最新平方根知识点总结讲义
平方根基础知识
平方根基础知识【要点梳理】知识点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数的平方等于,即,那么这个正数叫做的算术平方根(规定0的算术平方根还是0);,读作“的算术平方根”,叫做被开方数.要点诠释:有意义时,≥0,≥0.2.平方根的定义如果,那么叫做的平方根.求一个数的平方根的运算,叫做开平方.平方与开平方互为逆运算. (≥0)的平方根的符号表达为是的算术平方根.知识点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质x a 2x a =x a a a a a a 2x a =x a a a a 0)a ≥a 0||000a a a a a a >⎧⎪===⎨⎪-<⎩知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位..【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是()A.5是25的算术平方根B.l 是l 的一个平方根C.的平方根是-4D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为=5,所以本说法正确;B.=±1,所以l 是l 的一个平方根说法正确;C.4,所以本说法错误;D.因为=0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:【变式】判断下列各题正误,并将错误改正:(1)没有平方根.( )(2.( )(3)的平方根是.( ) ()20a a =≥250=25= 2.5=0.25=()24-9-4=±21()10-110±(4)是的算术平方根.( ) 【答案】√ ;×; √; ×,提示:(2;(4)是的算术平方根. 2、 填空:(1)是的负平方根.(2表示的算术平方根,. (3的算术平方根为. (4,则,若,则 .【思路点拨】(3就是的算术平方根=,此题求的是的算术平方根. 【答案与解析】(1)16;(2)(3) (4) 9;±3 【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 是64的负的平方根.A .1个B .2个C .3个D .4个【答案】B ;提示:①④是正确的.【变式2】求下列各式的值:(1) (225--4254=254254-=3=x =3=x =181191911;164138-(3(4【答案】(1)15;(2)15;(3)-0.3;(4) 3的取值范围是______________.【答案】≥; 【解析】+1≥0,解得≥.【总结升华】当式子有意义时,一定表示一个非负数,即≥0,≥0.举一反三:【变式】(2020春•中江县期中)若+(3x+y ﹣1)2=0,求5x+y 2的平方根. 【答案】解:∵+(3x+y ﹣1)2=0,∴, 解得,,∴5x+y 2=5×1+(﹣2)2=9,∴5x+y 2的平方根为±=±3.类型二、利用平方根解方程4、求下列各式中的x 值(1)169x 2=144(2)(x ﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)先将(x ﹣2)看成一个整体,移项后,根据平方根定义求解.【答案与解析】655x x 1-x x 1-a a解:(1)169x 2=144,两边同时除以169,得开平方,得x=(2)(x ﹣2)2﹣36=0,移项,得 (x ﹣2)2=36开平方,得 x ﹣2=±6,解得:x=8或x=﹣4.【总结升华】本题考查了平方根,根据是一个正数的平方根有两个.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为,长为3,由题意得,·3=13233=1323=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.2144169x =x x x x 2x 21x =±x。
初中平方根知识讲解
平方根知识点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a,读作“a 的算术平方根”,a 叫做被开方数.要点诠释:a≥0,a ≥0.2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为0)a ≥a 的算术平方根.知识点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质0||000a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.250=25=2.5=0.25=.【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.()24-的平方根是-4D.0的平方根与算术平方根都是0举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(24=±.( )(3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 2、 填空:(1)4-是 的负平方根.(2表示 的算术平方根,= .(3的算术平方根为 .(43=,则x = ,若3=,则x = .举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 8-是64的负的平方根.A .1个B .2个C .3个D .4个【变式2】求下列各式的值:(1) (2(3(43x 的取值范围是______________.类型二、利用平方根解方程4、求下列各式中的x .(1)23610;x -= (2)()21289x +=; (3)()2932640x +-= 类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?类型一、平方根和算术平方根的概念1、若2m -4与3m -1是同一个正数的两个平方根,求m 的值.举一反三:【变式】已知2a -1与-a +2是m 的平方根,求m 的值.类型二、平方根的运算3、求下列各式的值.-类型三、利用平方根解方程4、求下列各式中的x . (1)23610;x -= (2)()21289x +=; (3)()2932640x +-= 举一反三:【变式】求下列等式中的x :(1)若2 1.21x =,则x =______; (2)2169x =,则x =______;(3)若29,4x =则x =______; (4)若()222x =-,则x =______. 类型四、平方根的综合应用5、已知a 、b |0b -=,解关于x 的方程2(2)1a x b a ++=-.举一反三:0=,求20112012x y +的值.。
(完整版)平方根知识点总结讲义
