8第八章密度测井和岩性密度测井PPT课件

合集下载

地球物理测井密度测井及岩性密度测井

地球物理测井密度测井及岩性密度测井

.Z
.(
NA A
. )
σ=σe.ne
因此可得到物质的康普顿吸收系数与其体 密度之间的关系:
地球物理测井.放射性测井
若将伽马射线的能量限制在0.2~1.02MeV范围内,则可 使物质对伽玛射线的吸收系数以康普顿散射吸收系数为主。 这种情况下,一定强度的伽玛射线穿过厚度为L的物质后, 由于物质对散射的吸收而造成的射线强度衰减具有以下规律:
吸收系数:单位长度物质对伽马射线的吸收概率
分别以t、σ、τ表示电子对效应、康普顿效应、光电 效应的吸收系数,则物质对伽马射线的的总吸收系数为 三种吸收系数之和,即:
=t+σ+τ
地球物理测井.放射性测井
二、伽马射线的吸收
具有一定能量,一定强度的伽马射线穿过厚度为L的物 质后,由于物质对射线的吸收而造成射线强度衰减。其衰 减遵循伽马射线强度衰减规律:
地球物理测井.放射性测井
(2)讨论泥饼对记数率的影响:
L



S

1 AL 1 ABL ) BS )
(ln
NL
BL )

AL AS
(ln
NS
BS )
b (a )L
显然,地层的真密度等于长源距测得的视密 度加上一个校正值。
其他部分和自然伽马基本相同
地球物理测井.放射性测井
伽马源的选择
我们知道,伽马射线与物质的相互作用主要有三种, 而只有康普顿效应才与地层的密度成正比关系。因此密度 测井的原理和技术手段首先要保证被探测的伽马射线的强 度主要反应伽马光子在地层中的康普顿效应。
因此密度测井选用Cs137为伽马源,它发射能量为 0.661MeV。这就排除了形成电子对的可能。如果将记录伽 马射线的阈值定为0.1,即只记录那些能量较高的一次散射 或多次散射伽马射线,这就避免了光电吸收的影响。

测井

测井

绪论•储集层的基本参数(孔、渗、饱、有效厚度)、相关参数的定义孔隙度φ:岩石内孔隙体积占岩石总体积的百分比(%)(1)总孔隙度:总孔隙体积/岩石总体积(φt)(2)有效孔隙度:有效孔隙体积/岩石总体积(φe)(3)次生孔隙度:次生孔隙体积/岩石总体积(φ2)。

渗透率k:描述岩石允许流体通过能力的参数,单位:μm2 (或达西D ),常用10-3 μm2 (毫达西mD)(1)绝对渗透率:只有一种流体时测得。

测井上一般指绝对渗透率;(2)有效渗透率(相渗透率):存在多种流体时对其中一种所测,一般用ko、kg、kw表示;(3)相对渗透率:有效/绝对,用kro、krg、krw表示。

饱和度S:储层中某相流体体积占孔隙体积的百分比(%)。

含水饱和度Sw,含油气饱和度Sh(So、Sg)(1)原状地层:Sh=1-Sw (Sh=So+Sg)(2)冲洗带: Shr=1-Sxo (残余油气Shr、含水Sxo)(3)可动油气: Shm=Sxo-Sw , Shm=Sh-Shr(4)束缚水Swirr: Sw=Swm+Swirr有效厚度he:(1)岩层厚度:岩层上、下界面间的距离。

界面常以岩性、孔隙度、渗透率等参数的变化为显示特征;(2)有效厚度:目前经济技术条件下能产出工业价值油气的储层实际厚度。

常由确认的油气层总厚度扣除无生产价值的夹层厚度后得到。

孔隙度、饱和度和有效厚度等还可用来计算地质储量;孔隙度、渗透率合称储层物性;孔隙度与饱和度的乘积表示某相流体占岩石体积的百分比,如φSw表示岩石中水的相对体积。

•储集层分类(主要两大类)、特点(岩性、物性、电性等)1. 储集层:(储层、渗透层)具有储存油气水的空间,同时这些空间又互相连通(流体可在其中运移)的岩层。

两大特点:孔隙性、渗透性。

2. 储集层分类及特点碎屑岩储集层:(40%储量,也称孔隙性储集层)(1)岩石类型:砂岩为主,砾岩、粉砂岩、泥质砂岩等;(2)围岩:一般为泥岩,性质稳定,常做为参考值;(3)特点:粒间孔隙为主,孔隙度较大(10~30%),分布均匀,各种物性和泥浆侵入等基本为各向同性;测井评价效果较好、技术较成熟。

