初中数学有理数的初步认识

合集下载

数学人教版(2024)7年级上册 1.2.1 有理数的概念 教案02

数学人教版(2024)7年级上册 1.2.1 有理数的概念 教案02

第一章有理数1.2.1 有理数的概念0.3…负分数:如-52,-23,-17, -0.5, -150.5,… 引导:0.1=110,-0.5=−12, 0.3 = 13 ,事实上,有限小数和无限循环小数都可以化为分数,因此它们也可以看成分数。

指出:正分数、负分数统称为分数。

想一想:整数能化成分数吗?预设:2=21, 3=31,…正整数可以写成正分数的形式-2=−21, -3=−31,…负整数可以写成负分数的形式0=01,0也可以写成分数的形式 整数可以写成分数的形式指出:可以写成分数形式的数称为有理数。

可以写成正分数形式的数为正有理数,可以写成负分数形式的数为负有理数。

思考:你能试着对有理数进行分类吗?预设:有理数的分类(整分性):有理数的分类(正负性):例1:指出下列各数中的正有理数、负有理数,并分别指出其中的正整数、负整数:13,4.3,−38,8.5%,-30,-12%, 19 ,-7.5,20,-60,1.2解:正有理数:13,4.3, 8.5%, 19 ,20,1.2;其中正整数有13,20。

负有理数: −38, -30,-12%, -7.5,-60 ; 其中负整数有-30,-60。

例2:下列说法中,正确的是( ). A .在有理数中,0的意义仅仅表示没有 B .一个有理数,它不是正数就是负数 C .正有理数和负有理数组成有理数 D .0是自然数 答案:D强调:在有理数概念中,“0”很特殊: (1)0既不是正数,也不是负数; (2)0是整数,不是分数; (3)0既是非正数,又是非负数. 活动意图说明:【解析】本题主要考查了有理数的分类,理解有理数的相关定义是解题的关键.先根据正数的定义判断A 的正误,再根据非负数是正数或0判断B 的正误;再根据有理数也可分成整数和分数判断C ,D 的正误即可解答.解:A .由50%,1,2.5是正数,故正确,符合题意; B .由−2,−4为负数,故错误,不符合题意; C .1为整数,故错误,不符合题意; D .因为112是分数,故错误,不符合题意. 故选:A .【综合拓展类作业】5.如图,把下列各数填入相应的各圈里. 100,−99%,0,−2000,5.2,6,−0.3,116,−53【答案】见解析【解析】本题考查了有理数的分类,根据有理数的分类,即可求解. 解:整数为:100,0,−2000,6; 负数为:−99%,−2000,−0.3,−53; 则负整数为:−2000;本节课的主要内容是让学生明确有理数的概念,并能对有理数进行正确。

人教版-数学-七年级上册-人教版七年级第一章第二节 1.2有理数 教案

人教版-数学-七年级上册-人教版七年级第一章第二节 1.2有理数 教案

人教版七年级第一章第二节 有理数 教案【教学目标】知识技能1. 进一步加深对负数的认识。

2. 掌握有理数的概念,会对有理数按照一定的标准进行分类, 初步了解“集合”的含义。

过程方法体会分类讨论的思想,能理解不同的分类标准有不同的分类方法,但都要求不重不漏。

情感态度通过师生合作,使分数、整数在引入负数的基础上达到完善,从而体会到成功的快乐。

【教学重点】正确理解有理数的概念。

【教学难点】正确理解分类的标准和按照定的标准进行分类。

【复习引入】1. 我们知道,所有的分数都可以写成两个整数的比.有限小数0.37可以写成两个整数的比吗?无限循环小数•3.0也可以写成两个整数的比吗?所有的有限小数都是分数吗? 所有的无限循环小数呢?结论:所有的有限小数和无限循环小数都是分数.想一想:小数3.14159265是分数吗?圆周率π为什么不是分数?你能确定小数3.14159265…是不是分数吗?2.小学所学的整数只包括正整数和零,也就是自然数.学了负整数以后,今后我们所指的整数与小学时所学的整数有什么不同? 对,还有负整数。

结论:正整数﹑零﹑负整数统称整数.3. 下列负数哪些是负分数?-12, 73-, -0.33, •-3.5. 【教学过程】 1. 所有正整数组成正整数集合, 所有负整数组成负整数集合.请把下列各数填入它所属于的集合的大括号里:1, 0.0708, -700, -3.88, 0, 3.14159265, 237-, ••32.0. 正整数集合:{ …} 负整数集合:{ …}整数集合:{ …}正分数集合:{ …} 负分数集合:{ …}分数集合:{ …}(注意:大括号内的省略号表示什么?)数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。

