理论力学—动能定理PPT
合集下载
7-7动能和动能定理(共34张PPT)
(1)小球抛出点A距圆弧轨道B端的高度h.
(2)小球经过轨道最低点C时对轨道的压力FC (3)小球能否到达轨道最高点D?若能到达,试求对D点的压力FD
.若不能到达,试说明理由.
4. (12分)光滑曲面轨道置于高度为H=1.8m的平台上,其末端切线水 平;另有一长木板两端分别搁在轨道末端点和水平地面间,构成 倾角为 的斜面,如图所示。一个可视作质点的质量为m=1kg 的小球,从光滑曲面上由静止开始下滑(不计空气阻力,g取 10m/s2, )
(1)圆弧轨道的半径及轨道BC 所对圆心角(可用角度的三角函数 值表示)
(2)小球与斜面 AB 间的动摩擦因数
1.图中ABCD是一条长轨道,其中AB段是倾角为θ的斜面 ,CD是水平的,BC是与AB和CD都相切的一小段圆弧,其 长度可以略去不计,一质量为m的小滑块在A点从静止状 态释放,沿轨道滑下,最后停在D点,A点和D点的位置如图 所示, ,现用一沿轨道方向的力推滑块,使它缓慢地由D点 推回到A点时停下,设滑块与轨道间的摩擦系数为μ,则推 力做的功等于
4.(讨论)电动机通过一条绳子吊起质量为8kg的 物体。绳的拉力不能超过120N,电动机的功率不 能超过1 200W,要将此物体由静止起,用最快 的方式将பைடு நூலகம்体吊高90m(已知物体在被吊高90m 以前已开始以最大速度匀速上升),所需时间为 多少?(g取10 m/s2)
习题课
1.如图所示,在同一竖直平面内的两正对着的相同半圆光
(B)距离OA大于OB;
(C)距离OA小于OB;
(D)无法做出明确的判断。
3.一木块由A点自静止开始下滑,沿ACEB运动到 最高点B设动摩擦因数μ处处相同,转 角处撞击 不计机械能损失,测得A、B两点连线与水平方 向夹角为θ ,则木块与接触面间动摩擦因数μ为B (B)
(2)小球经过轨道最低点C时对轨道的压力FC (3)小球能否到达轨道最高点D?若能到达,试求对D点的压力FD
.若不能到达,试说明理由.
4. (12分)光滑曲面轨道置于高度为H=1.8m的平台上,其末端切线水 平;另有一长木板两端分别搁在轨道末端点和水平地面间,构成 倾角为 的斜面,如图所示。一个可视作质点的质量为m=1kg 的小球,从光滑曲面上由静止开始下滑(不计空气阻力,g取 10m/s2, )
(1)圆弧轨道的半径及轨道BC 所对圆心角(可用角度的三角函数 值表示)
(2)小球与斜面 AB 间的动摩擦因数
1.图中ABCD是一条长轨道,其中AB段是倾角为θ的斜面 ,CD是水平的,BC是与AB和CD都相切的一小段圆弧,其 长度可以略去不计,一质量为m的小滑块在A点从静止状 态释放,沿轨道滑下,最后停在D点,A点和D点的位置如图 所示, ,现用一沿轨道方向的力推滑块,使它缓慢地由D点 推回到A点时停下,设滑块与轨道间的摩擦系数为μ,则推 力做的功等于
4.(讨论)电动机通过一条绳子吊起质量为8kg的 物体。绳的拉力不能超过120N,电动机的功率不 能超过1 200W,要将此物体由静止起,用最快 的方式将பைடு நூலகம்体吊高90m(已知物体在被吊高90m 以前已开始以最大速度匀速上升),所需时间为 多少?(g取10 m/s2)
习题课
1.如图所示,在同一竖直平面内的两正对着的相同半圆光
(B)距离OA大于OB;
(C)距离OA小于OB;
(D)无法做出明确的判断。
3.一木块由A点自静止开始下滑,沿ACEB运动到 最高点B设动摩擦因数μ处处相同,转 角处撞击 不计机械能损失,测得A、B两点连线与水平方 向夹角为θ ,则木块与接触面间动摩擦因数μ为B (B)
动能定理课件ppt
详细描述
在足球、篮球等球类运动中,动能定理可以用来研究球的飞行轨迹,预测球的落 点,以及分析碰撞过程中的能量转换。此外,动能定理还可以帮助优化球的速度 和旋转,提高射门或投篮的准确性。
车辆行驶
总结词
运用动能定理可以研究车辆行驶过程中 的各种问题,包括车辆的加速、制动以 及行驶稳定性等。
VS
详细描述
实验器材
滑轮
