热点专题七 统计与概率
高考数学命题区间七概率与统计-教学课件
(2)6 次中前两次均出现正面,且要使 2≤S6≤4,则后 4 次 中有 2 次正面,2 次反面或 3 次正面 1 次反面,设其概率为 P2,N=64,由(1),知前两次均出现正面且 2≤S6≤4 的情 况有 10 种,所以 P2=1604=352.
[例5] (2012·洛阳模拟)某学校共有高一、高二、高三学 生2 000名,各年级男、女人数如下图:
甲班 乙班 合计
优秀 10 20 30
非优秀 45 30 75
总计 55 50 105
(2)根据列联表中的数据,得到 k=105×55×105×0×303-0×207×5452≈6.109>3.841,因此有 95%的 把握认为“成绩与班级有关系”.
[例 4] 设连续掷两次普通立方体骰子得到的点数分别为 m、n,令平面向量 a=(m,n),b=(1,-3). (1)求使得事件“a⊥b”发生的概率; (2)求使得事件“|a|≤|b|”发生的概率; (3)求使得事件“直线 y=mn x 与圆(x-3)2+y2=1 相交”发 生的概率.
解析:根据分层抽样的等比例性,所抽取的样本也成等
差数列,设为a1,a2,a3,a4,则a2=30,根据等差数列 的性质,a1+a3=2a2=60,又a1+a2+a3+a4=150,故 a4=60. 答案:60
2.某班级有男生20人,女生30人,从中抽取10个人的样
本,恰好抽到了4个男生、6个女生.给出下列命题:
3.如图所示,是某环卫工人在革命公园9天内捡到的矿泉
水瓶的数据所绘制出来的茎叶图,去掉一个最高个数
和一个最低个数,则他在每天可捡到的矿泉水瓶方差
为
()
79 8 44467 9 136
A.467
B.9
七大专题,融会贯通高中数学
七大专题,融会贯通高中数学作者:来源:《学生导报·高中版》2017年第03期通常情况下,高三数学需进行三轮复习,第一轮复习需以高考大纲为指导,以数学课本为基础,熟悉每个所学知识点。
第二轮复习阶段是对第一阶段的巩固与强化,更侧重于知识的融会贯通,各个知识点的衔接。
根据高考对知识点的考查,我们可以归类为七大专题。
专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点。
函数的性质:着重掌握函数的单调性、奇偶性、周期性、对称性。
这些性质通常会综合起来一起考查,并且有时会考查具体函数的这些性质,有时会考查抽象函数的这些性质。
一元二次函数:一元二次函数是贯穿中学阶段的一大函数,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。
不等式:这一类问题常常出现在恒成立或存在性问题中,其实质是求函数的最值。
当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。
专题二:数列。
以等差等比数列为载体,考查等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,有时候考查三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考查三角函数与解三角形、向量的综合性問题,当然正弦、余弦定理是很好的工具。
向量可以很好地实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。
专题四:立体几何。
立体几何中,主要考查建立空间直角坐标系,通过向量这一手段求空间距离、线面角、二面角等。
另外,需要掌握棱锥、棱柱的性质,在棱锥中,着重掌握三棱锥、四棱锥,棱柱中,应该掌握三棱柱、长方体。
安徽省2013年高考数学第二轮复习 专题七概率与统计第3讲 .
专题七 概率与统计第3讲 随机变量及其分布列真题试做1.(2012·课标全国高考,理15)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为__________.2.(2012·山东高考,理19)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分,该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望E (X ).3.(2012·陕西高考,理20)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X 表示至第2分钟末已办理完业务的顾客人数,求X 的分布列及数学期望.4.(2012·安徽高考,理17)某单位招聘面试,每次从试题库中随机调用一道试题.若调用的是A 类型试题,则使用后该试题回库,并增补一道A 类型试题和一道B 类型试题入库,此次调题工作结束,若调用的是B 类型试题,则使用后该试题回库,此次调题工作结束.试题库中现有n +m 道试题,其中有n 道A 类型试题和m 道B 类型试题.以X 表示两次调题工作完成后,试题库中A 类型试题的数量.(1)求X =n +2的概率;(2)设m =n ,求X 的分布列和均值(数学期望). 考向分析本讲是概率统计的重点,主要考查三方面的内容:①相互独立事件及其概率,题型有选择、填空,有时也出现在解答题中与其他知识交会命题;②二项分布及其应用,准确把握独立重复试验的特点是解答二项分布问题的关键,一般以中档题为主;③随机变量的分布列、期望和方差,以考生比较熟悉的实际应用题为背景,综合排列组合、概率公式、互斥事件及独立事件等基础知识,考查对随机变量的识别及概率计算能力,解答时要注意分类与整合、转化与化归思想的运用,其中有选择题,也有填空题,但更多的是解答题,难度中档.热点例析热点一 相互独立事件及其概率【例1】乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率; (2)求开始第5次发球时,甲得分领先的概率. 规律方法(1)求复杂事件的概率的一般步骤:①列出题中涉及的各事件,并且用适当的符号表示;②理清各事件之间的关系,列出关系式.即把随机事件分成几个互斥事件的和,每个小事件再分为n 个相互独立事件的乘积.③根据事件之间的关系准确选取概率公式进行计算.(2)直接计算符合条件的事件的概率较繁时,可先间接地计算对立事件的概率,再求出符合条件的事件的概率.变式训练1甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率. 热点二 二项分布及其应用【例2】(2012·安徽六安一中第十次月考,理17)为备战运动会,射击队运动员们正在积极备战.若某运动员每次射击成绩为10环的概率为13.求该运动员在5次射击中,(1)至少有3次射击成绩为10环的概率;(2)记“射击成绩为10环的次数”为ξ,写出ξ的分布列并求E ξ.(结果用分数表示) 规律方法事件服从二项分布的条件是:(1)每次试验中,事件发生的概率是相同的.(2)各次试验中的事件是相互独立的.(3)每次试验只有两种结果:事件要么发生,要么不发生.(4)随机变量是这n 次独立重复试验中事件发生的次数.变式训练2某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率; (3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总得分数,求ξ的分布列.热点三 离散型随机变量的分布列、均值与方差【例3】(2012·天津高考,理16)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列与数学期望E (ξ).规律方法求离散型随机变量的分布列,关键是计算各个概率值,一方面要弄清楚相应的概型(古典概型、相互独立事件的概率、独立重复试验等),以便套用相关的计算公式计算;另一方面要注意运用分布列的性质检验所求概率值是否正确.变式训练3(2012·安徽江南十校联考,理18)“低碳经济”是促进社会可持续发展的推进器.某企业现有100万元资金可用于投资,如果投资“传统型”经济项目,一年后可能获利20%,可能损失10%,也可能不赔不赚,这三种情况发生的概率分别为35,15,15;如果投资“低碳型”经济项目,一年后可能获利30%,也可能损失20%,这两种情况发生的概率分别为a 和b (其中a +b =1).(1)如果把100万元投资“传统型”经济项目,用ξ表示投资收益(投资收益=回收资金-投资资金),求ξ的概率分布及均值(数学期望)E ξ;(2)如果把100万元投资“低碳型”经济项目,预测其投资收益均值会不低于投资“传统型”经济项目的投资收益均值,求a 的取值范围.思想渗透转化与化归思想——期望与概率的实际应用解题中要善于透过问题的实际背景,发现其中的数学规律,以便使用我们掌握的离散型随机变量及其分布列的知识来解决实际问题.【典型例题】某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,…,8,其中X ≥5为标准A ,X ≥3为标准B ,已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假设甲、乙两厂的产品都符合相应的执行标准.(1)且X 1的数学期望E (X 1)=(2)为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 5 3 8 3 4 3 4 4 7 56 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的数学期望; (3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:(1)产品的“性价比”=产品的等级系数的数学期望产品的零售价;(2)“性价比”大的产品更具可购买性.解:(1)因为E (X 1)=6,所以5×0.4+6a +7b +8×0.1=6,即6a +7b =3.2,又由X 1的概率分布列得0.4+a +b +0.1=1,即a +b =0.5.由⎩⎪⎨⎪⎧ 6a +7b =3.2,a +b =0.5,解得⎩⎪⎨⎪⎧a =0.3,b =0.2. (2)X 2的概率分布列如下:所以E (X 2) 4.8, 即乙厂产品的等级系数X 2的数学期望等于4.8. (3)乙厂的产品更具可购买性,理由如下:因为甲厂产品的等级系数的数学期望等于6,价格为6元/件,所以其“性价比”为66=1.因为乙厂产品的等级系数的数学期望等于4.8,价格为4元/件,所以其“性价比”为4.84=1.2.所以乙厂的产品更具可购买性.1.设随机变量ξ服从正态分布N (3,σ2),若P (ξ>m )=a ,则P (ξ>6-m )等于( ). A .a B .1-2a C .2a D .1-a2.设一随机试验的结果只有A 和A 且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生0,A 不发生,则ξ的方差D (ξ)等于( ).A .mB .2m (1-m )C .m (m -1)D .m (1-m )3.一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,以Z 表示取出球的最大号码,令a =P (Z =6),则函数y =⎝ ⎛⎭⎪⎫12x 2-2ax 的单调递增区间是( ). A.⎝ ⎛⎭⎪⎫-∞,12 B.⎝ ⎛⎭⎪⎫12,+∞ C .(-∞,1) D .(1,+∞) 4.箱中装有标号为1,2,3,4,5,6且大小相同的6个球.从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是( ).A.16625B.96625C.624625D.46255.(2012·浙江五校联考,理16)甲、乙两个篮球队进行比赛,比赛采用5局3胜制(即先胜3局者获胜).若甲、乙两队在每场比赛中获胜的概率分别为23和13,记需要比赛的场次为ξ,则E (ξ)=__________.6.(2012·山东济南二模,20)一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得0分.”某考生已确定有8道题的答案是正确的,其余题中有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.参考答案命题调研·明晰考向 真题试做 1.38解析:设元件1,2,3的使用寿命超过1 000小时的事件分别记为A ,B ,C ,显然P (A )=P (B )=P (C )=12,∴该部件的使用寿命超过1 000的事件为(A B +A B +AB )C .∴该部件的使用寿命超过1 000小时的概率为P =⎝⎛12×12+12×12+12×⎭⎪⎫12×12=38. 2.解:(1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D ,由题意知P (B )=34,P (C )=P (D )=23,由于A =B C D +B C D +B C D , 根据事件的独立性和互斥性得P (A )=P (B C D +B C D +B C D )=P (B C D )+P (B C D )+P (B C D )=P (B )P (C )P (D )+P (B )P (C )P (D )+P (B )P (C )P (D )=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23+⎝⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=736.(2)根据题意,X 的所有可能取值为0,1,2,3,4,5, 根据事件的独立性和互斥性得P (X =0)=P (B C D )=[1-P (B )][1-P (C )][1-P (D )]=⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23 =136, P (X =1)=P (B C D )=P (B )P (C )P (D )=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23 =112, P (X =2)=P (B C D +B C D )=P (B C D )+P (B C D )=⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23 =19, P (X =3)=P (BC D +B C D )=P (BC D )+P (B C D )=34×23×⎝ ⎛⎭⎪⎫1-23+34×⎝ ⎛⎭⎪⎫1-23×23=13, P (X =4)=P (B CD )=⎝ ⎛⎭⎪⎫1-34×23×23=19, P (X =5)=P (BCD )=34×23×23=13.故X 的分布列为所以EX =0×136+1×12+2×9+3×3+4×9+5×3=12.3.解:设Y Y 的分布列如下:(1)A A 对应三种情形: ①第一个顾客办理业务所需的时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以P (A )=P (Y =1)P (Y =3)+P (Y =3)P (Y =1)+P (Y =2)P (Y =2)=0.1×0.3+0.3×0.1+0.4×0.4=0.22.(2)方法一:X 所有可能的取值为0,1,2.X =0对应第一个顾客办理业务所需的时间超过2分钟, 所以P (X =0)=P (Y >2)=0.5;X =1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需的时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P (X =1)=P (Y =1)P (Y >1)+P (Y =2)=0.1×0.9+0.4=0.49; X =2对应两个顾客办理业务所需的时间均为1分钟, 所以P (X =2)=P (Y =1)P (Y =1)=0.1×0.1=0.01. 所以X 的分布列为E (X )方法二:X 所有可能的取值为0,1,2.X =0对应第一个顾客办理业务所需的时间超过2分钟, 所以P (X =0)=P (Y >2)=0.5;X =2对应两个顾客办理业务所需的时间均为1分钟, 所以P (X =2)=P (Y =1)P (Y =1)=0.1×0.1=0.01; P (X =1)=1-P (X =0)-P (X =2)=0.49. 所以X 的分布列为E (X )4.解:以A i 表示第i 次调题调用到A 类型试题,i =1,2.(1)P (X =n +2)=P (A 1A 2)=n m +n ·n +1m +n +2=n (n +1)(m +n )(m +n +2).(2)X 的可能取值为n ,n +1,n +2.P (X =n )=P (A 1 A 2)=n n +n ·n n +n =14.P (X =n +1)=P (A 1A 2)+P (A 1A 2)=n n +n ·n +1n +n +2+n n +n ·n n +n =12,P (X =n +2)=P (A 1A 2)=n n +n ·n +1n +n +2=14,从而X 的分布列是E (X )=n ×14+(n +1)×2+(n +2)×4=n +1.精要例析·聚焦热点 热点例析【例1】 解:记Ai 表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2; Bi 表示事件:第3次和第4次这两次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2;C 表示事件:开始第5次发球时,甲得分领先. (1)B =A 0·A +A 1·A ,P (A )=0.4,P (A 0)=0.42=0.16, P (A 1)=2×0.6×0.4=0.48, P (B )=P (A 0·A +A 1·A )=P (A 0·A )+P (A 1·A ) =P (A 0)P (A )+P (A 1)P (A )=0.16×0.4+0.48×(1-0.4)=0.352.(2)P (B 0)=0.62=0.36,P (B 1)=2×0.4×0.6=0.48,P (B 2)=0.42=0.16, P (A 2)=0.62=0.36.C =A 1·B 2+A 2·B 1+A 2·B 2, P (C )=P (A 1·B 2+A 2·B 1+A 2·B 2) =P (A 1·B 2)+P (A 2·B 1)+P (A 2·B 2) =P (A 1)P (B 2)+P (A 2)P (B 1)+P (A 2)P (B 2)=0.48×0.16+0.36×0.48+0.36×0.16 =0.307 2.【变式训练1】 解:设Ak ,Bk 分别表示甲、乙在第k 次投篮投中,则P (A k )=13,P (B k )=12(k =1,2,3).