《地球物理测井》Ch11.密度和岩性密度测井

《地球物理测井》Ch11.密度和岩性密度测井
1、康普顿效应与介质密度的关系 伽马射线与物质的相互作用包括: 光电效应 康普顿效应 电子对效应 吸收系数: 表征单位厚度的介质对伽马射线的吸收能力。 (10-1) (10-2) (10-3)
由上三式可见,只有康普顿效应与介 质密度关系比较简单。(10-2)式表明康 普顿散射引起的伽马射线减弱程度与介质 密度 或电子密度 成正比。 (10-2)式是对单一元素物质表示 的,对于多种化合物也同样遵循这一关 系,例如对于多中原子构成的矿物,其关 系为: (10-4)
一般而言,伽马光子会随着源距的增强而减小。 则有:
因一般储集层都有泥饼,密度测井都采用不同源距的两个伽 马射线探测器,以补偿泥饼对测量的影响,称为双源距补偿密 度测井。常用短源距为15-25cm,长源距35-40cm。
长源距 探测器
短源距 探测器
伽马源
图10-2 双源距补偿密度测井仪器结构
第二节 泥饼影响及密度测井仪刻度方法
不同岩性地层,其测井响应值(幅度)不同
岩性
砂岩 石灰岩 白云岩 硬石膏
声波时差 微秒/米 164~184 156 143 164 微秒/英尺 50~56 47.5 43.5 50 密 度
1、泥饼对计数率的影响(实验) (1)地层没有泥饼时,用长、短源距计数率 都可得到地层密度,而且两者结果一致。 (2)当存在泥饼时,长、短源距计数率将偏 离正常位置。
即长、短源距探测器计 数率(对数坐标)呈线 性关系,所确定的直线 称为“脊线”,其斜率为 AL/AS,该线与横轴的夹
图10-3 无泥饼时的实验曲线
考虑到以上特点,常将密度孔隙度与补偿中子 孔隙度重叠显示以此来区分岩性。
图10-5 某层系的LDT-CNL-GR曲线
3、划分裂缝带或气层

第八章 密度测井

第八章 密度测井
4.含水泥质砂岩的密度为2.25,地层水密度为1.0.地层泥 质含量为0.24,泥岩密度为2.55.求地层孔隙度和视石灰 岩孔隙度. 解: 地层孔隙度=(2.65-2.25)/(2.65-1.0)
-0.24*(2.65-2.55)/(2.65-1.0)=0.22 地层视石灰岩孔隙度=(2.71-2.25)/(2.71-1.0)=0.27
不变的过渡带

密度增加


能量(kev) 图8-2 Z相同而密度不同地层的散射吸收伽马能谱响应
第二节 密度测井
一、密度测井的基本原理 1、井下仪
图8-3为补偿密度测井仪的示意图,它包 括一个伽马源,两个伽马光子探测器。它们 安装在滑板上,测井时将滑板推靠到井壁上 。在下井仪器的上方装有辅助电子线路。
图8-12 计数率比与Pe的关系曲线
由此,通过测量高能段、低能段的伽马光子数,即 可确定地层密度 、光电吸收截面指数和地层体积光 电吸收截面U。
岩性密度测井的输出为:地层密度、地层密度的 泥饼校正值、光电吸收截面指数Pe和地层体积光电 吸收截面U。如图8-13所示。
图8-13 实测的Pe曲线图
2)、密度曲线与中子测井曲线重叠识别气层。 气层:密度视石灰岩孔隙度大,密度低,中
子孔隙度低。
3)、密度-中子测井交会图确定地层岩性及孔隙 度。
第三节 岩性密度测井
岩性密度测井利用伽马射线与地层的光电效 应及康普顿效应,测定地层密度、孔隙度及岩 性。 一、岩性密度测井的基本原理
1、井下仪 岩性密度测井采用的井下仪与密度测井的相 似。测井时,井下仪的滑板被推倒井壁上,滑 板上装有铯伽马源和长、短源距的伽马光子探 测器。
Pe Z 3.6
其中:α为常数。

