,培养学生勇于探索、创新的精神。

在合作学习中,增强学生的团队意识和交流能力。

二、教学重难点1、教学重点相似三角形判定定理的证明思路和方法。

2、教学难点如何引导学生构建证明的思路,运用已有的知识进行推理和论证。

三、教学方法讲授法、探究法、讨论法相结合四、教学过程1、复习引入回顾相似三角形的定义和性质。

提问:如何判断两个三角形相似呢?引导学生思考并回忆相似三角形的判定方法(如两角分别相等的两个三角形相似)。

2、提出猜想展示几组相似三角形的图片,让学生观察并猜想相似三角形的判定条件。

引导学生提出猜想:比如三边成比例的两个三角形相似;两边成比例且夹角相等的两个三角形相似等。

3、探究证明以“两角分别相等的两个三角形相似”为例,引导学生分析证明思路。

提问:如何构建两个角分别相等的条件?可以通过作平行线等方法。

让学生分组讨论,尝试写出证明过程。

对于“三边成比例的两个三角形相似”,先引导学生思考如何将三边的比例关系转化为线段的等量关系。

提示学生可以通过构建全等三角形来进行证明。

对于“两边成比例且夹角相等的两个三角形相似”,让学生思考如何利用已有的知识和方法进行证明。

4、证明展示与讲解选取几组学生代表,展示他们的证明过程,并进行讲解。

针对学生证明过程中出现的问题和不足,进行纠正和补充。

5、总结归纳总结相似三角形判定定理的证明方法和思路。

强调证明过程中需要注意的逻辑严谨性和规范性。

6、课堂练习布置一些相关的练习题,让学生巩固所学知识。

巡视学生的练习情况,及时给予指导和帮助。

《相似三角形的性质》 导学案

《相似三角形的性质》 导学案

《相似三角形的性质》导学案一、学习目标1、理解相似三角形的对应角相等,对应边成比例。

2、掌握相似三角形的对应线段(高、中线、角平分线)的比等于相似比。

3、了解相似三角形的周长比等于相似比,面积比等于相似比的平方。

二、学习重难点1、重点(1)相似三角形的性质的理解和应用。

(2)相似三角形的对应线段的比、周长比、面积比与相似比的关系。

2、难点相似三角形性质的综合应用,特别是涉及到面积比与相似比的关系。

三、知识回顾1、什么是相似三角形?三角分别相等,三边成比例的两个三角形叫做相似三角形。

2、相似三角形的判定方法有哪些?(1)两角分别相等的两个三角形相似。

(2)两边成比例且夹角相等的两个三角形相似。

(3)三边成比例的两个三角形相似。

四、新课导入我们已经知道了如何判断两个三角形相似,那么相似三角形又有哪些性质呢?这就是我们今天要学习的内容。

五、相似三角形的性质1、相似三角形的对应角相等因为两个三角形相似,所以它们的对应角是相等的。

例如,若△ABC∽△A'B'C',则∠A =∠A',∠B =∠B',∠C =∠C'。

2、相似三角形的对应边成比例若△ABC∽△A'B'C',则有:AB/A'B' = BC/B'C' = AC/A'C',这个比例值就是它们的相似比。

3、相似三角形的对应线段的比等于相似比(1)相似三角形对应高的比等于相似比如图,△ABC∽△A'B'C',AD 和 A'D'分别是△ABC 和△A'B'C'的高。

因为∠B =∠B',∠ADB =∠A'D'B' =90°,所以△ABD∽△A'B'D',所以 AD/A'D' = AB/A'B',即相似三角形对应高的比等于相似比。