(1)记“乙获胜”为事件C ,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P (C )=P (A 1B 1)+P (A 1B 1A 2B 2)+P (A 1B 1A 2B 2A 3B 3)=P (A 1)P (B 1)+P (A 1)P (B 1)P (A 2)P (B 2)+P (A 1)P (B 1)P (A 2)P (B 2)P (A 3)P (B 3) =23×12+⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫123=1327. (2)记“投篮结束时乙只投了2个球”为事件D ,则由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P (D )=P (A1B1A 2B 2)+P (A1B1A2B 2A 3)=P (A1)P (B 1)P (A 2)P (B 2)+P (A 1)P (B 1)P (A 2)P (B 2)P (A 3)=⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122⎝ ⎛⎭⎪⎫13=427.【例2】 解:设随机变量X 为射击成绩为10环的次数,则X ~B ⎝ ⎛⎭⎪⎫5,13. (1)在5次射击中,至少有3次射击成绩为10环的概率为P (X ≥3)=P (X =3)+P (X =4)+P (X =5)=40243+10243+1243=1781.(2)因为ξ~B ⎝ ⎛⎭⎪⎫5,3,所以E (ξ)=3. 【变式训练2】 解:(1)设X 为射手在5次射击中击中目标的次数,则X ~B ⎝ ⎛⎭⎪⎫5,23.在5次射击中,恰有2次击中目标的概率P (X =2)=C 52×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-233=40243.(2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5);“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3A 4 A 5)+P (A 1A 2A 3A 4A 5)+P (A 1 A 2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+13×⎝ ⎛⎭⎪⎫233×13+⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=881.(3)由题意可知,ξ的所有可能取值为0,1,2,3,6,P (ξ=0)=P (A 1 A 2 A 3)=⎝ ⎛⎭⎪⎫133=127;P (ξ=1)=P (A 1A 2 A 3)+P (A 1A 2A 3)+P (A 1 A 2A 3)=23×⎝ ⎛⎭⎪⎫132+13×23×13+⎝ ⎛⎭⎪⎫132×23=29; P (ξ=2)=P (A 1A 2A 3)=23×13×23=427; P (ξ=3)=P (A 1A 2A 3)+P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫232×13+13×⎝ ⎛⎭⎪⎫232=827; P (ξ=6)=P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫233=827.所以ξ【例3】 解:依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4),则P (A i )=C 4i ⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i.(1)这4个人中恰有2人去参加甲游戏的概率P (A 2)=C 42⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 43⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫23+C 44⎝ ⎛⎭⎪⎫134=19.所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能取值为0,2,4. 由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781.所以ξ的分布列是随机变量ξ的数学期望E (ξ)=0×27+2×81+4×81=81.【变式训练3】 解:(1)依题意,ξ的可能取值为20,0,-10, ξ的分布列为E (ξ)=20×35+0×15+(-10)×5=10(万元).(2)设η表示100η的分布列为E (η)=30a -20b =50a -20.依题意要求50a -20≥10,∴35≤a ≤1.创新模拟·预测演练1.D 解析:正态分布曲线关于x =μ对称,即关于x =3对称,m 与6-m 关于x =3对称, ∴P (ξ<6-m )=P (ξ>m )=a , 则P (ξ>6-m )=1-a . 2.D3.A 解析:P (Z =6)=C 11C 52C 63=12,y =212x x-⎛⎫⎪⎝⎭在⎝⎛⎭⎪⎫-∞,12上单调递增.4.B 解析:若摸出的两球中含有4,必获奖,有5种情形;若摸出的两球是2,6,也能获奖.故获奖的情形共6种,获奖的概率为6C 62=25.现有4人参与摸奖,恰有3人获奖的概率是C 43⎝ ⎛⎭⎪⎫253·35=96625.5.10727解析:依题意ξ的可能取值分别为3,4,5, P (ξ=3)=23×23×23+13×13×13=927,P (ξ=4)=C 32⎝ ⎛⎭⎪⎫232×13×23+C 32×⎝ ⎛⎭⎪⎫132×23×13=1027,P (ξ=5)=1-P (ξ=3)-P ()ξ=4=827.E (ξ)=3×P (ξ=3)+4×P (ξ=4)+5×P (ξ=5)=10727.6.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A ,“可判断一个选项是错误的”一道题选对为事件B ,“不理解题意的”一道题选对为事件C ,∴P (A )=12,P (B )=13,P (C )=14,∴得60分的概率为P =12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P (ξ=40)=12×12×23×34=18,P (ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748,P (ξ=50)=12×12×23×34+C 21×12×12×13×34+C 21×12×12×23×14+12×12×13×14=1748,P (ξ=55)=C 21×12×12×13×14+12×12×23×14+12×12×13×34=748,P (ξ=60)=12×12×13×14=148.所得分数ξE (ξ)=40×648+(45+50)×48+55×48+60×48=12.。
初中三年级数学统计与概率
初中三年级数学统计与概率数学统计与概率是初中数学学科中的一个重要内容,旨在培养学生的数据分析能力和问题解决能力。
通过统计与概率的学习,学生可以了解到生活中的各种数据,学会对数据进行整理、分析和解读,并通过概率的概念来描述事物的不确定性程度。
本文将结合具体实例,介绍初中三年级学生所需要掌握的数学统计与概率的知识点。
一、数据的收集与整理在统计学中,数据是最重要的基础。
数据的采集与整理是统计与概率的第一步。
在现实生活中,我们可以通过调查问卷、实地观察等方式来收集数据。
例如,我们可以设计一份调查问卷,询问同学们最喜欢的运动项目,然后将数据进行整理和归类。
二、数据的分析与图表表示数据的分析与图表表示是统计学的核心内容之一。
通过对数据的整理和处理,我们可以使用各种图表来直观地呈现数据的特点和规律。
常见的数据图表包括柱状图、折线图、饼图等。
以刚才的运动项目为例,我们可以使用柱状图来表示同学们最喜欢的运动项目,直观地展示每个项目的人数比例。
三、数据的描述与概率在统计学中,数据的描述是对数据进行概括和总结的过程。
我们可以通过计算数据的平均数、中位数、众数等指标来描述数据的分布情况。
在概率的学习中,我们可以利用概率的概念来描述事件发生的可能性。
例如,我们可以计算某个事件发生的概率,比如掷骰子出现一个特定的数字的概率是多少。
四、概率的计算与应用概率的计算是统计与概率的重要部分。
通过掌握概率的计算方法,我们可以解决各种问题。
常见的概率计算方法包括频率法、几何概型法和古典概型法等。
例如,我们可以使用几何概型法来计算掷硬币出现正面的概率,或使用古典概型法来计算从一副扑克牌中抽到红桃的概率。
总结:通过对初中三年级数学统计与概率的学习,学生可以培养数据分析能力和问题解决能力。
他们可以学会数据的收集与整理、数据的分析与图表表示、数据的描述与概率以及概率的计算与应用等技巧。
这些技巧将在他们今后的学习和生活中起到重要的作用。
因此,初中三年级数学统计与概率的学习是必不可少的。
2024年高考数学专项复习数列考查的九个热点(解析版)
数列考查的九个热点热点题型速览热点一等差数列的基本计算热点二等比数列的基本计算热点三等差数列与等比数列的综合计算热点四数列与函数的交汇热点五数列与不等式交汇热点六数列与解析几何交汇热点七数列与概率统计交汇热点八等差数列、等比数列的判断与证明热点九数列中的“新定义”问题热点一等差数列的基本计算1(2023春·河南开封·高三通许县第一高级中学校考阶段练习)已知等差数列a n 为递增数列,S n 为其前n 项和,a 3+a 7=34,a 4⋅a 6=280,则S 11=()A.516B.440C.258D.2202(2022秋·黑龙江哈尔滨·高三哈师大附中校考期中)某种卷筒卫生纸绕在圆柱形盘上,空盘时盘芯直径为60mm ,满盘时直径为120mm ,已知卫生纸的厚度为0.1mm ,则满盘时卫生纸的总长度大约( )(π≈3.14,精确到1m )A.65mB.85mC.100mD.120m3(2020·全国高考真题(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块2024年高考数学专项复习数列考查的九个热点(解析版)4(2022·全国·统考高考真题)记S n为等差数列a n的前n项和.若2S3=3S2+6,则公差d=.【规律方法】1.等差数列中的基本量a1,a n,d,n,S n,“知三可求二”,在求解过程中主要运用方程思想.要注意使用公式时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意运用整体代换思想,使运算更加便捷.2. 在等差数列{a n}中,若出现a m-n,a m,a m+n等项时,可以利用等差数列的性质将其转化为与a m有关的条件;若求a m项,可由a m=12(a m-n+a m+n)转化为求a m-n,a m+n或a m-n+a m+n的值.3.数列的基本计算,往往以数学文化问题为背景.热点二等比数列的基本计算5(2020·全国·统考高考真题)设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8= ()A.12B.24C.30D.326(2023·广东揭阳·惠来县第一中学校考模拟预测)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起由于脚痛,每天走的路程都为前一天的一半,一共走了六天,才到目的地.则此人后3天共走的里程数为()A.6B.12C.18D.427(2023·全国高考真题)已知a n为等比数列,a2a4a5=a3a6,a9a10=-8,则a7=.【规律方法】1.等比数列运算问题的一般求法是设出首项a1和公比q,然后由通项公式或前n项和公式转化为方程(组)求解.2.等比数列的通项公式及前n项和公式,共涉及五个量a1,a n,q,n,S n,知其中三个就能求另外两个,体现了用方程的思想解决问题.3.根据题目特点,可选用等比数列的性质.热点三等差数列与等比数列的综合计算8(2019·北京·高考真题)设{an}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.9(2022·全国·统考高考真题)记S n为数列a n的前n项和.已知2S nn+n=2a n+1.(1)证明:a n是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.10(2023·天津·统考高考真题)已知a n是等差数列,a2+a5=16,a5-a3=4.(1)求a n的通项公式和2n-1i=2n-1a i .(2)已知b n为等比数列,对于任意k∈N*,若2k-1≤n≤2k-1,则b k<a n<b k+1,(Ⅰ)当k≥2时,求证:2k-1<b k<2k+1;(Ⅱ)求b n 的通项公式及其前n 项和.热点四数列与函数的交汇11(2018·浙江·高考真题)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3).若a 1>1,则A.a 1<a 3,a 2<a 4B.a 1>a 3,a 2<a 4C.a 1<a 3,a 2>a 4D.a 1>a 3,a 2>a 412(2023秋·湖南长沙·高三雅礼中学校考阶段练习)如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为y =1.1x ,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :y =x +1交于点A n x n ,y n 和B n x n,y n,则20n =0y n y n=.(参考数据:取1.122=8.14.)13(2023秋·福建厦门·高三厦门一中校考阶段练习)已知数列a n 满足a 1>0,a n +1=log 2a n ,n =2k -1,k ∈N ∗2a n+2,n =2k ,k ∈N ∗.(1)判断数列a 2n -1 是否是等比数列?若是,给出证明;否则,请说明理由;(2)若数列a n 的前10项和为361,记b n =1log 2a 2n +1 ⋅a 2n +2,数列b n 的前n 项和为T n ,求证:T n <12.14(2023·全国·高三专题练习)已知A x 1,y 2 、B x 2,y 2 是函数f x =2x 1-2x ,x ≠12-1,x =12的图象上的任意两点,点M 在直线x =12上,且AM =MB .(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 12 +f 2n +f 3n +⋅⋅⋅+f n -1n,设a n =2Sn,T n 数列a n 的前n 项和,若存在正整数c ,m ,使得不等式T m -c T m +1-c <12成立,求c 和m 的值;热点五数列与不等式交汇15(2022·浙江·统考高考真题)已知数列a n 满足a 1=1,a n +1=a n -13a 2n n ∈N ∗,则()A.2<100a 100<52 B.52<100a 100<3 C.3<100a 100<72 D.72<100a 100<416(2023·浙江嘉兴·统考模拟预测)如图,在一个单位正方形中,首先将它等分成4个边长为12的小正方形,保留一组不相邻的2个小正方形,记这2个小正方形的面积之和为S 1;然后将剩余的2个小正方形分别继续四等分,各自保留一组不相邻的2个小正方形,记这4个小正方形的面积之和为S 2.以此类推,操作n 次,若S 1+S 2+⋅⋅⋅+S n ≥20232024,则n 的最小值是()A.9B.10C.11D.1217(2023秋·四川绵阳·高三绵阳中学校考阶段练习)已知等差数列a n 的前n 项和为S n ,且S 4=4S 2,a 3n =3a n +2n ∈N *(1)求a n 的通项公式,(2)设b n =1a n a n +1,且b n 的前n 项和为T n ,证明,13≤T n <12.18(2022·全国·统考高考真题)记S n 为数列a n 的前n 项和,已知a 1=1,S n a n 是公差为13的等差数列.(1)求a n 的通项公式;(2)证明:1a 1+1a 2+⋯+1a n<2.19(2021·全国·统考高考真题)设a n 是首项为1的等比数列,数列b n 满足b n =na n3.已知a 1,3a 2,9a 3成等差数列.(1)求a n 和b n 的通项公式;(2)记S n 和T n 分别为a n 和b n 的前n 项和.证明:T n <S n2.20(2023·河南郑州·统考模拟预测)已知数列a n 与b n 的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =32b n +1-b n 恒成立.(1)若A n =3n 2+3n2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+⋯+b n +1a n a n +1<13恒成立,求正整数b 1的最小值.21(2023秋·云南·高三云南师大附中校考阶段练习)已知a n 为等差数列,b n 为等比数列,b 1=2a 1=2,a 5=5a 4-a 3 ,b 5=4b 4-b 3 ,数列c n 满足c n =1a n a n +2,n 为奇数b n,n 为偶数.(1)求a n 和b n 的通项公式;(2)证明:2ni =1c i ≥133.热点六数列与解析几何交汇22(2022·全国·统考高考真题)图1是中国古代建筑中的举架结构,AA ,BB ,CC ,DD 是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中DD 1,CC 1,BB 1,AA 1是举,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步之比分别为DD 1OD 1=0.5,CC 1DC 1=k 1,BB 1CB 1=k 2,AA 1BA 1=k 3.已知k 1,k 2,k 3成公差为0.1的等差数列,且直线OA 的斜率为0.725,则k 3=()A.0.75B.0.8C.0.85D.0.923(重庆·高考真题)设A x 1,y 1 ,B 4,95 ,C x 2,y 2 是右焦点为F 的椭圆x 225+y 29=1上三个不同的点,则“|AF |,|BF |,|CF |成等差数列”是“x 1+x 2=8”的()A.充要条件B.必要而不充分条件C.充分而不必要条件D.既不充分也不必要条件24(2021·浙江·统考高考真题)已知a ,b ∈R ,ab >0,函数f x =ax 2+b (x ∈R ).若f (s -t ),f (s ),f (s +t )成等比数列,则平面上点s ,t 的轨迹是()A.直线和圆B.直线和椭圆C.直线和双曲线D.直线和抛物线热点七数列与概率统计交汇25(2023秋·江西·高三校联考阶段练习)甲同学现参加一项答题活动,其每轮答题答对的概率均为13,且每轮答题结果相互独立.若每轮答题答对得5分,答错得0分,记第i 轮答题后甲同学的总得分为X i ,其中i =1,2,⋅⋅⋅,n .(1)求E X 99 ;(2)若乙同学也参加该答题活动,其每轮答题答对的概率均为23,并选择另一种答题方式答题:从第1轮答题开始,若本轮答对,则得20分,并继续答题;若本轮答错,则得0分,并终止答题,记乙同学的总得分为Y .