PID回路整定详细说明
PID使用说明
PID调节器又称回路调节器,本调节器提供的具体功能有:手动、自动、串级、及跟踪运行方式的切换,设定值、手动输出值的调整,PID参数的整定等。
PID调节有三种画面:回路操作画面、趋势显示画面和参数调整画面。
下面介绍每种画面显示的信息及用途。
1.回路操作画面在预先设置的PID热点上,单击鼠标左键,屏幕上将弹出如图3.11-1所示回路操作画面,由回路操作画面可分别进入其它两种画面。
(1)显示信息说明在回路调节画面中显示的有设定值、过程值和输出值的棒图及数值显示,运行方式显示,报警状态显示等。
❒棒图显示画面左边的三个棒图分别代表设定值、过程值和输出值,棒的颜色依次为蓝、天蓝、粉色。
设定值棒的高度为当前值相对量程的百分数。
如果PID运行于串级状态,则设定棒显示串级外给定值,在其它运行状态下显示内给定值。
过程值棒的高度表示过程输入值。
输出棒的高度表示输出值。
❒数值显示画面右下区域的三个方框中显示的内容依次为设定量、过程量及输出量的当前值,各数值颜色与棒颜色相对应。
当PID调节器运行于手动、自动或跟踪状态时,设定值为内部给定值;当运行于串级状态时,显示为串级输入值。
当PID调节器运行于手动状态时,输出值由手动给出;运行于自动和串级状态时,由算法结果给出;运行于跟踪状态时,为跟踪量点值。
❒报警状态显示当偏差报警到来时,左上角灯置亮(呈红色);报警消失时,恢复正常颜色。
❒运行方式显示PID调节器的运行方式包括手动、自动、串级及跟踪四种,当某个运行方式下的状态灯呈绿色时,表示调节器处于某方式。
❒其它PID调节器画面静态显示的内容有点名、点描述(说明)等。
(2)操作说明在回路操作画面中可以进行的操作有:工作方式(手动、自动、串级和跟踪)的切换,通过设定值增减按钮改变设定值,通过输出值增减按钮改变输出值,切换到趋势显示画面和参数调整画面。
PID共有手动、自动、串级和跟踪四种工作状态,这四种工作状态的切换是无扰动的。
●手动状态下,PID单元停止运算,依靠操作键来改变控制输出。
PID使用说明
PID调节器又称回路调节器,本调节器提供的具体功能有:手动、自动、串级、及跟踪运行方式的切换,设定值、手动输出值的调整,PID参数的整定等。
PID调节有三种画面:回路操作画面、趋势显示画面和参数调整画面。
下面介绍每种画面显示的信息及用途。
1.回路操作画面在预先设置的PID热点上,单击鼠标左键,屏幕上将弹出如图3.11-1所示回路操作画面,由回路操作画面可分别进入其它两种画面。
(1)显示信息说明在回路调节画面中显示的有设定值、过程值和输出值的棒图及数值显示,运行方式显示,报警状态显示等。
❒棒图显示画面左边的三个棒图分别代表设定值、过程值和输出值,棒的颜色依次为蓝、天蓝、粉色。
设定值棒的高度为当前值相对量程的百分数。
如果PID运行于串级状态,则设定棒显示串级外给定值,在其它运行状态下显示内给定值。
过程值棒的高度表示过程输入值。
输出棒的高度表示输出值。
❒数值显示画面右下区域的三个方框中显示的内容依次为设定量、过程量及输出量的当前值,各数值颜色与棒颜色相对应。
当PID调节器运行于手动、自动或跟踪状态时,设定值为内部给定值;当运行于串级状态时,显示为串级输入值。
当PID调节器运行于手动状态时,输出值由手动给出;运行于自动和串级状态时,由算法结果给出;运行于跟踪状态时,为跟踪量点值。
❒报警状态显示当偏差报警到来时,左上角灯置亮(呈红色);报警消失时,恢复正常颜色。
❒运行方式显示PID调节器的运行方式包括手动、自动、串级及跟踪四种,当某个运行方式下的状态灯呈绿色时,表示调节器处于某方式。
❒其它PID调节器画面静态显示的内容有点名、点描述(说明)等。
(2)操作说明在回路操作画面中可以进行的操作有:工作方式(手动、自动、串级和跟踪)的切换,通过设定值增减按钮改变设定值,通过输出值增减按钮改变输出值,切换到趋势显示画面和参数调整画面。
PID共有手动、自动、串级和跟踪四种工作状态,这四种工作状态的切换是无扰动的。
●手动状态下,PID单元停止运算,依靠操作键来改变控制输出。
PID控制器的参数整定
PID控制器的参数整定PID控制器是一种常用的闭环控制器,可以根据系统的输入和输出之间的误差来调整控制器的参数,从而实现对系统的稳定控制。
PID控制器的参数整定是指确定控制器的比例系数Kp、积分时间Ti和微分时间Td的过程。
下面将详细介绍PID控制器的参数整定方法和相关的考虑因素。
一、参数整定方法:1.经验整定法:根据经验将控制器的参数进行初步设定。
经验整定法通常通过试验或先验知识来确定参数,根据具体的应用场景不断调整,以达到较好的控制效果。
该方法常用与简单的控制系统或者无法获得系统数学模型的情况下。
2. Ziegler-Nichols整定法:Ziegler-Nichols整定法是一种基于试验的整定方法。
该方法首先暂时关闭积分和微分控制,只调整比例控制系数Kp,使系统达到临界稳定状态。
然后测量临界增益Ku和临界周期Pu,根据不同类型的控制系统(比例型、积分型和微分型),采用不同的参数整定公式确定Kp、Ti和Td的初始值,再根据系统的实际响应实时调整。
3. Ziegler-Nichols改进整定法(Chien-Hrones-Reswich法):该方法是对Ziegler-Nichols整定法的改进,可以更精确地测定控制器参数。
该方法同样通过测量系统的临界增益Ku和临界周期Pu,但是对参数的计算公式进行了修正,提高了参数整定的准确性。
4. 极点配置法(Pole Placement):极点配置法是一种基于系统数学模型的整定方法。
通过分析系统的传递函数,确定控制器的极点位置,从而使系统的闭环响应满足所需的性能指标。
该方法需要对系统的数学模型有较详细的了解,适用于相对复杂的控制系统。
5.自整定法:自整定法是一种自动寻优的整定方法,常用于智能控制器中。