补充:所有正数组成正数集合,所有负数组成负数集合,所有整数组成整数集合,所有分数组成分数集合,所有正数和0组成非负数集合,所有正整数和0组成自然数集合……2.归纳概念:整数:正整数、0、负整数统称为整数。

初中数学知识点全总结(完美打印版)

初中数学知识点全总结(完美打印版)

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

初中数学 有理数的概念

初中数学  有理数的概念

有理数的概念一、正数和负数在数学发展历史上,从发现自然数开始,随着人类文明进步,我们又逐渐定义了分数和小数等.在生活和学习中,我们会需要记录一些具有相反意义的量,比如:零下4︒C 和零上6︒C ,收入20元和支出30元,向东30米和向西100米等等.这些数据不仅意义相反,而且表示一定的量,为了表示它们,我们定义了正负数:1.用正负数表示相反意义的量:我们把一种意义的量规定为正的,把另一种与它具有相反意义的量规定为负的,分别用正数和负数表示,给数字前面加上正号表示正数,加上负号表示负数.【例】以上几个例子分别记为:4-︒C 和6+︒C ,20+元和20-元,30+米和100-米.2.正数:像30、+6、12、π这样的数叫做正数,正数都大于零;3.负数:在正数前面加上“-”号的数叫做负数,比如:20-、3.14-、0.001-、172-.【注】①表示正数时,“+”号可以省略,但表示负数时,“-”号一定不能省略;②数0既不是正数也不是负数.二、有理数的概念及分类1.有理数:整数与分数统称为有理数. 2.有理数的分类:(1)有理数按性质分类:⎧⎧⎫⎪⎪⎬⎨⎪⎭⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数负整数正分数分数负分数 (2)有理数按符号分类 ⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩正整数正有理数正分数有理数零(既不是正数,也不是负数)负整数负有理数负分数(3)小数的分类【注】注意以下几个概念的区分:非负数:正数和零;非正数:负数和零;非负整数:正整数和零;非正整数:负整数和零;非负有理数:正有理数和零;非正有理数:负有理数和零.⎧⎪⎧⎨⎨⎪⎩⎩有限小数小数无限循环小数无限小数无限不循环小数——不可化成分数,是无理数——可化成分数,是有理数三、数轴1.数轴:数轴是一条规定了原点、正方向和单位长度的直线. 【注】原点、正方向和单位长度称为数轴的三要素;①原点:表示数0的点;②正方向:数字从小到大排列的方向,一般规定向右为正方向; ③单位长度:人为规定的代表“1”的线段的长度.2.数轴的画法(1)画一条水平直线;(2)在这条直线上取一点作为原点; (3)一般用箭头表示正方向; (4)选取适当的长度为单位长度,用细短线画出刻度,并将数字对应标在数轴下方.【例】一个标准的数轴: 【注】画数轴的常见错误:①三要素缺失:没有原点、正方向箭头或者单位长度刻度; ②单位长度不统一:相邻两个刻度之间间距不一样;③方向不统一:数字增大的方向不是正方向,或者数字排列混乱. 错误类型 错误示例三要素缺失单位长度不统一方向不统一3.数轴与有理数的关系①任何一个有理数均可用数轴上的一个点来表示; 但数轴上的点不一定代表有理数,比如π. ②数轴上两个点表示的数,右边的总比左边的大;③数轴直观地说明了,正数大于零,负数小于零,正数大于负数. 4.数轴与数学思想①数形结合思想:数轴形象地反映了数和点之间的对应关系;②分类讨论思想:数轴表现了有理数的一种分类方法,即分成正数、负数和零. 四、相反数&倒数1.相反数:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.特别地,0的相反数是0.【例】5+与5-互为相反数;5-是5+的相反数;【注】相反数必须成对出现,单独一个数不能说是相反数.“5-是相反数”是错误的. 2.相反数的性质:(1)代数性质:若a 与b 互为相反数,则0a b +=;反之,若0a b +=,则a 与b 互为相反数.(2)几何性质:一对相反数在数轴上对应的点分别位于原点两侧,并且到原点的距离相等,即这两点是关于原点对称的.2-•1-012 021-010122-01 1231-01 20111- 11-3.倒数:乘积为1的两个有理数互为倒数.【例】2与12,3-与13-,38-与83-.4.负倒数:乘积为1-的两个有理数互为负倒数.【例】2与12-,3-与13,38-与83.【注】①0没有倒数,也没有负倒数;②倒数是它的本身的数1或-1. 五、绝对值1.绝对值:数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a . 2.绝对值运算:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩3.绝对值的性质: (1)非负性:||0a ≥;(2)双解性:若||||a b =,则a b =或a b =-.【注】如果若干个非负数的和为0,那么这若干个非负数都必为0.例如,若||||||a b c ++=0,则a =0,b =0,c =0.(1)仔细思考以下各对量: ①胜二局与负三局;②气温为3C -︒与气温升高30C ︒; ③盈利5万元与亏损5万元;④增加10%与减少20%.其中具有相反意义的量有( ) A .1对 B .2对C .3对D .4对(2)①我国现采用国际通用的公历纪年法,如果我们把公元2017年记作+2017年,那么,处于公元前500年的春秋战国时期可表示为___________.②如果80m 表示向东走80m ,那么60m -表示________________.③A ,B 两地海拔高度分别是120米,10-米,则B 地比A 地低________米.(3)学而思饮料公司生产的一种瓶装饮料外包装上印有“60030(ml)±”字样,请问“60030(ml)±”是什么含义?质检局对该产品抽查5瓶,容量分别为603ml ,611ml ,589ml ,573ml ,627ml ,问抽查产品的容量是否合格?【解析】(1)C ;[①③④具有相反意义];模块一正数和负数例题1(2)①500-年,②向西走60m ,③130; (3)“(ml)600±30”表示每瓶饮料容量最小可以是()ml 600-30,最大可以是()ml 600+30,抽出的5瓶容量均在()ml 600-30与()ml 600+30之间,因此合格. 【提示】通过这道例题反复强调,正数和负数可以表示相反意义的量.(1)下列说法错误的是( )A .0既不是正数也不是负数B .正整数和负整数统称整数C .整数和分数统称有理数D .正有理数包括正整数和正分数(2)把下列各数分别填在所属分类里:5-,0, 3.14-,32, 2.4-,227,327,π, 5.5-,.24,311-,3.14159,34-,2003①正数:{ }; ②负数:{ }; ③非负整数:{ }; ④分数:{ }; ⑤非正有理数:{ };(3)在下表适当的空格里打上“√”号.整数 分数 正数 负整数正分数非负数非负整数无理数 0.-15-3.+062 14.031π98-【解析】(1)B ;(2)①正数:{32,227,327,π,.24,3.14159,2003}; ②负数:{5-,34-, 3.14-, 2.4-, 5.5-,311-};③非负整数:{0,32,2003}; 模块二有理数的概念及分类例题2④分数:{ 3.14-, 2.4-,227,327, 5.5-,.24,311-,3.14159,34-};⑤非正有理数:{5-,0, 3.14-, 2.4-, 5.5-,311-,34-};(2)整数 分数 正数 负整数正分数 非负数 非负整数 无理数 0 √ √ √ .-15√ -3 √ √ .+062 √ √ √ √ 14 √ √ √ √ .031√ √ √ √ π√ √ √ 98-√【提示】能化成分数的小数一律视作分数。