速度传感器 质量块
细绳 弹簧测力计
实验步骤与数据记录
2. 使用弹簧测力计测量质量块受 到的拉力F。
4. 记录数据:拉力F、速度v和质 量块的质量m。
1. 将滑轮固定在一个支架上,通 过细绳连接质量块和滑轮。
3. 启动速度传感器,测量质量块 的速度v。
5. 在实验过程中,不断改变质量 块的速度,重复步骤2-4,获得多 组数据。
详细描述
力对物体做功会引起物体的动能变化。动能 定理是指合外力的功等于物体动能的增量, 即合外力对物体做的功等于物体动能的增量 。这个定理可以用来定量描述力与动能之间 的关系。
05
动能定理的拓展形式
势能与动能的关系
势能与动能是相互依存的两种能量形式,势能可以转化为动能,动能也可以转化为 势能。
在机械系统中,势能和动能的总和是恒定的,这种关系可以通过机械能守恒定律来 描述。
圆周运动的动能定理
总结词
简单描述圆周运动的动能定理的公式和含义。
详细描述
在圆周运动中,物体动能的增加量等于外力对物体所做的功。即外力做的功等 于物体动能的增加量。特别地,在物体做匀速圆周运动时,由于速度大小不变 ,所以物体的动能增量为零,合外力对物体不做功。
03
动能定理的应用场景
投掷比赛总Βιβλιοθήκη 词动能定理课件目录
在足球、篮球等球类运动中,动能定理可以用来研究球的飞行轨迹,预测球的落 点,以及分析碰撞过程中的能量转换。此外,动能定理还可以帮助优化球的速度 和旋转,提高射门或投篮的准确性。
车辆行驶
总结词
运用动能定理可以研究车辆行驶过程中 的各种问题,包括车辆的加速、制动以 及行驶稳定性等。
VS
详细描述
实验器材
滑轮
速度传感器 质量块
细绳 弹簧测力计
实验步骤与数据记录
2. 使用弹簧测力计测量质量块受 到的拉力F。
4. 记录数据:拉力F、速度v和质 量块的质量m。
1. 将滑轮固定在一个支架上,通 过细绳连接质量块和滑轮。
3. 启动速度传感器,测量质量块 的速度v。
5. 在实验过程中,不断改变质量 块的速度,重复步骤2-4,获得多 组数据。
详细描述
力对物体做功会引起物体的动能变化。动能 定理是指合外力的功等于物体动能的增量, 即合外力对物体做的功等于物体动能的增量 。这个定理可以用来定量描述力与动能之间 的关系。
05
动能定理的拓展形式
势能与动能的关系
势能与动能是相互依存的两种能量形式,势能可以转化为动能,动能也可以转化为 势能。
在机械系统中,势能和动能的总和是恒定的,这种关系可以通过机械能守恒定律来 描述。
圆周运动的动能定理
总结词
简单描述圆周运动的动能定理的公式和含义。
详细描述
在圆周运动中,物体动能的增加量等于外力对物体所做的功。即外力做的功等 于物体动能的增加量。特别地,在物体做匀速圆周运动时,由于速度大小不变 ,所以物体的动能增量为零,合外力对物体不做功。
03
动能定理的应用场景
投掷比赛总Βιβλιοθήκη 词动能定理课件目录
二讲动能动能定理【共51张PPT】
力做功WG=mgh 摩擦力做功Wf=-μmgcosθ·
h s in
物体在水平面上运动时,只有滑动摩擦力做功
Wf′=-μmg(s-
h). ta n
解法一:“隔离”过程,分段研究,设最低点物体速度为v,物体由
A到最低点根据动能定理得:
mgh-μmgcosθ·
h m1v2-0 ① sin 2
物体在水平面上运动,同理有:
(3)因动能定理中的功和动能均与参考系的选取有关,所以动能定理也
与参考系的选取有关,一般以地面为参考系.
三、运用动能定理须注意的问题
应用动能定理解题时,在分析过程时无需深究物体运动过程中状 态变化的细节,只需考虑整体的功及过程始末的动能.若过程包含 了几个运动性质不同的分过程,既可分段考虑,也可整体考虑.但求功 时,有些力不是全过程都作用的,必须根据不同的情况分别对待求出总 功,计算时要把各力的功连同符号(正负)一同代入公式.
答案:ACD
解析:合外力对物体做功W=mv2/2=1×22/2 J=2 J,手对物体做功 W1=mgh+mv2/2=1×10×1 J+2 J=12 J,物体克服重力做功 mgh=10 J.