该方法通过观察系统的动态性能,通过迭代寻找最优的参数组合。
自整定法通常采用优化算法(如遗传算法、粒子群算法等)来最优参数,在一定的性能和收敛速度之间进行权衡。
二、参数整定的考虑因素:1.系统的稳定性:控制器的参数整定应确保系统的闭环响应稳定。
PID参数调节原理和整定方法(1)
PID参数调节原理和整定方法
CS3000系统PID参数整定方法
增大比例系数P一般将加快系统的响应,在有静 差的情况下有利于减小静差,但是过大的比例系 数会使系统有比较大的超调,并产生振荡,使稳 定性变坏。
增大积分时间I有利于减小超调,减小振荡,使 系统的稳定性增加,但是系统静差消除时间变长。
因此希望优秀的工艺人员与用心的仪表人 员共同努力,共同提高我们国际化的大石 化自控率,同时也为减轻大家的劳动强度。
PID参数调节原理和整定方法
CS3000 仪表面板
位号
位号注释
功能块模式 测量值
位号标志 报警状态
设定值
输出值
输出指针 测量值棒状图
工程单位
测量值上限 报警设置 设定值指针
测量值下限
PID参数调节原理和整定方法
CS3000 仪表面板
输出值指针 设定值指针 功能块模式 报警状态 位号 位号注释 位号标志 测量值棒状图 测量值上下限 工程单位
P比例调节
P:比例调节
在P调节中,调节器的输出信号u与偏差信号e成比例, 即 u = Kc e (kc称为比例增益)
但在实际控制中习惯用增益的倒数表示 δ =1 / kc (δ称为比例带)
不同的DCS使用不同的参数作为P的调节参数,以CS3000 为例,选用δ 比例带为调节参数,单位%。可以理解为:
P:比例带;值越大,作用越弱。单 位:%
I:积分时间;值越大,作用越弱, 单位:分钟(m)
D:微分时间;值越大,作用越强, 单位:分钟(m)
PID参数含义均与CS3000一致,但要 注意积分和微分时间,为分钟。
手动/自动 切换
PID仪表自整定说明
仪表自整定说明一、使用方法和工作原理:将仪表给定值(SV值)设定为所需的控制值,整个控制回路连接好后,按住“移位健”(此时oPAd=1)直至仪表SV窗口交替显示“At”和给定值后松开,此时仪表将根据给定值(SV值)进行PID自整定,将自动完成PID的控制参数设定(P、I、dt参数)。
当仪表SV窗口不再交替显示“At”和给定值时PID自整定完成。
如果当前的设定值与实际给定值不符或其他原因要停止PID自整定可继续按住“移位健”直至仪表SV窗口不显示“At”后松开,这时强制PID自整定结束。
如需重新进行PID自整定重复上述操作。
注意:仪表在正常工作前,PID参数均为出厂默认值,该参数不可能任何与任意所有的现场环境,所以都要进行PID自整定,否则仪表可能控制效果不佳。
例:仪表进行一般的PI D控制,通过4~20mA的电流信号控制加热对象的温度在200度。
先将给定值(SV值)设定为200,再将“oPAd”参数设定为1(或将“oPAd”参数设定为2在参数设定完成后自动进行自整定),“t”设置为0,“ot”参数设定为4,“oL”参数设定为0,“oH”参数设定为100。
然后在测量状态下按住“移位健”直至仪表SV窗口交替显示“At”和给定值后松开,当仪表SV窗口不在交替显示“At”和给定值时PID自整定完成。
如果控制效果不佳应检查上述参数是否设置正确或重新进行自整定(参数含义参见说明书)。
二、人工调整PID参数XM系列仪表的自整定功能具备较高的准确度,可满足超过90%用户的使用要求,但由于自动控制对象的复杂性,对于一些特殊应用场合,自整定出的参数可能并不是最佳,以下是人工调节P、I、dt参数时的方法:1、人工调节PID参数:如果正确的操作自整定而无法获得满意的控制,可人为修改P、I、dt参数。
人工调整时要注意观察系统的响应曲线,如果是短周期振荡(与自整定或位式调节时振荡周期相当或略长),可减小P(优先),加大I及dt;如果是长周期振荡(数倍于位式调节时振荡周期)可加大I(优先),加大P, dt;如果无振荡而是静差太大,可减小I(优先),加大P;如果最后能稳定控制但时间太长,可减小dt(优先),加大P,减小I。
Honeywell_DCS_控制回路PID参数整定方法
Honeywell PKS系统控制回路PID参数整定方法鉴于目前一联合装置仪表回路自控率比较低,大部分的回路都是手动操作,这样不但增加了操作员的工作量,而且对产品质量也有一定的影响,特编制了此PID参数整定方法。
修改PID参数必须有“SUPV(班长)”及以上权限权限,具体权限设置切换方法如下;一、打开要修改的控制回路细目画面,翻到下图所示的页面(Loop Tune),修改PID控制回路整定的三个参数K,T1,T2;二、PID参数代表的含义Control Action:控制器的作用方式,正作用(DIRECT),反作用(REVERSE);Overal Gain(K):比例增益(放大倍数),范围为0.0~240.0;T1:积分时间,范围为0.0~1440.0,单位为分钟,0.0代表没有积分作用;T2:微分时间,范围为0.0~1440.0,单位为分钟,0.0代表没有微分作用。
三、PID参数的作用(1)比例调节的特点:1、调节作用快,系统一出现偏差,调节器立即将偏差放大K倍输出; 2、系统存在余差。
K越小,过渡过程越平稳,但余差越大;K增大,余差将减小,但是不能完全消除余差,只能起到粗调作用,但是K过大,过渡过程易振荡,K太大时,就可能出现发散振荡。
(2)积分调节的特点:积分调节作用的输出变化与输入偏差的积分成正比,积分作用能消除余差,但降低了系统的稳定性,T1由大变小时,积分作用由弱到强,消除余差的能力由弱到强,只有消除偏差,输出才停止变化。
(3)微分调节的特点:微分调节的输出是与被调量的变化率成正比,在引入微分作用后能全面提高控制质量,但是微分作用太强,会引起控制阀时而全开时而全关,因此不能把T2取的太大,当T2由小到大变化时,微分作用由弱到强,对容量滞后有明显的作用,但是对纯滞后没有效果。