初中七年级数学有理数的定义和分类

初中七年级数学有理数的定义和分类

有理数定义及分类
有理数的定义
有理数是指两个整数的比。

有理数是整数和分数的集合。

整数也可看做是分母为一的分数。

有理数的小数部分是有限或为无限循环的数。

有理数是实数的紧密子集:每个实数都有任意接近的有理数。

一个相关的性质是,仅有理数可化为有限连分数。

依照它们的序列,有理数具有一个序拓扑。

有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。

有理数的分类
(一)按有理数的定义分类:
(1)整数:整数就是像-3,-2,-1,0,1,2,3,10等这样的数。

整数包括正整数、0、负整数。

其中零和正整数统称自然数。

(2)分数:分数是一个整数a和一个正整数b的不等于整数的比。

分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。

(二)按有理数的性质分类:
(1)正有理数:除了负数、0、无理数的数字都是正有理数。

正有理数还被分为正整数和正分数。

(2)0:0是介于-1和1之间的整数,是最小的自然数,也是有理
数。

(3)负有理数:负有理数指小于0的有理数,就是小于零并能用小
数表示的数。

•有理数的分类:
(1)按有理数的定义:
正整数
整数{ 零
负整数
有理数{
正分数
分数{
负分数
(2)按有理数的性质分类:
正整数
正数{
正分数
有理数{ 零
负整数
负数{
负分数。

初中数学知识点全总结(完美打印版)