平方根 知识点总结【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);aa 的算术平方根”,a 叫做被开方数.要点诠释:a0,a ≥0.2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为0)a ≥,是a 的算术平方根.要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.要点三、平方根的性质(0)||0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.250=25=2.5=0.25=.【典型例题】类型一、平方根和算术平方根的概念1、若2m -4与3m -1是同一个正数的两个平方根,求m 的值.【思路点拨】由于同一个正数的两个平方根互为相反数,由此可以得到2m -4=-(3m -1),解方程即可求解.【答案与解析】解:依题意得 2m -4=-(3m -1),解得m =1;∴m 的值为1.【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数. 举一反三:【变式】已知2a -1与-a +2是m 的平方根,求m 的值.【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2相等或互为相反数. 解:①当2a -1=-a +2时,a =1,所以m =()()22212111a -=⨯-=②当2a -1+(-a +2)=0时,a =-1,所以m =()()22221[2(1)1]39a -=⨯--=-= 2、x 为何值时,下列各式有意义?2x 4x -11x x +-1x - 【答案与解析】解:(1)因为20x ≥,所以当x 2x (2)由题意可知:40x -≥,所以4x ≥4x - (3)由题意可知:1010x x +≥⎧⎨-≥⎩解得:11x -≤≤.所以11x -≤≤11x x +-义.(4)由题意可知:1030x x -≥⎧⎨-≠⎩,解得1x ≥且3x ≠.所以当1x ≥且3x ≠1x - 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义.举一反三:【变式】已知4322232b a a =-+-+,求11a b +的算术平方根. 【答案】解:根据题意,得320,230.a a -≥⎧⎨-≥⎩则23a =,所以b =2,∴1131222a b +=+=, ∴11a b+的算术平方根为112a b +=. 类型二、平方根的运算3、求下列各式的值.(1)2222252434-+;(2)111200.36900435--. 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序.【答案与解析】解:(1)2222252434-+49257535==⨯=; (2)1118111200.369000.630435435--=-⨯-⨯90.26 1.72=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根据2(0)a a a =>来解.类型三、利用平方根解方程4、求下列各式中的x .(1)23610;x -= (2)()21289x +=; (3)()2932640x +-=【答案与解析】解:(1)∵23610x -=∴2361x =∴36119x ==±(2)∵()21289x +=∴1289x +=∴x +1=±17x =16或x =-18.(3)∵()2932640x +-= ∴()264329x += ∴8323x +=± ∴21499x x ==-或 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)(3)小题中运用了整体思想分散了难度.举一反三:【变式】求下列等式中的x :(1)若2 1.21x =,则x =______; (2)2169x =,则x =______; (3)若29,4x =则x =______; (4)若()222x =-,则x =______. 【答案】(1)±1.1;(2)±13;(3)32±;(4)±2. 类型四、平方根的综合应用5、已知a 、b 是实数,26|20a b ++=,解关于x 的方程2(2)1a x b a ++=-. 【答案与解析】解:∵a 、b 26|20a b +-=260a +≥,|20b -≥,∴260a +=,20b -=.∴a =-3,2b =把a =-3,2b =2(2)1a x b a ++=-,得-x +2=-4,∴x =6.【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出a 、b 的值,再解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可.举一反三:2110x y -+=,求20112012x y +的值. 【答案】2110x y -+=,得210x -=,10y +=,即1x =±,1y =-.①当x =1,y =-1时,20112012201120121(1)2x y +=+-=.②当x =-1,y =-1时,2011201220112012(1)(1)0x y +=-+-=.6、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.【答案与解析】解:设长方形纸片的长为3x (x >0) cm ,则宽为2x cm ,依题意得32300x x ⋅=.26300x =.250x =.∵ x >0,∴ 50x = ∴ 长方形纸片的长为350cm .∵ 50>49,507>.∴ 35021>, 即长方形纸片的长大于20cm .由正方形纸片的面积为400 2cm , 可知其边长为20cm ,∴ 长方形的纸片长大于正方形纸片的边长.答: 小丽不能用这块纸片裁出符合要求的长方形纸片.【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20cm 的正方形纸片裁出长方形纸片.。
平方根ppt课件
平方根的历史背景
平方根的早期发展
在古代文明中,人们已经意识到某些数的平方的值。例如,古埃及人和古巴比 伦人已经知道π和√2的近似值。随着数学的发展,人们对平方根的认识逐渐深 入。
电容
在计算电容时,需要使用平方根来 计算电容器容纳电荷的能力。
在日常生活中的应用
建筑测量
在建筑测量中,需要使用平方根 来计算建筑物的面积和体积。
土地测量
在土地测量中,需要使用平方根 来计算土地的面积和周长。
商业交易
在商业交易中,需要使用平方根 来计算商品的价格和利润。
05
平方根的注意事项
Chapter
平方根函数的奇偶性
平方根函数的值域
函数$y = sqrt{x}$的值域为所有非负 实数。
函数$y = sqrt{x}$是非奇非偶函数, 因为对于所有的x值,都有$sqrt{-x} neq sqrt{x}$。
平方根的几何性质
平方根与数轴的关系
在数轴上,一个数的平方根表示该数距离原点的距离。例如,4位 于2的右边,因为2是4的平方根。
平方根的除法性质
如果a和b都是正数,那么 $frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$。
平方根的加法性质
如果a和b都是正数,那么 $sqrt{a} + sqrt{b}$不一 定等于$sqrt{a + b}$。
平方根的函数性质
平方根函数的单调性
对于函数$y = sqrt{x}$,当x的值从 负无穷增加到正无穷时,y的值也从负 无穷增加到正无穷,因此该函数是单 调递增的。
2023年最新人教版七年级数学下册课件平方根
例2 求下列各数的算术平方根:
(1) 100;
(2) 49 ; 64
(3) 0.0001.
解:(1)因为102 = 100,所以100的算术平方根是10,
即 100 10;
(2)因为( 7 )2 = 49 ,所以 49 的算术平方根是 7 ,
8
64
64
8
即 49 7 ; 64 8
(3)因为0.012 =0.0001,所以0.0001的算术平方
.
② (3)2 = 3 ; (5)2 = 5 ;
(1)2 = 1 ; (2)2 = 2 .
探究:对于任意负有理数a, a2 = -a . 综上,对于任意有理数a, a2 = |a| .
(2)应用(1)所得结论解决问题:有理数a,b在数轴上对应的 点的位置如图所示,化简 a2 b2 (a b)2 +|a+b|.
D. a+1
知识点 3 算术平方根的双重非负性 ( a 0, a 0)
问题1: (1)因为__8___2=64,所以64的算术平方根是___8___,即 64 =___8___. (2)因为__0_.5__2=0.25,所以0.25的算术平方根是__0_._5__,即 0.25 =__0_._5__. (3)因为__0___2=0,所以0的算术平方根是___0___,即 0 =___0___.
如图,把两个小正方形分别沿对角线剪开,将所得的4 个直角三角形拼在一起,就得到一个面积为2 dm2的 大正方形. 你知道这个大正方形的边长是多少吗?
设大正方形的边长为x dm,则x2 = 2. 由算术平方根的意义可知x= 2 ,
所以大正方形的边长是 2 dm.