四、控制器的选择方法(1)P控制器的选择:它适用于控制通道滞后较小,负荷变化不大,允许被控量在一定范围内变化的系统;(2)PI控制器的选择:它适用于滞后较小,负荷变化不大,被控量不允许有余差的控制系统;(3)PID控制器的选择:它适用于负荷变化大,容量滞后较大,控制质量要求又很高的控制系统,比如温度控制系统。
PID控制原理与参数的整定方法
PID控制原理与参数的整定方法PID控制器是一种常用的自动控制器,在工业控制中广泛应用。
它的原理很简单,即通过不断调节控制信号来使被控制物体的输出接近给定值。
PID控制器由比例(P)、积分(I)和微分(D)三个控制参数组成。
下面将详细介绍PID控制的原理和参数整定方法。
一、PID控制原理1.比例(P)控制比例控制根据被控制量的偏差的大小,按照一定比例调节控制量的大小。
当偏差较大时,调节量增大;当偏差较小时,调节量减小。
此项控制可以使系统快速响应,并减小系统稳态误差。
2.积分(I)控制积分控制根据被控制物体的偏差的积分值来调节控制量。
积分控制的作用主要是消除系统的稳态误差。
当偏差较小但持续较长时间时,积分量会逐渐增大,以减小偏差。
3.微分(D)控制微分控制根据被控制物体的偏差的变化率来调节控制量。
当偏差的变化率较大时,微分量会增大,以提前调整控制量。
微分控制可以减小系统的超调和振荡。
综合比例、积分和微分控制,PID控制器可以通过不同的控制参数整定来适应不同的被控制物体的特性。
二、PID控制参数整定方法1.经验整定法经验整定法是根据对被控制系统的调试经验和运行情况来选择控制参数的方法。
它是通过实际试验来调整控制参数,通过观察系统的响应和稳定性来判断参数的合理性。
2. Ziegler-Nichols整定法Ziegler-Nichols整定法是根据系统的临界响应来选择PID控制参数的方法。
在该方法中,首先将I和D参数设置为零,然后不断提高P控制参数直到系统发生临界振荡。
根据振荡周期和振荡增益的比值来确定P、I和D的参数值。
3.设计模型整定法设计模型整定法是根据对被控系统的数学建模来确定PID控制参数的方法。
通过建立被控系统的数学模型,分析其频率响应和稳态特性,从而设计出合理的控制参数。
4.自整定法自整定法是通过主动调节PID控制器的参数,使被控系统的输出能够接近给定值。
该方法可以通过在线自整定或离线自整定来实现。
PID整定方法
PID参数整定方法就是确定调节器的比例带PB、积分时间Ti和和微分时间Td。
一般可以通过理论计算来确定,但误差太大。
目前,应用最多的还是工程整定法:如经验法、衰减曲线法、临界比例带法和反应曲线法。
各种方法的大体过程如下:(1)经验法又叫现场凑试法,即先确定一个调节器的参数值PB和Ti,通过改变给定值对控制系统施加一个扰动,现场观察判断控制曲线形状。
若曲线不够理想,可改变PB或Ti,再画控制过程曲线,经反复凑试直到控制系统符合动态过程品质要求为止,这时的PB和Ti 就是最佳值。
如果调节器是PID三作用式,那么要在整定好的PB和Ti的基础上加进微分作用。
由于微分作用有抵制偏差变化的能力,所以确定一个Td值后,可把整定好的PB和Ti值减小一点再进行现场凑试,直到PB、Ti和Td取得最佳值为止。
显然用经验法整定的参数是准确的。
但花时间较多。
为缩短整定时间,应注意以下几点:①根据控制对象特性确定好初始的参数值PB、Ti和Td。
可参照在实际运行中的同类控制系统的参数值,或参照表3-4-1所给的参数值,使确定的初始参数尽量接近整定的理想值。
这样可大大减少现场凑试的次数。
②在凑试过程中,若发现被控量变化缓慢,不能尽快达到稳定值,这是由于PB过大或Ti过长引起的,但两者是有区别的:PB 过大,曲线漂浮较大,变化不规则,Ti 过长,曲线带有振荡分量,接近给定值很缓慢。
这样可根据曲线形状来改变PB或Ti。
③PB 过小,Ti过短,Td太长都会导致振荡衰减得慢,甚至不衰减,其区别是PB过小,振荡周期较短;Ti过短,振荡周期较长;Td太长,振荡周期最短。
④如果在整定过程中出现等幅振荡,并且通过改变调节器参数而不能消除这一现象时,可能是阀门定位器调校不准,调节阀传动部分有间隙(或调节阀尺寸过大)或控制对象受到等幅波动的干扰等,都会使被控量出现等幅振荡。
这时就不能只注意调节器参数的整定,而是要检查与调校其它仪表和环节。
(2)衰减曲线法是以4:1衰减作为整定要求的,先切除调节器的积分和微分作用,用凑试法整定纯比例控制作用的比例带PB(比同时凑试二个或三个参数要简单得多),使之符合4:1衰减比例的要求,记下此时的比例带PBs和振荡周期Ts。
离散PIDPID参数整定
U(s)
其离散位置式算式: U(k) aU(k-1) (1 a)U(k)
其中: a Tf T0 Tf
k
U(k) kce(k) ki e(i) k0[e(k) e(k-1)] i0
其离散增量式等式 U(k) aU(k - 1) (1 a)U(k)
其中: U(k) k ce(k 1) k ie(k) k D[e(k) 2e(k - 1) e(k - 2)]
液体压力:调节近似流量调节 蒸汽压力:调节近似温度调节 温度系统:存在传递滞后和较大的时间常数,所以引入微分作用 注意:这种按照受控变量类型来选择控制器参数的做法,都是对 典型的过程特性而言的。
表1-4 经验法整定参数的参考范围
系统
温度 流量 压力 液位
比例度 20~60 40~100 30~70 20~80
exp( / 1 2 ) 1/ n
n exp(2 / 1 2 ) 1/ n
9、对不稳定系统,Kc越小则越稳定
一、经验凑试法:
按照人们长期从事过程控制的经验来调整控制器参数 流量系统:宜用PI控制,往往需要精确控制 液位系统:宜用纯比例,比例度要大 压力系统:液体压力,气体压力,蒸汽压力