初中数学知识点全总结(完美打印版)

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

人教版初一数学知识点总结

人教版初一数学知识点总结

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容。

第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成形式的数,都是有理数。

正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类:①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数。

4。

绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;5。

有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数>0,小数-大数<0。

6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1⇔a、b互为倒数;若ab=—1⇔ a、b互为负倒数.7。

有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数。

8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。

10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac 。

初中数学知识点全总结(完美打印版)

初中数学知识点全总结(完美打印版)

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0. 6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则: (1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n,当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n. 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

人教版初中七年级上数学知识点总结

人教版初中七年级上数学知识点总结

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

1.2.1有理数的概念 教案设计 2024--2025学年人教版七年级数学上册

1.2.1有理数的概念   教案设计   2024--2025学年人教版七年级数学上册

教案设计:《1.2.1有理数的概念》•一、课标分析•本节课依据初中数学课程标准中“数与代数”领域的要求,旨在使学生理解有理数的概念,掌握有理数的分类(正整数、零、负整数、正分数、负分数),以及有理数与整数、分数之间的关系。

通过本节课的学习,学生应能够识别并区分不同类型的有理数,理解有理数集的概念,为后续学习有理数的运算打下基础。

同时,本节课也注重培养学生的抽象思维能力、分类讨论能力和逻辑推理能力。

•二、教材分析•本节课是初中数学有理数章节的重要一课,它承接了小学阶段对自然数、整数、分数的认识,进一步扩展了数的范围,引入了有理数的概念。

教材通过回顾已学过的数(正整数、零、正分数、负分数),引导学生理解整数和分数的统一,即它们都属于有理数的范畴。

同时,教材还通过练习题的形式,帮助学生巩固有理数的分类和识别,加深对有理数概念的理解。

•三、学生分析•学生在小学阶段已经学习了自然数、整数、分数的概念,并具备了一定的数学基础和思维能力。

然而,对于有理数的概念及其分类,学生可能还缺乏系统的认识和深入的理解。

因此,本节课需要通过直观的教学手段和丰富的实例,激发学生的学习兴趣,引导学生主动探索、合作交流,逐步建立有理数的概念体系。

•四、教学目标• 1.通过有理数的学习,学生能够理解有理数的概念,包括整数、分数以及它们之间的关系,从而培养数学抽象能力。

数学抽象是指从具体情境中抽取出数学概念和结构的能力,对于有理数的学习尤为重要。

• 2.通过实际生活中的例子(如温度计读数、银行账户余额等)引入有理数的概念,让学生感受到数学与生活的紧密联系。

同时,通过分类讨论、归纳总结等方法,帮助学生逐步从具体情境中抽象出有理数的概念和性质。

• 3.学生能够运用逻辑推理能力,对有理数进行分类和判断。

逻辑推理是数学学习的核心素养之一,它要求学生能够从已知条件出发,通过合理的推理和论证,得出正确的结论。

•五、教学过程•1、导入新课(约5-7分钟)•【情境创设】•多媒体展示:教师利用多媒体设备展示几张与学生生活紧密相关的图片,如温度计(显示-5°C和28°C)、电梯楼层显示(地下2层和地上15层)、超市小票上的金额(+32.5元和-10元退款)等。

初中数学知识点全总结(完美打印版)

初中数学知识点全总结(完美打印版)

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ³10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

【初中数学】初中数学知识点总结:有理数的相关概念

【初中数学】初中数学知识点总结:有理数的相关概念

【初中数学】初中数学知识点总结:有理数的相关概念点总结有理数的概念包括有理数分类的原理和方法,以及相对数、数轴和绝对值的概念和特征。

1.有理数的分类:有理数包括整数和分数,整数又包括正整数,0和负整数,分数包括正分数和负分数。

“分类”的原则:(1)相称(不重、不漏);(2)有标准2.非负数:正数和零的通称。

3.相反数:(1)定义:如果两个数的和为0.那么这两个数互为相反数.(2)求反数的公式:a的反数是-a(3)性质:①a≠0时,a≠-a;②a与-a在数轴上的位置关于原点对称;③两个相反数的和为0,商为-1。