探究2 2 有多大? 因为 12 = 1,22=4,所以1< 2 <2; 因为 1. 42 = 1. 96,1. 52=2. 25,所以 1.4< 2 <1.5; 因为 1.412 = 1.988 1,1.422 = 2.016 4, 所以 1.41< 2 <1.42; 因为 1. 4142 = 1. 999 396,1. 4152=2. 002 225, 所以 1.414< 2 <1.415; ……
平方根知识点总结
平方根知识点总结平方根是代数学中的一个重要概念,经常在各种数学问题中出现。
简单来说,平方根就是一个数与自己相乘等于指定数的操作的逆运算。
本文将为您总结平方根的知识点,并讨论相关概念、性质和应用。
一、基本概念1. 平方根的定义:对于一个非负数a,它的平方根是指满足x * x = a的非负数x。
符号√a表示a的平方根,√a ≥ 0。
2. 平方根的记法:平方根记作√a。
例如√25 = 5,√144 = 12。
二、性质与运算1. 非负数的平方根:对于任意非负实数a,都存在唯一一个非负实数x,使得x * x = a。
2. 平方根的唯一性:每个正实数只有一个正平方根,即√a是唯一的。
但负实数没有实数平方根。
3. 非零实数的平方根:对于任意非零实数a,其平方根√a的正负号取决于a的符号。
当a > 0时,√a > 0;当a < 0时,√a不存在实数解。
4. 平方根的运算性质:a) 两个非负数的积的平方根等于它们的平方根的乘积:√(ab) = √a * √b。
b) 两个非负数的商的平方根等于它们的平方根的商:√(a/b) = √a / √b(b ≠ 0)。
c) 平方根的乘方等于它的被开方数:(√a)² = a。
三、平方根的求解方法1. 估算法:通过估算被开方数的大小,可以快速确定一个近似的平方根。
2. 迭代法:通过迭代运算,逐步逼近平方根的精确值。
3. 牛顿法:利用泰勒级数近似平方根,通过迭代逼近平方根的解。
四、平方根的应用1. 几何应用:平方根在几何图形的计算中有广泛应用,如计算圆的半径或直径、计算三角形的斜边、计算四边形的对角线等。
2. 物理应用:平方根在物理学中的运动学、力学、电磁学等领域广泛应用,如计算速度、加速度、力的大小等。
3. 工程应用:平方根在工程学中的建筑、机械等领域有重要应用,如计算力的大小、材料的强度等。
4. 统计学应用:平方根在统计学中用于计算方差和标准差等。
总结:平方根是数学中一个非常重要的概念,它在各个领域均有广泛的应用。
(完整版)平方根与立方根及实数知识点总结
(完整版)平方根与立方根及实数知识点总结“平方根”与“立方根”知识点小结一、知识要点 1、平方根:⑴、定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。
⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
⑶、算术平方根:正数a 的正的平方根叫做a 的算术平。
2、立方根:⑴、定义:如果x 3=a ,则x 叫做a 的立方根,记作(a 称为被开方数)。
⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。
3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。
二、规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。
2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。
3有意义的条件是a ≥0。
4、公式:⑴)2=a (a ≥0)=(a 取任何数)。
5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。
例1 求下列各数的平方根和算术平方根(1)64;(2)2)3(-;(3)49151;⑷ 21(3)- 例2 求下列各式的值(1)81±;(2)16-;(3)259;(4)2)4(-.(5)44.1,(6)36-,(7)4925±(8)2)25(-例3、求下列各数的立方根:⑴ 343;⑵ 10227-;⑶ 0.729二、巧用被开方数的非负性求值. 大家知道,当a ≥0时,a 的平方根是±a ,即a 是非负数. 例4、若,622=----y x x 求y x 的立方根.练习:已知,21221+-+-=x x y 求y x 的值.三、巧用正数的两平方根是互为相反数求值.我们知道,当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.练习:若32+a 和12-a 是数m 的平方根,求m 的值.四、巧解方程例6、解方程(1)(x+1)2=36 (2)27(x+1)3=64五、巧用算术平方根的最小值求值.我们已经知道0≥a ,即a=0时其值最小,换句话说a 的最小值是零.例4、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a的非算术平方根.练习①已知233(2)0x y z -+-++=,求xyz 的值。
平方根讲义1
平方根一、课前热身1、49的平方根是_________,49的算术平方根是___________,2的平方根是它本身__________,的算术平方根是它本身__________,3、求下列各数的平方根和算术平方根(1)625 (2)22817-二、内容讲授知识点:(1)算术平方根的概念及表示方法:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数叫做a 的算术平方根,a 的算术平方根记为a ,读作“根号a ”,a 叫做被开方数。
