第五章电磁散射 _简版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 电磁散射 5.1 雷达散射截面
雷达散射截面(Radar Cross section,缩写RCS )是雷达隐身技术中最关键的概念,它表征了目标在雷达波照射下所产生回波强度的一种物理量。
RCS 是一个假想的量,我们将RCS 等效为一个截面,将其放置在一个与电磁波传播方向垂直的平面上,它可以无损耗地把入射功率全部地、均匀地向各个方向传播出去,并且,在接收处的回波功率密度与实际目标产生的功率密度相等。
将RCS 定义为目标在单位立体角内向接收机处散射功率与入射波在目标上的功率密度之比的4π倍。
假设入射波,r k j i i i
e E E ∙-=0,则有i
i i E k H ⨯=η
1
入射波平均功率密度2
1
Re()22i
i i i i E S E H k η
=
⨯= 目标截取的总功率为入射波功率密度与目标“等效面积”σ 的乘积,即:
2
02i i E S P η
σσ==
假设目标功率是各向同性均匀地向四周散射,则在距离目标R 处的目标散射功率密度
为:2
20
284R
E R P
S i s πησπ ==
散射功率密度亦可用散射场强表示:η
22
s s E S
=
由上可得:
22
2
R 4,s i
s c i i
E R E E S E S σπ==
=
∝∝接收天线处目标散射总功率距离目标处散射总功率
目标处入射总功率目标处入射总功率
另外:
1. σ与R 无关;
2. 符合远场条件:R 远大于目标特征尺寸 ;
3. σ与入射波方向,散射波方向,散射体形状,表面粗糙度以及介电特性等相关。
雷达散射系数是指单位照射面积上的雷达散射截面,是归一化处理的结果,它是入射电磁波与地面目标相互作用结果的度量,定义为,
为照射面积
为入射角,或者A A A
i i
o o θθσ
σσ
σ,cos ,=
=
雷达散射的三个特征区域
若目标的特征尺寸为a ,则ka 为其电尺寸。其中λ
π
2=k 为雷达波数。目标RCS 随电
尺寸的变化分为三个区域。以金属球为例,令02=r
σ
σπ,其中r 是金属球的半径,λ 为入射波波长。
0σ
1. 瑞利区:低频区散射(1≤ka ) ,
λ
a
小,入射场区在散射体上无变化,静场问题; 2. 谐振区:)(201≤≤ka , 特征尺寸与波长同一数量级,呈现出复杂的耦合效应;
3. 光学区:)20(>ka , 遵循几何光学原理。
目标尺寸相对于波长很小时λπ远小于r 2,将呈现出瑞利区特性 ,4
-λσ∝球,绝大多数雷达目标都不在这一区域内。处于瑞利区的目标,决定它们RCS 的主要参数不是形状而
是体积。在实际应用中,气象微粒常用的雷达波长就是其特征尺寸远远小于雷达波长。通常的雷达目标尺寸较气象微粒来讲要大得多,故降低雷达的工作频率可以降低气象回波(云雾、雨滴等)的影响,并且不会明显减小正常雷达回波的RCS 。
在波长减小到2=r πλ附近,即物体尺寸与雷达波长相比拟时,就进入谐振区。入射长的相位沿物体长度变化显著,场的耦合现象严重。
实际中大多数雷达的目标都处在光学区(λπ远大于a 2)。光学区,即当目标尺寸比波长大得多时,如果表面比较光滑,那么就可以利用几何光学原理来确定目标RCS 。按照几何光学原理,表面反射最强的区域是对电磁波波前镜像反射的点,该区域大小与该点曲率半径成正比。曲率半径越大反射区就越大,这一反射区在光学中称为“亮斑”。当物体在“亮斑”附近旋转对称,其截面面积为2πρ,ρ为曲率半径。故随着频率的提高,渐入光学区的导体球RCS 为2
r πσ=球 ,不再随频率变化。
5.2 随机粗糙面的表达
当电磁波由上向下照射到两个半无限介质的分界面上时,入射能量的一部分散射回来,剩下的一部分透射进下层介质中.特殊情况下,即当下层介质是均勾的或近似可以认为均匀的,这时仅仅在分界面上发生散射现象。因而所讨论的这问题就变为一个表面散射问题,由图可见,当表面愈来愈粗糙时,后向散射幅度增大,镜向散射分量变小。
1. 镜面情况
在s i θθ=时,有反射,其余情况无散射场,散射方向图为δ函数。
2. 微粗糙面
在s i θθ=时,有相干分量;而且有漫反射(各方向的散射)。
相干分量(镜像分量)和非相干分量(漫反射分量)。
3. 极度粗糙面
造成较强的后向散射。
0(,)cos cos i s i s k k γσθθ= 210(,)cos i s i i k k k γσθ=-=
表面参数的表达
表面高度标淮离差(σ)和表面相关长度(l )是描述随机表面高度的两个统计变量,它是相对于一种基准表面而言的.基准表面可以是周期性结构的平静表面(例如成列的垄沟耕田表面),也可以是平均常值表面。
1. 表面高度标准离差(σ)
假设有一表面处于x-y 平面内,在x-y 平面之上某一点(x ,y)的高度为z(x ,y),在表面上取统计意义上有代表性的一块,尺寸分别为Lx 和Ly ,并假设这块表面的中心处于原点.则表面的平均高度为
/2
/2
/2/2
1(,)--=
⎰
⎰
x y x y L L L L x y
z z x y dxdy L L
其二阶矩为 /2
/2
2
2/2/2
1
(,)--=
⎰
⎰
x y x y L L L L x y
z z x y dxdy L L
表面高度的标准离差为 2
21/2()σ=-z z 对于一维离散数据,标准离差可按下式求出
()()1/2
221
11σ=⎡⎤⎫⎛=-⎢⎥⎪ -⎝⎭⎣⎦∑N i
i z N z N ,11=⎫
⎛=⎪ ⎝⎭
∑N i i z z N ,N 为取样数目, 0.1λ∆≤z
2. 表面相关长度