证明:当i >24时,E X i >E Y .26(2023秋·湖北荆州·高三沙市中学校考阶段练习)在正三棱柱ABC -A 1B 1C 1中,点A 处有一只小蚂蚁,每次随机等可能地沿各条棱或侧面对角线向另一顶点移动,设小蚂蚁移动n 次后仍在底面ABC 的顶点处的概率为P n .(1)求P1,P2的值.(2)求P n.27(2019·全国·高考真题(理))为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,⋯,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,⋯,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1-p i}(i=0,1,2,⋯,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.热点八等差数列、等比数列的判断与证明28【多选题】(2022·广东茂名·模拟预测)已知数列a n的前n项和为S,a1=1,S n+1=S n+2a n+1,数列2na n⋅a n+1的前n项和为Tn,n∈N*,则下列选项正确的为()A.数列a n+1是等比数列 B.数列a n+1是等差数列C.数列a n的通项公式为a n=2n-1 D.T n>129(2021·全国·统考高考真题)记S n为数列a n的前n项和,b n为数列S n的前n项积,已知2S n+1b n=2.(1)证明:数列b n是等差数列;(2)求a n的通项公式.热点九数列中的“新定义”问题30(2020·全国·统考高考真题)0-1周期序列在通信技术中有着重要应用.若序列a1a2⋯a n⋯满足a i∈{0,1}(i=1,2,⋯),且存在正整数m,使得a i+m=a i(i=1,2,⋯)成立,则称其为0-1周期序列,并称满足a i+m=a i(i=1,2,⋯)的最小正整数m为这个序列的周期.对于周期为m的0-1序列a1a2⋯a n⋯,C(k)=1 mmi=1a i a i+k(k=1,2,⋯,m-1)是描述其性质的重要指标,下列周期为5的0-1序列中,满足C(k)≤15(k=1,2,3,4)的序列是()A.11010⋯B.11011⋯C.10001⋯D.11001⋯31【多选题】(2023秋·湖南长沙·高三周南中学校考阶段练习)古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状,把数分成许多类,如图中第一行图形中黑色小点个数:1,3,6,10,⋯称为三角形数,第二行图形中黑色小点个数:1,4,9,16,⋯称为正方形数,记三角形数构成数列a n,正方形数构成数列b n,则下列说法正确的是()A.1b 1+1b 2+1b 3+⋯+1b n<2;B.1225既是三角形数,又是正方形数;C.10i =11b i +1-a i +1=95;D.∀m ∈N *,m ≥2总存在p ,q ∈N *,使得b m =a p +a q 成立;32(2022秋·山东·高三校联考阶段练习)若项数为n 的数列a n 满足:a i =a n +1-i i =1,2,3,⋯,n 我们称其为n 项的“对称数列”.例如:数列1,2,2,1为4项的“对称数列”;数列1,2,3,2,1为5项的“对称数列”.设数列c n 为2k +1项的“对称数列”,其中c 1,c 2⋯c k +1是公差为2的等差数列,数列c n 的最大项等于8,记数列c n 的前2k +1项和为S 2k +1,若S 2k +1=32,则k =.数列考查的九个热点热点题型速览热点一等差数列的基本计算热点二等比数列的基本计算热点三等差数列与等比数列的综合计算热点四数列与函数的交汇热点五数列与不等式交汇热点六数列与解析几何交汇热点七数列与概率统计交汇热点八等差数列、等比数列的判断与证明热点九数列中的“新定义”问题热点一等差数列的基本计算1(2023春·河南开封·高三通许县第一高级中学校考阶段练习)已知等差数列a n 为递增数列,S n 为其前n 项和,a 3+a 7=34,a 4⋅a 6=280,则S 11=()A.516 B.440C.258D.220【答案】D【分析】根据给定条件,利用等差数列性质求出a 4,a 6,再利用前n 项和公式求解作答.【详解】等差数列a n 为递增数列,则a 4<a 6,由a 3+a 7=34,得a 4+a 6=34,而a 4⋅a 6=280,解得a 4=14,a 6=20,所以S 11=11(a 1+a 11)2=11a 6=220.故选:D2(2022秋·黑龙江哈尔滨·高三哈师大附中校考期中)某种卷筒卫生纸绕在圆柱形盘上,空盘时盘芯直径为60mm ,满盘时直径为120mm ,已知卫生纸的厚度为0.1mm ,则满盘时卫生纸的总长度大约( )(π≈3.14,精确到1m )A.65m B.85mC.100mD.120m【答案】B【分析】依题意,可以把绕在盘上的卫生纸长度,近似看成300个半径成等差数列的圆周长,然后分别计算各圆的周长,再借助等差数列前n 项和公式求总和即可.【详解】因为空盘时盘芯直径为60mm ,则半径为30mm ,周长为2π×30=60πmm ,又满盘时直径为120mm ,则半径为60mm ,周长为2π×60=120πmm ,又因为卫生纸的厚度为0.1mm ,则60-300.1=300,即每一圈周长成等差数列,项数为300,于是根据等差数列的求和公式,得:S300=300×60π+120π2=27000πmm ,又27000πmm≈84780mm≈85m,即满盘时卫生纸的总长度大约为85m,故选:B.3(2020·全国高考真题(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【答案】C【解析】设第n环天石心块数为a n,第一层共有n环,则a n是以9为首项,9为公差的等差数列,a n=9+n-1×9=9n,设S n为a n的前n项和,则第一层、第二层、第三层的块数分别为S n,S2n-S n,S3n-S2n,因为下层比中层多729块,所以S3n-S2n=S2n-S n+729,即3n9+27n2-2n9+18n2=2n9+18n2-n9+9n2+729即9n2=729,解得n=9,所以S3n=S27=279+9×272=3402.故选:C4(2022·全国·统考高考真题)记S n为等差数列a n的前n项和.若2S3=3S2+6,则公差d=.【答案】2【分析】转化条件为2a1+2d=2a1+d+6,即可得解.【详解】由2S3=3S2+6可得2a1+a2+a3=3a1+a2+6,化简得2a3=a1+a2+6,即2a1+2d=2a1+d+6,解得d=2.故答案为:2.【规律方法】1.等差数列中的基本量a1,a n,d,n,S n,“知三可求二”,在求解过程中主要运用方程思想.要注意使用公式时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意运用整体代换思想,使运算更加便捷.2. 在等差数列{a n}中,若出现a m-n,a m,a m+n等项时,可以利用等差数列的性质将其转化为与a m有关的条件;若求a m 项,可由a m =12(a m -n +a m +n)转化为求a m -n ,a m +n 或a m -n +a m +n 的值.3.数列的基本计算,往往以数学文化问题为背景.热点二等比数列的基本计算5(2020·全国·统考高考真题)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8=()A.12B.24C.30D.32【答案】D【分析】根据已知条件求得q 的值,再由a 6+a 7+a 8=q 5a 1+a 2+a 3 可求得结果.【详解】设等比数列a n 的公比为q ,则a 1+a 2+a 3=a 11+q +q 2 =1,a 2+a 3+a 4=a 1q +a 1q 2+a 1q 3=a 1q 1+q +q 2 =q =2,因此,a 6+a 7+a 8=a 1q 5+a 1q 6+a 1q 7=a 1q 51+q +q 2 =q 5=32.故选:D .6(2023·广东揭阳·惠来县第一中学校考模拟预测)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起由于脚痛,每天走的路程都为前一天的一半,一共走了六天,才到目的地.则此人后3天共走的里程数为()A.6B.12C.18D.42【答案】D【分析】设第n n ∈N ∗ 天走a n 里,其中1≤n ≤6,由题意可知,数列a n 是公比为12的等比数列,利用等比数列的求和公式求出a 1的值,然后利用等比数列的求和公式可求得此人后3天共走的里程数.【详解】设第n n ∈N ∗ 天走a n 里,其中1≤n ≤6,由题意可知,数列a n 是公比为12的等比数列,所以,a 11-12 6 1-12=6332a 1=378,解得a 1=378×3263=192,所以,此人后三天所走的里程数为a 4+a 5+a 6=192×181-1231-12=42.故选:D .7(2023·全国高考真题)已知a n 为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=-8,则a 7=.【答案】-2【分析】根据等比数列公式对a 2a 4a 5=a 3a 6化简得a 1q =1,联立a 9a 10=-8求出q 3=-2,最后得a 7=a 1q ⋅q 5=q 5=-2.【解析】设a n 的公比为q q ≠0 ,则a 2a 4a 5=a 3a 6=a 2q ⋅a 5q ,显然a n ≠0,则a 4=q 2,即a 1q 3=q 2,则a 1q =1,因为a 9a 10=-8,则a 1q 8⋅a 1q 9=-8,则q 15=q 5 3=-8=-2 3,则q 3=-2,则a 7=a 1q ⋅q 5=q 5=-2,故答案为:-2.【规律方法】1.等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.2.等比数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.3.根据题目特点,可选用等比数列的性质.热点三等差数列与等比数列的综合计算8(2019·北京·高考真题)设{an }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(Ⅰ)求{an }的通项公式;(Ⅱ)记{an }的前n 项和为Sn ,求Sn 的最小值.【答案】(Ⅰ)a n =2n -12;(Ⅱ)-30.【分析】(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得a n 的通项公式;(Ⅱ)首先求得S n 的表达式,然后结合二次函数的性质可得其最小值.【详解】(Ⅰ)设等差数列a n 的公差为d ,因为a 2+10,a 3+8,a 4+6成等比数列,所以(a 3+8)2=(a 2+10)(a 4+6),即(2d -2)2=d (3d -4),解得d =2,所以a n =-10+2(n -1)=2n -12.(Ⅱ)由(Ⅰ)知a n =2n -12,所以S n =-10+2n -122×n =n 2-11n =n -112 2-1214;当n =5或者n =6时,S n 取到最小值-30.9(2022·全国·统考高考真题)记S n 为数列a n 的前n 项和.已知2S nn+n =2a n +1.(1)证明:a n 是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值.【答案】(1)证明见解析;(2)-78.【分析】(1)依题意可得2S n +n 2=2na n +n ,根据a n =S 1,n =1S n-Sn -1,n ≥2,作差即可得到a n -a n -1=1,从而得证;(2)法一:由(1)及等比中项的性质求出a 1,即可得到a n 的通项公式与前n 项和,再根据二次函数的性质计算可得.【详解】(1)因为2S nn+n =2a n +1,即2S n +n 2=2na n +n ①,当n ≥2时,2S n -1+n -1 2=2n -1 a n -1+n -1 ②,①-②得,2S n +n 2-2S n -1-n -1 2=2na n +n -2n -1 a n -1-n -1 ,即2a n +2n -1=2na n -2n -1 a n -1+1,即2n -1 a n -2n -1 a n -1=2n -1 ,所以a n -a n -1=1,n ≥2且n ∈N *,所以a n 是以1为公差的等差数列.(2)[方法一]:二次函数的性质由(1)可得a 4=a 1+3,a 7=a 1+6,a 9=a 1+8,又a 4,a 7,a 9成等比数列,所以a 72=a 4⋅a 9,即a 1+6 2=a 1+3 ⋅a 1+8 ,解得a 1=-12,所以a n=n-13,所以S n=-12n+n n-12=12n2-252n=12n-2522-6258,所以,当n=12或n=13时,S nmin=-78.[方法二]:【最优解】邻项变号法由(1)可得a4=a1+3,a7=a1+6,a9=a1+8,又a4,a7,a9成等比数列,所以a72=a4⋅a9,即a1+62=a1+3⋅a1+8,解得a1=-12,所以a n=n-13,即有a1<a2<⋯<a12<0,a13=0.则当n=12或n=13时,S nmin=-78.【整体点评】(2)法一:根据二次函数的性质求出S n的最小值,适用于可以求出S n的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.10(2023·天津·统考高考真题)已知a n是等差数列,a2+a5=16,a5-a3=4.(1)求a n的通项公式和2n-1i=2n-1a i .(2)已知b n为等比数列,对于任意k∈N*,若2k-1≤n≤2k-1,则b k<a n<b k+1,(Ⅰ)当k≥2时,求证:2k-1<b k<2k+1;(Ⅱ)求b n的通项公式及其前n项和.【答案】(1)a n=2n+1,2n-1i=2n-1a i=3⋅4n-1;(2)(Ⅰ)证明见解析;(Ⅱ)b n=2n,前n项和为2n+1-2.【分析】(1)由题意得到关于首项、公差的方程,解方程可得a1=3,d=2,据此可求得数列的通项公式,然后确定所给的求和公式里面的首项和项数,结合等差数列前n项和公式计算可得2n-1i=2n-1a i=3⋅4n-1.(2)(Ⅰ)利用题中的结论分别考查不等式两侧的情况,当2k-1≤n≤2k-1时,b k<a n,取n=2k-1,当2k-2≤n≤2k-1-1时,a n<b k,取n=2k-1-1,即可证得题中的不等式;(Ⅱ)结合(Ⅰ)中的结论,利用极限思想确定数列的公比,进而可得数列的通项公式,最后由等比数列前n 项和公式即可计算其前n项和.【详解】(1)由题意可得a2+a5=2a1+5d=16a5-a3=2d=4,解得a1=3d=2,则数列a n的通项公式为a n=a1+n-1d=2n+1,求和得2n-1i=2n-1a i=2n-1i=2n-12i+1=22n-1i=2n-1i+2n-1-2n-1+1=22n-1+2n-1+1+2n-1+2+⋯+2n-1+2n-1=22n-1+2n-1⋅2n-12+2n-1=3⋅4n-1.(2)(Ⅰ)由题意可知,当2k-1≤n≤2k-1时,b k<a n,取n=2k-1,则b k<a2k-1=2×2k-1+1=2k+1,即b k<2k+1,当2k-2≤n≤2k-1-1时,a n<b k,取n=2k-1-1,此时a n=a2k-1-1=22k-1-1+1=2k-1,据此可得2k-1<b k,综上可得:2k-1<b k<2k+1.(Ⅱ)由(Ⅰ)可知:2k-1<bk<2k+1,2k+1-1<b k+1<2k+1+1则数列b n的公比q满足2k+1-12k+1=2-32k+1<q=b k+1b k<2k+1+12k-1=2+32k-1,当k∈N*,k→+∞时,2-3 2k+1→2,2+32k-1→2,所以q=2,所以2k-1<b12k-1<2k+1,即2k-12k-1=2-12k-1<b1<2k+12k-1=2+12k-1,当k∈N*,k→+∞时,2-1 2k-1→2,2+12k-1→2,所以b1=2,所以数列的通项公式为b n=2n,其前n项和为:S n=2×1-2n1-2=2n+1-2.热点四数列与函数的交汇11(2018·浙江·高考真题)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3).若a1>1,则A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【答案】B【分析】先证不等式x≥ln x+1,再确定公比的取值范围,进而作出判断.【详解】令f(x)=x-ln x-1,则f (x)=1-1x,令f(x)=0,得x=1,所以当x>1时,f (x)>0,当0<x<1时,f (x)<0,因此f(x)≥f(1)=0,∴x≥ln x+1,若公比q>0,则a1+a2+a3+a4>a1+a2+a3>ln(a1+a2+a3),不合题意;若公比q≤-1,则a1+a2+a3+a4=a1(1+q)(1+q2)≤0,但ln(a1+a2+a3)=ln[a1(1+q+q2)]>ln a1>0,即a1+a2+a3+a4≤0<ln(a1+a2+a3),不合题意;因此-1<q<0,q2∈(0,1),∴a1>a1q2=a3,a2<a2q2=a4<0,选B.【点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如x≥ln x+1,e x≥x+1,e x≥x2+1(x≥0).12(2023秋·湖南长沙·高三雅礼中学校考阶段练习)如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为y=1.1x,第n根弦(n∈N,从左数首根弦在y轴上,称为第0根弦)分别与雁柱曲线和直线l:y=x+1交于点A n x n,y n和B n x n ,y n,则20n=0y n y n=.(参考数据:取1.122=8.14.)【答案】914【分析】根据题意可得y n =n +1,y n=1.1n ,进而利用错位相减法运算求解.【详解】由题意可知:y n =n +1,y n =1.1n ,则20n =0y n y n=20n =0n +1 1.1n =1×1.10+2×1.11+⋯+20×1.119+21×1.120,可得1.1×20n =0y n y n =1×1.11+2×1.12+⋯+20×1.120+21×1.121,两式相减可得:-0.1×20n =0y n y n=1.10+1.11+⋯+1.120-21×1.121=1-1.1211-1.1-21×1.121=1-1.121+0.1×21×1.121-0.1=1+1.122-0.1=1+8.14-0.1=-91.4,所以20n =0y n y n=914.故答案为:914.13(2023秋·福建厦门·高三厦门一中校考阶段练习)已知数列a n 满足a 1>0,a n +1=log 2a n ,n =2k -1,k ∈N ∗2a n+2,n =2k ,k ∈N ∗.(1)判断数列a 2n -1 是否是等比数列?若是,给出证明;否则,请说明理由;(2)若数列a n 的前10项和为361,记b n =1log 2a 2n +1 ⋅a 2n +2,数列b n 的前n 项和为T n ,求证:T n <12.