(注:0=0)(2)平方根的概念:平方根的定义:一般地,如果一个数的平分等于a ,那么这个数叫做a 的平方根或二次根式,即x 2=a ,那么x 叫做a 的平分根(3)开平方的概念:求一个数a 的平分根的运算,叫做开方,其中a 叫做被开方数(4)平方根的性质:一个正数有两个平分根,它们互为相反数;0的平分根式0,负数没有平分根,正数的平分根表示a ±重点:算术平方根的概念及表示方法、难点:平方根的概念及其性质考点:平方与开平方的运算、平方根的意义、平方根的性质、平方根值的估算类型1:求算术平方根求下列各数的算术平方根:(1)256,256, (2)32,16,4(3)22,2)2(- ,2x =2,则x=________(4)1,0, 若a a =,则a=___________巩固练习:1、36的算术平方根是______;2、 25的算术平方根是________;3、若2x =3,则x=________;4、a a -=-11,则a=_____类型2:算术平方根的意义性1、下列各式中,有意义的是( )A 、3-B 、aC 、23-D 、2a2、x 为何值时下列各式有意义(1)3+x (2)1x x + (3)11-x巩固练习: 若式子1-x 有意义,则x 的取值范围为( )A 、1=xB 、1 xC 、1≥xD 、1≤x类型3:算术平方根与绝对值的变式1、已知y =x x -+-22+5,求x+y 的值。
平方根和立方根知识点总结
平方根和立方根知识点总结平方根和立方根是数学中非常重要的概念,它们在解决各种数学问题以及实际应用中都有着广泛的用途。
接下来,咱们就详细地聊聊这两个重要的知识点。
一、平方根(一)定义如果一个数的平方等于a,那么这个数叫做a 的平方根。
也就是说,若 x²= a,则 x 叫做 a 的平方根。
(二)表示方法一个正数 a 的正的平方根记作“√a”,读作“根号a”;a 的负的平方根记作“ √a ”,读作“负根号a”。
(三)性质1、正数有两个平方根,它们互为相反数。
比如 9 的平方根是 ±3,因为 3²= 9,(-3)²= 9 。
2、 0 的平方根是 0 。
这是个比较特殊的情况,要牢记。
3、负数没有平方根。
(四)开平方求一个数 a 的平方根的运算,叫做开平方。
开平方与平方互为逆运算。
(五)算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作√a 。
0 的算术平方根是 0 。
例如,√4 = 2 ,这里的 2 就是 4 的算术平方根。
(六)平方根的应用在实际生活中,平方根常用于计算直角三角形的边长、求解一些几何图形的面积和体积等问题。
比如,已知一个正方形的面积是 25 平方厘米,那么它的边长就是√25 = 5 厘米。
二、立方根(一)定义如果一个数的立方等于 a,那么这个数叫做 a 的立方根。
即若 x³=a,则 x 叫做 a 的立方根。
(二)表示方法数 a 的立方根记作“³√a”,读作“三次根号a”。
(三)性质1、正数的立方根是正数。
比如 8 的立方根是³√8 = 2 。
2、负数的立方根是负数。
例如,-8 的立方根是³√ 8 = 2 。
3、 0 的立方根是 0 。
(四)开立方求一个数 a 的立方根的运算,叫做开立方。
开立方与立方互为逆运算。
(五)立方根的应用在物理学、工程学等领域,立方根常用于计算物体的体积、密度等问题。
比如,已知一个正方体的体积是 27 立方米,那么它的棱长就是³√27 = 3 米。
平方根知识点总结框架
平方根知识点总结框架一、引言- 简要介绍平方根概念和其应用领域- 引出本文的框架和目的二、平方根基础知识1. 定义- 正数的平方根定义- 负数的平方根定义2. 符号表示- 平方根符号的表示:√- 平方根的数学表达式3. 运算法则- 平方根的运算法则- 平方根与指数的关系三、平方根的计算方法1. 直接开方- 整数的平方根计算- 分数的平方根计算2. 估算求解- 估算求解平方根的方法3. 牛顿迭代法- 平方根的牛顿迭代法求解过程- 牛顿迭代法的应用和优缺点4. 算术平方根与几何平方根之间的关系四、平方根的性质1. 性质总述- 平方根的基本性质概述2. 奇偶性- 平方根的奇偶性质3. 有理数性质- 有理数的平方根性质4. 无理数性质- 无理数的平方根性质5. 平方根与基本运算的关系- 平方根与加减乘除的关系6. 平方根的大小比较- 平方根的大小比较性质五、平方根与实际问题1. 实际问题建模- 平方根在实际问题中的建模方法2. 平方根在几何中的应用- 平方根在三角形、正方形等几何图形中的应用3. 平方根在物理中的应用- 平方根在物理学领域中的应用案例4. 平方根在工程中的应用- 平方根在工程领域中的应用案例六、平方根的推广1. n次方根- n次方根的定义和性质2. 平方根的扩展- 平方根的推广及其意义3. 复数平方根- 复数平方根的定义和性质七、平方根领域的发展与应用1. 历史发展- 平方根概念的历史渊源2. 现代应用- 平方根在现代科学技术领域的应用案例3. 未来展望- 平方根在未来领域的发展前景八、结语- 总结平方根的基本知识点- 展望平方根在未来的发展和应用前景。
平方根与立方根及实数知识点总结(最新整理)
我们知道,当 a≥0 时,a 的平方根是± a , 而 ( a ) ( a ) 0.
例 5、已知:一个正数的平方根是 2a-1 与 2-a,求 a 的 平方的相反数的立方根.
何数)。
5、非负数的重要性质:若几个非负数之和等于 0,则每
一个非负数都为 0(此性质应用很广,务必掌握)。 例 1 求下列各数的平方根和算术平方根
数,如 、 等.
思考:(1)-a2 一定是负数吗?-a 一定是正数吗?
(2)大家都知道 是一个无理数,那么 -1 在哪两
个整数之间?
八、解答题(每题 4 分,共 8 分)
1、当 a 1 时,化简 1 4a 4a 2 | 2a 1 | 2
2、已知实数 a 、b 在数轴上表示的点如上图,
化简 a b + (a b 1)2
七、实数大小比较的方法
一、平方法
3
比较 和
3 的大小
2
二、移动因式法 比较 2 3 和 3 2 的大小 练习①已知 x 3 y 3 (z 2)2 0 ,求 xyz 的值。
②已知
互为相反数,求 a,b 的值。
5 1
三、求差法 比较
和 1 的大小
2
六、实数
1、实数:有理数和无理数统称为实数.我们一般用下列
-1 a 0 1 b
4、公式:⑴( a )2=a(a≥0);⑵ 3 a = 3 a (a 取任
二、巧用被开方数的非负性求值.
大家知道,当 a≥0 时,a 的平方根是± a ,即 a 是
非负数.
例 4、若 2 x x 2 y 6, 求 yx 的立方根.
练习:已知 y 1 2x 2x 1 2, 求 x y 的值.