相似三角形的判定(3)导学案

相似三角形的判定(3)导学案

年级:九年级 班级: 学生姓名: 制作人: 不知名 编号:2023-1227.2.1 相似三角形的判定(3)学习目标:1.记住“三边成比例的两个三角形相似”的判定方法,以及“两边成比例且夹角相等的两个三角形相似”的判定方法.2.能够运用三角形相似的条件解决简单的问题.重点 : 记住两种判定方法,会运用两种判定方法判定两个三角形相似.难点 : 1. 三角形相似的条件归纳、证明;2. 会准确的运用两个三角形相似的条件来判定三角形是否相似.预学案【回顾】1.两个三角形全等有哪些判定方法?2.我们学习过哪些判定三角形相似的方法?3.全等三角形与相似三角形有怎样的关系?4.如果要判定△ABC 与△A ′B ′C ′相似,是不是一定需要一一验证所有的对应角和对应边的关系?(自主学习)1. 三边________的两个三角形相似.如下图,如果AB A ′B ′=BC B ′C ′=AC A ′C ′,则△ABC ________△A ′B ′C ′.2. 两边___________且夹角________的两个三角形相似. 如下图,如果''''C A AC B A AB ,△A =△A ′ 则△ABC △A ′B ′C ′探究案【探究一】探究三边成比例的两个三角形相似.在一张方格纸上任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k 倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?猜测:如果两个三角形的三边 , 那么这两个三角形相似.已知:求证:证明:归纳: 三角形相似的判定定理 :三边 的两个三角形相似.符号语言:△ ,△△ABC △ △DEF .【探究二】:探究两边成比例且夹角相等的两个三角形相似.类似判定三角形全等的SAS 方法,能不能通过两边和夹角判定两个三角形相似呢?事实上,我们有利用两边和夹角判定两个三角形相似的定理:△''''C A AC B A AB ,△A =△A ′ △△ABC △△A ′B ′C ′归纳:两边___________且夹角________的两个三角形相似.怎样证明这个定理呢?它的证明思路与证明前面定理的思路类似,先用同样的方法作一个与△A ′B ′C ′_______的三角形,再用相似三角形____________和已知条件证明所作三角形与△ABC __________.【探究三】 根据下列条件,判断△ABC 和△A ′B ′C ′是否相似,并说明理由.(1) AB =4 cm , BC =6 cm , AC =8 cm ,A ′B ′ =12 cm ,B ′C ′=18 cm ,A ′C ′=24 cm .(2)△A =120°, AB =7 cm ,AC =14 cm ,△A '=120°,A ′B ′ =3 cm ,A ′C ′=6 cm .检测案1. 如图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为 ( )2.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值 ( )A .只有1个B .可以有2个C .有2个以上但有限D .有无数个3.如图,△ABC 与 △ADE 都是等腰三角形,AD=AE ,AB=AC ,△DAB=△CAE. 求证:△ABC △△ADE.4.如图,△ABC 中,点 D ,E ,F 分别是 AB ,BC ,CA 的中点,求证:△ABC ∽△EF D .A .B .C .D . 第1题 A C B。