第8章-密度测井和岩性密度测井

第8章-密度测井和岩性密度测井

第八章 密度测井和岩性密度测井此两种测井方法是由伽马源向地层发射伽马射线,经与地层介质相互作用后,再由伽马探测器接收(即为伽马-伽马测井),地层不同,探测器记录的读数不同,从而被用来研究地层性质。

§1 密度测井、岩性密度测井的地质物理基础一、岩石的体积密度b ρ(即真密度): VG b =ρ (单位体积岩石的质量)对含水纯岩石: φρφρρρρφ⋅+-=⋅+⋅=+=f ma f ma ma fma b V V V VG G )1( 单位:(g/cm 3)其中:V V V ma =+φ(1)组成岩石的骨架矿物不同,ρma 不同,如石英为2.65,方解石为2.71,白云石为2.87,对于相同孔隙度得到的体积密度也就不同,由此可判断岩性;另一方面,利用体积密度计算孔隙度时,必须得先确定岩性。

(2)孔隙性地层的密度小于致密地层,且随着φ的增加ρb 减小,由此可求φ。

且(盐水泥浆)(淡水泥浆)1.10.1=f ρ二、康普顿散射吸收系数∑中等能量γ射线与介质发生康普顿散射康普顿散射而使其强度减小的参数(康普顿减弱系数---由康普顿效应引起的伽马射线通过单位距离物质减弱程度): A N z b A eρσ⋅⋅=∑ 沉积岩中大多数核素A z 均接近于0.5(见表8-1, P138),常见的砂岩、石灰岩、白云岩的A z 的平均值也近似为0.5(见表8-2),所以对于一定能量范围的伽马射线(e σ为常数),∑只与b ρ有关。

密度测井利用此关系,通过记录康普顿散射的γ射线的强度来测量岩石的密度。

三、岩石的光电吸收截面1、线性光电吸收系数:当γ的能量大于原子核外电子的结合能时,发生光电效应的概率。

n A Z λρτ1.40089.0=2、岩石的光电吸收截面指数Pe 它是描述发生光电效应时物质对伽马光子吸收能力的一个参数,即伽马光子与岩石中一个电子发生光电效应的平均光电吸收截面,单位b/电子。

而它与原子序数关系为:Pe=aZ 3.6a 为常数,地层岩性不同,Pe 有不同的值,也就是说Pe 对岩性敏感,可以以来确定岩性,Pe 是岩性密度测井测量的一个参数。

第8章密度测井和岩性密度测井课件分解

第8章密度测井和岩性密度测井课件分解

U Uma (1 ) Vsh Ush Uma
3、识别地层中的重矿物
如重晶石Pe=266.8,锆石Pe=69.1,都比一般矿物 高若干倍,地层中含有重矿物时,Pe显著增大,据此 可以识别重矿物。
2018/11/17 测井方法 19
END
2018/11/17
测井方法
20
测井方法
1
第一节 密度测井、岩性 密度测井的地质物理基础 一、岩石的体积密度ρ (即真密度)

b

二、康普顿散射吸收系数Σ
三、岩石的光电吸收截面

2018/11/17
测井方法
2
一 岩石的体积密度
G b V
对含水纯岩石:
Gma G f V
单位体积岩石的质量
b

ma Vma f V
2018/11/17
第二节 地层密度测井
实际测井中,泥饼影响不可忽视,为此,采用双 源距探测器的补偿密度测井仪,其中长源距的计数率 受泥饼影响小,短源距受影响大,用长源距得到一个 视地层密度ρbˊ,再由长短源巨计数率得到泥饼校 正值Δ ρ ,则地层密度ρb= ρbˊ + Δ ρ 。最终 得随深度变化的一条ρb曲线和Δ ρ 曲线。
2018/11/17
测井方法
11
第二节 地层密度测井
0.5N A e b
N N0e
由上两式可得:
L
LnN LnN0 L LnN0 0.5N A e Lb B A b
即:
1 b ( LnN B) A
测井方法 12
故可由Pe求得U。
2018/11/17 测井方法 9