两种情况将实数进行分类:
平方根知识点总结
平方根知识点总结平方根是数学中一个重要的概念,它在数学、物理以及工程学等方面有着广泛的应用。
本文将对平方根的定义、性质以及计算方法进行总结和介绍。
一、平方根的定义与性质平方根(square root)是指一个数乘以自己等于另一个数的操作。
对于非负实数a,如果存在一个非负实数x,使得x的平方等于a,则称x是a的平方根。
表示为√a。
1. 平方根的定义:对于非负实数a,a的平方根是找到一个非负实数x,使得x 的平方等于a,即x^2 = a。
2. 平方根的性质:a) 任何非负实数都有一个非负平方根。
b) 非负实数的平方根存在唯一性,即每个非负实数a只有一个非负实数根。
c) 负数没有实数平方根,但可以用虚数表示。
d) 平方根运算是具有结合律,即√(a√b) = √a * √b。
e) 平方根运算是与乘法运算可交换的,即√(ab) = √a * √b。
f) 不同数的平方根在实数范围内一般是不等的。
二、平方根的性质和计算方法平方根在数学和实际生活中有着广泛的应用,为了方便计算和应用,人们对平方根的性质和计算方法进行了研究。
1. 平方根的估算:a) 当数字的位数较大时,可以使用开方法则估算。
b) 利用平方根的几何意义,可以通过作图来估算平方根。
2. 平方根的近似计算:a) 牛顿迭代法:通过迭代,逐渐逼近平方根的值。
b) 二分法:利用数轴上二分的方法逼近平方根。
3. 平方根的算术运算:a) 平方根的加法:√a + √b ≠ √(a + b)。
这是因为平方根运算不满足加法交换率。
b) 平方根的乘法和除法:√a * √b = √(ab);√a / √b = √(a/b)。
4. 平方根的应用:平方根在物理、工程学以及金融数学等领域有着广泛的应用,其中包括但不限于:a) 物体自由落体运动的速度计算。
b) 圆的半径计算。
c) 金融投资中的风险评估。
d) 工程学中的震动分析。
三、平方根的历史与发展平方根的研究可以追溯到古代。
古希腊数学家毕达哥拉斯在公元前6世纪左右,发现了平方根的几何意义,并得出了数学上的一些结论。
平方根总结知识点
平方根总结知识点一、平方根的定义平方根是指一个数的平方等于另一个数的操作,比如数a的平方根就是满足等式:x^2= a的x,记作√a。
1. 正数的平方根当a是非负实数时,存在一个非负实数x,使得x^2 = a成立,这个非负实数就是a的平方根。
如果a=0,则a的平方根为0;如果a>0,则a的平方根有两个,一个是正数,一个是负数。
比如,√9=3,-3。
2. 负数的平方根当a是负实数时,不存在任何实数x,使得x^2 = a成立,因此负数没有实数域内的平方根,这在实数范围内是没有意义的。
3. 复数的平方根如果a是负数,则我们可以在复数域内寻找a的平方根,因为复数域中规定了i^2 = -1,即虚数单位i的平方为-1。
因此,负数a的平方根可以表示为√a=i√|a|,其中|a|表示a的绝对值。
二、平方根的性质平方根具有一系列性质,这些性质对于平方根的运算和性质分析都有着重要的作用。
1. 非负实数的平方根性质(1)正数的平方根是非负实数,即√a≥0。
(2)如果a<b,则√a<√b。
(3)平方根的运算性质:a) √(ab) = √a * √bb) √(a/b) = √a / √b (其中b≠0)2. 负实数与复数的平方根性质(1)负实数的平方根是复数且成对出现,例如√-4 = 2i。
(2)负实数的平方根满足共轭关系:如果z是负数a的平方根,那么z的共轭z*也是负数a的平方根。
3. 平方根的运算规律(1)平方根的加减法计算:a) √a + √b = √(a + 2√ab + b)b) √a - √b = √(a - 2√ab + b)(2)平方根的乘除法计算:a) √ab = √a * √bb) √(a/b) = √a / √b (其中b≠0)三、平方根的计算方法1. 精确计算如果已知某个数的精确值,可以直接通过平方根的定义来计算,即求解方程x^2 = a。
但是这种方法对于大数来说较为繁琐,且无法精确计算出其平方根。
(完整版)平方根和立方根经典讲义
内容基本要求略高要求较高要求平方根、算术平方根了解平方根及算术平方根的概念,会用根号表示非负数的平方根及算术平方根 会用平方运算求某些非负数的平方根立方根 了解立方根的概念,会用根号表示数的立方根会用立方根运算求某些数的立方根 实数了解实数的概念会进行简单的实数运算实数可按下图进行详细分类:0⎧⎧⎫⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数整数负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数实数与数轴上的点一一对应.(以下概念均在实数域范围内讨论) 平方根的定义及表示方法:如果一个数的平方等于a,那么这个数叫做a 的平方根. 也就是说,若2x a=,则x就叫做a 的平方根.一个非负数a 的平方根可用符号表示为“a”.算术平方根:一个正数a有两个互为相反数的平方根,其中正的平方根叫做a 的算术平方根,可用符号表示为a ;有一个平方根,就是0,0的算术平方根也是0,负数没有平方根,当然也没有算术平方根.知识点睛中考要求平方根和立方根一个非负数的平方根不一定是非负数,但它的算术平方根一定是非负数,即若0a ≥0a .平方根的计算:求一个非负数的平方根的运算,叫做开平方.开平方与平方是互逆运算,可以通过平方运算来求一个数的平方根或算术平方根,以及检验一个数是不是另一个数的平方根或算术平方根.通过验算我们可以知道:⑴ 当被开方数扩大(或缩小)2n 倍,它的算术平方根相应地扩大(或缩小)n 倍(0n ≥). ⑵ 平方根和算术平方根与被开方数之间的关系:①若0a ≥,则2()a a =;②不管a 2(0)||(0)a a a a a a ≥⎧==⎨-<⎩注意二者之间的区别及联系.⑶若一个非负数a 介于另外两个非负数1a 、2a 之间,即120a a a ≤<<1a 2a 之间,即:120a a a ≤<范围.立方根的定义及表示方法:如果一个数的立方等于a ,那么这个数叫做a 的立方根,也就是说,若3,x a =则x 就叫做a 的立方根, 一个数a 的立方根可用符号表3a ,其中“3”叫做根指数,不能省略. 前面学习的a 其实省略了根指数“2”2a a 3a “三次根号a ”2a “二次根号a ”a “根号a ”.任何一个数都有立方根,且只有一个立方根,正数的立方根为正数,负数的立方根为负数,0的立方根为0.立方根的计算:求一个数的立方根的运算,叫做开立方,开立方与立方是互逆运算,可以通过立方运算来求一个数的立方根,以及检验一个数是不是另一个数的立方根.通过归纳我们可以知道:⑴当被开方数(大于0)扩大(或缩小)3n 倍,它的立方根相应地扩大(或缩小)n 倍. 33a a =,33()a a =⑶若一个数a 介于另外两个数1a 、2a 之间,即12a a a <<, 31a 32a 33312a a a < 利用这个结论我们可以来估算一个数的立方根的大致范围.