北师大9年级上册4.5 相似三角形的判定定理证明 教学设计

北师大9年级上册4.5 相似三角形的判定定理证明 教学设计

4.5相似三角形的判定定理证明教学设计1.定理两角分别相等的两个三角形相似已知:如图在△ABC和△AB'C'中,∠A=∠A',∠B=∠B'.求证:△ABC△A'B'C'.证明:在△ABC的边AB(或它的延长线)上截取AD=A'B',过点D作DE∥BC交AC于点E,则∠ADE=∠B,∠AED=∠C,AD AB =AEAC . 过点D 作AC 的平行线,交BC 于点F,则AD AB =CF CB.∴AE AC =CFCB∵DE//BC, DF//AC,∴四边形DFCE 是平行四边形, ∴DF=CF. ∴AE AC =DECB ∴AD AB =AE AC =DE CB而∠ADE=∠B ,∠DAE=∠BAC ,∠AED=∠C,∴△ADE ∽△ABC.∵∠A=∠A',∠ADE=∠B=∠B', AD= A'B', ∴△ADE ≌△A'B'C'. ∴△ABC ∽△A'B'C'.归纳总结:证明三角形相似的判定定理,关键是利用转化的数学思想,结合平行线分线段成比例,通过作辅助线,把一个三角形转移、构建到另一个三角形中,然后利用相似三角形的定义证明相似三角形的判定定理.2.定理 两边成比例且夹角相等的两个三角形相似.已知:如图,在△ABC 和△A'B'C'中,∠A=∠A',AB A ′B′=ACA ′C′,求证: ∆ ABC ∽△A'B'C'.证明:在△A ′B ′C ′的边A ′B ′上截取点D ,使A ′D=AB.过点D 作DE ∥B ′C ′,交A ′C ′于点E.∵DE ∥B ′C ′,∠ADE= ∠B ′, ∠A ′ ED= ∠C ′ ∴△A ′DE ∽△A ′B ′C ′.∴A ′D A ′B′=A ′EA ′C′∵A ′D=AB ,ABA ′B′=ACA ′C′∴A ′DA ′B′=A ′E A ′C′=AC A ′C′∴A ′E =AC. 又∠A ′=∠A. ∴△A ′DE ≌△ABC , ∴△A ′B ′C ′∽△ABC .判定定理3:三边成比例的两个三角形相似. 已知:如图,在△ABC 和△A'B'C '中,ABA ′B′=BCB ′C′=AC A ′C′求证:△ABC ∽△A'B'C ' .证明:在线段 AB (或延长线) 上截取 AD =A ′B ′, 过点 D 作 DE ∥BC 交AC 于点 E.∵ DE ∥BC ,∴ △ADE ∽△ABC . ∴ADAB =DEBC =AEAC 又A ′B′AB =B ′C′BC=A ′C′AC,AD =A ′B ′,∴DE BC =B ′C′BC,AEAC =A ′C′AC.∴ DE =B ′C ′,EA =C ′A ′. ∴△ADE ≌△A ′B ′C ′, ∴△A ′B ′C ′ ∽△ABC .问题1:定理2,3的证明过程与定理1的证明过程共同点是什么?作平行线→相似→相等→相似问题2:定理2,3的证明过程与定理1的证明过程的不同点是什么?定理2,3只作了1条辅助线,它在定理1的基础上证明的,简单一些.典例精析例、如图,正方形ABCD中,M为AB上一点,N 为BC上一点,且BM=BN,BP⊥MC于点P.求证:∆PCD∽∆PBN证明:在正方形ABCD中,BC=CD,∠ABC=∠BCD=90°,BP⊥MC∴∠BPC=∠MPB=90°,∠PBC=∠PMC.∴△BPM∽△CPB.∴BPBM =CP CB.又BM=BN,CB=CD,∴BPBN =CP CD.又∵∠PBC+∠PCB=∠PCD+∠PCB =90°∴∠PBC=∠PCD.∴△PBN∽△PCD.2.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF∶FC =( )A.1∶4 B.1∶3 C.2∶3 D.1∶23.如图,在△ABC中,∠C=90°,∠B=60°,D是AC上一点,DE⊥AB于E,且CD=2,DE=1,则BC的长为_______.4.△ABC中,AB=10 ,AC=6 ,点D在AC上且AD=3 ,若要在AB上找一个点E,使△ADE与△ABC相似,则AE= __ .5.如图,在正方形ABCD中,M为BC上一点,F 是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.。

九年级上册数学 相似三角形判定定理的证明 导学案

九年级上册数学 相似三角形判定定理的证明  导学案

4.5 相似三角形判定定理的证明学习目标:1、进一步复习巩固相似三角形的判定定理.2、能灵活运用相似三角形的判定定理证明和解决有关问题.学习重点:灵活运用相似三角形的判定定理证明和解决有关问题.预设难点:灵活运用相似三角形的判定定理证明和解决有关问题.【预习案】一、链接回忆相似三角形的判定定理的内容:定理1可简单说成: .定理2可简单说成: .定理3可简单说成: .直角三角形相似的特殊判定定理: .二、导读1、想一想:判定一般的两个三角形相似有几种方法?判定两个直角三角形相似有几种方法?2、想一想如何根据已知条件来选择三角形相似的判定方法?【探究案】1、如图,点D 为△ABC 的AB 边一点(AB>AC ),下列条件不一定能保证△ACD ∽△ABC 的是( ).A.∠ADC=∠ACBB.∠ACD=∠BC..DC ADAD AC D BC AC AC AB==2、已知:如图,∠ABE=90°,且AB=BC=CD=DE ,请认真研究图形与所给条件,然后回答:图中是否存在相似的三角形?若存在,请加以说明;若不存在,请说明理由.3、已知△ABC ,△DCE ,△EFG 是三个全等的等腰三角形,底边BC ,CE ,EG•在同一直线上,且AB=3,BC=1,连接BF ,分别交AC ,DC ,DE 于P ,Q ,R .求证:△BFG ∽△FEG ,尝试用不同的方法证明.【训练案】1、下列图形不一定相似的是().A、有一个角是120°的两个等腰三角形B、有一个角是60°的两个等腰三角形C、两个等腰直角三角形D、有一个角是45°的两个等腰三角形2、如图,已知∠ACB=∠CBD=90°,且BD=a,BC=b,当AC与a,b满足什么关系时,△ACB∽△CBD?3、顺次连接三角形三边中点所得的小三角形与原三角形相似吗?试证明.。