【答案】(1)数列a 2n -1 成等比数列,证明见解析(2)证明见解析【分析】(1)推导出a 2n +1=2a 2n +2=2log 2a 2n -1+2=4a 2n -1,得到结论;(2)先得到a 2n -1=a 1⋅4n -1,a 2n =2(n -1)+log 2a 1,从而得到S 10=341a 1+5log 2a 1+20,令f (x )=341x +5log 2x +20,得到函数单调递增,且由特殊点函数值得到a 1=1,b n =14n2,求出T 1=14<74,当n ≥2时,利用裂项相消法求和,得到T n <12.【详解】(1)数列a 2n -1 成等比数列,证明如下:根据a n +1=log 2a n ,n =2k -1,k ∈N ∗2a n+2,n =2k ,k ∈N ∗得,a 2n +1=2a 2n +2=2log 2a 2n -1+2=22a 2n -1=4a 2n -1;∵a 1>0,∴a 2n -1>0,a2n +1a 2n -1=4,即数列a 2n -1 成等比数列.(2)由(1)得,a 2n -1=a 1⋅4n -1,a 2n =log 2a 2n -1=2(n -1)+log 2a 1,故S 10=a 140+41+42+43+44 +5log 2a 1+2×(0+1+2+3+4)=341a 1+5log 2a 1+20,由S 10=361,得341a 1+5log 2a 1+20=361.令f (x )=341x +5log 2x +20,当x >0时,f (x )=341x +5log 2x +20单调递增,且f (1)=361=f a 1 ,故a 1=1,a 2n +1=4n =22n ,a 2n +2=log 2a 1+2n =2n ,∴b n =1log 2a 2n +1 ⋅a 2n +2=14n 2,T 1=b 1=14<12,当n ≥2时,b n =14n2<14(n -1)n =141n -1-1n∴T n =b 1+b 2+⋯+b n <141+1-12+12-13+⋯+1n -1-1n=142-1n <14×2=12,综上,知T n <1214(2023·全国·高三专题练习)已知A x 1,y 2 、B x 2,y 2 是函数f x =2x 1-2x,x ≠12-1,x =12的图象上的任意两点,点M 在直线x =12上,且AM =MB .(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 12 +f 2n +f 3n +⋅⋅⋅+f n -1n,设a n =2Sn,T n 数列a n 的前n 项和,若存在正整数c ,m ,使得不等式T m -c T m +1-c <12成立,求c 和m 的值;【答案】(1)x 1+x 2=1,y 1+y 2=-2(2)存在,c =1,m =1【分析】(1)根据点M 在直线x =12上,设M 12,y M ,利用AM =MB ,可得x 1+x 2=1,分类讨论:①x 1=12,x 2=12;②x 1≠12时,x 2≠12,利用函数解析式,可求y 1+y 2的值;(2)由(1)知,当x 1+x 2=1时,y 1+y 2=-2,∴f k n +f n -kn=-2,代入k =0,1,2,⋯,n -1,利用倒序相加法可得S n =1-n ,从而可得数列a n 的通项与前n 项和,利用T m -c T m +1-c <12化简即可求得结论.【详解】(1)根据点M 在直线x =12上,设M 12,y M ,则AM =12-x 1,y M -y 1 ,MB =x 2-12,y 2-y M ,∵AM =MB ,∴x 1+x 2=1.①当x 1=12时,x 2=12,y 1+y 2=f x 1 +f x 2 =-1-1=-2;②当x 1≠12时,x 2≠12,y 1+y 2=2x 11-2x 1+2x 21-2x 2=2x 11-2x 2 +2x 21-2x 1 1-2x 1 1-2x 2 =2(x 1+x 2)-8x 1x 21-2(x 1+x 2)+4x 1x 2=2(1-4x 1x 2)4x 1x 2-1=-2;综合①②得,y 1+y 2=-2.(2)由(1)知,当x 1+x 2=1时,y 1+y 2=-2.∴f k n +f n -k n=-2,k =0,1,2,⋯,n -1,∴n ≥2时,S n =f 1n +f 2n +f 3n +⋯+f n -1n①S n =f n -1n +f n -2n +f n -3n +⋯+f 1n ②①+②得,2S n =-2(n -1),则S n =1-n .又n =1时,S 1=0满足上式,∴S n =1-n .∴a n =2S n=21-n ,∴T n =1+12+⋯+12n -1=1×1-12 n1-12=2-22n.∵T m -c T m +1-c <12,∴2T m -c -T m +1-c 2T m +1-c<0,∴c -2T m -T m +1c -T m +1<0,∵Tm +1=2-12m ,2T m -T m +1=4-42m -2+12m =2-32m ,∴12≤2-32m <c <2-12m <2,c ,m 为正整数,∴c =1,当c =1时,2-32m<12-12m >1,∴1<2m <3,∴m =1.【点评】作为高考热点,数列与函数的交汇问题,等差数列易于同二次函数结合,研究和的最值问题,而等比数列易于同指数函数结合,利用指数函数的单调性解决问题,递推、通项问题往往与函数的单调性、周期性相结合.热点五数列与不等式交汇15(2022·浙江·统考高考真题)已知数列a n 满足a 1=1,a n +1=a n -13a 2n n ∈N ∗,则()A.2<100a 100<52 B.52<100a 100<3 C.3<100a 100<72 D.72<100a 100<4【答案】B【分析】先通过递推关系式确定a n 除去a 1,其他项都在0,1 范围内,再利用递推公式变形得到1a n +1-1a n =13-a n >13,累加可求出1a n >13(n +2),得出100a 100<3,再利用1a n +1-1a n =13-a n<13-3n +2=131+1n +1 ,累加可求出1a n -1<13n -1 +1312+13+⋯+1n ,再次放缩可得出100a 100>52.【详解】∵a 1=1,易得a 2=23∈0,1 ,依次类推可得a n ∈0,1由题意,a n +1=a n 1-13a n ,即1a n +1=3a n 3-a n=1a n +13-a n ,∴1a n +1-1a n =13-a n >13,即1a 2-1a 1>13,1a 3-1a 2>13,1a 4-1a 3>13,⋯,1a n -1a n -1>13,(n ≥2),累加可得1a n -1>13n -1 ,即1a n >13(n +2),(n ≥2),∴a n <3n +2,n ≥2 ,即a 100<134,100a 100<10034<3,又1a n +1-1a n =13-a n <13-3n +2=131+1n +1 ,(n ≥2),∴1a 2-1a 1=131+12 ,1a 3-1a 2<131+13 ,1a 4-1a 3<131+14 ,⋯,1a n -1a n -1<131+1n,(n≥3),累加可得1a n -1<13n -1 +1312+13+⋯+1n ,(n ≥3),∴1a 100-1<33+1312+13+⋯+1100 <33+1312×4+16×96 <39,即1a 100<40,∴a 100>140,即100a 100>52;综上:52<100a 100<3.故选:B .16(2023·浙江嘉兴·统考模拟预测)如图,在一个单位正方形中,首先将它等分成4个边长为12的小正方形,保留一组不相邻的2个小正方形,记这2个小正方形的面积之和为S 1;然后将剩余的2个小正方形分别继续四等分,各自保留一组不相邻的2个小正方形,记这4个小正方形的面积之和为S 2.以此类推,操作n 次,若S 1+S 2+⋅⋅⋅+S n ≥20232024,则n 的最小值是()A.9B.10C.11D.12【答案】C【分析】由题意可知操作n 次时有2n 个边长为12n 的小正方形,即S n =2n ×12n2=12n,结合等比数列前n 项和解不等式即可.【详解】由题意可知操作1次时有21=2个边长为121=12的小正方形,即S 1=21×1212=121=12,操作2次时有22=4个边长为122=14的小正方形,即S 2=22×122 2=122=14,操作3次时有23=8个边长为123=18的小正方形,即S 3=23×1232=123=18,以此类推可知操作n 次时有2n 个边长为12n 的小正方形,即S n =2n ×12n2=12n ,由等比数列前n 项和公式有S 1+S 2+⋅⋅⋅+S n =12+12 2+⋅⋅⋅+12 n =12×1-12 n1-12=1-12 n,从而问题转换成了求1-12 n ≥20232024不等式的最小正整数解,将不等式变形为12 n ≤12024,注意到12 10=11024>12024,1211=12048<12024,且函数y =12x在R 上单调递减,所以n 的最小值是11.故选:C .17(2023秋·四川绵阳·高三绵阳中学校考阶段练习)已知等差数列a n 的前n 项和为S n ,且S 4=4S 2,a 3n =3a n +2n ∈N *(1)求a n 的通项公式,(2)设b n =1a n a n +1,且b n 的前n 项和为T n ,证明,13≤T n <12.【答案】(1)a n =2n -1(2)证明见解析【分析】(1)利用等差数列的通项公式以及前n 项和公式,列方程求解首项和公差,即得答案;(2)由(1)结论可得b n =1a n a n +1的表达式,利用裂项求和可得T n 表达式,即可证明结论.【详解】(1)设a n 的公差为d ,由S 4=4S 2得,4a 1+6d =42a 1+d ,解得d =2a 1,∵a 3n =3a n +2,即a 1+3n -1 d =3a 1+n -1 d +2,∴2d =2a 1+2,结合d =2a 1,∴d =2,a 1=1,∴a n =1+2n -1 =2n -1;(2)证明:由b n =12n -1 2n +1=1212n -1-12n +1 .∴T n =b 1+b 2+⋯+b n =121-13+13-15+⋯+12n -1-12n +1,即∴T n =121-12n +1 ,又T n 随着n 的增大增大,当n =1时,T n 取最小值为T 1=13,又n →+∞时,12n +1>0,且无限趋近于0,故T n =121-12n +1 <12,故13≤T n <12.18(2022·全国·统考高考真题)记S n 为数列a n 的前n 项和,已知a 1=1,S n a n 是公差为13的等差数列.(1)求a n 的通项公式;(2)证明:1a 1+1a 2+⋯+1a n<2.【答案】(1)a n =n n +12(2)见解析【分析】(1)利用等差数列的通项公式求得S n a n =1+13n -1 =n +23,得到S n =n +2 a n 3,利用和与项的关系得到当n ≥2时,a n =S n -S n -1=n +2 a n 3-n +1 a n -13,进而得:a n a n -1=n +1n -1,利用累乘法求得a n =n n +1 2,检验对于n =1也成立,得到a n 的通项公式a n =n n +1 2;(2)由(1)的结论,利用裂项求和法得到1a 1+1a 2+⋯+1a n =21-1n +1 ,进而证得.【详解】(1)∵a 1=1,∴S 1=a 1=1,∴S1a 1=1,又∵S n a n 是公差为13的等差数列,∴S n a n =1+13n -1 =n +23,∴S n =n +2 a n 3,∴当n ≥2时,S n -1=n +1 a n -13,∴a n =S n -S n -1=n +2 a n 3-n +1 a n -13,整理得:n -1 a n =n +1 a n -1,即a na n-1=n+1n-1,∴a n=a1×a2a1×a3a2×⋯×a n-1a n-2×a na n-1=1×31×42×⋯×nn-2×n+1n-1=n n+12,显然对于n=1也成立,∴a n的通项公式a n=n n+12;(2)1a n =2n n+1=21n-1n+1,∴1 a1+1a2+⋯+1a n=21-12+12-13+⋯1n-1n+1=21-1n+1<219(2021·全国·统考高考真题)设a n是首项为1的等比数列,数列b n满足b n=na n3.已知a1,3a2,9a3成等差数列.(1)求a n和b n的通项公式;(2)记S n和T n分别为a n和b n的前n项和.证明:T n<S n 2.【答案】(1)a n=13n-1,b n=n3n;(2)证明见解析.【分析】(1)利用等差数列的性质及a1得到9q2-6q+1=0,解方程即可;(2)利用公式法、错位相减法分别求出S n,T n,再作差比较即可.【详解】(1)因为a n是首项为1的等比数列且a1,3a2,9a3成等差数列,所以6a2=a1+9a3,所以6a1q=a1+9a1q2,即9q2-6q+1=0,解得q=13,所以a n=13n-1,所以b n=na n3=n3n.(2)[方法一]:作差后利用错位相减法求和T n=13+232+⋯+n-13n-1+n3n,S n 2=12130+131+132+⋯+13n-1 ,T n-S n2=13+232+333+⋯+n3n-12130+131+132+⋯+13n-1 =0-1230+1-1231+2-1232+⋯+n-1-123n-1+n3n.设Γn=0-1230+1-1231+2-1232+⋯+n-1-123n-1, ⑧则13Γn=0-1231+1-1232+2-1233+⋯+n-1-123n. ⑨由⑧-⑨得23Γn=-12+131+132+⋯+13n-1-n-323n=-12+131-13n-11-13-n-323n.所以Γn=-14×3n-2-n-322×3n-1=-n2×3n-1.因此T n-S n2=n3n-n2×3n-1=-n2×3n<0.故T n<S n 2.[方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得S n=1×1-13n1-13=321-13n,T n=13+232+⋯+n-13n-1+n3n,①1 3T n=132+233+⋯+n-13n+n3n+1,②①-②得23T n=13+132+133+⋯+13n-n3n+1=131-13n1-13-n3n+1=121-13n-n3n+1,所以T n=341-13n-n2⋅3n,所以T n-S n2=341-13n-n2⋅3n-341-13n=-n2⋅3n<0,所以T n<S n 2 .[方法三]:构造裂项法由(Ⅰ)知b n=n13n,令c n=(αn+β)13 n,且b n=c n-c n+1,即n13 n=(αn+β)13 n-[α(n+1)+β]13n+1,通过等式左右两边系数比对易得α=32,β=34,所以c n=32n+34 ⋅13 n.则T n=b1+b2+⋯+b n=c1-c n+1=34-34+n2 13 n,下同方法二.[方法四]:导函数法设f(x)=x+x2+x3+⋯+x n=x1-x n1-x,由于x1-x n1-x'=x1-x n'1-x-x1-x n×1-x'1-x2=1+nx n+1-(n+1)x n(1-x)2,则f (x)=1+2x+3x2+⋯+nx n-1=1+nx n+1-(n+1)x n(1-x)2.又b n=n13n=13n13 n-1,所以T n=b1+b2+b3+⋯+b n=131+2×13+3×132+⋯+n⋅13n-1 =13⋅f 13 =13×1+n13n+1-(n+1)13 n1-132=341+n13n+1-(n+1)13n =34-34+n213 n,下同方法二.20(2023·河南郑州·统考模拟预测)已知数列a n与b n的前n项和分别为A n和B n,且对任意n∈N*,a n +1-a n =32b n +1-b n 恒成立.(1)若A n =3n 2+3n2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+⋯+b n +1a n a n +1<13恒成立,求正整数b 1的最小值.【答案】(1)n (n +1);(2)3【分析】(1)利用a n ,S n 求通项公式,再求证{b n }是首项、公差均为2的等差数列,进而求B n ;(2)由题设易得b n +1=3b n ,等比数列前n 项和公式求B n ,进而可得b n +1a n a n +1=1B n -1B n +1,裂项相消法化简已知不等式左侧,得b 1>31-23n +1-1恒成立,进而求最小值.【详解】(1)由题设,a n =A n -A n -1=32[n 2+n -(n -1)2-n +1]=3n 且n ≥2,而a 1=A 1=3,显然也满足上式,故a n =3n ,由a n +1-a n =32b n +1-b n ⇒b n +1-b n =2,又b 1=2,所以{b n }是首项、公差均为2的等差数列.综上,B n =2×(1+...+n )=n (n +1).(2)由a n =B n ,a n +1-a n =32b n +1-b n ,则B n +1-B n =b n +1=32(b n +1-b n ),所以b n +1=3b n ,而b 1≥1,故bn +1b n=3,即{b n }是公比为3的等比数列.所以B n =b 1(1-3n )1-3=b 12(3n -1),则B n +1=b12(3n +1-1),b n +1a n a n +1=B n +1-B n B n +1B n =1B n -1B n +1,而b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+⋯+b n +1a n a n +1<13,所以1B 1-1B 2+1B 2-1B 3+...+1B n -1B n +1=1B 1-1B n +1=1b 1-2b 1(3n +1-1)<13,所以1b 11-23n +1-1 <13⇒b 1>31-23n +1-1对n ∈N *都成立,所以1-23n +1-1<1,故b 1≥3,则正整数b 1的最小值为3.21(2023秋·云南·高三云南师大附中校考阶段练习)已知a n 为等差数列,b n 为等比数列,b 1=2a 1=2,a 5=5a 4-a 3 ,b 5=4b 4-b 3 ,数列c n 满足c n =1a n a n +2,n 为奇数b n,n 为偶数.(1)求a n 和b n 的通项公式;(2)证明:2ni =1c i ≥133.【答案】(1)a n =n ;b n =2n (2)证明见解析【分析】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,根据题意列式求d ,q ,进而可得结果;(2)利用分组求和以及裂项相消法求得T n =-14n +2+4n +13-56,进而根据数列单调性分析证明.【详解】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,由a 1=1,a 5=5a 4-a 3 ,可得1+4d =5d ,解得d =1。