重、难点难点:平方根的性质【例1】 判断下列各题,并说明理由819±. ( ) a ( ) ⑶2a 的算术平方根是a . ( ) ⑷ 2()5a -,则5a =-. ( ) 93=±. ( ) ⑹ 6-是2(6)-的平方根. ( ) ⑺ 2(6)-的平方根是6-.( )⑻ 若236x =,则366x =±=±. ( ) ⑼ 若两个数平方后相等,则这两个数也一定相等. ( ) ⑽ 如果两个非负数相等,那么这两个数各自的算术平方根也一定相等. ( ) ⑾ 算术平方根一定是正数. ( ) ⑿ 2a -没有算术平方根. ( ) ⒀ 64的立方根是4±. ( )⒁ 1-是16-的立方根. ( )⒂ 33x x . ( ) ⒃ 互为相反数的两个数的立方根互为相反数. ( ) ⒄ 正数有两个互为相反数的偶数次方根,任何数都有唯一的奇数次方根. ( )【例2】 ⑴ 若22(2)a =-,则a = ;若22()(3)x -=-,则x = .⑵ 22x +,则(25)x +的平方根是 ;若25x =,则x = .⑶ 21a =-,则a ;若20a a =,则a . ⑷ 当0m <,2m 的算术平方根是 .⑸ 2()a b -算术平方根是a b -,则a b .⑹ 若一个自然数的一个平方根是m ,那么比它大1的自然数的平方根是 .⑺ 平方根等于本身的数是 ,算术平方根等于它本身的数是,立方根等于它本身的数是 ;平方根与立方根相等的数是 .例题精讲⑴21(51)30x --=; ⑵3(100.2)0.027x -=-3312573511164168---33321600010.125-【例4】 已知某正数的两个平方根是35a -与1a +,求这个正数.【例5】 已知3(2)27a b +=-235a b -=,求21(3)n a b ++的值(n 为正整数).【例6】 求22221995199519961996+⋅+的平方根.【例7】 (人大附单元测试)已知a 为实数,且满足200201a a a --=,求2200a -的值.【练习1】若22(3)x =-,33(2)y =-,求x y +所有可能值.【练习2】一个数的平方根是22a b +和4613a b -+,求这个数.【练习3】(101数学实验班单元练习)已知2a -的平方根是2±,27a b ++的立方根是3,求22a b +的平方根.【练习4】(2007年成都)22(5)0a b -+=,那么a b +的值为 .【练习5】22111a ab -+-+=,求a ,b 的值.课堂作业【练习6】若a 、b 为实数,且|1|20a ab --,求1111(1)(1)(2)(2)(1993)(1993)ab a b a b a b +++++++++的值.1. ⑴ (安顺市中考题)16的平方根是 ;2( 2.5)-的平方根是 ;2(2)-的平方根是 .⑵ (威海中考题38的相反数是 ;64的立方根是 .⑶ 平方根等于本身的数是 ,算术平方根等于它本身的数是 ,立方根 等于它本身的数是 ;平方根与立方根相等的数是 . ⑷ (江西省中考题)20n n 为( )A .2B .3C .4D .5 ⑸ (上海市中考题)12x -=的根是 . 31.815848 1.2231815848- _____. 2. 若一正数的平方根是36a +与29a +,求这个正数.3. 已知x y +的负的平方根是3-,x y -的立方根是3,求25x y -的平方根. 4. 243a b x a -+=+3a +的算术平方根,323b a y b -+=-3b -的立方根,求y x -的立方根.5.已知:|1|2340a b a b -+--.求:24a b +的立方根. 家庭作业。
平方根和立方根知识点总结
平方根和立方根知识点总结一、平方根1、定义如果一个数的平方等于 a,那么这个数叫做 a 的平方根。
即如果 x²= a,那么 x 叫做 a 的平方根。
例如,因为 2²= 4,(-2)²= 4,所以 4 的平方根是 2 和-2。
2、表示方法一个正数 a 的平方根记作“±√a”,读作“正负根号a”,其中“√”叫做二次根号,a 叫做被开方数。
例如,9 的平方根记作±√9 = ±3。
3、性质(1)正数有两个平方根,它们互为相反数。
比如 25 的平方根是±5,5 和-5 互为相反数。
(2)0 的平方根是 0。
(3)负数没有平方根。
因为任何数的平方都是非负数,所以负数不存在平方根。
4、开平方求一个数 a 的平方根的运算叫做开平方,其中 a 叫做被开方数。
开平方与平方互为逆运算。
例如,因为(±8)²= 64,所以 64 的平方根是±8,即±√64 = ±8,对 64 开平方得到±8。
5、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作“√a”。
例如,9 的算术平方根是 3,记作√9 = 3。
0 的算术平方根是 0。
6、平方根的估值对于一些非完全平方数的平方根,可以通过估算来确定其大致范围。
例如,估算√11 的值。
因为 9 < 11 < 16,所以 3 <√11 < 4。
又因为 11 更接近 9,所以√11 更接近 3,比如 33 左右。
二、立方根1、定义如果一个数的立方等于 a,那么这个数叫做 a 的立方根。
即如果 x³= a,那么 x 叫做 a 的立方根。
例如,因为 2³= 8,所以 8 的立方根是 2。
2、表示方法数 a 的立方根记作“³√a”,读作“三次根号a”。
例如,27 的立方根记作³√27 = 3。
3、性质(1)正数的立方根是正数。
平方根知识点总结讲义
平方根知识点总结讲义平方根是数学中非常重要的概念,我们经常在各种计算和解题中都会用到。
以下是平方根的相关知识点总结:1.平方根的定义:平方根是指一个数的平方等于该数的非负实数解。
对于正数a,它的平方根记作√a。
2.平方根的性质:a)平方根的平方等于它本身,即(√a)^2=a。
b)任意正数的平方根是唯一的。
但是对于负数,它的平方根是虚数。
c) 平方根满足乘法的可交换性,即√(ab) = √a * √b。
3.平方根的运算法则:a) 平方根的和差:√a ± √b = √(a ± 2√ab + b)。
b)平方根的积除:√(a/b)=√a/√b。
c)乘法公式:(a±b)*(a∓b)=a^2-b^2、利用该公式,我们可以进行平方根的乘法运算。
4.求平方根的方法:a)通过查表或使用计算器可以求得近似值。
b)使用二分法逼近平方根的精确值。
c)使用牛顿迭代法来计算平方根的近似值。
5.特殊平方根值:a)2的平方根是无理数,它的近似值约为1.414b)3的平方根也是无理数,它的近似值约为1.7326.平方根的应用:a)平方根可以用于计算直角三角形的边长。