参数
Ti min 3~10 0.1~1 0.4~3
Td min 0.5~3
整定步骤: (1)纯比例下调出4:1衰减振荡 (2)如需消除余差,则适当增加比例度,引入积分作用 (3)如需要再加入微分:允许适当减小比例度和积分时 间 不同参数对过渡过程曲线的影响: (1)比例度过小、积分时间过小、微分时间过大所引起 的振荡的区别
Ui (k)
ki e(k )
U i
(k)
ki
e(k )
e(k 2
PID系列仪表自整定说明
PID系列仪表自整定说明一、使用方法和工作原理:首先将仪表与前级传感器和后级控制设备连接正确,若是控制阀门正反转输出须先做阀门位置自整定。
适当调整输入数字滤波参数DL,使仪表显示跳动范围小于CHYS(PID自整定时的回差)。
将仪表SV值设定为最常用的目标值,按住“移位键”直至仪表SV窗口闪烁显示“At”后松开,仪表开始自动整定PID参数。
由于现场状况的差别,整定过程可能持续数秒钟或数小时。
自整定结束后,SV窗停止显示“At”字符。
如果中途停止自整定,可按住“移位键”直至仪表SV窗口停止显示“At”。
将参数At的值设置为on,也可以启动自整定过程。
做过一次自整定的仪表,如要再次启动自整定,只能修改AT参数为on 。
为避免现场操作人员误启动自整定,可将At参数设为LoFF。
此时禁止从面板启动自整定。
例:仪表进行一般的控制,通过4~20mA的电流信号控制加热对象的温度在200度。
先将给定值(SV值)设定为200,再将“oPAd”参数设定为1(或将“oPAd”参数设定为2在参数设定完成后自动进行自整定),“t”设置为0,“ot” 参数设定为4,“oL” 参数设定为0,“oH” 参数设定为100。
然后在测量状态下按住“移位健”直至仪表SV窗口交替显示“At”和给定值后松开,当仪表SV窗口不在交替显示“At”和给定值时PID自整定完成。
如果控制效果不佳应检查上述参数是否设置正确或重新进行自整定(参数含义参见说明书)。
二、人工调整PID参数XM系列仪表的自整定功能具备较高的准确度,可满足超过90%用户的使用要求,但由于自动控制对象的复杂性,对于一些特殊应用场合,自整定出的参数可能并不是最佳,以下是人工调节P、I、d参数时的方法:1、人工调节PID参数:如果正确的操作自整定而无法获得满意的控制,可人为修改P、I、d参数。
人工调整时要注意观察系统的响应曲线,如果是短周期振荡(与自整定或位式调节时振荡周期相当或略长),可减小P(优先),加大I及d;如果是长周期振荡(数倍于位式调节时振荡周期)可加大I(优先),加大P, d;如果无振荡而是静差太大,可减小I(优先),加大P;如果最后能稳定控制但时间太长,可减小d(优先),加大P,减小I。
PID回路整定简易说明
• PID控制器输出中的积分部分与偏差的积分成正比。因为积分时间TI在积分项的分母中,TI越小,积 分项变化的速度越快,积分作用越强。
3.D-微分作用
有经验的操作人员在温度上升过快,但是尚未达到设定值时,会根据温度变化的趋势,预感 到温度将会超过设定值,出现超调。于是手动减少给煤量。
这相当于开车看到红灯时,考虑到汽车减速的时间,需要一定的提前量一样。
三、举例说明PID控制器的基本原理
PID属于无模型控制,调节三个环节的参数P、I、D会产生什么影响根据控制对象的不同也会有很大差别。 假设有一个水箱液位控制系统,从空箱补水至某个高度,我们能控制的是比例水龙头的开关大小。
简单的数学模型就是: △MV=(PV-SP)/PB 只需要一个比例调节 也就是说,开始比例水龙头开大点,快灌满的时候关小一点,到了设定高度全关。
二、举例说明PID三参数
第一部分 举例说明
PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。参数整定的关 键是正确地理解各参数的物理意义。
PID控制的原理可以用操作人员对热油炉炉温的手动控制来理解。 有经验的操作人员手动控制热油炉的炉温,可以获得非常好的控制品质,PID控制与人工控制的控 制策略有很多相似的地方。
四、举例说明PID反馈控制的动作曲线
此处的比例是比例增益,中控的是比 例度
比例增益值越大,作用越强,比例度 刚好相反 此处KP越大,相当于中控的比例度P值 越小
五、PID回路的参数整定方法
目前PID回路整定基本以经验法为主
• 在调试中最重要的问题是在PID回路性能不能令人满意时,知道应该调节哪一个参数,该参数应该 增大还是减小。
• 在调好比例控制的基础上再加入积分作用,但积分会降低过渡过程的衰减比,则系统的稳定程度也会降低。 为了保持系统的稳定程度,可增大调节器的比例度,即减小调节器的放大倍数。这就是dlr在整定中投入积 分作用后,要把比例度增大约20%的原因。其实质就是个比例度和积分时间数值的匹配问题,
PID控制器参数整定的一般方法
PID控制器参数整定的一般方法:PID控制器的参数整定是控制系统设计的核心内容。
它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。
PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。
它主要是依据系统的数学模型,经过理论计算确定控制器参数。
这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改;二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。
PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。
三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。
但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。