4.( ·广东高考)一个25 kg的小孩从高度为3.0 m的滑梯顶端由 静止开始滑下,滑到底端时的速度为2.0 m/s.取g=10 m/s2,关 于力对小孩做的功,以下结果正确的是( )
2.子弹以某速度击中静止在光滑水平面上的木块,当子弹进入 木块深度为x时,木块相对水平面移动距离为x ,求木块获得的 动能ΔEk1和子弹损失的动能ΔEk2之比_____2 ___.
答 案 :1 3
解析:本题容易出错在使用动能定理时,乱用参考系,没有统一
确所定以以地E k面1 为F参f 2x考系1,木子块弹的损位失移的为动2x 能,子大弹于的木位块移获为得x的 动2x 能,
动能和动能定理资料ppt课件
T 变力
h mg
求变力做功问题
瞬间力动做能功和动问能定题理
运动员踢球的平均作用力为200N,把一个静止 的质量为1kg的球以10m/s的速度踢出,水平面 上运动60m后停下,则运动员对球做的功?如果 运动员踢球时球以10m/s迎面飞来,踢出速度仍 为10m/s,则运动员对球做的功为多少?
vo
v=0
A、 1:2
B、 2:3
C、 2:1
D、 3:2
AmA gLA
0
1 2
mAv02
BmB gLB
0
1 2
mBv02
LA B 3 LB A 2
例与练
动能和动能定理
5、质量为2Kg的物体沿半径为1m的1/4圆 弧从最高点A由静止滑下,滑至最低点B时 速率为4m/s,求物体在滑下过程中克服阻 力所做的功。
(4)根据动能定理列方程求解;
例与练
动能和动能定理
1、同一物体分别从高度相同,倾角不同的 光滑斜面的顶端滑到底端时,相同的物理量 是( )
A.动能
B.速度
C.速率
D.重力所做的功 WG mgh
mgh 1 mv2 0 2
v 2gh
例与练
动能和动能定理
2、质量为m=3kg的物体与水平地面之间的
动能和动能定理
二、动能的表达式
v22 v12 2al
a v22 v12 2l
又F ma m v22 v12
2l
WF
Fl
m v22 v12 2l
l
1 2
mv22
1 2
mv12
二、动能的表达式
动能和动能定理
WF
1 2
mv22
1 2
理论力学课件 动能定理
mv 2
T 1 9M 4mv2
12
23
例题:已知行星齿轮半径为 r ,质量为 m1,可看作均质圆盘; 曲柄 OA 的质量为 m2 ,可看作均质杆;中心齿轮节圆半径 为 R 。若曲柄以匀角速度 转动,试求此机构的动能。
R O
Ar
24
R O
Ar
解:机构由 中心齿轮,行星齿轮,曲柄 组成。
O
A I
TOA
1 2
1 3
M
R
r 2
1 6
M R
r 2
TA
1 2
mvA2
1 2
1 2
m
r 2
1 mR r2
2
1 mR r
4
3 mR r2
4
T 1 2M 9mR r 2
12 18
例题:图示椭圆规尺 AB 的质量 为 2m1 ,曲柄 OC 的质量为 m1 , 而滑块 A 和 B 的质量均为 m2 。 已知 OC = AC = CB = l , 曲柄和尺 的质心分别在其中点上 , 曲柄绕O 轴 转动的角速度 为常量 . 求图示 瞬时系统的动能。
38
阅读材料和作业
1.阅读材料: (1)P286----P292;
P301----P304.
2.作业: (1)12---2; 12---4
3.预习内容 (1)P292---P298 ; P304---P306
39
例题. 物体A和B质量分别为M =14Kg和m = 6Kg,刚 性系数为k=100N/m的弹簧与物体连接如图,=30o; l=(8/9)m物体B由静止下滑 不计摩擦. 求两物体发生 完全非弹性碰撞后下滑的最大距离s.