相似三角形的判定(1)导学案

相似三角形的判定(1)导学案

年级:九年级 班级: 学生姓名: 制作人: 不知名 编号:2023-1227.2.1相似三角形的判定(1)【学习目标】1.掌握相似三角形的定义和相似三角形的相似比;2.掌握平行线分线段成比例定理的基本事实以及推论 (重点)3.应用平行线分线段成比例定理及推论来解决问题.(难点)预学案1. 在相似多边形中,最简单的就是相似三角形.如图,在△ABC 与△A ′B ′C ′中,如果△A =△A ′, △B =△B ′, △C =△C ′, 且k C A AC C B BC B A AB ===''''''. 即 ,我们就说△ABC 与△A ′B ′C ,记作△ABC △△A ′B ′C ′,k 就是它们的相似比.反之如果△ABC △△A ′B ′C ′,则有△A =△A ′, △B =△B ′, △C =△C ′, 且k C A AC C B BC B A AB ===''''''.即 . 2.问题:如果k =1,这两个三角形有怎样的关系?3.两条直线被一组平行线所截,所得的对应线段 .探究案探究 一:平行线分线段成比例(基本事实)如图,任意画两条直线l 1,l 2,再画三条与l 1,l 2 相交的平行线l 3,l 4,l 5.分别度量l 3,△ABC ,l 5.在l 1上截得的两条线段AB ,BC 和在l 2上截得的两条线段DE ,EF 的长度.(1) 计算的值,它们相等吗? (2) 任意平移l 5,根据上述操作,度量AB ,BC ,DE ,EF , 同(1)中计算,它们还相等吗?总结:若l 3△l 4△l 5,则,, ,...归纳:平行线分线段成比例基本事实 两条直线被 所截,所得的线段成比例.(平行线分线段成比例基本事实中相比线段同线) EFDE BC AB =EF DE BC AB =DEEF AB BC =DF DE AC AB =DFEF AC BC =探究二:平行线分线段成比例定理的推论如果把所画的两条相交直线的交点A 刚好落到“横线”上,如图△,△示,所得的对应线段成比例吗?依据是什么?图(1)中,把l 4看成平行于△ABC 的边BC 的直线;图(2)中把l 3看成平行于△ABC 的边BC 的直线.把平行线分线段成比例的基本事实应用到三角形中,于是可以得到结论:_____于三角形一边的直线截其他两边(或两边的延长线),所得的_____线段 .检测案1.如图AB ∥CD ∥EF ,那么下列结论正确..的是( ) A .CE BC DF AD = B .AD DF CE BC = C .BE BC EF CD = D .AFAD EF CD =第1题 第2题 第3题2. 如图,已知D 、E 分别为AB 、AC 上的两点,且DE △BC ,AE =2CE ,AB =6,则AD的长为( )A .3B .4C .5D .63. 如图,l 1△l 2△l 3,AB =2,BC =4,DB =3,则DE 的长为( )A .4B .5C .6D .9 4. 如图,直线l 1、l 2、l 3分别交直线l 4于点A 、B 、C ,交直线l 5于点D 、E 、F ,直线l 4、l 5交于点O ,且l 1∥l 2∥l 3,已知EF ∶DF =5∶8,AC =24.(1) 求CB AB 的值;(2) 求AB 的长.。