4.数字轴:(1)定义(“三要素”):具有原点、正方向、单位长度的直线叫数轴。

功能:① 直观地比较实数的大小;② 明确体现绝对价值的意义;③ 所有有理数都可以在数轴上表示,所有无理数都可以在数轴上表示。

因此,数轴上的一些点代表有理数,一些点代表无理数。

数字轴上的点一一对应于实数。

5.绝对值:(1)代数定义:正数的绝对值是它的本身,0的绝对值是它的本身,负数的绝对值是它的相反数。

(2)几何定义:数字a绝对值的几何含义是从数字轴上实数a对应的点到原点的距离。

①符号"││”是“非负数”的标志;② 数字a只有一个绝对值;③处理任何类型的题目,只要其中有"││”出现,其关键一步是去掉"││”符号。

常用测试方法绝对值、相反数、数轴的概念难度不大,但极易混淆。

在段考和中都是重点,题型多以填空、选择为主。

有时也和定义新运算这类题目联系起来考查。

误解提醒【例】(2021山西省太原市)在数轴上表示-2的点离开原点的距离等于()a、 2b.-2c。

0d。

四【解析】本题考查数轴的有关知识,也是考查绝对值的几何意义,数轴上表示-2的点离开原点的距离等于2,故选a。

混淆了绝对值、相反数、数轴三者的概念,是的常见错误。

初中数学知识点全总结(完美打印版)

初中数学知识点全总结(完美打印版)

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数。

正整数、0、负整数统称整数; 正分数、负分数统称分数; 整数和分数统称有理数。

注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离。

(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ³10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减.第二章整式的加减一.知识框架二.知识概念1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

(完整版)精华—初中数学知识点总结(人教版)

(完整版)精华—初中数学知识点总结(人教版)

人教版初中数学知识点总结目录七年级数学(上)知识点 (1)第一章有理数 (1)第二章整式的加减 (2)第三章一元一次方程 (3)第四章图形的认识初步 (4)七年级数学(下)知识点 (4)第五章相交线与平行线 (5)第六章平面直角坐标系 (6)第七章三角形 (7)第八章二元一次方程组 (9)第九章不等式与不等式组 (10)第十章数据的收集、整理与描述 (11)八年级数学(上)知识点 (11)第十一章全等三角形 (12)第十二章轴对称 (12)第十三章实数 (13)第十四章一次函数 (14)第十五章整式的乘除与分解因式 (14)八年级数学(下)知识点 (15)第十六章分式 (15)第十七章反比例函数 (17)第十八章勾股定理 (17)第十九章四边形 (18)第二十章数据的分析 (19)九年级数学(上)知识点 (20)第二十一章二次根式 (20)第二十二章一元二次根式 (20)第二十三章旋转 (21)第二十四章圆 (22)第二十五章概率 (24)九年级数学(下)知识点 (25)第二十六章二次函数 (25)第二十七章相似 (27)第二十八章锐角三角函数 (28)第二十九章投影与视图 (29)七年级数学(上)知识点 人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章 有理数一. 知识框架二.知识概念1。

有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;—a 不一定是负数,+a 也不一定是正数;不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 a+b=0 a 、b 互为相反数。

数学有理数运算初步

数学有理数运算初步

4
2
4
2
7 ) + (-0.5 + 1 + 0.75 - 1 =-2.
4
2
评析:解法一是小数与小数相结合,解法二整数与整数结合,这样解决了
既含分数又含小数的有理数加减运算问题.同学们遇到类似问题时,应学会灵
活选择解题方法.
二、 凑整求和
将相加可得整数的数放在一起进行运算(其中包括互为相反数相加),可以
512 2
256
1- 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 = 171 . 2 4 8 16 32 64 128 256 256
评析:整体换元可以避开局部细节的麻烦,它利用前后项之间的倍数关系,
使用的是错位相加法.
练习
《有理数运算》复习试题
1.下列计算① 0 3 3;② 15 13 1;③ 23 2 4 ;
a
= a × ab c ab c a
= 1. 评析:此题横看纵看都显得比较复杂,但若仔细观察,整个式子可分为三
个部分: 7 1 3 2 ,0.125, 9 6 2 1 ,因此,采用变量替换就大大减少了计算
43
75
量.
七、 分组搭配
观察所求算式特征,巧妙运用分组搭配处理,可以简化运算.
2004
1002
解:2005× 2003 - 10011001
2004
1002
= (2004+1)× 2003 -(1002-1)× 1001
2004
1002
= (2003-1001)+( 2003 + 1001 ) 2004 1002
=1003 2001 . 2004
评析:对于这些题目结构复杂,长度较大的数,用常规的方法不易解决.解

七上数学书第1章知识点

七上数学书第1章知识点

七年级数学上册第一章的知识点主要包括有理数及其运算。

具体内容包括:
1.有理数的概念:有理数包括整数和分数,整数包括正整数、0和负整数。

2.有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号
两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;任何数同0相加,仍得这个数。