密度测井 第二版

密度测井 第二版

e
Z

NA A
b
对于沉积岩来说,大多数核素Z/A均接近于0.5,
常见的砂岩、石灰岩、白云岩的Z/A也近似等于0.5,
所以对于一定能量范围的伽马射线(σe为常数),
∑只与ρb有关。密度测井利用此关系,通过记录康
普顿散射的射线来测量岩石的密度。
勘探开发工程监督管理中心
一、密度测井的地质物理基础
(Formation Density Log, FDL)
密度测井:根据伽马射线与地层的康普顿效应 (Compton Effect)测定地层密度(Density)的测井 方法。
(Litho Density Log, LDL)
岩性密度测井:利用伽马射线与地层的光电效应 (Photoelectric Effect)和康普顿效应(Compton Effect)同时测定地层的岩性(Lithology)和密度 (Density)的测井方法,是密度测井的改进和扩展。
电子 原子核
伽马射线
图7-1(a)
勘探开发工程监督管理中心
一、密度测井的地质物理基础
2
伽马射线与物质的作用
(2)、康普顿效应
γ射线的能量为中等数值,γ射线 与原子的外层电子发生碰撞时,把 一部分能量传给电子,使电子从某 一方向射出,此电子称之为康普顿 电子,损失了部分能量的射线向另 一方向散射出去称为散射γ射线。 如图7-1(b)所示。这种现象称为 康普顿效应。
勘探开发工程监督管理中心
二、密度测井
1 密度测井的基本原理
实际测井中,泥饼影响不可忽视,为此,采用双 源距探测器的补偿密度测井仪,其中长源距的计数率 受泥饼影响小,短源距受泥饼影响大,用长源距得到 一个视地层密度ρb’,再由长、短源距计数率得到泥 饼校正值△ρ,则地层密度ρb= ρb’+ △ρ。最终 得到随深度变化的一条ρb曲线和△ρ曲线。

第八章密度测井

第八章密度测井

矿物的密度数据表
矿物 石英 方解石 白云石 硬石膏 钾盐 岩盐 石膏 无烟煤 分子式 SiO2 CaCO3 CaMg(CO3)2 CaSO4 KCl NaCl CaSO4· 2H2O 密度/g· cm-3 2.654 2.710 2.870 2.960 1.980 2.165 2.32 1.400 1.800 1.200 1.500 H2O H2O+NaCl N(CH2) CH4 1.000 1.146 0.85 ρ(CH4)
视密度/g· cm-3 2.648 2.710 2.876 2.977 1.863 2.032 2.351 1.355 1.796 1.173 1.514 1.000 1.135 0.850 ρa(CH4)
烟煤 淡水 矿化水 原油 甲烷
1.060 1.1101 1.0797 1.1407 1.247
(1)当Δρ=0时,即没有泥饼影响,得脊线方程:
AL ln N L BL (ln N S BS ) AS
脊线的斜率为:AL/AS
脊角α为: arctg AL
AS
理想脊肋示意图
(2)当Δρ≠0时,有泥饼影响,得肋线方程:
1 AL KAL ln N L BL (ln N S BS ) b K 1 AS K 1
8、密度测井采用不同源距的两个伽马射线探 测器,以补偿泥饼对测量的影响,称为补偿密 度测井。 常用短源距为15~25cm,长源距为35 ~40cm
二、泥饼对计数率的影响 1、影响的定性描述 (1)渗透性地层的井壁通常积有泥饼,它 对计数率的贡献与仪器的探测深度有关 (2)用蒙特卡罗方法,考察源距分别为30cm 和50cm的仪器对纯石灰岩骨架的探测深度。计 算结果表明,计数的90%来自经向厚度大约 5cm的地层,泥饼的影响不能忽略