中考数学复习指导:《统计与概率》专题专练(含答案)
《统计与概率》专题专练加强数学的应用性,让学生用数学知识和数学的思维方法去看待,分析,解决实际生活问题,在数学活动中获得生活经验。
这是当前课程改革的大势所趋。
统计与概率部分在社会生活及科学领域中有广泛应用。
加强应用统计与概率的意识,不仅仅是学习的需要,更是工作生活必不可少的.专题一:50年的变化1.考点分析本专题在中考题中多出现在极富有生活气息和时代特色的题目中,考查的问题通常有三类:(1)选择使用合适的统计图来表示统计量;(2)根据所哦给出的统计图提取有用的信息,并用这些信息解答问题;(3)能用加权平均数的公式求扇形统计图中的平均数,命题多以填空、选择、解答的形式出现,分值在3~9分2.典例剖析例1. 为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成年人、青少年各年龄段实际人口的比例3∶5∶2,随机抽取一定数量的观众进行调查,得到如下统计图.(1)上面所用的调查方法是_________(填“全面调查”或“抽样调查”); (2)写出折线统计图中A 、B 所代表的值;A :_____________;B :_____________; (3)求该地区喜爱娱乐类节目的成年人的人数.分析:本题是一道双统计图试题,解决问题需要理解两个统计图各表示的意义.从折有 线统计图中可以看到老年人、青少年对三类节目喜爱的数目,从扇形统计中只能看到成年人喜爱三类节目所占的百分比.解:(1)上面所用的调查方法是“抽样调查” .节目 新闻 娱乐 动画 图二:成年人喜爱的节目统计图 新闻娱乐 动画108°(2)A=20,B=40. (3)5300000150000352⨯=++,108360=30%,15000×30%=45000. 点评:在抽样调查中,我们常常用样本的情况去估计总体的情况,例如用样本中某部分个体所占的百分比去估计总体中该部分个体所占的百分比等,为了保证估计的准确性,抽样时要注意样本的代表性与广泛性.例2. 下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的条形统计图如图2.依据上列图、表,回答下列问题:(1)其中观看男篮比赛的门票有 张;观看乒乓球比赛的门票占全部门票 的 %;(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小亮抽到足球门票的概率是 ;(3)若购买乒乓球门票的总款数占全部门票总款数的81,试求每张乒乓球门票的价格. 分析:第(1)问只要看清条形统计图即可获取需要的信息; 第(2)问只要根据概率的定义进行计算即可; 第(3)问只要根据题意列出方程即可.解:(1)由条形统计图可知,观看男篮比赛的门票有30张,由于总票数为100张,而观看乒乓球比赛的门票20 张,故观看乒乓球比赛的门票占全部门票的20%.(2)由于总门票数为100张,而观看乒乓球比赛的门票20 张,所以看到乒乓球的概率是: 12 ,故问员工小亮抽到足球门票的概率是12 . (3)解法一:依题意,有x x 205080030100020+⨯+⨯= 18,解得x =500, 经检验,x =500是原方程的解.答:每张乒乓球门票的价格为500元.解法二:依题意,有x 2050800301000+⨯+⨯= x 208⨯. 解得x =500. 答:每张乒乓球门票的价格为500元.点评:此题为统计与概率知识的综合题,由条形统计图可以判断出三种比赛项目的具体人数,就可以解决第一、二两问.第三问乒乓球门票的价格需要根据统计表中所示的各门票的价格与购买乒乓球门票的总款数占全部门票总款数的81,构造方程从而求出乒乓球门票的价格.专练一:1、某中学准备搬迁新校舍,在迁入新校舍之前,同学们就该校学生如何到校问题进行了一次调查,并将调查结果制成了表格、条形图和扇形统计图,请你根据图表信息完成下列各题: (1)此次共调查了多少位学生? (2)请将表格填充完整; (3)请将条形统计图补充完整.2、阅读对人成长的影响是巨大的,一本好书往往能改变人的一生.1995年联合国教科文组织把每年4月23日确定为“世界读书日”.图4是某校三个年级学生人数分布扇形统计图,其中八年级人数为408人,表(1)是该校学生阅读课外书籍情况统计表.请你根据图表中的信息,解答下列问题:(1)求该校八年级的人数占全校总人数的百分率.(2分) (2)求表(1)中A B ,的值.(4分)(3)该校学生平均每人读多少本课外书?(2分)其他共汽车图3表(1)3、甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成如图5、图6的统计图.(1)在图12-2中画出折线表示乙队在集训期内这五场比赛成绩的变化情况; (2)已知甲队五场比赛成绩的平均分甲x =90分,请你计算乙队五场比赛成绩的平均分乙x ; (3)就这五场比赛,分别计算两队成绩的极差;(4)如果从甲、乙两队中选派一支球队参加篮球锦标赛,根据上述统计情况,试从平均分、折线的走势、获胜场数和极差四个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成绩?4、红星煤矿人事部欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行专业知识测试,成绩如下表所示;并依录用的程序,组织200名职工对三人进行民主评议投票推荐,三人得票率如图7所示.(没有弃权票,每位职工只能投1票,每得1票记作1分)(1)请填出三人的民主评议得分:甲得 分,乙得 分,丙得 分;丙 31% 甲 35%乙34%图7得分/ 甲、乙两球队比赛成绩条形统计图图5 /场甲、乙两球队比赛成绩折线统计图 图6得分/场(2)根据招聘简章,人事部将专业知识、民主评议二项得分按6:4的比例确定各人成绩,成绩优者将被录用.那么 将被录用,他的成绩为 分.5、今年4月,国民体质监测中心等机构开展了青少年形体测评.专家组随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)在这次形体测评中,一共抽查了 名学生,如果全市有10万名初中生,那么全市初中生中,三姿良好的学生约有 人;(3)根据统计结果,请你简单谈谈自己的看法.6、某校学生会准备调查初中2008级同学每天(除课间操外)的课外锻炼时间.⑴ 确定调查方式时,甲同学说:“我到1班去调查全体同学”;乙同学说:“我到体育场上去询问参加锻炼的同学”;丙同学说:“我到初中2008级每个班去随机调查一定数量的同学”. 请你指出哪位同学的调查方式最为合理;⑵ 他们采用了最为合理的调查方法收集数据,并绘制出如图9所示的条形统计图和如图10所示的扇形统计图,请将其补充完整;⑶ 若该校初中2008级共有240名同学,请你估计其中每天(除课间操外)课外锻炼时间不大于20分钟的人数,并根据调查情况向学生会提出一条建议.(注:图5-2中相邻两虚线形25 50 75 100125150175200人数图9图10图8成的圆心角为30°.)7、我省某地区结合本地自然条件,大力发展茶叶、蔗糖、水果、药材等产业,取得良好经济效益,经过多年发展,茶叶、蔗糖、水果、药材成了该地区四大产业.图11①、图②是根据该地区2006年各项产业统计资料绘制的两幅不完整统计图,请你根据统计图提供的信息解答以下问题:(1)该地区2006年各项产业总产值共___________万元;(2)图11①中蔗糖所占的百分数是_________,2006年该地区蔗糖业的产值有__________万元;(3)将图12②中“蔗糖”部分的图形补充完整。
高考数学专题《概率与统计》解读含答案解析
重难点04 概率与统计新高考概率与统计主要考查统计分析、变量的相关关系,独立性检验、用样本估计总体及其特征的思想,以排列组合为工具,考查对五个概率事件的判断识别及其概率的计算。
试题考查特点是以实际应用问题为载体,小题部分主要是考查排列组合与古典概型,解答题部分主要考查独立性检验、超几何分布、离散型分布以及正态分布对应的数学期望以及方差。
概率的应用立意高,情境新,赋予时代气息,贴近学生的实际生活。
取代了传统意义上的应用题,成为高考中的亮点。
解答题中概率与统计的交汇是近几年考查的热点趋势,应该引起关注。
求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因;(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件的和的概率.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列。
相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端。
定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法。
标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成。
有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法。
对于二项式定理的应用,只要会求对应的常数项以及对应的n项即可,但是应注意是二项式系数还是系数。
新高考统计主要考查统计分析、变量的相关关系,独立性检验、用样本估计总体及其特征的思想,以排列组合为工具,考查对五个概率事件的判断识别及其概率的计算。
高中数学统计与概率的基本问题
3.在频率分布直方图中,小长方形的面积=频率,各小长方形 的面积的总等于 1.
4.方差与标准差 s2=1n[(x1- x )2+(x2- x )2+…+(xn- x )2], s= 1n[x1- x 2+x2- x 2+…+xn- x 2].
答案 D
(2014·天津卷)某大学为了解在校本科生对参加某 项社会实践活动的意向,拟采用分层抽样的方法, 从该校四个年级的本科生中抽取一个容量为300的 样本进行调查.已知该校一年级、二年级、三年级 、四年级的本科生人数之比为4∶5∶5∶6,则应 从一年级本科生中抽取________名学生.
答案 60
现将所有同学随机编号,用系统抽样的方法,抽取一个容
量为4的样本,已知5号、33号、47号学生在样本中,则
样本中还有一个学生的编号为
( ).
○ A.13
B.17
○ C.19
D.21
为了研究雾霾天气的治理, 某课题组对部分城市进行空 气质量调查,按地域特点把 这些城市分成甲、乙、丙三 组,已知三组城市的个数分 别为4,y,z,依次构成等 差数列,且4,y,z+4成 等比数列,若用分层抽样抽 取6个城市,则乙组中应抽 取的城市个数为 ______________.
下的列联表:
喜爱
不喜 爱
总计
女 男 总计
40 20
60
20 30
50
60 50
110
试根据样本估计总体的思想,估计约有________的把握认为“喜 爱该节目与否和性别有关”. 参考附表:
P(K2≥k0) 0.050 0.010 0.001 k0 3.841 6.635 10.828
统计与概率的关系
统计与概率的关系统计与概率是数学中两个相关但又有所区别的概念。
统计是通过收集和分析数据来描述和解释现象的科学,而概率则是研究随机事件发生的可能性的数学工具。
虽然它们在方法和应用上有所不同,但统计与概率之间存在着密切的联系和相互依赖关系。
统计和概率都是用来研究和描述现实世界中的不确定性的工具。
统计学通过收集、整理和分析大量的数据,从而得出关于总体特征和规律的结论。
而概率则是通过数学模型和统计推断来研究和计算随机事件发生的可能性。
统计和概率都涉及到随机变量和概率分布的概念。
在统计中,随机变量是指在一定条件下可能取到不同值的变量,而概率分布则是描述这些随机变量取值的规律。
通过统计分析,我们可以了解和预测某个随机变量的分布情况,从而得出相关的结论。
而概率则是通过数学模型和计算来描述和计算随机变量的分布情况。
统计和概率都涉及到样本和总体的概念。
在统计中,样本是指从总体中选取的一部分个体或观测值,通过对样本进行分析和推断,我们可以得出关于总体的结论。
而概率则是通过样本来估计总体的参数和分布情况。
统计和概率都是从观测数据中推断未知信息的工具。
在统计中,我们通过收集和分析数据来推断总体的特征和规律。
而概率则是通过已知的信息和假设,计算和推断未知事件发生的可能性。
统计和概率都是基于数据和假设进行推断和预测的工具。
统计和概率在实际应用中经常相互结合。
在很多实际问题中,我们需要通过统计分析来估计概率分布的参数和分布情况。
而在概率计算中,我们也常常需要依赖统计数据来计算和估计概率值。
统计和概率的结合可以更好地解决实际问题,并提供更准确的结果和预测。
统计与概率之间存在着密切的联系和相互依赖关系。
统计是从数据中推断总体特征和规律的科学,而概率则是研究随机事件发生的可能性的数学工具。
统计和概率的结合可以更好地解决实际问题,并提供更准确的结果和预测。
通过学习和应用统计和概率,我们可以更好地理解和描述现实世界中的不确定性,为决策和问题解决提供科学的依据。
高中数学经典概率与统计(解析版)
概率与统计统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】1 .抽样方法是统计学的基础,在复习时要抓住各种抽样方法的概念以及它们之间的区别与联系.茎叶图也成为高考的热点内容,应重点掌握.明确变量间的相关关系,体会最小二乘法和线性回归方法是解决两个变量线性相关的基本方法,就能适应高考的要求.2.求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因.(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件的和的概率.3.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题1.(2020·上海闵行区·高三二模)某县共有300个村,现采用系统抽样方法,抽取15个村作为样本,调查农民的生活和生产状况,将300个村编上1到300的号码,求得间隔数3002015k==,即每20个村抽取一个村,在1到20中随机抽取一个数,如果抽到的是7,则从41到60这20个数中应取的号码数是( ) A .45B .46C .47D .48 【答案】C【分析】根据系统抽样的定义和性质即可得到结论.【详解】解:根据题意,样本间隔数3002015k ==,在1到20中抽到的是7, 则41到60为第3组,此时对应的数为7+2×20=47.故选:C.【点睛】本题主要考查系统抽样的应用,样本间距是解决本题的关键,比较基础.2.(2020·上海松江区·高三其他模拟)已知6260126(1)x a a x a x a x +=+++⋯+,在0,a 1,a 2,a ,⋅⋅⋅6a 这7个数中,从中任取两数,则所取的两数之和为偶数的概率为( )A .12B .37C .47D .821【答案】B【分析】根据6260126(1)x a a x a x a x +=+++⋯+,将0,a 1,a 2,a ,⋅⋅⋅6a 计算出来,分清几个奇数,几个偶数, 得到从中任取两数的种数;所取的两数之和为偶数的种数,代入古典概型的概率公式求解.【详解】因为6260126(1)x a a x a x a x +=+++⋯+,0,a 1,a 2,a ,⋅⋅⋅6a 这7个数分别为:061,C =166,C =2615,C =3620,C =4615,C =566,C =661,C =. 4个奇数,3个偶数;从中任取两数共有:2721C =种;所取的两数之和为偶数的有:22439C C +=;∴所取的两数之和为偶数的概率为:93217=. 故选:B.【点睛】本题主要考查二项式系数和古典概型的概率,还考查了运算求解的能力,属于基础题.3.(2019·上海杨浦区·高三一模)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为( )A .310B .35C .25D .23【答案】B【分析】直接利用概率公式计算得到答案.【详解】11322563105C C P C ⨯=== ,故选:B 【点睛】本题考查了概率的计算,属于简单题.4.(2019·上海黄浦区·高三二模)在某段时间内,甲地不下雨的概率为1P (101P <<),乙地不下雨的概率为2P (201P <<),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为( ) A .12PPB .121PP -C .12(1)P P -D .12(1)(1)P P -- 【答案】D【分析】根据相互独立事件的概率,可直接写出结果.【详解】因为甲地不下雨的概率为1P ,乙地不下雨的概率为2P ,且在这段时间内两地下雨相互独立, 所以这段时间内两地都下雨的概率为()()1211P P P =--.故选D【点睛】本题主要考查相互独立事件的概率,熟记概念即可,属于基础题型.二、填空题5.(2020·上海奉贤区·高三一模)某工厂生产A 、B 两种型号的不同产品,产品数量之比为2:3.用分层抽样的方法抽出一个样本容量为n 的样本,则其中A 种型号的产品有14件.现从样本中抽出两件产品,此时含有A 型号产品的概率为__________. 【答案】1117【分析】先由分层抽样抽样比求B 种型号抽取件数,以及n ,再根据古典概型公式求概率. 【详解】设B 种型号抽取m 件,所以1423m =,解得:21m =,142135n =+=, 从样本中抽取2件,含有A 型号产品的概率2111414212351117C C C P C +==.故答案为:11176.(2019·上海市建平中学高三月考)一个总体分为A ,B 两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本.已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数为 _____ . 【答案】40【解析】设B 层中的个体数为n ,则211828nn C =⇒=,则总体中的个体数为8540.⨯=7.(2020·上海黄浦区·高三二模)某社区利用分层抽样的方法从140户高收入家庭、280户中等收入家庭、80户低收入家庭中选出100户调查社会购买力的某项指标,则中等收入家庭应选________户.【答案】56【分析】由分层抽样的计算方法有,中等收入家庭的户数占总户数的比例再乘以要抽取的户数,即可得到答案.【详解】该社区共有14028080500++=户.利用分层抽样的方法, 中等收入家庭应选28010056500⨯=户,故答案为:56 【点睛】本题考查分层抽样,注意抽取比例是解决问题的关键,属于基础题.8.(2020·上海高三其他模拟)某校三个年级中,高一年级有学生400人,高二年级有学生360人,高三年级有学生340人,现采用分层抽样的方法从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为________.【答案】17【分析】由于分层抽样是按比例抽取,若设高三年级的学生抽取了x 人,则有40034020x=,求出x 的值即可【详解】解:设高三年级的学生抽取了x 人,则由题意得 40034020x=,解得17x =,故答案为:17 【点睛】此题考查分层抽样,属于基础题.9.