理论力学PPT课件第6章 动能定理
碰撞:运动物体在突然受到冲击(包括突然受到约束或 解除约束)时,其运动速度发生急剧变化的现象称为碰撞。
2020年2月10日
36
对接碰撞
2020年2月10日
37
2020年2月10日
38
2020年2月10日
39
2020年2月10日
40
2020年2月10日
?这与碰撞 有关系吗 41
2020年2月10日
47
一、 碰撞的特征和基本假定
1. 碰撞的特征:物体的运动速度或动量在极短的 时间内发生极巨的改变。碰撞时间之短往往以千分 之一秒甚至万分之一秒来度量。因此加速度非常大, 作用力的数值也非常大。
碰撞力(瞬时力):在碰撞过程中出现的数值 很大的力称为碰撞力;由于其作用时间非常短促, 所以也称为瞬时力。
2R R
2
R2
1 2 kR2
WgA-B W zA zB WR
2020年2月10日
10
4.外力对平面运动刚体的功
dW Fie dri
O ri
ri rc ri
rC
vi vc ω ri
Fn
dri drc d ri
vi
2
3. 柯尼希定理
T
1 2
mvC2
1 2
mi
vi2r
2020年2月10日
15
(1)平移刚体的动能
T
1 2
mvC2
(2)定轴转动刚体的动能
T
1 2
J z 2
(3)平面运动刚体的动能
T= 1 2
mvC2
1 2
JC 2
2020年2月10日
36
对接碰撞
2020年2月10日
37
2020年2月10日
38
2020年2月10日
39
2020年2月10日
40
2020年2月10日
?这与碰撞 有关系吗 41
2020年2月10日
47
一、 碰撞的特征和基本假定
1. 碰撞的特征:物体的运动速度或动量在极短的 时间内发生极巨的改变。碰撞时间之短往往以千分 之一秒甚至万分之一秒来度量。因此加速度非常大, 作用力的数值也非常大。
碰撞力(瞬时力):在碰撞过程中出现的数值 很大的力称为碰撞力;由于其作用时间非常短促, 所以也称为瞬时力。
2R R
2
R2
1 2 kR2
WgA-B W zA zB WR
2020年2月10日
10
4.外力对平面运动刚体的功
dW Fie dri
O ri
ri rc ri
rC
vi vc ω ri
Fn
dri drc d ri
vi
2
3. 柯尼希定理
T
1 2
mvC2
1 2
mi
vi2r
2020年2月10日
15
(1)平移刚体的动能
T
1 2
mvC2
(2)定轴转动刚体的动能
T
1 2
J z 2
(3)平面运动刚体的动能
T= 1 2
mvC2
1 2
JC 2
理论力学课件:动能定理
指标之一,一般机械效率η可由机械设计手册查得。
动能定理
【例12-8】 C618车床的主轴转速n=42r/min时,其切削力
P=14.3kN,若工件直径d=115mm,电动机到主轴的机械效率
η=0.76。求此时电动机的功率为多少?
解 由式(12-12)得切削力P 的功率:
动能定理
12.5 势力场 势能及机械能守恒定理
动能定理
动能定理
12.4 功率 功率方程
1.功率
在单位时间内力所做的功称为功率。它是衡量机器工作
能力的一个重要指标。
δW 是dt时间内力的元功,则功率为
动能定理
由于元功为δW =Ft·ds,因此
即,力的功率等于切向力与力作用点速度的乘积
力矩的元功为δW =M·dφ,则
即,力矩的功率等于力矩与物体转动角速度的乘积。
动能定理
动能定理
12.1 力的功
12.2 质点 质点系的动能
12.3 质点与质点系的动能定理
12.4 功率 功率方程
12.5 势力场 势能及机械能守恒定理
12.6 动力学普遍定理及综合应用
思考题
动能定理
12.1 力 的 功
工程实际中,一物体受力的作用所引起运动状态的变化,
不仅取决于力的大小和方向,而且与物体在力的作用下经过
的功。
动能定理
图12-15
动能定理பைடு நூலகம்
【例12-4】 在图12-16中,为测定摩擦系数f,把矿车置于
斜坡上的A 点处,让其无初速下滑。当它达到B 点时,靠惯性
又往前滑行一段路程,在C 点处停止。求摩擦系数f0,已知S1、
S2 和h。
图12-16
动能定理
动能定理
【例12-8】 C618车床的主轴转速n=42r/min时,其切削力
P=14.3kN,若工件直径d=115mm,电动机到主轴的机械效率
η=0.76。求此时电动机的功率为多少?