相似三角形的判定(2)导学案

相似三角形的判定(2)导学案

年级:九年级 班级: 学生姓名: 制作人: 不知名 编号:2023-1227.2.1 相似三角形的判定(2)【学习目标】1. 探究平行相似.2. 会证明定理并灵活应用.【重点】三角形相似的判定方法----平行相似 .【难点】证明定理并灵活应用.预学案(回顾)1、相似三角形的定义:如果两个三角形的_________,__________________,那么这两个三角形相似.2、平行线分线段成比例定理:两条直线被 所截,所得的 线段成比例3、推论:平行于三角形一边的直线截其他两边(或两边延长线),所得的_______线段的比_______.探究案探究1:三角形相似的判定定理------平行相似:如图,在△ABC 中,D 为AB 上任意一点,过点D 作BC 的平行线DE ,交AC 于点E .问题1 △ADE 与△ABC 的三个内角分别相等吗?∠A ∠A , ∠ADE ∠B , ∠AED ∠C ,问题2 分别度量△ADE 与△ABC 的边长,它们的边长是否对应成比例?______=_______=BCDE 问题3 你认为△ADE 与△ABC 之间有什么关系?平行移动DE 的位置,你的结论还成立吗? △ADE △ABC猜想: ∵DE ∥BC∴______ = _______.而BCDE 中的DE 不在△ABC 的边BC 上,不能直接利用前面的结论,但从要证的AC AE =BC DE 可以看出,除DE 外,AE ,AC ,BC 都在△ABC 的边上,因此只需将DE _______到BC边上去,使得_____=DE,再证明ACAE=________就可以了.只要过点E作EF∥AB,交BC于点F,BF就是_____DE所得的线段.请你写出证明过程:结论:判定三角形相似的定理:,所构成的三角形与原三角形相似.三角形相似的两种常见类型:“A”型“X”型检测案1.已知在△ABC中,D,E分别是AB,BC的中点,ED:AC等于()A.1:2 B.1:3 C.2:3 D.2:52. 如图,在△ABC中,EF∥BC,AE= 2 cm,BE = 6 cm,BC=4 cm,则EF的长为()A.1 cm B.cmC.3 cm D.2 cm3.如图,在△ABC中,DE∥BC,则△____∽△____,对应边的比为=.4.如图,在平行四边形ABCD中,EF∥AB,DE:EA=2 :3,EF=4,求CD的长.34ABAD。

数学九年级北师大版4.5相似三角形判定定理的证明黄金分割教案

数学九年级北师大版4.5相似三角形判定定理的证明黄金分割教案
4.培养学生的数学建模素养,通过实例让学生学会构建数学模型,将现实问题转化为数学问题,提高解决问题的能力。
5.强化学生的数学运算能力,使学生熟练掌握相似三角形判定及黄金分割比的计算方法,并能准确、迅速地进行相关计算。
三、教学难点与重点
1.教学重点
-相似三角形的判定定理:本节课的核心内容是使学生掌握并能够运用AA、SSS、SAS相似定理进行几何证明和问题求解。重点包括:
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似三角形判定定理的基本概念。相似三角形是指具有相同形状但大小不同的三角形,它们的对应角相等,对应边成比例。这一概念在几何证明和图形分析中至关重要。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示相似三角形在实际中的应用,以及如何帮助我们解决问题。
本章节的核心素养目标主要包括以下方面:
1.培养学生的逻辑推理能力,使其能够运用相似三角形的判定定理进行严密的证明,并解决实际问题。
2.提升学生的几何直观和空间想象力,通过探索黄金分割的性质,理解其在几何图形中的应用和美感。
3.增强学生的数据分析能力,使学生能够利用黄金分割的相关知识分析生活中的实际问题,提出解决方案。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相似三角形判定定理的证明与黄金分割》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否注意过一些图形或建筑中的比例美?”比如,门框的宽高比、窗户的设计等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似三角形和黄金分割的奥秘。
此外,实践活动和小组讨论的环节,让学生们有了更多的互动和合作机会。他们能够在讨论中相互启发,共同解决问题。但从学生的讨论成果来看,我发现他们在分析问题和解决问题的能力上还有待提高。这让我意识到,在今后的教学中,需要更多关注学生逻辑思维和问题解决能力的培养。