现在一般采用的是临界比例法。
利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。
PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P、I、D的大小。
书上的常用口诀:参数整定找最佳,从小到大顺序查;先是比例后积分,最后再把微分加;曲线振荡很频繁,比例度盘要放大;曲线漂浮绕大湾,比例度盘往小扳;曲线偏离回复慢,积分时间往下降;曲线波动周期长,积分时间再加长;曲线振荡频率快,先把微分降下来;动差大来波动慢。
微分时间应加长;理想曲线两个波,前高后低4比1;一看二调多分析,调节质量不会低。
个人认为PID参数的设置的大小,一方面是要根据控制对象的具体情况而定;另一方面是经验。
P是解决幅值震荡,P大了会出现幅值震荡的幅度大,但震荡频率小,系统达到稳定时间长;I是解决动作响应的速度快慢的,I大了响应速度慢,反之则快;D是消除静态误差的,一般D设置都比较小,而且对系统影响比较小。
PID参数整定方法
动态调整PID参数
在实际应用中,系统的特性可能会发生变化,因此需要动态调整PID参数 以适应变化。
可以通过在线调整Kp、Ki和Kd的值来优化系统的性能,例如使用试凑法 或基于性能指标的优化算法。
在调整PID参数时,需要注意不要过度调整,以免对系统造成不良影响。
04
PID参数整定实例
简单控制系统PID参数整定
复杂控制系统PID参数整定
总结词
复杂控制系统通常具有较多的干扰和不确定性,因此PID 参数整定较为困难。
详细描述
在复杂控制系统中,通常采用工程整定法进行PID参数整 定,如Z-N整定法和Cohen-Coon整定法等。这些方法 基于系统的数学模型,通过计算和实验相结合的方式确 定PID参数。此外,现代控制理论中的优化方法也可以用 于复杂控制系统的PID参数整定。
衰减曲线法
总结词
通过观察系统在不同控制作用下的衰减 曲线,确定最佳的PID参数。
VS
详细描述
衰减曲线法是一种基于系统响应的参数整 定方法。通过改变控制作用的大小和方向 ,观察系统的响应,绘制出衰减曲线。然 后,根据衰减曲线的形状和振荡特性,确 定最佳的PID参数。这种方法适用于具有 明显衰减振荡特性的系统。
谢谢观看
其他软件工具
总结词
除了MATLAB/Simulink和LabVIEW之外,还有许多其 他的软件工具可用于PID参数整定,如DCS、PLC编程 软件等。
详细描述
分布式控制系统(DCS)和可编程逻辑控制器(PLC)编 程软件通常也提供了PID控制器设计和参数整定的功能。 这些软件通常针对特定的工业应用场景进行优化,因此 在实际应用中具有较高的实用价值。在进行PID参数整定 时,用户需要根据具体的控制系统和需求选择合适的软 件工具。
控制回路PID参数整定方法
Honeywell DCS控制回路PID参数整定方法鉴于目前一联合装置仪表回路自控率比较低,大部分的回路都是手动操作,这样不但增加了操作员的工作量,而且对产品质量也有一定的影响,特编制了此PID参数整定方法。
、修改PID参数必须有“ SUPPERVISOR”及以上权限权限,用键盘钥匙可以切换权限,钥匙已送交一联合主任陈胜手中;、打开要修改的控制回路细目画面,翻到下图所示的页面,修改PID控制回路整定的三个参数K,T1,T2 ;BOILER三、PID参数代表的含义K:比例增益(放大倍数),范围为0.0〜240.0;T1 :积分时间,范围为0.0〜1440.0,单位为分钟,0.0代表没有积分作用;四、PID参数的作用COHTRDL LIMITSSPHILKSFLOL N0PMIL»海上□ PL DL NOPMCHL W□PttOCLHTU4IhU FA^MrfETEftSCUOP -E.30040OPCJ -G,9B00Q i H I T UALo 4 OBeee1212S-P 12T2:微分时间,范围为0.0〜1440.0,单位为分钟, 0.0代表没有微分作用IfL fiLCQ PAGE(1)比例调节的特点:1、调节作用快,系统一出现偏差,调节器立即将偏差放大K 倍输出;2、系统存在余差。
K越小,过渡过程越平稳,但余差越大;K增大,余差将减小,但是不能完全消除余差,只能起到粗调作用,但是K过大,过渡过程易振荡,K太大时,就可能出现发散振荡。
(2)积分调节的特点:积分调节作用的输出变化与输入偏差的积分成正比,积分作用能消除余差,但降低了系统的稳定性,T1由大变小时,积分作用由弱到强,消除余差的能力由弱到强,只有消除偏差,输出才停止变化。
(3)微分调节的特点:微分调节的输出是与被调量的变化率成正比,在引入微分作用后能全面提高控制质量,但是微分作用太强,会引起控制阀时而全开时而全关,因此不能把T2取的太大,当T2由小到大变化时,微分作用由弱到强,对容量滞后有明显的作用,但是对纯滞后没有效果。
PID自整定
S7--200PLC已经支持PID自整定功能,STEP 7--Micro/WIN中也添加了PID整定控制面板。这就大大 增强了S7 -- 200PLC的功能,并且使这一功能的使用变得更加容易。 您可以使用操作员面板中的用户程序或者PID整定控制面板来启动自整定功能。在同一时间,不仅仅 只有一个PID回路可以进行自整定,如果需要的话,所有8个PID回路可以同时进行自整定。PID自整 定算法向您推荐增益值、积分时间值和微分时间值。您也可以为您的调节回路选择快速响应、中速响 应、慢速响应或者极慢速响应等调节类型。 用PID整定控制面板,您可以启动自整定过程,取消自整定过程和在图表中监视结果。控制面板会显 示所有可能发生的错误和警告信息。它也允许您将自整定后得到的增益值、积分时间值和微分时间值 应用到实际控制中去。
MSB 7
0
0
0
LSB 0
0
R1 R0 DS HS