解 由式(12-12)得切削力P 的功率:
动能定理
12.5 势力场 势能及机械能守恒定理
动能定理
动能定理
12.4 功率 功率方程
1.功率
在单位时间内力所做的功称为功率。它是衡量机器工作
能力的一个重要指标。
δW 是dt时间内力的元功,则功率为
动能定理
由于元功为δW =Ft·ds,因此
即,力的功率等于切向力与力作用点速度的乘积
力矩的元功为δW =M·dφ,则
即,力矩的功率等于力矩与物体转动角速度的乘积。
动能定理
动能定理
12.1 力的功
12.2 质点 质点系的动能
12.3 质点与质点系的动能定理
12.4 功率 功率方程
12.5 势力场 势能及机械能守恒定理
12.6 动力学普遍定理及综合应用
思考题
动能定理
12.1 力 的 功
工程实际中,一物体受力的作用所引起运动状态的变化,
不仅取决于力的大小和方向,而且与物体在力的作用下经过
的功。
动能定理
图12-15
动能定理பைடு நூலகம்
【例12-4】 在图12-16中,为测定摩擦系数f,把矿车置于
斜坡上的A 点处,让其无初速下滑。当它达到B 点时,靠惯性
又往前滑行一段路程,在C 点处停止。求摩擦系数f0,已知S1、
S2 和h。
图12-16
动能定理
动能和动能定理课件ppt
其他动能应用的例子
工业生产
在工业生产中,许多设备的运转需要依靠动能的转化和传递,如传送带、搅 拌器等,通过对这些设备的动能转化和传递过程进行分析和优化,可以提高 设备的效率和稳定性。
交通运输
在交通运输中,车辆的行驶需要依靠动能的作用,通过对车辆行驶过程中的 动能转化和利用进行分析和优化,可以提高车辆的燃油经济性和行驶安全性 。
动能与速度的关系
动能定义
物体由于运动而具有的能量称为动能,其数值等 于物体质量和速度平方乘积的二分之一。
动能与速度的关系
动能的大小与速度的大小成正比,即速度越大, 动能越大。
公式表达
$E_{k} = \frac{1}{2}mv^{2}$
动能定理与功的关系
动能定理定义
动能定理是物理学中关于运动 和力之间关系的定理之一,它 指出物体动能的变化等于它所
2023
动能和动能定理课件ppt
目 录
• 动能和动能定理的概述 • 动能和动能定理的物理意义 • 动能和动能定理的应用 • 动能和动能定理的实验验证 • 动能和动能定理在日常生活中的应用 • 动能和动能定理在物理学中的影响
01
动能和动能定理的概述
动能的概念
01
02
03
定义
动能是指物体由于运动而 具有的能量,通常用符号 E表示。
03
动能和动能定理在理论物理学中的主要应用包括:质点动力学、弹性碰撞和非 弹性碰撞、角动量、转动惯量、刚体动力学、流体力学、电磁学等等。
动能和动能定理在实验物理学中的影响
实验物理学是研究实验方法和实验技术的物理 学分支,动能和动能定理在实验物理学中有着 广泛的应用。
动能定理是实验物理学中一个基本的定理,它 反映了物体动量的变化与作用力之间的关系, 是研究物质运动和相互作用的重要工具。
动能定理(共7张PPT)
(1)7.5×104N;(2)1.5× ×106W (3)16km
出,物体落地时的速度为13m/s,求物体在运动过程中克服空气
阻力做的功。
11.2J
例2、一架小型喷气式飞机的质量为5×103kg,在跑道上从静止开始滑 行时受到的发动机牵引力为1.8×104N,设运动中的阻力是它所受重力的 0.2倍,飞机离开跑道的起飞速度是60m/s,求飞机在跑道上滑行的距离.(g 取10米/秒2.)
例7、一个物体从高为h的斜面顶端以初速v0下滑到斜面底端时的速度 恰好为0,则使该物体由这个斜面底端至少以多大初速v上滑,才
能到达斜面顶端?
V2 0
4gh
例8、质量为3000t的列车, 在恒定的额定功率下, 由静止开始出发, 运动 过程中受到的阻力大小恒定, 经过1000s速度达到最大行驶速度72km/h. 此时司机发现前方4km处的铁轨被洪水冲毁, 便立即紧急刹车, 结果列车 正好到达铁轨冲毁处停止, 若所加的制动力为7.5×104N. 求:(1) 列车在 行驶过程中所受阻力多大? (2) 列车的额定功率多大? (3) 列车的总行程 多长?
动能定理的解题步骤:
1125m
1、确定研究对象和研究过程
2、确定始末状态的动能
3、写出过程中合力的功或各力做的总功,明确各力做功的正负
4、利用动能定理,写出等式,左边写功(合力的功或各力的总功), 右边写末动能-初动能
例4、(1999广东高考)如图,一弹簧振子,物块的质量为m,它与
水平桌面间的动摩擦因数为μ,起初用手按住物块,弹簧的伸长量为x,
N
例7、一个物体从高为h的斜面顶端以初速v0下滑到斜面底端时的速度恰好为0,则使该物体由这个斜面底端至少以多大初速v上滑,才能到达斜面
出,物体落地时的速度为13m/s,求物体在运动过程中克服空气
阻力做的功。
11.2J
例2、一架小型喷气式飞机的质量为5×103kg,在跑道上从静止开始滑 行时受到的发动机牵引力为1.8×104N,设运动中的阻力是它所受重力的 0.2倍,飞机离开跑道的起飞速度是60m/s,求飞机在跑道上滑行的距离.(g 取10米/秒2.)