例如,根据毕达哥拉斯定理,两条边长分别为a和b的直角三角形的斜边长c可以通过√(a^2+b^2)来计算。
b)平方根在统计学中经常用到,例如计算标准差和方差等。
c)平方根还可以用于解决一些数论问题和代数方程等。
总结起来,平方根是数学中极为重要的概念之一、了解平方根的定义、性质和运算法则,掌握求解平方根的方法,以及理解平方根的应用,对于解决实际问题和提高数学能力都非常有帮助。
数学平方根的计算方法知识点总结
数学平方根的计算方法知识点总结在数学中,平方根是一个重要的概念,它指的是一个数的平方等于给定数的值。
计算平方根有多种方法和技巧,以下是数学平方根的计算方法的知识点总结。
一、算术平方根算术平方根是最常见的平方根计算方法,它可以用于求解整数和小数的平方根。
算术平方根的计算方法如下:1. 估算:首先,我们可以估算给定数的平方根。
找到一个较小的整数作为估算值,使得估算值的平方大于或等于给定数,但又尽可能的接近给定数。
2. 迭代求解:利用迭代的方法不断逼近给定数的平方根。
假设我们的估算值为x,我们可以通过以下公式来迭代求解更精确的平方根值: x = (x + (给定数/x))/2使用上述公式,不断迭代计算,直到得到一个足够满意的平方根值。
3. 精确计算:在计算算术平方根时,我们可以使用现代计算器或计算机程序进行精确计算。
通过使用数值计算方法,我们可以得到给定数的精确平方根值。
二、开平方公式开平方公式是一种用于计算平方根的代数方法,它适用于求解某些特定类型的数的平方根。
开平方公式的计算方法如下:1. 完全平方数:如果给定的数是一个完全平方数,即可以表示为两个相同因子的乘积,那么它的平方根就是这个因子。
例如,给定数为16,它是一个完全平方数,因为16 = 4 * 4。
所以它的平方根是4。
2. 二次方程:开平方公式还可以用于解决某些二次方程的平方根问题。
对于形如ax^2 + bx + c = 0的二次方程,可以使用以下开平方公式计算其平方根:x = (-b ± √(b^2 - 4ac))/(2a)其中,±表示取正负号。
三、牛顿迭代法牛顿迭代法是一种用于求解函数零点的数值方法,也可以用于计算平方根。
牛顿迭代法的计算方法如下:对于给定的数a,考虑方程f(x) = x^2 - a = 0。
我们可以通过迭代的方式逼近方程的解,即平方根。
1. 初始猜测:选择一个初始猜测值x0,通常可以选择给定数的一半作为初始猜测值。
数学七年级下册平方根的知识点
数学七年级下册平方根的知识点平方根是数学中一个非常重要的概念,它在我们的日常生活中也有着非常广泛的应用。
在数学七年级下册中,我们将学习关于平方根的知识,包括平方根的定义、性质、计算等方面的内容。
通过学习平方根,我们可以更加深入地了解数学知识,并且在解决实际问题时有更强的能力。
本文将对数学七年级下册平方根的知识点进行详细的介绍和解析,帮助同学们更好地掌握这一部分知识。
一、平方根的定义1.1平方根的概念平方根是指一个数的平方等于另一个数的数值,通常用符号√来表示。
如果一个数a的平方等于b,那么我们就说b的平方根是a,记作√b = a。
其中,a称为平方根,b称为被开方数。
1.2平方根的性质平方根有以下几个重要的性质:(1)非负性:任何非负数的平方根都是一个非负数。
(2)唯一性:一个非负数的平方根是唯一的。
(3)零的平方根是0。
(4)负数没有实数平方根。
1.3平方根的表示方法平方根可以以分数、小数、甚至无理数的形式表示。
一些特殊的平方根可以用根式来表示,如√2、√3等。
二、平方根的计算2.1常见平方数的平方根在数学中,一些常见的平方数的平方根是容易计算的,如1、4、9、16、25等。
我们可以通过列举平方数表来记住这些平方数的平方根。
2.2用因数分解方法求平方根对于那些不是常见平方数的数字,我们可以通过因数分解的方法来求它的平方根。
以简化为最简分数的形式,例如√20 = √(2*2*5)= 2√5。
2.3用近似算法求平方根对于那些不能很容易求出精确值的平方根,可以使用近似算法来计算。
例如,通过不断迭代计算可以得到一个数字的近似平方根值。
三、平方根的应用3.1在几何中的应用平方根在几何中有着广泛的应用,例如在计算直角三角形的斜边长、正方形的对角线长度等方面。
3.2在物理中的应用物理学中常常涉及到平方根的运算,例如在速度、加速度、力等方面的计算中,都需要用到平方根。
3.3在工程中的应用在工程领域中,平方根也有着重要的应用,比如在计算机图形学、建筑设计、材料力学等方面都需要用到平方根。
算术平方根(二次根式)知识点汇总
算术平方根(二次根式)知识点汇总知识点一: 二次根式的概念: (0a ≥)的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以0a ≥知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a ≧0是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a ﹤0没有意义。
0a ≥)的非负性0a ≥)表示a 的算术平方根,0a ≥)是一个非负数,0(0)a ≥≥注:(0a ≥)表示a 的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(0a ≥0(0)a ≥≥这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用0=,则a=0,b=00b =,则a=0,b=020b =,则a=0,b=0。
知识点四:二次根式2的性质 :2(0)a a =≥文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式2(0)a a =≥是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若,则2a =,如:22=,212=.知识点五:二次根式的性质 a =文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
注: 1、一定要弄明白被开方数的底数a 是正数还是负数,若是正数或0,则等于a 本身,即a a ==(0)a ≥;若a 是负数,则等于a 的相反数-a,即(0)a a a ==-≤;2a 的取值范围可以是任意实数,即不论a 取何值,一定有意义;3a ,再根据绝对值的意义来进行化简。
知识点六:21、不同点:2与2表示一个正数a 的算术平方根的平a 的平方的算术平方根;在2中,0a ≥a 可以是正实数,0,负实数。
但2与20≥0≥.2、相同点:当被开方数都是非负数,即当0a≤时,2无意a≥时,20=-.a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方根 知识点总结
【学习目标】
1.了解平方根、算术平方根的概念,会用根号表示数的平方根.