R1 R0 00 01 10 11
动态响应 快速响应 中速响应 慢速响应 极慢速响应
DS -- 偏移设定: 0 -- 使用回路表中的偏移值 1 -- 自动计算偏移值
HS -- 滞后设定: 0 -- 使用回路表中的滞后值 1 -- 自动计算滞后值
374
格式 实数 实数 实数 实数 实数 实数 实数 实数 实数
36
PID回路表ID
ASCII码
40
AT控制(ACNTL)
字节
41
AT状态(ASTAT)
字节
42
AT结果(ARES)
字节
43
AT配置(ACNFG)
字节
44
偏移(DEV)
实数
48
滞后(HYS)
PID参数整定方法
PID参数整定方法PID(Proportional-Integral-Derivative,比例积分微分控制)是一种常用的控制算法,它通过调整输出信号,使得被控对象的输出变量尽可能地接近设定值。
为了实现良好的控制效果,需要对PID参数进行合理的整定。
下面将介绍几种常用的PID参数整定方法。
1.经验整定法:经验整定法是一种经验性的参数整定方法,根据工程经验和试错原则来确定PID参数。
具体步骤如下:-初始设定PID参数为Kp=1,Ki=0,Kd=0。
-逐渐增加Kp的值,直到系统开始出现超调现象。
-根据系统的超调量,逐渐减小Kp的值,直到系统的超调量满足要求。
-根据系统的超调时间,逐渐增加Ki的值,使得系统的超调时间减小。
-根据系统的响应速度,逐渐增加Kd的值,使得系统的响应速度增加。
2. Ziegler-Nichols指标整定法:Ziegler-Nichols指标整定法是一种基于系统阶跃响应的参数整定方法,通过测量系统的阶跃响应特性来确定PID参数。
该方法分为三种整定方式:- Ziegler-Nichols开环法:-将系统设置为开环控制。
-逐渐增大Kp的值,直到系统开始出现持续振荡的现象。
-记录该时刻的Kp值(Ku)和持续振荡的周期(Tu)。
-根据Ku和Tu计算出PID参数:Kp=0.6Ku,Ki=1.2Ku/Tu,Kd=3KuTu/40。
- Ziegler-Nichols闭环法:-将系统设置为闭环控制。
-逐渐增大Kp的值,直到系统的输出响应快速但不超调。
-记录该时刻的Kp值(Ku)。
-根据系统的临界增益(Ku)计算出PID参数:Kp=0.33Ku,Ki=0.33Kp/Tu,Kd=0.33KpTu。
- Ziegler-Nichols两点法:-将系统设置为闭环控制。
-记录系统输出值最初变化的瞬间(T1)和最终变化的瞬间(T2)。
-根据T1和T2计算出PID参数:Kp=(4/Tu)(1/T1+1/T2),Ki=2/Tu,Kd=KpTu/83. Chien-Hrones-Reswick方法:Chien-Hrones-Reswick方法是一种基于系统阶跃响应曲线形状的参数整定方法。
Honeywell_DCS_控制回路PID全参数整定方法
Honeywell PKS系统控制回路PID参数整定方法鉴于目前一联合装置仪表回路自控率比较低,大部分的回路都是手动操作,这样不但增加了操作员的工作量,而且对产品质量也有一定的影响,特编制了此PID参数整定方法。
修改PID参数必须有“SUPV(班长)”及以上权限权限,具体权限设置切换方法如下;一、打开要修改的控制回路细目画面,翻到下图所示的页面(Loop Tune),修改PID控制回路整定的三个参数K,T1,T2;二、PID参数代表的含义Control Action:控制器的作用方式,正作用(DIRECT),反作用(REVERSE);Overal Gain(K):比例增益(放大倍数),围为0.0~240.0;T1:积分时间,围为0.0~1440.0,单位为分钟,0.0代表没有积分作用;T2:微分时间,围为0.0~1440.0,单位为分钟,0.0代表没有微分作用。
三、PID参数的作用(1)比例调节的特点:1、调节作用快,系统一出现偏差,调节器立即将偏差放大K倍输出;2、系统存在余差。
K越小,过渡过程越平稳,但余差越大;K增大,余差将减小,但是不能完全消除余差,只能起到粗调作用,但是K过大,过渡过程易振荡,K太大时,就可能出现发散振荡。
(2)积分调节的特点:积分调节作用的输出变化与输入偏差的积分成正比,积分作用能消除余差,但降低了系统的稳定性,T1由大变小时,积分作用由弱到强,消除余差的能力由弱到强,只有消除偏差,输出才停止变化。
(3)微分调节的特点:微分调节的输出是与被调量的变化率成正比,在引入微分作用后能全面提高控制质量,但是微分作用太强,会引起控制阀时而全开时而全关,因此不能把T2取的太大,当T2由小到大变化时,微分作用由弱到强,对容量滞后有明显的作用,但是对纯滞后没有效果。
四、控制器的选择方法(1)P控制器的选择:它适用于控制通道滞后较小,负荷变化不大,允许被控量在一定围变化的系统;(2)PI控制器的选择:它适用于滞后较小,负荷变化不大,被控量不允许有余差的控制系统;(3)PID控制器的选择:它适用于负荷变化大,容量滞后较大,控制质量要求又很高的控制系统,比如温度控制系统。
pid整定公式
pid整定公式在工程实践中,控制器的设计与调整是自动化控制系统的关键环节。
其中,PID控制器作为一种常用的闭环控制器,具有良好的稳定性和鲁棒性。
本文将详细介绍PID整定公式,帮助读者更好地理解和应用PID控制器。
1.PID控制器简介PID控制器,全称为比例-积分-微分控制器,是根据系统的偏差信号进行调节的控制器。
它的基本原理是将偏差信号经过比例、积分、微分三个环节的运算,得到控制作用,从而实现对被控对象的调节。
2.PID整定公式概述PID整定公式如下:U(t)=K_p*e(t)+K_i*∫e(t)dt+K_d*de(t)/dt其中,U(t)表示控制作用,K_p、K_i、K_d分别表示比例、积分、微分环节的系数。
e(t)表示系统偏差,即期望值与实际值之间的差值。