(2016·上海杨浦区·复旦附中高三月考)如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为________.【答案】9【分析】根据频率分布直方图计算出日销售量不少于150个的频率,然后乘以30即可.【详解】根据频率分布直方图可知,一个月内日销售量不少于150个的频率为()0.0040.002500.3+⨯=, 因此,这家面包店一个月内日销售量不少于150个的天数为300.39⨯=.故答案为9.【点睛】本题考查频率分布直方图的应用,解题时要明确频数、频率和样本容量三者之间的关系,考查计算能力,属于基础题.10.(2020·上海高三专题练习)中位数为1010的一组数构成等差数列,其末项为 2015,则该数列的首项为__________.【答案】5.【解析】设数列的首项为1a ,则12015210102020a+=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5.【考点定位】等差中项.11.(2020·上海浦东新区·高三一模)在7(2)x +的二项展开式中任取一项,则该项系数为有理数的概率为_________.(用数字作答)【答案】12【分析】根据二项展开式的通项,确定有理项所对应的r 的值,从而确定其概率. 【详解】7(2)x +展开式的通项为()77217722rr rr rr r T C x C x --+==,07,r r N ≤≤∈, 当且仅当r 为偶数时,该项系数为有理数,故有0,2,4,6r =满足题意,故所求概率4182P ==.【点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.12.(2020·上海松江区·高三一模)从包含学生甲的1200名学生中随机抽取一个容量为80的样本,则学生甲被抽到的概率___.【答案】115【分析】基本事件总数801200n C =,学生甲被抽到包含的基本事件个数79112001m C C =,由此能求出学生甲被抽到的概率.【详解】解:从包含学生甲的1200名学生中随机抽取一个容量为80的样本,基本事件总数801200n C =, 学生甲被抽到包含的基本事件个数79112001m C C =,∴学生甲被抽到的概率79111991801200115C C m P n C ===. 故答案为:115. 【点睛】方法点睛:求概率常用的方法是:先定性(六种概率:古典概型的概率、几何概型的概率、独立事件的概率、互斥事件的概率、条件概率和独立重复试验的概率),再定量.13.(2019·上海市建平中学高三月考)已知方程221x y a b+=表示的曲线为C ,任取a 、{}1,2,3,4,5b ∈,则曲线C 表示焦距等于2的椭圆的概率等于________. 【答案】825【分析】计算出基本事件的总数,并列举出事件“曲线C 表示焦距等于2的椭圆”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】所有可能的(),a b 的组数为:5525⨯=,又因为焦距22c =,所以1c =,所以1a b -=±, 则满足条件的有:()1,2、()2,3、()3,4、()4,5、()5,4、()4,3、()3,2、()2,1,共8组, 所以概率为:825P =.故答案为:825. 【点睛】方法点睛:计算古典概型概率的方法如下:(1)列举法;(2)数状图法;(3)列表法;(4)排列、组合数的应用.14.(2020·上海徐汇区·高三一模)小王同学有4本不同的数学书,3本不同的物理书和3本不同的化学书,从中任取2本,则这2本书属于不同学科的概率为______________(结果用分数表示). 【答案】1115【分析】利用古典概型公式计算概率.【详解】共43310++=本不同的数,任取2本包含21045C =种方法,若从中任取两本,这2本书属于不同学科的情况有11111143433333C C C C C C ⋅+⋅+⋅=,所以这2本书属于不同学科的概率33114515P ==. 故答案为:111515.(2020·上海高三一模)近年来,人们的支付方式发生了巨大转变,使用移动支付购买商品已成为一部分人的消费习惯.某企业为了解该企业员工A 、B 两种移动支付方式的使用情况,从全体员工中随机抽取了100人,统计了他们在某个月的消费支出情况.发现样本中A ,B 两种支付方式都没有使用过的有5人;使用了A 、B 两种方式支付的员工,支付金额和相应人数分布如下:依据以上数据估算:若从该公司随机抽取1名员工,则该员工在该月A 、B 两种支付方式都使用过的概率为______.【答案】310【分析】根据题意,计算出两种支付方式都使用过的人数,即可得到该员工在该月A 、B 两种支付方式都使用过的概率.【详解】解:依题意,使用过A 种支付方式的人数为:18292370++=,使用过B 种支付方式的人数为:10242155++=,又两种支付方式都没用过的有5人,所以两种支付方式都用过的有()()7055100530+--=,所以该员工在该月A 、B 两种支付方式都使用过的概率30310010p ==. 故答案为:310. 【点睛】本题考查了古典概型的概率,主要考查计算能力,属于基础题.16.(2020·上海大学附属中学高三三模)一名工人维护甲、乙两台独立的机床,在一小时内,甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,则一小时内没有一台机床需要维护的概率为________【答案】0.42【分析】根据甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,利用独立事件和对立事件的概率求法求解.【详解】因为甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,所以一小时内没有一台机床需要维护的概率为()()10.410.30.42-⨯-=,故答案为:0.42【点睛】本题主要考查独立事件和对立事件的概率,属于基础题.17.(2020·上海长宁区·高三三模)2021年某省将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为________ 【答案】14【分析】甲同学从物理、历史二选一,其中选历史的概率为12,从化学、生物、政治、地理四选二,有6种选法,其中选化学的有3种,从而可得四选二,选化学的概率为12,然后由分步原理可得同时选择历史和化学的概率.【详解】解:由甲同学选科没有偏好,且不受其他因素影响,所以甲同学从物理、历史二选一选历史的概率为12,甲同学从化学、生物、政治、地理四选二有:化学与生物,化学与政治,化学与地理,生物与政治,生物与地理,政治与地理共6种不同的选法,其中选化学的有3种,所以四选二中有化学的概率为12, 所以由分步原理可知甲同学同时选择历史和化学的概率为111=224⨯, 故答案为:14 【点睛】此题考查古典概型概率以及独立事件概率乘法公式的求法,考查理解运算能力,属于基础题. 18.(2019·上海市七宝中学高三三模)一名信息员维护甲乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________【答案】0.88【分析】根据相互独立事件概率计算公式和对立事件的概率计算公式直接求解即可.【详解】"至少有一个公司不需要维护"的对立事件是"两公司都需要维护",所以至少有一个公司不需要维护的概率为10.30.40.88p =-⨯=,故答案为0.88.【点睛】本题主要考查概率的求法以及相互独立事件概率计算公式和对立事件的概率计算公式的应用. 19.(2019·上海金山区·高三二模)若生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别为0.01、0.02,每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率是________(结果用小数表示)【答案】0.9702【分析】利用对立事件概率计算公式和相互独立事件概率乘法公式能求出经过两道工序后得到的零件不是废品的概率.【详解】生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别0.01、0.02, 每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率:p =(1﹣0.01)(1﹣0.02)=0.9702.故答案为0.9702.【点睛】本题考查概率的求法,考查对立事件概率计算公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.三、解答题20.(2019·上海普陀区·)某城市自2014年至2019年每年年初统计得到的人口数量如表所示.(1)设第n 年的人口数量为n a (2014年为第1年),根据表中的数据,描述该城市人口数量和2014年至2018年每年该城市人口的增长数量的变化趋势;(2)研究统计人员用函数0.6544450()2000 4.48781x P x e -=++拟合该城市的人口数量,其中x 的单位是年.假设2014年初对应0x =,()P x 的单位是万.设()P x 的反函数为()T x ,求(2440)T 的值(精确到0.1),并解释其实际意义.【分析】(1)根据表中的数据可得从2014年到2019年人口增加的数量,逐年增多,从2017年后,增加的人数逐年减少,但人口总数是逐年增加的;(2)根据函数的表达式,以及反函数的定义,代值计算即可.【详解】(1)201520142135208253f f -=-=,201620152203213568f f -=-=,201720162276220373f f -=-=,201820172339227663f f -=-=,201920182385233946f f -=-=,由上述计算可知,该地区2014年至2019年每年人口增长数量呈先增后减的变化趋势,每一年任可总数呈逐渐递增的趋势;(2)因为0.65444.48781x e -+为单调递减函数,则()P x 为单调递增函数,则0(2440)T x =0()2440P x ⇒=, 代入000.6544450()200024404.48781x P x e -=+=+,解得08.1x =,即(2440)8.1T =, 其实际意义为:可根据数学模型预测人口数量增长规律,及提供有效依据,到2022年人口接近2440万.【点睛】该题考查的是有关统计的问题,涉及到的知识点有利用表格判断其变化趋势,利用题中所给的函数解析式,计算相关的量,反函数的定义,属于中档题目.。
2017届高三数学(文)二轮复习课件(全国通用)专题突破 专题7 概率与统计 第2讲 统计及统计案例
x乙 =
s 乙= 1 28 302 29 302 30 302 31 302 32 302 = 2 . 所以 x甲 < x乙 ,s 甲>s 乙,故选 B.
︱高中总复习︱二轮·文数
(2)(2016· 北京卷,文17)某市居民用水拟实行阶梯水价,每人月用水量中不超 过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收 费,从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得 到如下频率分布直方图: ①如果w为整数,那么根据此次调查,为使80%以上居 民在该月的用水价格为4元/立方米,w至少定为多少? (2)解:①由用水量的频率分布直方图知, 该市居民该月用水量在区间[0.5,1],(1,1.5],(1.5,2],(2,2.5],
4.(2015· 全国Ⅱ卷,文18)某公司为了解用户对其产品的满意度,从A,B两地 区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用
户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.
A地区用户满意度评分的频率分布直方图
B地区用户满意度评分的频数分布表
满意度评 分分组 频数 [50,60) 2 [60,70) 8 [70,80) 14 [80,90) 10 [90,100] 6
x
46.6
y 563
w 6.8
x x
8 i 1 i
2
w w
8 i 1 i
2
x x y y
8 i 1 i i
w w y y
8 i 1 i i
289.8
1.6
1469
108.8
1 8 表中 wi= xi , w = wi . 8 i 1
2009年高考第二轮热点专题复习:统计与概率
2009年高考第二轮热点专题复习:统计与概率考纲指要:“统计”是在初中“统计初步”基础上的深化和扩展,本讲主要会用样本的频率分布估计总体的分布,并会用样本的特征来估计总体的分布。
热点问题是频率分布直方图和用样本的数字特征估计总体的数字特征。
统计案例主要包括回归分析的基本思想及其初步应用和独立性检验的基本思想和初步应用。
对概率考察的重点为互斥事件、古典概型的概率事件的计算为主,了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义。
考点扫描:1.三种常用抽样方法:(1)简单随机抽样;(2)系统抽样;(3)分层抽样。
2.用样本的数字特征估计总体的数字特征: (1)众数、中位数;(2)平均数与方差。
3.频率分布直方图、折线图与茎叶图。
4.线性回归:回归直线方程。
5.统计案例:相关系数、卡方检验,6.随机变量:随机变量的概念,离散性随机变量的分布列,相互独立事件、独立重复试验公式,随机变量的均值和方差,几种特殊的分布列:(1)两点分布;(2)超几何分布;(3)二项分布;正态分布。
7随机事件的概念、概率;事件间的关系:(1)互斥事件;(2)对立事件;(3)包含; 事件间的运算:(1)并事件(和事件)(2)交事件(积事件)8古典概型:古典概型的两大特点;古典概型的概率计算公式。
9几何概型:几何概型的概念;几何概型的概率公式;几种常见的几何概型。
考题先知:例1.为了科学地比较考试的成绩,有些选拔性考试常常会将考试分数转化为标准分,转化关系式为:sxx Z -=(其中x 是某位学生的考试分数,x 是该次考试的平均分,s 是该次 考试的标准差,Z 称为这位学生的标准分).转化成标准分后可能出现小数和负值,因此, 又常常再将Z 分数作线性变换转化成其他分数. 例如某次学业选拔考试采用的是T 分数,线性变换公式是:T=40Z+60. 已知在这次考试中某位考生的考试分数是85,这次考试的平均分是70,标准差是25,则该考生的T 分数为 . 分析:正确理解题意,计算所求分数。
数学中的统计与概率
数学中的统计与概率统计学和概率论是数学中非常重要的分支,它们能够帮助我们理解和解释随机事件和数据现象。
统计学是研究数据的收集、分析、解释和推断的方法和理论,而概率论则是研究随机现象的规律性和不确定性的数学工具。
本文将对数学中的统计学和概率论进行探讨。
一、统计学的基本概念和方法统计学侧重于数据收集和分析,可以分为描述统计和推断统计两个方面。
1. 描述统计:描述统计主要涉及数据的收集、整理和展示。
数据可以分为定量数据和定性数据。
定量数据是能够进行数值计量的数据,如身高、年龄等;定性数据是描述性的数据,如性别、职业等。
常用的描述统计方法包括数据的中心趋势和离散程度的度量,如均值、中位数、众数和方差等。
2. 推断统计:推断统计旨在通过样本数据对总体特征进行推断。
重要的推断统计方法包括抽样和假设检验。
抽样是从总体中随机选取样本,通过对样本数据的分析得出总体特征的结论。
假设检验是通过对样本数据和假设进行比较,来判断假设是否成立。
二、概率论的基本概念和原理概率论是研究随机现象的规律性和不确定性的数学工具。
它可以帮助我们对未来事件的发生概率进行估计,并进行决策或预测。
1. 概率的定义:概率是描述一个事件发生的可能性的数值,它的取值范围在0到1之间。
概率的加法和乘法规则是概率论的基本原理,它们描述了多个事件同时发生或依次发生的概率计算方法。
2. 随机变量和概率分布:随机变量是概率论中的重要概念,它可以取一定的数值,并且按照一定的概率进行变化。
概率分布描述了随机变量的取值和对应的概率。
常见的概率分布有离散型概率分布和连续型概率分布,如伯努利分布、正态分布等。
三、统计与概率的应用领域统计学和概率论在各个领域都有广泛的应用,下面介绍几个常见的应用领域:1. 经济学:统计学和概率论在经济学中被广泛应用于市场分析、经济预测和风险管理等方面。
2. 医学:统计学在医学研究中起到了重要的作用,可以通过对数据的分析和假设检验来判断新药的疗效和副作用等。
专题概率与统计热点问题-2024年高考数学六大题解满分解题技巧秘籍
概率与统计是高考数学中的一个重要的知识点,也是考察学生分析问题、统计数据以及进行概率计算的能力。
下面是2024年高考数学中概率与统计方面的热点问题解题指导,希望能对你备考有所帮助。
1.求二项式分布的期望和方差二项式分布可以描述在n次独立重复试验中,出现其中一事件的次数的概率分布。
求二项式分布的期望和方差是常见的题型。
对于n次独立重复试验中,事件A出现的次数X,其期望和方差分别为E(x) = np,Var(x) = np(1-p),其中p为单次试验中事件A发生的概率。
2.求事件的概率求事件的概率是概率与统计中的基本题型。
根据题目给出的条件,利用概率公式进行计算即可。
常见的题型有求交、并、互斥事件的概率,以及条件概率等。
3.求样本的点估计和区间估计在统计学中,样本是用来推断总体特征的重要依据。
对于样本中一些统计量,如平均值、比例等,可以利用它们作为总体特征的点估计。
而对于总体特征的区间估计,可以利用样本统计量的分布特性,计算出一个区间,该区间包含了总体特征的真值。
4.利用正态分布进行计算正态分布是概率与统计中最重要的概率分布之一,也是高考数学中的重点内容。
在许多情况下,可以使用正态分布来近似计算一些事件的概率或样本统计量的分布。
利用标准正态分布的概率表或计算器,可以方便地计算出正态分布的概率或分布的特征。
5.判断两个事件是否独立判断两个事件是否独立,可以利用概率的定义和条件概率的性质进行推导。
如果两个事件相互独立,则它们的联合概率等于事件的概率的乘积。
反之,如果联合概率不等于概率的乘积,则说明两个事件不独立。
6.利用抽样方法进行调查在概率与统计中,抽样是一种重要的数据收集方法。
通过合理地设计抽样方法和调查问卷,可以获得可靠的调查数据。
在解题时,需要注意抽样误差和样本的代表性等问题,以确保所得到的调查结果具有较高的可靠性。
以上是2024年高考数学概率与统计方面的热点问题解题指导。
在备考过程中,要牢固掌握概率与统计的基本概念和常用方法,多做相关的题目,提高解题能力。
2015届高考二轮复习 专题七 第1讲 排列、组合与二项式定理
数,且为偶数,有两种情况:
一是当 0 在个位的四位偶数有 A3 4=24(个);
二是当 0 不在个位时,先从 2,4 中选一个放在个位,再
1 1 2 从余下的三个数选一个放在首位, 应有 A2 A3A3=36(个),
故共有四位偶数60个.