2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.
【要点梳理】
要点一、平方根和算术平方根的概念
1.算术平方根的定义
如果一个正数x 的平方等于a ,即2
x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a
a 的算术平方根”,a 叫做被开方数.
要点诠释:
有意义时,a
0,a ≥0.
2.平方根的定义
如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)
的平方根的符号表达为0)a ≥,
是a 的算术平方根.
要点二、平方根和算术平方根的区别与联系
1.区别:(1)定义不同;(2
)结果不同:
2.联系:(1)平方根包含算术平方根;
(2)被开方数都是非负数;
(3)0的平方根和算术平方根均为0.
要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方
根;负数没有平方根.
(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的
另一个平方根.因此,我们可以利用算术平方根来研究平方根.
要点三、平方根的性质
(0)||0
(0)(0)
a a a a a a >⎧⎪===⎨⎪-<⎩
()20a a =≥
要点四、平方根小数点位数移动规律
被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.
250=
25=
2.5=
0.25=.
【典型例题】
类型一、平方根和算术平方根的概念
1、若2m -4与3m -1是同一个正数的两个平方根,求m 的值.
【思路点拨】由于同一个正数的两个平方根互为相反数,由此可以得到2m -4=-(3m -
1),解方程即可求解.
【答案与解析】
解:依题意得 2m -4=-(3m -1),
解得m =1;
∴m 的值为1.
【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数. 举一反三:
【变式】已知2a -1与-a +2是m 的平方根,求m 的值.
【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2相等或互为相反数. 解:①当2a -1=-a +2时,a =1,所以m =()()22
212111a -=⨯-=
②当2a -1+(-a +2)=0时,a =-1,
所以m =()()22221[2(1)1]39a -=⨯--=-= 2、x 为何值时,下列各式有意义? 2x 4x -11x x +-1x - 【答案与解析】
解:(1)因为20x ≥,所以当x 2x (2)由题意可知:40x -≥,所以4x ≥4x - (3)由题意可知:1010x x +≥⎧⎨
-≥⎩解得:11x -≤≤.所以11x -≤≤11x x +-义.
(4)由题意可知:1030
x x -≥⎧⎨-≠⎩,解得1x ≥且3x ≠.
所以当1x ≥且3x ≠1x - 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义.
举一反三:
【变式】已知4322232b a a =-+-+,求11a b +的算术平方根. 【答案】 解:根据题意,得320,230.
a a -≥⎧⎨-≥⎩则23a =,所以
b =2,∴1131222a b +=+=, ∴11a b
+的算术平方根为112a b +=. 类型二、平方根的运算
3、求下列各式的值. (1)2222252434-+g ;(2)111200.36900435
--. 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序.
【答案与解析】
解:(1)2222252434-+g 49257535=
=⨯=g ; (2)1118111200.369000.630435435--=-⨯-⨯90.26 1.72
=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根据2(0)a a a =>来解.
类型三、利用平方根解方程
4、求下列各式中的x .
(1)23610;x -= (2)()2
1289x +=; (3)()2
932640x +-=
【答案与解析】
解:(1)∵23610x -=
∴2361x =
∴36119x ==±
(2)∵()21289x +=
∴1289x +=
∴x +1=±17
x =16或x =-18.
(3)∵()2
932640x +-= ∴()264329x += ∴8323
x +=± ∴21499x x ==-或 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)
(3)小题中运用了整体思想分散了难度.
举一反三:
【变式】求下列等式中的x :
(1)若2 1.21x =,则x =______; (2)2
169x =,则x =______; (3)若2
9,4
x =则x =______; (4)若()222x =-,则x =______. 【答案】(1)±1.1;(2)±13;(3)32±;(4)±2. 类型四、平方根的综合应用
5、已知a 、b 是实数,
26|20a b ++-=,解关于x 的方程2(2)1a x b a ++=-. 【答案与解析】
解:∵a 、b 26|20a b +-=260a +≥,|20b -≥,
∴260a +=,20b -=.
∴a =-3,2b =
把a =-3,2b =2(2)1a x b a ++=-,得-x +2=-4,∴x =6.
【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出a 、b 的值,再解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可.
举一反三:
2110x y -+=,求20112012x y +的值.
【答案】
解:由2110x y -++=,得210x -=,10y +=,即1x =±,1y =-.
①当x =1,y =-1时,20112012201120121(1)2x
y +=+-=.
②当x =-1,y =-1时,2011201220112012(1)(1)0x y +=-+-=.
6、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm
的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.
【答案与解析】
解:设长方形纸片的长为3x (x >0) cm ,则宽为2x cm ,依题意得
32300x x ⋅=.
26300x =.
250x =.
∵ x >0,
∴ 50x = ∴ 长方形纸片的长为350cm .
∵ 50>49,
507>.
∴ 35021>, 即长方形纸片的长大于20cm .
由正方形纸片的面积为400 2
cm , 可知其边长为20cm ,
∴ 长方形的纸片长大于正方形纸片的边长.
答: 小丽不能用这块纸片裁出符合要求的长方形纸片.
【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20cm 的正方形纸片裁出长方形纸片.。