例7、一个物体从高为h的斜面顶端以初速v0下滑到斜面底端时的速度 恰好为0,则使该物体由这个斜面底端至少以多大初速v上滑,才
能到达斜面顶端?
V2 0
4gh
例8、质量为3000t的列车, 在恒定的额定功率下, 由静止开始出发, 运动 过程中受到的阻力大小恒定, 经过1000s速度达到最大行驶速度72km/h. 此时司机发现前方4km处的铁轨被洪水冲毁, 便立即紧急刹车, 结果列车 正好到达铁轨冲毁处停止, 若所加的制动力为7.5×104N. 求:(1) 列车在 行驶过程中所受阻力多大? (2) 列车的额定功率多大? (3) 列车的总行程 多长?
动能定理的解题步骤:
1125m
1、确定研究对象和研究过程
2、确定始末状态的动能
3、写出过程中合力的功或各力做的总功,明确各力做功的正负
4、利用动能定理,写出等式,左边写功(合力的功或各力的总功), 右边写末动能-初动能
例4、(1999广东高考)如图,一弹簧振子,物块的质量为m,它与
水平桌面间的动摩擦因数为μ,起初用手按住物块,弹簧的伸长量为x,
N
例7、一个物体从高为h的斜面顶端以初速v0下滑到斜面底端时的速度恰好为0,则使该物体由这个斜面底端至少以多大初速v上滑,才能到达斜面
动能和动能定理-PPT
解得 s=0.25 m,说明工件未到达B点时,速度已达到v, 所以工件动能的增量为 △EK = 1/2 mv2 = 0.5×1×1= 0.5 J
8
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
9
练习2.两辆汽车在同一平直路面上行驶,它们的质 量之比m1∶m2=1∶2,速度之比v1∶v2=2∶1,两 车急刹车后甲车滑行的最大距离为s1,乙车滑行的 最大距离为s2,设两车与路面间的动摩擦因数相等, 不计空气阻力,则(D ) A.s1∶s2=1∶2 B.s1∶s2=1∶1 C.s1∶s2=2∶1 D.s1∶s2=4∶1
24
解: 设从脱钩开始,前面的部分列车和末节车厢分别行驶了s1、s2
才停止,则两者距离s=s1-s2.对前面部分的列车应用动能定理,
有
FL
-
k(M
-
m)gs1
=
-
1(M 2
-
m)v02
对末节车厢应用动能定理,有
- kmgs2
=
1 -
2
mv
2 0
又整列车匀速运动时,有F = kMg,则可解得△s =
15
练习5.某人在高h处抛出一个质量为m的物
体.不计空气阻力,物体落地时的速度为v,这人对
物体所做的功为:D( )
A.Mgh
B.mv2/2
C.mgh+mv2/2
D.mv2/2- mgh
16
例6. 斜面倾角为α,长为L,AB段光滑,BC段粗糙,AB =L/3, 质量为m的木块从斜面顶端无初速下滑,到达C端 时速度刚好为零。求物体和BC段间的动摩擦因数μ。
分析:以木块为对象,下滑全过程用动能定理:
重力做的功为 WG mgLsinα
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
F FN
W F dr F v dt 0
约束反力作功等于零的约束
14 理想约束。
4. 内力的功
z A rA
O
FA 和FB 在drA 和drB 上所作之元功
dW i FA d rA FB d rB
FA FB rB B y
FB (-d rA d rB ) FB d(rB - rA )
FB d rAB
这一结果表明:当两点 之间的距离发生变化时, 这两点之间的内力所作之 元功不等于零。 15
x
rB rA rAB
d rB d rA d rAB
工程上几种内力作功的情形
◆ 作为整体考察,所有发动机的内力都是有功力。例 如汽车内燃机工作时,气缸内膨胀的气体质点之间的内 力;气体质点与活塞之间的内力;气体质点与气缸内壁 间的内力;这些内力都要作功。 ◆ 有相对滑动的两个物体之间的摩擦力作负功。
9
刚体的动能 a. 平动刚体的动能
1 1 2 1 2 2 T mi vi vC mi mvC 2 2 i 2
b. 定轴转动刚体的动能
1 1 2 T mi vi mi (ri ) 2 i 2 i 2 1 2 mi ri 2 2 i 1 J z 2 2
z
ri
vi
mi
y x
10
c. 平面运动刚体的动能
1 T J P 2 2来自J P J C md
2
d
C
P
1 1 2 T J P ( J C md 2 ) 2 2 2
v C d
vC
1 2 1 2 T mvC J C 2 2
C
vC
1 2 1 T mvC J C 2 2 2