第8章密度测井

第8章密度测井

⑴ 电子对效应--当能量大于1.02MeV的伽马射线穿过原子核附近时,在 原子核库仑场的作用下形成一对正、负电子,伽马射线本身被吸收,这种过 程称为电子对效应。
电子对效应
伽马射线穿过单位距离的物质时,由于电子对效应使其强度减弱,用吸 收系数k表示。经验表明k与原子序数Z的平方成正比。
⑵ 康普顿效应--当伽马射线的能量中等时,伽马射线与原子中的电子发生 碰撞,把一部分能量传给电子,使电子沿某一方向射出,损失了部分能量的 伽马射线沿另一方向射出,这种效应为康普顿效应,碰撞后射出的电子叫作 康普顿电子。
右图为补偿地层测井 曲线,图中右侧的密度
校正值Δρ 曲线用来表
示测井曲线的质量,不 代表真正的校正值,利
用密度校正值Δρ 曲线与
井径曲线配合,即可判 断测井质量是否可靠。
补偿地层测井曲线
三、 密度刻度
直接用密度记录测井曲线,需对密度测井仪进行制度
一级刻度:在标准刻度井内进行的刻度
二级刻度:利用根据标准刻度井制作的刻度器对仪器进行制度 为二级刻度。
Al 2.7g/cm3
Mg 1.76g/cm3
三级刻度:一种便携式带标定源的刻度器。利用标定源所放出 已知强度的信号模拟某种地层密度放射伽马射线强度。常用 于现场对仪器进行刻度。
用充满水的石灰岩对仪器进行刻度,得出体积密度
ρb与电子密度系数ρe之间的关系:线通过物质的吸收规律
γ射线通过物质时,与物质发生作用其能量不断减弱,强度逐渐 减小的过程称为γ射线被吸收。吸收规律
I=I0e- μ L
lnI=lnI0-N0σcρbL/2
I0——初始强度;L——距离;μ——物质总吸收系数。
→距放射源为L处,接收到强度I是体积密度的函数。

地球物理测井.中子测井.ppt

地球物理测井.中子测井.ppt

2、交会图法确定岩性、孔隙度、骨架成分
3、中子-密度测井曲线重叠法确定岩性 4、估计油气密度
5、定性指示高孔隙度含气层
地球物理测井—放射性测井
中子测井
三、补偿中子测井CNL(Compensated Neutron Logging)
1、补偿中子测井的原理 (探测热中子密度)
补偿中子测井是一种热中子 测井仪,具有一个中子源和两个 探测器。CNL的长源距和短源距 都采用正源距进行测量。一般长 源距、短源距分别在50~60cm、 35~40cm之间选择。
2 1
H(氘)
13H(氚)
4 2
H
e

1 0
n(中子)
Q
地球物理测井—放射性测井
中子测井
一、中子测井基础
3、中子和物质的相互作用
中子与地层的相互作用是中子测井的物理基础。中子源 所发射中子的能量不同,中子与地层相互作用的行为不同。
中子源发射的中子进入地层后,随着能量的改变,
1
与地层的相互作用大致可分为快中子的非弹性散射、 快中2 子原子核的活化、快中3子的弹性散射、热中4子的
SNP测井仪器图
超热中子测井的源距变化 范 围 一 般 为 30 ~ 45cm , 如 斯 仑 贝谢的井壁中子测井仪的源距为 42cm。 SNP采 用 探 测 器和 中子 源贴靠井壁的方式测量,可减小 井眼的影响。
地球物理测井—放射性测井
中子测井
二、超热中子测井SNP
(一) 超热中子测井的基本原理(贴井壁测量)
②如果岩石骨架由两种或三种矿物成分组成,
可用Pe,U,ρb值来确定矿物组成含量。

b

n
mi i
③求泥质含量。

岩性密度测井----知识

岩性密度测井----知识

岩性—密度测井(litho-density logging)是密度测井的改进和扩展。

它除了记录岩石的密度之外,还测量地层的光电吸收截面指数Pe,而Pe和岩性有关。

测井时,井下仪器分别记录散射γ射线较高能量部分和较低能量部分。

高能量部分的散射γ射线强度取决于密度;低能量部分主要和岩性有关,同时也和密度有关,经过处理后可以得到pe.密度测井英文:density logging释文:又称伽马一伽马测井(gamma-gamma logging)、散射伽马测井(scattered gamma-ray logging)。