3.PID参数的含义和作用(1)比例系数K_p:比例作用是控制作用的基本部分,与偏差成正比。
增大K_p可以提高系统的响应速度,但过大会导致系统震荡。
(2)积分系数K_i:积分作用可以消除系统的静差,提高控制精度。
但积分作用过大会导致系统响应变慢,甚至产生积分饱和现象。
(3)微分系数K_d:微分作用可以预测系统的变化趋势,减小超调,提高系统稳定性。
但微分作用过大会导致系统敏感,噪声放大。
4.常见PID参数整定方法(1)Ziegler-Nichols法:又称临界比例法,通过寻找使系统临界振荡的参数组合,然后根据实际需求进行调整。
(2)频域法:基于频率响应特性,通过绘制Bode图,确定PID参数。
(3)响应曲线法:根据系统响应曲线形状,经验性地确定PID参数。
5.整定过程注意事项(1)充分了解被控对象的特性和工况,为整定提供依据。
(2)兼顾系统响应速度、稳定性和控制精度,避免过度调整。
(3)注意观察系统在不同工况下的性能,及时调整PID参数。
总之,PID控制器作为一种重要的闭环控制器,在工程实践中得到了广泛应用。
掌握PID整定公式和常见整定方法,能够帮助我们更好地调整控制器参数,提高系统的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仪表控制说明及PID整定方法化工乙烯仪表-李恒超主要内容一、仪表控制说明1、单回路控制说明2、复杂控制说明二、PID整定方法1、PID整定方法2、PID整定举例三、自动控制回路参数波动原因分析1、工艺操作系统引起参数波动分析2、仪表和调节阀的特性引起参数波动分析3、机泵控制的波动原因分析主要内容一、仪表控制说明1、单回路控制说明1.1 单回路的结构与组成1.2 明确自动控制的目的1.3 被控变量的选择1.4 控制变量的选择1.5 控制质量1.6 滞后1.7 举例与仿真1.8PID的正反作用2、复杂控制说明2.1 前馈控制2.2 串级控制2.3 均匀控制2.4 分程控制2.5 比值控制2.6 选择控制2.7 三冲量控制2.8 耦合控制二、PID整定方法1、PID整定说明1.1 PID回路阶跃响应性能指标1.2PID设置面板1.3 PID参数功能1.3.1 增益K作用对调节过程的影响1.3.2 积分作用对调节过程的影响1.3.3 微分调节D说明1.4 PID参数的整定1.4.1 测试阶跃响应法1.4.2 PID参数的整定步骤说明1.4.3 PID参数整定经验说明1.4.4 PID参数整定方法二2、PID整定举例2.1 PID参数的形象说明2.2 PID参数仿真曲线举例说明2.3 PID整定参数举例分析说明2.4 PID参数整定总结三、自动控制回路参数波动原因分析1、工艺操作系统引起参数波动分析1.1 精馏塔的典型控制1.2 反应器的控制2、仪表和调节阀的特性引起参数波动分析2.1 流量计的量程比、流速,对测量的影响2.2 调节阀的流量特性和可调比2.3 提高调节阀使用寿命的常见方法3、机泵控制的波动原因分析3.1 对离心泵的控制3.2 对计量泵的控制3.3 对变频泵的控制一、仪表控制说明\1.单回路控制说明1.1 单回路的结构与组成由一个被控对象、一个测量变送器、一个控制器和一个执行机构(控制阀)所组成的闭环控制系统。
干扰一、仪表控制说明\1.单回路控制说明1.2 明确自动控制的目的:使生产过程自动按照预定的目标进行,并使工艺参数保持在预先规定的数值上(或按预定规律变化);选择“关键”变量,即对产品的产量、质量以及生产过程的安全具有决定作用的变量。
一、仪表控制说明\1.单回路控制说明被控变量应能代表一定的工艺操作指标或能反映工艺操作状态,一般都是工艺过程中比较重要的变量。
采用直接指标作为被控变量最直接也最有效。
当无法获得直接指标信号,冷却水T Dp进料Q入,X入,T入回流F塔底产品塔顶产品QZ蒸汽T H一、仪表控制说明\1.单回路控制说明1.4 控制变量的选择:控制变量与干扰变量,原则上,在诸多影响被控变量的输入中,选择一个对被控变量影响显著而且可控性良好的输入作为控制变量后,其它所有未被选中的输入则成了为系统的干扰变量。
根据稳态性质选择控制变量影响塔顶温度的各种输入示意图被控对象控制变量干扰作用与控制作用之间的关系一、仪表控制说明\1.单回路控制说明TTFTLCPT液氨冷却系统示意图热物料流量F对冷物料出口温度T的放大系数为:11000k0.3温度变化的百分数流量变化的百分数12-030-1050-0气氨回气压力P对冷却器物料出口温度T的放大系数为:21000k 1.6温度变化的百分数压力变化的百分数12-0=275-245400-0被控变量:物料出口温度一、仪表控制说明\1.单回路控制说明1.5控制质量:系统的过渡过程形式——超调量、衰减比、余差、过渡时间、振荡周期。
(1)对象特性系统的输入输出关系分为对象静态性质和对象动态性质,考察对象特性对控制质量的影响,用以选择控制变量。
(2)稳态特质控制通道的稳态特性由控制通道放大系数K0表征,干扰通道的稳态特性由干扰通道放大系数Kf表征,希望K f 小一些,Kf越小干扰变量对被控变量的影响就越小;控制变量选择的原则一:当多个输入变量都影响被控变量时,从稳态性质考虑,应该选择其中放大系数大的可控变量作为控制变量。
(3)控制通道时间常数T0T0小一点好,不能过大,否则会使控制变量的校正作用迟缓,超调量增大,过渡时间增长。
在选择控制变量构成控制回路时,应尽量避免控制通道纯滞后τ的存在,无法避免时应使之尽可能小。
一、仪表控制说明\1.单回路控制说明1.6滞后时间τ定义:对象在受到输入作用后,被控变量却不能立即而迅速地变化,这种现象称为滞后现象。
(1)传递滞后:传递滞后为纯滞后,一般用τ0表示。
τ0的产生一般是由于介质的输送需要一段时间而引起的。
(2)容量滞后:对象在受到阶跃输入作用X后,被控变量y开始变化很慢,后来才逐渐加快,最后又变慢直至逐渐接近稳定值。