北师大版九年级数学上册4.5相似三角形判定定理的证明教学设计

北师大版九年级数学上册4.5相似三角形判定定理的证明教学设计
6.总结反思,提升素养
在课堂小结环节,引导学生总结相似三角形的判定定理及其应用,反思自己在解决问题过程中的优点和不足。此外,教师要对学生的学习情况进行点评,给予鼓励和指导。
7.课后作业,巩固成果
布置适量的课后作业,让学生在课后对所学知识进行巩固。同时,鼓励学生进行自主探究,发现相似三角形的其他性质和应用。
(一)教学重难点
1.理解并掌握相似三角形的判定定理,能够准确地判断两个三角形是否相似。
2.能够运用相似三角形的判定定理解决实际问题,提高数学应用能力。
3.掌握几何证明的方法和技巧,培养学生的逻辑推理能力。
(二)教学设想
1.创设情境,激发兴趣
在教学伊始,通过展示生活中的相似图形,如建筑物的立面图、摄影作品中的构图等,让学生感受相似三角形在现实生活中的应用,从而激发他们的学习兴趣。
3.对相似三角形的判定定理进行详细讲解,结合实际例题,让学生理解并掌握定理的内涵。
4.通过变式训练,让学生了解相似三角形判定定理在不同题型中的应用。
(三)学生小组讨论
1.将学生分成小组,让他们针对相似三角形的判定定理进行讨论,探讨定理的适用范围和注意事项。
2.各小组分享讨论成果,教师进行点评和指导。
(二)过程与方法
1.采用探究式教学方法,引导学生通过观察、分析、归纳等过程,发现相似三角形的判定定理。
2.通过小组合作、讨论交流等形式,培养学生的团队合作意识和沟通能力。
3.设计丰富的例题和练习题,让学生在解决问题的过程中,掌握相似三角形的判定方法和解题技巧。
4.注重培养学生的几何直观,通过画图、观察、推理环节,提高学生的几何素养。
3.结合生活实际,找一些含有相似三角形的事物,如建筑物的立面图、摄影作品等,并运用本节课所学的相似三角形判定定理进行分析,将分析结果以文字或图片形式展示。

4.5相似三角形导学案

4.5相似三角形导学案

4.5相似三角形导学案课前准备 学前感知重点:认识相似三角形,掌握相似三角形的本质属性。

难点:相似三角形性质的应用。

学习准备1. 什么全等三角形?全等三角形的对应边对应角之间各有什么关系?2. 什么叫相似多边形?什么叫相似多边形的相似比?课中导学阅读课本127P “三角对应相等……”至129P “……图中有互相平行的线段吗?”一、自主学习1、相似三角形的定义:如图,如果ABC ∆与DEF ∆中,D A ∠=∠,E B ∠=∠,F C ∠=∠,FDCAEF BC DE AB ==, 那么我们说ABC ∆与DEF ∆是 三角形,记为ABC ∆ D E F ∆,读作:ABC ∆ D E F ∆由上例可知:相似三角形的定义是:三角 ,三边 的两个三角形叫做相似三角形。

2、相似三角形的性质:(1)因为三角形也是多边形,因而相似多边形具有的性质相似三角形同样具备:相似三角形对应角 ,对应边 。

例:如图ABC ∆∽DEF ∆,则A ∠、B ∠、C ∠的对应角分别是 、 、AB 、BC 、CA 的对应边分别是 、 、由相似三角形的性质可得: ∵ABC ∆∽DEF ∆∴A ∠= B ∠= C ∠=DE AB =()()=()()(2)巩固:如上题图ABC ∆∽DEF ∆,①若A ∠=040、B ∠=060则D ∠= E ∠= F ∠= ②若32=DE AB ,则=EFBC()(),=DFAC ()(). ③若5=AB ,7=DE ,10=BC ,则=EF二、小组交流(先自主学习,再小组交流)1、如图,若ABC ∆≌DEF ∆,由全等三角形对应边相等,对应角相等可得:A ∠=B ∠=C ∠= AB = BC = CA = ,∴=DEAB()=BC()=CA,所以ABC ∆与DEF ∆ (填“相似”或“不相似”)因而我们可得结论:两个全等三角形一定 (填“相似”或“不相似”) (反过来,两个相似三角形一定全等吗? ) 2、如图,ABC ∆与DEF ∆均为直角三角形,通过度量可得:A ∠= 0B ∠= 0C ∠= 0D ∠= 0E ∠= 0F ∠= 0=DEAB()(), =EFBC()(),=FD CA ()()它们三角对应相等吗?,三边对应成比例吗?我们可得结论:两个直角三角形 (填“一定”或“不一定”)相似 对于任意两个等腰直角三角形,是否都有类似的结论? (用字母代替刚才的数字算一算就可以得到答案哟)因而我们可得结论:两个等腰直角三角形 (填“一定”或“不一定”)相似3、用上面的方法自己探索可得:两个等腰三角形 相似,两个等边三角形 相似。