是利用康普顿一吴有训散射效应研究岩层密度的测井方法。

井下仪器由γ源和加屏蔽的探测器组成。

探测器记录由地层散射的γ射线。

散射γ射线和地层电子密度有关,因此与地层的密度有关。

为了减小井径变化和泥饼的影响,采用源距不同的两个探测器,并且7源和探测器都装在滑板上,贴井壁进行测量。

近探测器的结果用来校正井径变化和泥饼对远探测器的影响。

密度测井是划分煤层、划分致密岩层中的裂隙带,以及研究渗透性岩层的孔隙度的有效方法。

[我们的眼睛就是一套光子计数器,天气晴朗时能见度高,能接收到从远处透射过来的光子流,物像清晰。

而在浓雾中,由远处物体发射或反射的光子经雾的散射和吸收,能到达眼睛的光子流强度很弱,图像不清晰,甚至完全看不到。

由此可见,能观测到的散射光子的强度与散射体的密度有关。

含有孔隙的地层能存储石油、天然气和地层水。

这些流体的密度都比岩石骨架密度低,所以岩石的孔隙度越大密度就越低,而致密地层的密度高。

不同的岩石,如砂岩、石灰岩和白云岩,岩石骨架的密度也不相等。

在实验室,用眼睛就能分辨岩石的岩性,用量体积和称重量的方法即可测量出样品的密度;而要测定数千米以下地层的密度和岩性,就需要一种专用散射g密度计,称为散射g能谱测井仪。

散射g能谱测井仪的探头结构如图所示,测井时仪器被推压到井壁的一侧,以减少井眼内钻井液的影响。

第八章 密度测井详解

第八章 密度测井详解

b
(8-9)
当入射伽马射线的能量在一定范围内时,
e
是常数,所以,Σ仅与岩石密度有关(正比于岩石 密度)。
三、岩石的光电吸收截面
1、岩石光电吸收截面指数Pe
伽马光子与岩石中一个电子发生的平均光
电吸收截面,单位:b/电子。
P e Z
3.6
(8-10)
其中:α为常数。
2、体积光电吸收截面 U
0.136×密度
0
四、伽马射线通过物质时的能谱 图8-1为0.661MeV伽马射线打入密度相同
而原子序数不同的三种地层的伽马能谱曲线。
由图看出:
1)在低能区,原子序数越大,计数率越低,
说明物质吸收的伽马光子数越多; 2)计数率最大值对应的伽马光子能量随Z值 的增大而降低; 3)高能区,计数率几乎与Z无关。
每立方厘米物质的光电吸收截面。
单位为
b / cm
n i 1
3

(8-11)
U U iVi
其中:Ui、Vi分别为组成岩石的第i部分的体积光电 吸收截面和相对体积。
3、U与Pe的关系
Pe U / b
(8-12)
表8-2 岩性参数
矿物
石英
密度
电子密度指数 Pe
U
2.65
2.65
1.81
图8-2
能量(kev) Z相同而密度不同地层的散射吸收伽马能谱响应
随介质密度增大,伽马光子计数率降低(伽马射线 衰减与介质密度成正比)
第二节
密度测井
泥饼
一、密度测井的基本原理
1、井下仪
图8-3为补偿密度测
井仪的示意图,它包括 一个伽马源,两个伽马 光子探测器。它们安装 在滑板上,测井时将滑