1 J C mR 2 , vC R 2
3 2 T mvC 4
11
§14-2 动能定理
1. 质点的动能定理
dv m F dt dv m dr F dr dt
mv dv F dr
1 1 v dv d (v v ) d (v 2 ) dv 2 2
C1
C2
2
1
8
§14-2 质点和质点系的动能
质点的动能
1 2 T mv 2
动能和动量都是表征机械运动的量,前者与质点 速度的平方成正比,是一个标量;后者与质点速度的 一次方成正比,是一个矢量,它们是机械运动的两种 度量。动能与功的量纲相同,也为 J 。 质点系的动能
1 T mi vi2 i 2
1 d ( mv 2 ) W 2
1 1 2 2 mv2 mv1 W12 2 2
12
2. 质点系的动能定理
1 d ( mi vi2 ) Wi 2 1 d ( mi vi2 ) Wi 2
dT Wi
质点系动能的增量,等于作用于质点系全部力所作 的元功的和 微分形式。
A1
r 1 1 r0 dr dr d (r r ) d (r 2 ) dr r 2r 2r W12
r2 r1
k k (r l0 )dr [( r 1l0 ) 2 (r2 l0 ) 2 ] 2
k 2 2 W 12 ( 1 2 ) 2
W12
M2
M1
( Fx dx Fy dy Fz dz )
W F dr F vdt
W
M2 M1
F vdt
4
c. 几种常见力的功 (1)重力的功
X 0, Y 0, Z mg
z2 z1
x
W12 mgdz mg ( z1 z 2 )
对于简单的刚体系统,将力分为主动力和约束反力, 当其为理想约束时,约束反力不作功。
如何评价发动机功率对驱动汽车行驶的作用?
2
§14-1 力的功
a. 常力的功
M M1 S
F
M2
W F cos s
功是代数量,其国际单位制为 J(焦耳)。
b. 变力的功
W F cosds
W F cosds
0 s
3
W F dr
W
M2 M1
F dr
F Fx i Fy j Fz k dr dxi dyj dzk
T2 T1 Wi
质点系在某一段运动过程中动能的改变量,等于作 用于质点系全部力所作功的和 积分形式。 13
3. 理想约束
dr F′
O
dr1 F
B
O
1
F1
F2
dr2 2
A
W F dr F dr 0
C
W F1 dr1 F2 dr2 F1dr1 cos 1 F2 dr2 cos 2
Fi drC Fi driC
d
Fi driC Fi cos CM i d M C ( Fi )d
drC
C
W Wi Fi drC M C ( Fi )d drC M C d FR
dr C M C d W 12 FR
从汽车的驱动问题看 动量方法与能量方法
从动量定理提供的方法,分析汽车的驱动力 maC = F1 - F2 - Fr
F1 -汽车行驶的驱动力
C Fr W Mf2 FN2
1
F1 >F2 +Fr 汽车向前行驶
Mf1
F1 F N1
F2
从汽车的驱动问题看 动量方法与能量方法 如果发动机的功率很小而摩擦力很大 如果发动机的功率很大而摩擦力很小
6
(3)定轴转动刚体上作用力的功
z
F
W F dr F ds F rd
M z ( F ) F r
r
A
y
W M z d
W 12
x
F
2
1
M z d
A
Fn
Fxy
7
(4)平面运动刚体上力系的功
Fi driC
Mi
dri drC dric
W Fi dri
重力作功仅与质点运动始末位置的高度差有关, 与运动轨迹形状无关。 质点系:
W
12
mi g ( zi1 zi 2 )
5
W 12 mg ( zC1 zC 2 )
(2)弹性力的功
F k F k (r l0 )r0
W12
A2
A1 A2
F dr k (r l0 )r0 dr
F FN
W F dr F v dt 0
约束反力作功等于零的约束
14 理想约束。
4. 内力的功
z A rA
O
FA 和FB 在drA 和drB 上所作之元功
dW i FA d rA FB d rB
FA FB rB B y
FB (-d rA d rB ) FB d(rB - rA )
FB d rAB
这一结果表明:当两点 之间的距离发生变化时, 这两点之间的内力所作之 元功不等于零。 15
x
rB rA rAB
d rB d rA d rAB
工程上几种内力作功的情形
◆ 作为整体考察,所有发动机的内力都是有功力。例 如汽车内燃机工作时,气缸内膨胀的气体质点之间的内 力;气体质点与活塞之间的内力;气体质点与气缸内壁 间的内力;这些内力都要作功。 ◆ 有相对滑动的两个物体之间的摩擦力作负功。