4.5《相似三角形判定定理的证明》数学北师大版 九年级上册教学课件

4.5《相似三角形判定定理的证明》数学北师大版 九年级上册教学课件
B Q
P
A
C
课堂练习
解:设P,Q两点运动t s时,△QBP与△ABC相似.
由题意可知0<t<4,此时PB=(8-2t)cm,BQ=4t cm.
(1)当△QBP∽△ABC时,BQ
BA
BP BC
,即
4t 8
8 2t 16

解得t=0.8;
(2)当△PBQ∽△ABC时,BP BQ ,即 8 2t 4t ,
∴ BC BC . DE B'C'
∴DE=B'C'. ∴△ADE≌△A'B'C'.
∴△ABC∽△A'B'C'.
典例精析
例 如图,正方形ABCD的边长为2,AE=EB,MN=1,线 段MN的两端点在CB,CD上滑动,当CM为何值时,△AED 与以M,N,C为顶点的三角形相似?
A
D
E N
B
MC
典例精析
BA BC
8 16
解得t=2.
综上所述,当P,Q两点运动0.8 s或2 s时,△QBP与△ABC
相似.
课堂小结
这节课我们主要学习了相似三角形的三个判定定理的 证明及它们的应用.
再见
探究新知
2.定理 两边成比例且夹角相等的两个三角形相似.
已知:如图,在△ABC和△A'B'C'中,∠A=∠A', AB AC .求证:△ABC∽△A'B'C'.
A'B' A'C'
A A′
B
C B′
C′
探究新知
证明:在△ABC的边AB(或延长线)上截取AD=A'B',过点D作BC的 平行线,交AC于点E,

相似三角形判定定理的证明

相似三角形判定定理的证明
1.复习提问 相似三角形的判定方法有哪些? 答:(1)两角对应相等,两三角形相似. (2)三边对应成比例,两三角形相似. (3)两边对应成比例且夹角相等,两三角形相似.
2.探究学习,得出新知 探究 1
如果∠A =∠A ′,∠B =∠B ′, 那么,△ABC ∽△ A′B′C′. 如何证明呢?
应用 1
Байду номын сангаас
探究 3
如果
AB BC AC = = ,那么,△ABC∽△A’B’C’. A' B ' B ' C ' A' C '
应用 3 画一画
任意画一个三角形,再画一个三角形,使它的各边长都是原来 三角形各边长的 k 倍,度量这两个三角形的对应角,它们相等吗? 这两个三角形相似吗?与同桌交流一下,看看是否有同样的结论. 3: 例题学习 例 1. 如图,在三角形 ABC 中,AB=8cm,BC=16cm,动点 P 从点 A
2015—2016 学年度上期 正泰博文学校 九 年级 数学 教学案设计 设计教师: 课时数:本期第 课时
教学 补充
课题:4.5 相似三角形判定定理的证明
一、教学目标
1.知识目标: ①了解相似三角形判定定理 ②会证明相似三角形判定定理 2.能力目标: 掌握推理证明的方法,发展演绎推理能力
二、教学过程分析
开始沿 AB 边运动,速度为 2cm/s;动点 Q 从点 B 开始沿 BC 边运 动,速度为 4cm/s.如果 P,Q 两动点同时运动,那么何时△QBP 与△ ABC 相似?
B P A Q
C
4.课时小结
一、相似三角形判定定理的证明 1.两角对应相等,两三角形相似. 2.三边对应成比例,两三角形相似. 3.两边对应成比例且夹角相等,两三角形相似. 二、相似三角形判定定理的应用