热点三
3
(2)如果(1+x+x2)(x-a)5(a为实常数)的展开式中所有项
-5 的系数和为0,则展开式中含x4项的系数为________.
思维启迪 可用赋值法求二项展开式所有项的系数和.
解析
∵令x=1得(1+x+x2)(x-a)5的展开式中所有项
的系数和为(1+1+12)(1-a)5=0,
∴a=1,∴(1+x+x2)(x-a)5=(1+x+x2)(x-1)5
倒位置;
④对二项式 (a - b)n 展开式的通项公式要特别注
意符号问题.
思 (2) 在二项式定理的应用中, “ 赋值思想 ” 是一 维 种重要方法,是处理组合数问题、系数问题的 升 华 经典方法.
变式训练3
a7 1 (1)(2014· 湖北)若二项式(2x+ ) 的展开式中 3的系数 x x 是 84,则实数 a 等于( A.2 C.1 ) B. 4 2 D. 4 5
(3)组合数的性质
n- m m m m- 1 ①Cm = C ; ② C = C + C . n n n+ 1 n n
3.二项式定理
n 0 1 n- 1 2 n- 2 2 (1)二项式定理:(a+b)n=C0 a b + C a b + C b n n na r n- r r 0 n +„+Cn a b + „+ C n a n b (r= 0,1,2, „,n).
压轴题07 统计与概率压轴题(原卷版)--2023年高考数学压轴题专项训练(全国通用-文)
压轴题07统计与概率压轴题题型/考向一:统计与概率题型/考向二:统计案例一、统计与概率热点一用样本估计总体1.频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示频率组距,频率=组距×频率组距.2.在频率分布直方图中各小长方形的面积之和为1.3.利用频率分布直方图求众数、中位数与平均数.(1)最高的小长方形底边中点的横坐标即众数.(2)中位数左边和右边的小长方形的面积和相等.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.热点二概率1.古典概型的概率公式P(A)=事件A中包含的样本点数试验的样本点总数.2.条件概率公式设A,B为随机事件,且P(A)>0,则P(B|A)=P(AB)P(A).3.全概率公式设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n ,则对任意的事件B ⊆Ω,有P (B )=∑ni =1P (A i )P (B |A i ).○热○点○题○型一统计与概率一、单选题1.对某校中学学生的身高进行统计,并将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图),则该校学生身高数据的中位数为()A .165B .165.75C .166D .166.252.如图,一组数据123910,,,,,x x x x x ⋅⋅⋅,的平均数为5,方差为21s ,去除9x ,10x 这两个数据后,平均数为x ,方差为22s ,则()A .5x >,2212s s >B .5x <,2212s s <C .5x =,2212s s <D .5x =,2212s s >3.已知数据12,,,n x x x 是某市()*5,n n n ≥∈N 个普通职工的年收入,如果再加上世界首富的年收入1n x +,组成1n +个数据,则下列说法正确的是()A .年收入的平均数可能不变,中位数可能不变,方差可能不变B .年收入的平均数大大增加,中位数可能不变,方差变大C .年收入的平均数大大增加,中位数可能不变,方差变小D .年收入的平均数大大增加,中位数一定变大,方差可能不变4.甲、乙两名篮球运动员在8场比赛中的单场得分用茎叶图表示(图1),茎叶图中甲的得分有部分数据丢失,但甲得分的折线图(图2)完好,则()A .甲的单场平均得分比乙低B .乙的60%分位数为19C .甲、乙的极差均为11D .乙得分的中位数是16.55.某省普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为,,,,A B C D E 五个等级.某高中2022年参加“选择考”总人数是2020年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平,统计了该校2020年和2022年“选择考”成绩等级结果,得到如下统计图.针对该校“选择考”情况,2022年与2020年比较,下列说法正确的是()A .获得A 等级的人数减少了B .获得B 等级的人数增加了1.5倍C .获得D 等级的人数减少了一半D .获得E 等级的人数相同6.在“2,3,5,7,11,13,17,19”这8个素数中,任取2个不同的数,则这两个数之和仍为素数的概率是()A .328B .528C .17D .3147.2022年11月30日,神舟十五号、神舟十四号乘组在太空“胜利会师”,在中国人自己的“太空家园”里留下了一张足以载入史册的太空合影.某班级开展了关于太空知识的分享交流活动,活动中有2名男生、3名女生发言,活动后从这5人中任选2人进行采访,则这2人中至少有1名男生的概率为()A .310B .25C .35D .7108.不透明箱子中装有大小相同标号为1,2,3,4,5的5个冰墩墩(北京冬奥会吉祥物),随机抽取2个冰墩墩,则被抽到的2个冰墩墩标号相邻的概率是()A .15B .25C .35D .45二、多选题9.如图是国家统计局公布的2021年5月至2021年12月的规模以上工业日均发电量的月度走势情况,则().A .2021年7月至2021年10月,规模以上工业月度日均发电量呈现下降趋势B .2021年5月至2021年12月,规模以上工业月度日均发电量的中位数为228C .2021年11月,规模以上工业发电总量约为6758亿千瓦时D .从2021年5月至2021年12月中随机抽取2个月份,规模以上工业月度日均发电量都超过230亿千瓦时的概率为32810.树人中学2006班某科研小组,持续跟踪调查了他们班全体同学一学期中16周锻炼身体的时长,经过整理得到男生、女生各周锻炼身体的平均时长(单位:h )的数据如下:男生:6.3、7.4、7.6、8.1、8.2、8.2、8.5、8.6、8.6、8.6、8.6、9.0、9.2、9.3、9.8、10.1;女生:5.1、5.6、6.0、6.3、6.5、6.8、7.2、7.3、7.5、7.7、8.1、8.2、8.4、8.6、9.2、9.4.以下判断中正确的是()A .女生每周锻炼身体的平均时长的平均值等于8B .男生每周锻炼身体的平均时长的80%分位数是9.2C .男生每周锻炼身体的平均时长大于9h 的概率的估计值为0.3125D .与男生相比,女生每周锻炼身体的平均时长波动性比较大11.已知甲袋内有a 个红球,b 个黑球,乙袋内有b 个红球,a 个黑球(),a b *∈N ,从甲、乙两袋内各随机取出1个球,记事件A =“取出的2个球中恰有1个红球”,B =“取出的2个球都是红球”,C =“取出的2个球都是黑球”,则()A .()0.75P AB +≤B .()()P A P B >C .()()P B P C <D .()()P A B P A C +=+12.某中学为了能充分调动学生对学术科技的积极性,鼓励更多的学生参与到学术科技之中,提升学生的创新意识,该学校决定邀请知名教授于9月2日和9月9日到学校做两场专题讲座.学校有东、西两个礼堂,第一次讲座地点的安排不影响下一次讲座的安排,假设选择东、西两个礼堂作为讲座地点是等可能的,则下列叙述正确的是()A .两次讲座都在东礼堂的概率是14B .两次讲座安排在东、西礼堂各一场的概率是12C .两次讲座中至少有一次安排在东礼堂的概率是34D .若第一次讲座安排在东礼堂,下一次讲座安排在西礼堂的概率是13三、解答题13.春节期间,我国高速公路继续执行“节假日高速免费政策”.某路桥公司为了解春节期间车辆出行的高峰情况,在某高速收费点发现大年初三上午9:20~10:40这一时间段内有600辆车通过,将其通过该收费点的时刻绘成频率分布直方图.其中时间段9:20~9:40记作区间[)20,40,9:40~10:00记作[)40,60,10:00~10:20记作[)60,80,10:20~10:40记作[]80,100,例如:10点04分,记作时刻64.(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取5辆,再从这5辆车中随机抽取3辆,则恰有1辆为9:20~10:00之间通过的概率是多少?14.我国某医药研究所在针对某种世界疾病难题的解决方案中提到了中医疗法,为证实此方法的效用,该研究所购进若干副某种中草药,现按照每副该中草药的重量大小(单位:克)分为4组:[)0,20,[)20,40,[)40,60,[]60,80,并绘制频率分布直方图如下所示:(1)估计每副该中草药的平均重量(同一组中的数据用该区间的中点值作代表);(2)现从每副重量在[)20,40,[]60,80内的中草药中按照分层抽样的方式一共抽取6副该中草药,再从这6副中草药中随机取出2副进行分析,求取出的2副中仅有1副重量在[]60,80中的概率.二、统计案例热点一回归分析求经验回归方程的步骤(1)依据成对样本数据画出散点图,确定两个变量具有线性相关关系(有时可省略).(2)计算出x -,y -,∑n i =1x 2i ,∑ni =1x i y i 的值.(3)计算a ^,b ^.(4)写出经验回归方程.热点二独立性检验独立性检验的一般步骤(1)根据样本数据列2×2列联表;(2)根据公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),计算χ2的值;(3)查表比较χ2与临界值的大小关系,作统计判断.χ2越大,对应假设事件H 0成立(两类变量相互独立)的概率越小,H 0不成立的概率越大.○热○点○题○型二统计案例一、单选题1.以模型()e 0kxy c c =>去拟合一组数据时,设ln z y =,将其变换后得到线性回归方程21z x =-,则c =()A .12B .2e -C .1e -D .e2.下列说法正确的有()①对于分类变量X 与Y ,它们的随机变量2K 的观测值k 越大,说明“X 与Y 有关系”的把握越大;②我校高一、高二、高三共有学生4800人,其中高三有1200人.为调查需要,用分层抽样的方法从全校学生中抽取一个容量为200的样本,那么应从高三年级抽取40人;③若数据1x 、2x 、L 、n x 的方差为5,则另一组数据11x +、21x +、L 、1n x +的方差为6;④把六进制数()6210转换成十进制数为:()012621006162678⨯⨯⨯=++=.A .①④B .①②C .③④D .①③3.给出以下四个命题:①在回归分析中,可用相关指数2R 的值判断模型的拟合效果,2R 越大,模型的拟合效果越好;②回归模型中离差是实际值i y 与估计值ˆy的差,离差点所在的带状区域宽度越窄,说明模型拟合精度越高;③在一组样本数据()()()1122,,,,,,n n x y x y x y ⋅⋅⋅(2n ≥,12,,,n x x x ⋅⋅⋅不全相等)的散点图中,若所有样本点()(),1,2,,i i x y i n =⋅⋅⋅都在直线112y x =-+上,则这组样本数据的线性相关系数为12-;④对分类变量x 与y 的统计量2χ来说,2χ值越小,判断“x 与y 有关系”的把握程度越大.其中,真命题的个数为()A .1B .2C .3D .44.如图是近十年来全国城镇人口、乡村人口的折线图(数据来自国家统计局).根据该折线图,下列说法错误的是()A .城镇人口与年份呈现正相关B .乡村人口与年份的相关系数r 接近1C .城镇人口逐年增长率大致相同D .可预测乡村人口仍呈现下降趋势5.已知变量,x y 之间的线性回归方程为ˆ0.47.6yx =-+,且变量,x y 之间的一组相关数据如表所示,x681012y6m32则下列说法中错误的有()A .变量,x y 之间呈现负相关关系B .变量,x y 之间的相关系数0.4r =-C .m 的值为5D .该回归直线必过点(9,4)6.设两个相关变量x 和y 分别满足下表:x12345y128816若相关变量x 和y 可拟合为非线性回归方程ˆ2bx a y+=,则当6x =时,y 的估计值为()(参考公式:对于一组数据()11u v ,,()22u v ,,⋯,()n n u v ,,其回归直线ˆˆˆvu αβ=+的斜率和截距的最小二乘估计公式分别为:1221ˆni ii nii u v nu vunu β==-⋅=-∑∑,ˆˆav u β=-;51.152≈)A .33B .37C .65D .737.通过随机询问相同数量的不同性别大学生在购买食物时是否看营养说明,得知有16的男大学生“不看”,有13的女大学生“不看”,若有99%的把握认为性别与是否看营养说明之间有关,则调查的总人数可能为()A .150B .170C .240D .1758.已知一组样本数据()()()1122,,,,,,n n x y x y x y ,根据这组数据的散点图分析x 与y 之间的线性相关关系,若求得其线性回归方程为0.8587ˆ 5.yx =-,则在样本点(165,57)处的残差为()A . 2.45-B .2.45C .3.45D .54.55二、多选题9.下列关于成对数据的统计说法正确的有()A .若当一个变量的值增加时,另一个变量的相应值呈现减少的趋势,则称这两个变量负相关B .样本相关系数r 的绝对值大小可以反映成对样本数据之间线性相关的程度C .通过对残差的分析可以判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据D .决定系数2R 越大,模型的拟合效果越差10.某服装生产商为了解青少年的身高和体重的关系,在15岁的男生中随机抽测了10人的身高和体重,数据如下表所示:编号12345678910身高/cm 165168170172173174175177179182体重/kg55896165677075757880由表中数据制作成如下所示的散点图:由最小二乘法计算得到经验回归直线1l 的方程为 11y bx a =+ ,相关系数为1r ,决定系数为21R ;经过残差分析确定()168,89为离群点(对应残差过大),把它去掉后,再用剩下的9组数据计算得到经验回归直线2l 的方程为 22y bx a =+ ,相关系数为2r ,决定系数为22R .则以下结论中正确的有()A . 12a a >B .12bb > C .12r r <D .2212R R >11.下列命题中为真命题的是()A .用最小二乘法求得的一元线性回归模型的残差和一定是0.B .一组数按照从小到大排列后为:1x ,2x ,…,n x ,计算得:25%17n ⨯=,则这组数的25%分位数是17x .C .在分层抽样时,如果知道各层的样本量、各层的样本均值及各层的样本方差,可以计算得出所有数据的样本均值和方差.D .从统计量中得知有97%的把握认为吸烟与患肺病有关系,是指推断有3%的可能性出现错误.12.给出下列说法,其中正确的是()A .某病8位患者的潜伏期(天)分别为3,3,8,4,2,7,10,18,则它们的第50百分位数为5.5B .已知数据12,,x x 的平均数为2,方差为3,那么数据121x +,221x +,L 的平均数和方差分别为5,13C .在回归分析中,变量间的关系若是非确定性关系,那么因变量不能由自变量唯一确定D .样本相关系数()1,1r ∈-三、解答题13.国家发改委和住建部等六部门发布通知,提到:2025年,农村生活垃圾无害化处理水平将明显提升.现阶段我国生活垃圾有填埋、焚烧、堆肥等三种处理方式,随着我国生态文明建设的不断深入,焚烧处理已逐渐成为主要方式.根据国家统计局公布的数据,对2013-2020年全国生活垃圾焚烧无害化处理厂的个数y (单位:座)进行统计,得到如下表格:年份20132014201520162017201820192020年份代码x 12345678垃圾焚烧无害化处理厂的个数y166188220249286331389463(1)根据表格中的数据,可用一元线性回归模型刻画变量y 与变量x 之间的线性相关关系,请用相关系数加以说明(精确到0.01);(2)求出y 关于x 的经验回归方程,并预测2022年全国生活垃圾焚烧无害化处理厂的个数;(3)对于2035年全国生活垃圾焚烧无害化处理厂的个数,还能用(2)所求的经验回归方程预测吗?请简要说明理由.参考公式:相关系数()()ni i x x y y r --=∑ˆˆˆybx a =+中斜率和截距的最小二乘法估计公式分别为()()()121ˆˆˆ,n ii i ni i x x yy b a y bx x x ==--==-∑∑参考数据:88882211112292,204,730348,12041i i i i i i i i i y x y x y ========∑∑∑∑,257385.84=≈≈14.为加快推动旅游业复苏,进一步增强居民旅游消费意愿,山东省人民政府规定自2023年1月21日起至3月31日在全省实施景区门票减免,全省国有A 级旅游景区免首道门票,鼓励非国有A 级旅游景区首道门票至少半价优惠.本次门票优惠几乎涵盖了全省所有知名的重点景区,据统计,活动开展以来游客至少去过两个及以上景区的人数占比约为90%.某市旅游局从游客中随机抽取100人(其中年龄在50周岁及以下的有60人)了解他们对全省实施景区门票减免活动的满意度,并按年龄(50周岁及以下和50周岁以上)分类统计得到如下不完整的22⨯列联表:不满意满意总计50周岁及以下5550周岁以上15总计100(1)根据统计数据完成以上22⨯列联表,并根据小概率值0.001α=的独立性检验,能否认为对全省实施景区门票减免活动是否满意与年龄有关联?(2)现从本市游客中随机抽取3人了解他们的出游情况,设其中至少去过两个及以上景区的人数为X ,若以本次活动中至少去过两个及以上景区的人数的频率为概率.①求X 的分布列和数学期望;②求()11P X -≤.参考公式及数据:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.()2P k αχ=≥0.1000.0500.0100.001k 2.706 3.841 6.63510.828。
2019-2020年全国通用2017年高考数学大二轮专题复习第二编专题整合突破专题七概率与统计第一讲计数原理二项
(2)满足 a,b∈{-1,0,1,2},且关于 x 的方程 ax2+2x+b
=0 有实数解的有序数对(a,b)的个数为( )
A.14
B.13
C.12
D.10
[解析] 方程 ax2+2x+b=0 有实数解的情况应分类讨
论.当 a=0 时,关于 x 的方程为 2x+b=0,此时有序数对
(0,-1),(0,0),(0,1),(0,2)均满足要求;当 a≠0 时,Δ=
2.[2015·天津五区县一模] 如图,用四种不同的颜色给 图中的 A,B,C,D,E,F 六个点涂色,要求每个点涂一 种颜色,且图中每条线段的两个端点涂不同颜色,则不同的 涂色方法有( )
A.288 种 C.240 种
B.264 种 D.168 种
解析 解法一:先涂 A,D,E 三个点,共有 4×3×2 =24(种)涂法,然后再按 B,C,F 的顺序涂色,分为两类:
4-4ab≥0,ab≤1,此时满足要求的有序数对为(-1,-1),
(-1,0),(-1,1),(-1,2),(1,-1),(1,0),(1,1),(2,-
1),(2,0).综上,满足要求的有序数对共有 4+9=13(个),
故选 B.