一、仪表控制说明\1.单回路控制说明(1)传递滞后纯滞后时间τ0与皮带输送机的传送速度v和传送距离L关系:τ0=L/v有、无纯滞后的一阶阶跃响应曲线从测量方面来说,由于测量点选择不当、测量元件安装不合适等原因也会造成传递滞后。
一、仪表控制说明\1.单回路控制说明(2)容量滞后一般是由于物料或能量的传递需要通过一定阻力而引起的。
容量滞后对象的反应曲线非线性转换为线性用一阶对象的特性(是有滞后)来近似二阶对象的方法,二阶近似为有滞后时间τ=τh,时间常数为T的一阶对象。
容量滞后时间T在容量滞后与纯滞后同时存在时,常常把两者合起来统称滞后时间τ,即=τ0+τh自动控制系统中,滞后的存在是不利于控制的。
所以,在设计和安装控制系统时,都应当尽量把滞后时间减到最小。
滞后时间τ示意图一、仪表控制说明\1.单回路控制说明一、仪表控制说明\1.单回路控制说明1.7举例与仿真:一、仪表控制说明\1.单回路控制说明1.7举例与仿真:纯滞后时间容量滞后时间容量滞后时间容量滞后时间一、仪表控制说明\1.单回路控制说明1.7举例与仿真:对象特征的阶跃响应测试一、仪表控制说明\1.单回路控制说明1.7举例与仿真:对象特征的参数确定一、仪表控制说明\1.单回路控制说明1.8PID正反的作用:(1)PID的正反作用:当被控变量的测量值增大时,控制器的输出也增大,则该控制器为“正作用”(Direct Action);否则,当测量值增大时,控制器输出反而减少,则该控制器为“反作用”(Reverse Action)。
(2)控制器正反作用选择的基本原则:保证整个控制系统形成负反馈。
(3)DCS控制器的正反作用设置(REVERSE/ DIRECT):由于工艺专业,习惯PID输出100%时,现场阀门开度为100%,所以针对气关阀(即FO阀门),仪表专业都是通过设置,将AO输出或阀门定位器输出信号取反(分程调节阀等情况除外)。
如果故障开调节阀信号不取反,仪表和工艺容易混淆概念,而达不到一致。
一、仪表控制说明\2.复杂控制说明如果无法通过单个回路降低工艺参数波动,就必须引入复杂控制方案,来提高回路系统稳定性。
由于工艺流程的特点,每种工况的控制其实都涉及多种控制策略,采用特定的控制策略,原因是该项工艺控制需求最为突出。
对一些比较常用的典型的控制策略,举例进行详细讲解。
1、用于提高响应改善控制系统性能的多回路PID系统(1)前馈控制(2)串级控制2、用于满足工艺特定需要的多回路PID系统(3)均匀控制(4)分程控制(5)比值控制(6)选择控制系统(7)三冲量控制(8)耦合控制一、仪表控制说明\2.复杂控制说明2.1 前馈控制一种前馈作用只能克服一种干扰,比如当进料量的流量、或温度波动较大是一种常态,那么反应器、塔的引入前馈控制就是一种常态。
前馈控制的基本原理:在这些可测干扰影响CV以前,同时调节操作变量MV以抵消这些干扰的影响,最终使CV维持不变或基本不变。
控制通道不同程度存在纯滞后(时滞)。
例如,热交换器载热介质(流量)对出口温度影响滞后一段时间;反应器、管道混合、皮带传送及分析仪表测量流体成分等都,存在纯滞后。
纯滞后存在,使被控变量不能及时反映扰动影响,即使执行器接收信号后立即动作,也需经过纯滞后时间,才能作用于被控变量。
前馈思路:在扰动还未影响输出以前,直接改变操作变量,以使输出不受或少受外部扰动的影响。
一、仪表控制说明\2.复杂控制说明进料成分、流量波动较大应用前馈控制的条件:(1)主要干扰可测;T1、Rf(2)干扰通道的响应速度比控制通道慢,至少应接近;(3)干扰通道与控制通道的动态特性变化不大。
(4)T1的增量和进料流量Rf 的增量,需要经过一系列算法处理后,折算成近似的蒸汽增量,所以T1和Rf 可以转换成一个扰动,即增加了阀门对扰动的响应。
(∆ -∆T1)×∆Rf ×K1作为PIDFFA 的前馈输入,在主回路TC 的输出模块PIDFFA 中选ADD 关系。
2.1 前馈控制一、仪表控制说明\2.复杂控制说明前馈类型(FFOPT )—用以规定是否让前馈信号加上(ADD )或乘以(MULTIPLY )增量PID 输出,默认值为ADD 。
LAG1TIME = 第一级滞后时间常数LAG2TIME = 第二级滞后时间常数LEADTIME = 超前时间常数增益(KFF )—用以规定前馈输入的目标增益。
默认设置值为1。
偏置(BFF )—用以规定前馈输入的目标偏置值。
CPV = PV 的总比例因子DPV = PV 的总偏差LEADLAG超前滞后模块的公式:纯滞后时间容量滞后时间2.1 前馈控制前馈信号处理,通过DEADTIMEA消除纯滞后时间,通过LEADLAGA消除容量滞后时间,再乘以系数修正,最后用于PIDFFA模块一、仪表控制说明\2.复杂控制说明举例:加氢反应釜的温度前馈控制技术改造:(1)由于DN硝基苯的进料量波动较大,导致加氢反应釜温度波动幅度较大,工艺专业经常要切回手动操作;增加DN进料前馈计算补偿输出,减少了温度的波动,温度由之前的最大±5度波动将至最大±2度波动。
(2)由于循环水温度冬夏偏差太大,造成加氢釜的负荷在夏天有所降低。
一、仪表控制说明\2.复杂控制说明前馈控制的特点(1)前馈控制按干扰作用的大小进行控制,比反馈控制要及时。
(2)前馈控制属于开环控制。
(3)前馈控制器是视对象特性而定的“专用”控制器。
(4)一种前馈控制只能控制一种干扰。
一、仪表控制说明\2.复杂控制说明2.2 串级控制定义:串级控制系统是由两个控制器的串接组成,一个控制器的输出做为另一个控制器的设定值,两个控制器有各自独立的测量输入,只有一个控制器的给定由外部设定。
抗干扰说明:串级控制只用一个控制回路就可克服多个干扰。
图例分析干扰种类:1、进料流量2、进料温度3、进料组分4、冷却剂压力5、冷却剂温度6、搅拌器的转速7、反应速度8、其它设计说明:存在滞后和干扰的场合,需要采用副回路来消除。