9
刚体的动能 a. 平动刚体的动能
1 1 2 1 2 2 T mi vi vC mi mvC 2 2 i 2
b. 定轴转动刚体的动能
1 1 2 T mi vi mi (ri ) 2 i 2 i 2 1 2 mi ri 2 2 i 1 J z 2 2
z
ri
vi
mi
y x
10
c. 平面运动刚体的动能
1 T J P 2 2来自J P J C md
2
d
C
P
1 1 2 T J P ( J C md 2 ) 2 2 2
v C d
vC
1 2 1 2 T mvC J C 2 2
C
vC
1 2 1 T mvC J C 2 2 2
1 J C mR 2 , vC R 2
3 2 T mvC 4
11
§14-2 动能定理
1. 质点的动能定理
dv m F dt dv m dr F dr dt
mv dv F dr
1 1 v dv d (v v ) d (v 2 ) dv 2 2
C1
C2
2
1
8
§14-2 质点和质点系的动能
质点的动能
1 2 T mv 2
动能和动量都是表征机械运动的量,前者与质点 速度的平方成正比,是一个标量;后者与质点速度的 一次方成正比,是一个矢量,它们是机械运动的两种 度量。动能与功的量纲相同,也为 J 。 质点系的动能
1 T mi vi2 i 2
1 d ( mv 2 ) W 2
1 1 2 2 mv2 mv1 W12 2 2
12
2. 质点系的动能定理
1 d ( mi vi2 ) Wi 2 1 d ( mi vi2 ) Wi 2
dT Wi
质点系动能的增量,等于作用于质点系全部力所作 的元功的和 微分形式。
A1
r 1 1 r0 dr dr d (r r ) d (r 2 ) dr r 2r 2r W12
r2 r1
k k (r l0 )dr [( r 1l0 ) 2 (r2 l0 ) 2 ] 2
k 2 2 W 12 ( 1 2 ) 2
W12
M2
M1
( Fx dx Fy dy Fz dz )
W F dr F vdt
W
M2 M1
F vdt
4
c. 几种常见力的功 (1)重力的功
X 0, Y 0, Z mg
z2 z1
x
W12 mgdz mg ( z1 z 2 )
对于简单的刚体系统,将力分为主动力和约束反力, 当其为理想约束时,约束反力不作功。
如何评价发动机功率对驱动汽车行驶的作用?
2
§14-1 力的功
a. 常力的功
M M1 S
F
M2
W F cos s
功是代数量,其国际单位制为 J(焦耳)。
b. 变力的功
W F cosds
W F cosds
0 s
3
W F dr
W
M2 M1
F dr
F Fx i Fy j Fz k dr dxi dyj dzk
T2 T1 Wi
质点系在某一段运动过程中动能的改变量,等于作 用于质点系全部力所作功的和 积分形式。 13
3. 理想约束
dr F′
O
dr1 F
B
O
1
F1
F2
dr2 2
A
W F dr F dr 0
C
W F1 dr1 F2 dr2 F1dr1 cos 1 F2 dr2 cos 2
Fi drC Fi driC
d
Fi driC Fi cos CM i d M C ( Fi )d
drC
C
W Wi Fi drC M C ( Fi )d drC M C d FR
dr C M C d W 12 FR
从汽车的驱动问题看 动量方法与能量方法
从动量定理提供的方法,分析汽车的驱动力 maC = F1 - F2 - Fr
F1 -汽车行驶的驱动力
C Fr W Mf2 FN2
1
F1 >F2 +Fr 汽车向前行驶
Mf1
F1 F N1
F2
从汽车的驱动问题看 动量方法与能量方法 如果发动机的功率很小而摩擦力很大 如果发动机的功率很大而摩擦力很小
6
(3)定轴转动刚体上作用力的功
z
F
W F dr F ds F rd
M z ( F ) F r
r
A
y
W M z d
W 12
x
F
2
1
M z d
A
Fn
Fxy
7
(4)平面运动刚体上力系的功
Fi driC
Mi
dri drC dric
W Fi dri
重力作功仅与质点运动始末位置的高度差有关, 与运动轨迹形状无关。 质点系:
W
12
mi g ( zi1 zi 2 )
5
W 12 mg ( zC1 zC 2 )
(2)弹性力的功
F k F k (r l0 )r0
W12
A2
A1 A2
F dr k (r l0 )r0 dr