应用两个计数原理解题的方法 (1)在应用分类计数原理和分步计数原理时,一般先分类 再分步,每一步当中又可能用到分类计数原理. (2)对于复杂的两个原理综合使用的问题,可恰当列出示 意图或表格,使问题形象化、直观化.
中考数学专题复习—— 概率与统计
中考数学专题复习——概率与统计概率的本质随机现象用以下两个特征来刻划:一个是结果的随机性,即在相同条件下作重复实验时,实验的结果不止一个,在实验之前无法预知那一个结果会发生;另一个是频率的稳定性,既大量实验时,任一结果(事件)出现的频率尽管是随机的,却稳定在这个事件发生的概率的附近,实验次数越多,频率与概率偏差大的可能性越小。
一、你会玩摸球游戏吗?例1、一只不透明的袋子中,装有2个白球和1个红球,这些球除颜色外都相同。
(1)小明认为,搅均后从中任意摸出一个球,不是白球就是红球,因此摸出白球和摸出红球是等可能的。
你同意他的说法吗?为什么?(2)搅均后从中一把摸出两个球,请通过列表或树状图求两个球都是白球的概率;(3)搅均后从中任意摸出一个球,要使摸出红球的概率为23,应如何添加红球?二、你会玩中学吗?命题趋势分析:1、概率与其它知识点的有机结合是近年来中考命题的热点和今后的方向,值得我们关注。
2、结合具体问题,直接考查统计与概率的有关概念、图象信息捕捉运用能力。
命题趋势一:概率与其它知识点的有机结合例2、有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字-1,-2和-3.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x-3上的概率.(一)方程一只不透明的袋子中装有4个小球,分别标有数字2,3,4,x,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和.记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表:解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;(2)根据(1),若x是不等于2,3,4的自然数,试求x的值.(二)不等式已知关于x的不等式ax+3>0(a≠0).(1)当a=-2时,求此不等式的解,并在数轴上表示此不等式的解集;(2)小明准备了十张形状、大小完全相同的不透明卡片,上面分别写有整数-10、-9、-8、-7、-6、-5、-4、-3、-2、-l,将这10张卡片写有整数的一面向下放在桌面上.从中任意抽取一张,以卡片上的数作为不等式中的系数a,求使该不等式没有正整数解的概率.(三)二元一次方程的整数解不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为0.5.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?(四)完全平方数在a2□4a□4的空格□中,任意填上“+”或“-”,在所有得到的代数式中,能构成完全平方式的概率是()A、1B、12C、13D、14(五)相似三角形如图,在梯形ABCD中,若AB//DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少(注意:全等看成相似的特例)?(2)请你任选一组相似三角形,并给出证明.命题趋势二:结合具体问题,直接考察统计与概率的有关概念、图象信息捕捉运用能力基本概念有三数(平均数、中位数、众数)、三差(极差、方差、标准差)、对事件和概率的理解,主要考查形式以填空题和选择题为主。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热点专题七统计与概率热点专题七统计与概率【考点聚焦】统计与概率主要是研究现实生活中的数据和客观世界中的随机现象,它通过对数据收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们做出合理的决策.随着社会的不断发展,统计与概率的思想方法也越来越重要.因此,统计与概率知识是各地中考重点考查内容之一.1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现.2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算.3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍,4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件.5.加强统计与概率的联系,这方面的题型以综合题为主,将逐渐成为新课标下中考的热点问题.【热点透视】热点1:通过丰富的实例,感受抽样的必要性,能指出总体、个体、样本,通过实例体会用样本估计总体的思想,能用样本的平均数、方差来估计总体的平均数和方差.例1(2008娄底)去年娄底市有7.6万学生参加初中毕业会考,为了解这7.6万名学生的数学成绩,从中抽取1 000名考生的数学成绩进行统计分析,以下说法正确的是()(A)这1 000名考生是总体的一个样本(B)7.6万名考生是总体(C)每位考生的数学成绩是个体(D)1 000名学生是样本容量分析:在这个问题中,样本应是“1 000名考生的数学成绩”而不是“1 000名考生”,所以(A)不正确,同样总体是指“7.6万名考生的数学成绩”这一数量指标,而不是“7.6万名考生”这个具体对象,所以(B)不正确,样本容量是样本中个体的数目,故样本容量是1 000,(D)显然不正确.解:选(C).点评:总体,个体,样本,样本容量是统计里的重要概念,用样本估计总体是统计的基本思想方法,也是一个重要的考点.热点2:在具体情境中计算平均数、加权平均数、众数、中位数;根据具体问题,能选择合适的统计量表示数据的集中趋势.例2(2008长沙)某校社会实践小组八位成员上街卖报,一天的卖报数如下表:则卖报数的众数为()(A)25(B)26(C)27(D)28分析:本题考查如何确定众数,观察发现表中卖报数为28份的最多,为3人,故众数为28.解:选(D).点评:确定众数的方法是找该组数据中出现次数最多的数,如果有多个数出现的次数相同,那这些出现次数相同的数都是这组数据的众数;平均数、众数、中位数及其应用,在中考试卷中它们有机地交汇于实际情境中,考查应用意识.热点3:会用条形统计图、折线统计图、扇形统计图直观表示数据,能从统计图中获得所需要的信息回答相关问题是最常见的题型之一.例3(2008郴州)“农民也可以报销医疗费了!”这是某市推行新型农村合作医疗的成果.村民只要每人每年交10元钱,就可以加入合作医疗,每年先由自己支付医疗费,年终时可得到按一定比例返回的返回款.这一举措极大地增强了农民抵御大病风险的能力.小华与同学随机调查了他们乡的一些农民,根据收集到的数据绘制了如图1的统计图.根据以上信息,解答以下问题:(1)本次调查了多少村民,被调查的村民中,有多少人参加合作医疗得到了返回款?(2)该乡若有10 000村民,请你估计有多少人参加了合作医疗?要使两年后参加合作医疗的人数增加到9 680人,假设这两年的年增长率相同,求这个年增长率.分析:由条形统计图,可看出共调查了300个村民;从扇形统计图,可以看出占2.5%,即参加合作医疗得到返回款的为6人.解:(1)240+60=300(人),240×2.5%=6(人).(2)因为参加合作医疗的百分率为240300=80%,所以估计该乡参加合作医疗的村民有:10 000×80%=8 000(人).设年增长率为x,由题意知28000(1)9680x⨯+=,解得10.1x=,2 2.1x=-(舍去),即年增长率为10%.答:共调查了300人,得到返回款的村民有6人,估计有8 000人参加了合作医疗,年增长率为10%.点评:条形统计图和扇形统计图是一种基本的统计图表,通过条形统计图可以看到各个对象或多个因素的绝对统计数据,能反应具体的数据;通过扇形统计图可清楚地表示出各部分数量占总量的百分比.本题背景新颖,首先考查了同学们的“图表”阅读能力,其次考查同学们根据图表中反映出的数据解答有关问题的能力.热点4:通过实例理解频数、频率的概念,了解频数分布的意义和作用,会列频数分布表,画频数分布直方图和频数折线图,并能解决简单的实际问题;例4(2008湘潭)某中学为促进课堂教学,提高教学质量,对七年级学生进行了一次“你最喜欢的课堂教学方式”的问卷调查.根据收回的问卷,学校绘制了“频率分布表”和“频数分布条形图”(如图2).请你根据图表中提供的信息,解答下列问题.频率分布表:代号教学方式最喜欢的频数频率1 老师讲,学生听20 0.102 老师提出问题,学生探索思考1003 学生自行阅读教材,独立思考30 0.154 分组讨论,解决问题0.25(1)补全“频率分布表”;(2)在“频数分布条形图”中,将代号为“4”的部分补充完整;(3)你最喜欢以上哪一种教学方式或另外的教学方式,请提出你的建议,并简要说明理由.(字数在20字以内)分析:本题背景材料来源于同学们的生活实际,可从仔细阅读频率分布表和频数分布条形图中获取重要信息来解决问题.解:(1)频数:50;频率:0.5;(2)略;(3)答案不惟一(略).点评:频数、频率、频数分布表,频数分布直方图是重要考点,本题既考查了同学们对统计图表的应用,各种统计量的计算掌握情况,又考查了解释统计结果及根据结果做出简单判断的能力,同时还为同学们留有个性化的思考和创新的空间.热点5:考查极差和方差的意义和计算方法,并会用它们表示数据的离散程度例5(2008岳阳)某地统计部门公布最近五年国民消费指数增长率分别为8.5%,9.2%,9.9%,10.2%,9.8%.业内人士评论说:“这五年消费指数增长率之间相当平稳”,从统计角度看,“增长率之间相当平稳”说明这组数据的()比较小.(A)方差(B)平均数(C)众数(D)中位数分析:由题可知,判断“增长率之间是否相当平稳”,是考查数据的波动大小(离散程度).解:选(A).点评:统计中,数据的代表比较多,如平均数、众数、中位数、方差、极差、频数、频率等等,它们表示的意义各不相同,我们应抓住它们的本质.对统计概念的掌握一直以来都是中考的考点,新课标下的中考也不例外.热点6:会判断一个事件是确定事件(必然事件和不可能事件)还是不确定事件例6(2008张家界)下列事件中是必然事件的是()(A)明天我市天气晴朗(B)两个负数相乘,结果是正数(C)抛一枚硬币,正面朝下(D)在同一个圆中,任画两个圆周角,度数相等分析:此题主要考查对确定事件与不确定事件的了解和掌握,准确对几类事件概念的理解是解决此题的关键.解:选(B).点评:这类题是基础题,只要弄清概率的基本概念,不难正确解决.热点7:理解概率的意义,会求一些事件的概率;会运用列举法(列表、画树状图)计算事件发生的概率,并能利用它们解决实际问题例7(2008怀化)“六一”儿童节前夕,我市某县“关心下一代工作委员会”决定对品学兼优的“留守儿童”进行表彰,某校八年级8个班中只能选两个班级参加这项活动,且8(1)班必须参加,另外再从其它班级中选一个班参加活动.8(5)班有学生建议采用如下的方法:将一个带着指针的圆形转盘分成面积相等的4个扇形,并在每个扇形上分别标上1,2,3,4四个数字,转动转盘两次,将两次指针所指的数字相加,(当指针指在某一条等分线上时视为无效,重新转动)和为几就选哪个班参加,你认为这种方法公平吗?请说明理由.分析:本例是判断游戏公平的题,它的关键是正确求出概率,而后看它们获胜的概率是否相等.解:方法不公平.用表格说明:所以,八(2)班被选中的概率为:116,八(3)班被选中的概率为:21168=,八(4)班被选中的概率为:316,八(5)班被选中的概率为:41164=,八(6)班被选中的概率为:316,八(7)班被选中的概率为:21168=,八(8)班被选中的概率为:116,所以这种方法不公平.点评:判断游戏是否公平的(或者奖项设置是否合理)原则是双方获胜的概率是否相等,公平的游戏机会是相等的;这类题既可以考查同学们正确掌握求概率方法的程度,也可以考查同学们运用概率思想和知识解决实际问题的能力.无论是强化应用意识,还是培养综合能力,都是有价值的.【考题预测】1.我市某一周的最高气温统计如下表:则这组数据的中位数与众数分别是()(A)27,28(B)27.5,28(C)28,27(D)26.5,272.将五张分别画有等边三角形、平行四边形、矩形、等腰梯形、正六边形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张卡片,图形一定是中心对称图形的概率是()(A)15(B)25(C)35(D)453.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()(A)12(B)9(C)4(D)34.随着中国经济的高速发展,股市持续上涨,到2007年5月28日止,股市的开户人数已达到1亿人,同日对股民的市场抽样调查如图3所示,据此估计当日对后市看涨的股民为_________万人.5.据统计,某州今年参加初三毕业会考的学生为46 000人.为了了解全州初三考生毕业会考数学考试情况,从中随机抽取了500名考生的数学成绩进行统计分析,在这个问题中,样本容量是________.6.某市篮球队到市一中选拔一名队员.教练对王亮和李刚两名同学进行5次3分投篮测试,每人每次投10个球,图4记录的是这两名同学5次投篮中所投中的个数.(1)请你根据图中的数据,填写下表.姓名平均数众数方差王亮7李刚7 2.8(2)你认为谁的成绩比较稳定,为什么?(3)若你是教练,你打算选谁?简要说明理由.7.为了进一步了解九年级学生的身体素质情况,体育老师对九年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图.如下所示:请结合图表完成下列问题:(1)表中的a ___________;(2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第________组;(4)若九年级学生一分钟跳绳次数(x)达标要求是:x<120不合格;120≤x<140为合格;140≤x<160为良;x≥160为优.根据以上信息,请你给学校或九年级同学提一条合理化建议:___________________.8.小华与小丽设计了A B,两种游戏:游戏A的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.游戏B的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌.若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜;否则小丽获胜.请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.。