密度测井

密度测井
密度测井选用Cs137为伽马源,它发射能量为0.661MeV 的伽马光子,这就排除了形成电子对的可能性。这时的吸收 系数基本上是以康普顿效应的吸收系数为主的,其它两种效 应的吸收系数都可以忽略不计。
Z A NA
e
b
1 2
NA
e
b
测井时所用的伽马源是不变的,所以测井时 井下仪器所测到的散射伽马强度就是与地层岩石 密度有关的函数。
测 井 计 数 率

2 g cm3





3 g cm3
a
b 短源距计数率
无泥饼时地层密度、源距和计数率之间的关系
测 井 计 数 率

2 g cm3



泥 饼 厚
数 率
2.5
泥饼引起的

数据偏离


3 g cm3
1.8
a
b 短源距计数率
有泥饼存在并且泥饼密度小于地层密度情况下,
地层密度、源距、泥饼厚度和计数率之间的关系
测 井 计 数 率

2 g cm3


计 泥饼引起的

数 数据偏离
饼 厚




3 g cm3
3.0
短源距计数率
a
b
有泥饼存在并且泥饼密度大于地层密度情况下,
地层密度、源距、泥饼厚度和计数率之间的关系
长源距探测器计数率
含重晶石泥饼
1.0
1) 在没有泥饼的条件下,用不同源距的两个探测器
2.0
进行测量。它们的计数率与地层密度的关系与式①一致。
这一类侧井方法所用的轰击粒子和探侧的对象都是 伽马光子,所以通称伽马一伽马侧井或散射伽马测井。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P常a选取10-3.6 。地层岩性不同,Z不
同,则Pe有不同的值,也就是说Pe对岩性敏感, 可以用来确定岩性,Pe是岩性密度测井测量的一 个参数。
7
第一节 密度测井、岩性密度测井的地 质物理基础
➢三、岩石的光电吸收截面与岩性的关系
–2.岩石的体积光电吸收截面U • 体积光电吸收截面也是描述发生光电效应时物质对伽 马光子吸收能力的一个参数,它是伽马光子穿过单位 体积吸收介质时产生光电效应的几率,以U来表示。 地层岩性不同,其体积光电吸收截面不同。
Vma V V
20.11.2020
3
第一节 密度测井、岩性密度测井的地 质物理基础
➢一、岩石的体积密度ρb (即真密度)
– (1)组成岩石的骨架矿物不同,ρma不同,石英为2.65, 方解石为2.71,白云石为2.87,对于相同孔隙度的体积密 度不同,由此可判断岩性;另一方面,利用体积密度计 算孔隙度时,必须得先确定岩性。
第八章 密度测井和岩性密度测井
此两种测井方法是由伽马源向地层发射伽马射线,伽马 射线与地层介质相互作用后,再由伽马探测器接收与地 层介质相互作用后产生的伽马射线(即为伽马-伽马测 井),地层不同,对伽马射线的吸收性质不同,探测器 记录的伽马读数不同,从而被用来研究地层性质。
20.11.2020
1
第八章 密度测井和岩性密度测井
第一节 密度测井、岩性密度测井的地 质物理基础
➢四、伽马射线通过物质时的能谱
– 单能伽马射线束通过介质后,射线谱成分就要发生变化。 – 光子与物质产生光电效应和电子对效应时,光子被吸收,
使射线束减弱,但不改变射线的能谱成分。 – 而康普顿效应却使光子经一次或多次散射,一再减弱他们
的能量,使单能伽马射线变成了一定能量范围复杂谱射 线。
➢二、康普顿散射吸收系数Σ与岩石密度的关系
20.11.2020
6
第一节 密度测井、岩性密度测井的地 质物理基础
➢三、岩石的光电吸收截面与岩性的关系
– 1.岩石的光电吸收截面指数Pe • 它是描述发生光电效应时物质对伽马光子吸收能 力的一个参数,即伽马光子穿过单位厚度吸收介 质时产生光电效应的几率。而它与原子序数关系 为:
– (2)孔隙性地层的密度小于致密地层,且随着φ的增加 ρb减小,如果已知岩性ρma,由此可求φ。
20.11.2020