3.有理数的减法法则:减去一个数,等于加上这个数的相反数。

4.有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任
何数同0相乘,都得0;负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何次幂都是0。

5.有理数的除法法则:除以一个不等于0的数,等于乘这个数的倒数。

6.乘方运算:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。

这些知识点是数学运算的基础,需要熟练掌握。

七年级数学上册第一章《有理数》教案

七年级数学上册第一章《有理数》教案

第一课时正数和负数(一)教学目标1.熟练区分正数和负数。

2.能利用正负数正确表示相反意义的量。

教学重难点:熟练区分正数和负数教学方法:探究学习教学设计一、课前铺垫:我们小学已经学过哪些数,请举例说明。

二、探究新知知识点一:会判断一个数是正数还是负数1.自学课本1—2页,并回答以下问题:(1)在引言中表示温度、净胜球数和产品增长率时用到了哪些数?它们的具体含义是什么?(2)像2, 0.2, 17等数叫做数;像-4,1234-, -6.25这样在正数前面加号的数叫做,既不是正数也不是负数。

你认为:叫做非负数。

针对性练习1.已知下列各数:13-,5,0,-4,47,其中正数的个数是( )A.0个B.1个C.2个D.3个2. 有下列六个数:-5,0,132,-0.3,+13,14-,其中负数的个数是( )A.1B.2C.3D.43.下列说法正确的个数是( )①零是正数;②零是负数;③零是偶数;④零是奇数;A.0个B.1个C.2个4. 已知下列各数:-8,50.9,35-, 0.3,其中非负数的个数是( )A.0个B.1个C.2个D.3个知识点二:认识正数和负数具体表示的是相反意义的量1.自学课本第3页,并结合以上问题回答以下问题:(1)通过以上内容的学习,其实正数和负数是表示生活中具有意义的量。

(2)列举自己见到的生活中用正、负数表示的量2.尝试表示在日常生活中常会遇到下面的一些量。

(1)温度是零上10℃表示为,零下5℃表示为。

(2)收入500元表示为,支出237元表示为。

(3)水位升高1.2米表示为,下降0.7米表示为。

针对性练习1.规定正常水位为0m,高于正常水位0.2m时记做+0.2m,则下列说法错误的是( )A.高于正常水位1.5m记做+1.5mB.低于正常水位0.5m记做-0.5mC.-1m表示比正常水位低1mD.+2m表示水深2m2.规定电梯上升为“+”,那么电梯上升-10m表示( )A.电梯下降10mB.电梯上升10mC.电梯上升0mD.电梯没有动3.温度计液面在0℃以上第五个刻度处,表示的温度是零上5℃,记做+5℃; 温度计液面在0℃以下第五个刻度处,表示的温度是零下5℃,记做 ,它是数。