北师大版九年级数学上册《图形的相似》导学案:相似三角形判定定理的证明

北师大版九年级数学上册《图形的相似》导学案:相似三角形判定定理的证明

北师大版九年级数学上册《图形的相似》导学案相似三角形判定定理的证明【学习目标】1.了解相似三角形判定定理会证明相似三角形判定定理;2.掌握推理证明的方法,发展演绎推理能力.【知识梳理】1.两角 的两个三角形相似. 2.两边 且 的两个三角形相似.3.三边 的两个三角形相似.【典型例题】知识点一:两角分别相等的两个三角形相似.1.已知:如图,∠ABD=∠C ,AD=2, AC=8,求AB.知识点二:两边成比例且夹角相等的两个三角形相似.2.如图,△ABC,AB=12,AC=15,D 为AB 上一点,且AD=23AB,在AC 上取一点E,使以A. D. E 为顶点的三角形与ABC 相似,则AE 等于( )A. 6.4B. 10C. 6.4或10D. 以上答案都不对知识点三:定理 三边成比例的两个三角形相似.3.下列四个三角形,与左图中的三角形相似的是( )【巩固训练】1. 如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,BE 与CD 相交于点F ,则下列结论一定正确的是( )A. =B.C.D.2如图,矩形ABCD 中,AD =4,AB =10,P 为CD 边上的动点,当DP = 时,△ADP 与△BCP 相似2题1题图3.如图,在等边三角形 ABC 中, D , E , F 分别是三边上的点, AE = BF = CD ,那么△ABC 与△DEF 相似吗? 请证明你的结论.4.已知:如图,ΔABC 中,AD=DB,∠1=∠2.求证:ΔABC ∽ΔEAD.【拓展延伸】5.如图,在△ABC 中,AB=AC ,点D 、E 、F 分别在AB 、BC 、AC 边上,DE=DF ,∠EDF=∠A .(1)找出图中一对相似的三角形,并证明(2)求证:BC AB CE BD .6.如图,AB ∥CD ,AC 与BD 交于点E ,且∠ACB =90°,AB =6,BC =6,CE =3. (1)求CD 的长;(2)求证:△CDE ∽△BDC .4题图 A D B E C F。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

丹东市第二十四中学 4.5 相似三角形判定定理的证明
主备:曹玉辉 副备:孙芬 李春贺 审核: 2014-9-11 一、学习准备:
判定定理1:两角 的两三角形相似;
判定定理2:两边 两个三角形相似; 判定定理3: 的两三角形相似. 二、学习目标:
1、相似三角形的判定定理;
2、相似三角形的判定定理的证明; 三、自学提示: 自主学习:
独立证明三个判定定理。

见书P99页。

例题:
例1、如图,在平行四边形,过点B 作BE CD ⊥,垂足为E ,连接AE,F 为AE 上一点,且BFE C ∠=∠.
(1)求证:△ABF ∽△EAD ; (2)若AB=4,30BAE ∠=︒,求AE 的长;
(3)在(1)(2)的条件下,若AD=3,求BF 的长.
变式演练:如图四边形ABCD 是平行四边形,点F 在BA 的延长线上连结CF 角AD 于点E. (1)求证:△CDE ∽△FAE ;
(2)当E 是AD 的中点,且BC=2CD 时,求证:F BCF =∠.
例2、已知DE ⊥AB ,EF ⊥BC 求证:△DEF ∽△ABC.
四、学习小结: 五、夯实基础:
1、如图,已知在△ABC 中,AB=AC, 36A ∠=︒,BD 是B ∠的角平分线,试利用三角形相
似的关系说明AD 2
=DC ·AC.
2、如图已知在△ABC 中,AB=AC,AD 是BC 边上的中线,CF ∥BA ,BF 交
AD 于点P ,交AC 于点E ,求证:BP 2
=PE ·PF.
六、能力提升:
1、如图,∠ACD=∠B ,DE ⊥BC , 则图中共有 对相似三角形.
2、在△ABC 中,点D 在线段BC 上,
,816B A C A D C A C B C ∠=∠==,,求CD.
3、如图,D 在AB 上,且DE ∥BC 交AC 于E 、F 在AD 上,
且AD 2
=AF ·AB 求证:△AEF ∽△ACD.
布置作业:。

相关文档
最新文档