4
第一节 密度测井、岩性密度测井的地 质物理基础
➢二、康普顿散射吸收系数Σ与岩石密度的关系
– 中等能量射线与介质发生康普顿散射,而使其强度减小, 康普顿散射吸收系数---由康普顿效应引起的伽马射线通 过单位距离物质减弱程度:
20.11.2020
8
第一节 密度测井、岩性密度测井的地 质物理基础
➢三、岩石的光电吸收截面
–2.体积光电吸收截面U
• U对岩性敏感,也是岩性密度测井所要确定的一个参 数。岩石的体积光电吸收截面为:
n
U U iV i i1
• Ui、Vi分别为组成岩石第i部分的体积光电吸收截面 和相对体积。如孔隙度为φ的纯砂岩的体积光电吸
e
z
NAb
A
– 沉积岩中大多数核素Z/A均接近于0.5,常见的砂岩、石
灰岩、白云岩的Z/A的平均值也近似为0.5,对于一定能
量范围的伽马射线,σe为常数,所以Σ与ρb有关。密度 测井利用此关系,通过康普顿散射吸收系数来测量岩石
的密度。
20.11.2020
5
第一节 密度测井、岩性密度测井的地 质物理基础
➢一、密度测井的基本原理
– 1.测井仪
• (1)伽马源、伽马探测器、屏蔽体 三部分组成,贴井壁测量。
• 伽 马 源 (Cs137 ) —发 射 中 等能 量 为 0.661Mev的单能伽马射线,射线与物 质作用只发生光电效应和康普散射。
• (2)伽马探测器是由单伽马探测器 或双伽马探测器组成。
• (3)屏蔽体—使源发射的光子不能
直接到达探测器。
20.11.2020
13
第二节 地层密度测井
➢一、密度测井的基本原理
– 2.测井原理 • 由源发射0.661Mev的伽马射线(排除电子对形成的可 能性)—照射地层发生康普顿效应(采用能量窗口, 避免光电效应的影响)—散射射线到达探测器—计数 率N。
• 地层密度ρb不同,对伽马光子的散射吸收能力不同, 仪器记录的计数率不同,ρ增大,N减小。
收截面为:
U (1)U m aU f
20.11.2020
9
第一节 密度测井、岩性密度测井的地 质物理基础
➢三、岩石的光电吸收截面
–3.体积光电吸收截面U与光电吸收截面指数Pe的关系 • 体积光电吸收截面U与光电吸收截面指数Pe有近似关系:
Pe Ub
• 故可由Pe求得U。
20.11.2020
10
20.11.2020
11
第一节 密度测井、岩性密度测井的地 质物理基础
➢四、伽马射线通过物质时的能谱
– 下图是能量为0.661MeV的中能伽马射线打入密度相同而 原子序数不同和原子序数相同而密度不同的地层介质时的 伽马能谱曲线。
20.11.2020
Pe aZ3.6
e
z
NAb
A
12
第二节 地层密度测井
20.11.2020
14
第二节 地层密度测井
➢一、密度测井的基本原理
–2.测井原理
• 通过距离为L的伽马光子的计数率为:NN0eL
• 只存在康普顿效应时:
e
z
NA A
b
NNeezNAAbL 0
NN0ee
NAbL
2
L n N L n N 0 L L n N 0 K L b
K0.5NAe
20.11.2020
15
第二节 地层密度测井
➢一、密度测井的基本原理
–2.测井原理 • 在L一定的情况下,探测 器记录的计数率N在半对 数 坐 标 系 中 与 ρb 呈 线 性 关 系。可以根据这种关系通 过计数率来求得地层密度。
20.11.2020
➢ 第一节 密度测井、岩性密度测井 的地质物理基础
➢ 第二节 地层密度测井 ➢ 第三节 岩性密度测井
20.11.2020
2
第一节 密度测井、岩性密度测井的地 质物理基础
➢一、岩石的体积密度ρb (即真密度)
b
G V
单位体积岩石的质量(g/cm3 )
– 孔隙中饱含流体的纯岩石的体积密度:
b G m a V G fm a V m a V fV m a (1 )f
相关文档
最新文档