最全初中数学知识点全总结-初中数学所有知识点

最全初中数学知识点全总结-初中数学所有知识点

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一、知识框架二.知识概念1.有理数:q(p, q为整数且 p 0) 形式的数,都是有理数.正整数、 0、负整数统称整数;正分数、负分数统(1)凡能写成p称分数;整数和分数统称有理数.注意: 0 即不是正数,也不是负数;-a 不一定是负数, +a 也不一定是正数;不是有理数;正有理数正整数正整数正分数整数零(2)有理数的分类 : ① 有理数零②有理数负整数负有理数负整数分数正分数负分数负分数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是0;(2)相反数的和为 0 a+b=0 a、 b 互为相反数 .4.绝对值:(1)正数的绝对值是其本身, 0 的绝对值是 0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;a ( a 0) a ( a 0)(2) 绝对值可表示为:a0 ( a 0) a或 a (a 0);绝对值的问题经常分类讨论;a (a 0)5.有理数比大小:( 1)正数的绝对值越大,这个数越大;( 2)正数永远比0 大,负数永远比0 小;( 3)正数大于一切负数;( 4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;( 6)大数 -小数> 0,小数 -大数< 0.6.互为倒数:乘积为 1 的两个数互为倒数;注意:0 没有倒数;若a≠ 0,那么a的倒数是1;若 ab=1 a、ab 互为倒数;若 ab=-1 a、 b 互为负倒数 .7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与 0 相加,仍得这个数 .8.有理数加法的运算律:( 1)加法的交换律:a+b=b+a ;( 2)加法的结合律:(a+b) +c=a+ (b+c) .9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+( -b) .10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;( 3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律: ab=ba;( 2)乘法的结合律:( ab) c=a( bc);(3)乘法的分配律: a(b+c) =ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a无意义. 013.有理数乘方的法则:( 1)正数的任何次幂都是正数;( 2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时 : (-a)n=-a n或 (a -b)n=-(b-a) n , 当 n 为正偶数时 : (-a)n =a n 或 (a-b) n=(b-a) n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10 的数记成 a× 10n的形式,其中 a 是整数数位只有一位的数,这种记数法叫科学记数法 .16. 近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17. 有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18. 混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学有理数的初步认识2019年4月9日(考试总分:124 分考试时长: 120 分钟)一、单选题(本题共计 12 小题,共计 48 分)1、(4分)下列说法中,不正确的是( )A.绝对值最小的有理数是0 B.倒数等于本身的数有1、、0C.相反数等于本身的数只有0 D.原点左边的点表示的数离原点越远就越小2、(4分)下列说法,你认为正确的是()A. 0的倒数是0 B. 3-1=-3C. π是有理数D.是有理数3、(4分)下列说法正确的是()A.整数就是正整数和负整数B.分数包括正分数和负分数C.在有理数中,不是负数就是正数D.零是整数,但不是自然数4、(4分)在﹣(﹣8),﹣|﹣7|,0,(﹣2)2,﹣32这五个数中,负数共有()A.4个B.3个C.2个D.1个5、(4分)下列说法不正确的是()A.小于所有正数B.大于所有负数C.既不是正数也不是负数D.的倒数是6、(4分)下列说法正确的是()A.正整数和负整数统称为整数B.正数和负数统称为有理数C.整数和分数统称为有理数D.自然数和负数统称为有理数7、(4分)已知下列各数:、、、、、、、,其中非负数有()A.个B.个C.个D.个8、(4分)下列四个结论正确的是()A.任何有理数都有倒数B.符号相反的数互为相反数C.绝对值都是正数D.整数和分数统称有理数9、(4分)在172,, 3.2,0,4.5,1210-+--中,负数有()A.1个B.2个C.3个D.4个10、(4分)已知下列各数:、、、、、、、,其中非负数有()A.个B.个C.个D.个11、(4分)下列各组运算中,结果为负数的是()A.﹣(﹣3)B.(﹣3)×(﹣2)C.﹣(﹣2)3D.﹣|﹣3|12、(4分)下列说法中正确的有()个.①是负分数;②、不是整数;③是非负数:④不是有理数.A.1 B.2 C.3D.4二、填空题(本题共计 4 小题,共计 16 分)13、(4分)把下列各数分别填入相应的集合里.,,,,,,,(1)正数集合:{ …};(2)分数集合{ …}(3)整数集合:{ …};(4)负整数集合{ …}14、(4分)解答下列各题.(1)请把下列各数填入相应的集合中:13,﹣2,﹣5.8,﹣227,0,4.6正分数集合:{ };整数集合:{ }负数集合:{ };(2)在数轴上表示(1)中负数集合中各数(标在数轴上方),并用“<”号连接.15、(4分)在数,,,,,,中,所有整数的积为________.16、(4分)在一组实数,,,,1+,,(1)将它们分类,填在相应的括号内:有理数{};无理数{ };(2)请你选出2个有理数和2个无理数,再用“+,-,×,÷”中的3种不同的运算符号将选出的4个数进行运算(可以用括号),使得运算的结果是一个正整数. 三、 解答题 (本题共计 5 小题,共计 60 分) 17、(12分)先计算,再阅读材料,解决问题: (1)计算:(2)认真阅读材料,解决问题: 计算:分析:利用通分计算的结果很麻烦,可以采用以下方法进行计算;解:原式的倒数是:==32×30-101×30+61×30-52×30 =20-3+5-12 =10 故原式=.请你根据对所提供材料的理解,选择合适的方法计算:18、(12分)利用运算律有时能进行简便计算. 例1:98×12=(100-2)×12=1200-24=1176; 例2:-16×233+17×233=(-16+17)×233=233. 请你参考黑板中老师的讲解,用运算律简便计算: (1)999×(-15);(2)999×118+999×-999×18.19、(12分)把下列各数表示的点画在数轴上,并用“<”把这些数连接起来. -5,-|-1.5|,-(-),0,(-2)2 .用“<”把这些数连接起来20、(12分)把下列各数填在相应的集合中:;正分数集合;整数集合;非正数集合.有理数集合;21、(12分)计算(1)(+)+(﹣2)﹣(﹣2)﹣(+3);(2)(3);(4)一、单选题(本题共计 12 小题,共计 48 分)1、(4分)【答案】B【解析】A项,由于任何数的绝对值都是非负数,所以0是绝对值最小的数,故正确,B项,倒数等于本身的数由1、-1,故错误,C项,相反数等于本身的数只有0,故正确,D 项,原点左边的的点表示的数离原点越远就越小,故正确,故答案选B.2、(4分)【答案】D【解析】根据倒数的意义,0没有倒数,故A不正确;根据负整指数幂的性质,可知3-1=,故B不正确;根据无理数的概念,可知π是无理数,故不正确;根据算术平方根的性质,可知=3,是有理数,故正确.故选:D.3、(4分)【答案】B【解析】A、0也是整数,A错误;B、分数包括正分数和负分数,B正确;C、0也是有理数,C错误;D、0也是自然数,D错误.故选B.4、(4分)【答案】C【解析】在中,负数有:,共2个,故选:C.5、(4分)【答案】D【解析】根据正数与负数的定义可知0小于所有正数,0大于所有负数,选项A、B正确;0既不是正数也不是负数,选项C正确;0的绝对值是0,选项D错误.故选D.6、(4分)【答案】C【解析】解:A、正整数、负整数和零统称为整数,故本选项错误;B、正数、负数和零统称为有理数,故本选项错误;C、整数和分数统称为有理数,故本选项正确;D、说法错误,故本选项错误.故选C.7、(4分)【答案】D【解析】在-8、2.89、6、、、、、、0中,非负数有2.89、6、1、0,,共4个. 故选D.8、(4分)【答案】D【解析】解:A:0没有倒数,故A错误;B:-2和3,符号相反但不是互为相反数;故B错误;C:0的绝对值不是正数,故C错误;D:有理数按照定义分为整数和分数,故D正确.故选D.9、(4分)【答案】C【解析】在172,, 3.2,0,4.5,1210-+--中,负数为12 3.212---,,,共3个,故选C.10、(4分)【答案】D【解析】在-8、2.89、6、、、、、、0中,非负数有2.89、6、1、0,,共4个. 故选D.11、(4分)【答案】D【解析】A.﹣(﹣3)=3是正数;B.(﹣3)×(﹣2)=6是正数;C.﹣(﹣2)3 =-8是正数;D.﹣|﹣3|=-3是负数.故选D.12、(4分)【答案】B【解析】①是负分数,正确;②2、4是整数,所以②错误;③0是非负数,正确;④−1.3是有理数,所以④错误.正确的是①③共2个.故选:B.二、填空题(本题共计 4 小题,共计 16 分)13、(4分)【答案】(1)正数集合:,,.(2)分数集合:,,,.(3)整数集合:,,,.(4)负整数集合:,.【解析】(1)正数集合:,,.(2)分数集合:,,,.(3)整数集合:,,,.(4)负整数集合:,.14、(4分)【答案】(1)见解析;(2)见解析.【解析】(1)正分数集合:{13,4.6…};整数集合:{﹣2,0…};负数集合:{﹣2,﹣5.8,﹣227…};(2)如图:,﹣5.8<﹣227<﹣2.15、(4分)【答案】【解析】解:整数有:-2016,0,31,-2016×0×31=0,故答案为:0.16、(4分)【答案】答案见解析.【解析】(1)因为=3,所以有理数有:,,-;无理数有:,1+π,-π.故:有理数{,,-;};无理数{,1+π,-π};(2)答案不唯一:两个有理数是:,-;两个无理数是:1+π,-π.[1+π+(-π)]×[-(-)]=1×3=3.三、解答题(本题共计 5 小题,共计 60 分)17、(12分)【答案】(1)-1;(2).【解析】(1)==3+2-6=-1(2)原式的倒数为===-7+9-28+12=-14.故原式=18、(12分)【答案】(1)-14985;(2)99900.【解析】(1)原式=(1000-1)×(-15)=-15000+15=-14985.(2)原式=999×=999×100=99900.19、(12分)【答案】画在数轴上见解析,-5<- |-1.5|<0<<(-2)2. 【解析】解:-5<-|-1.5|<0<<(-2)2.20、(12分)【答案】见解析【解析】正分数集合;整数集合;非正数集合.有理数集合;21、(12分)【答案】(1)-3;(2)-249;(3)-37.7;(4)【解析】(1)原式==3-6=-3;(2)原式==-250+=;(3)原式==-36+3.4÷(-2)=-36-1.7=-37.7;(4)原式===.。

相关文档
最新文档