矩阵论PPT讲稿
矩阵论第一章第二节PPT课件
分析: 设 dimV n, 1, 2, , n 是V的一组基,
线性变换 在这组基下的矩阵为A.
设 0是 的特征值,它的一个特征向量 在基
1,2,
, n 下的坐标记为
x01 ,
x0n
则 ( )在基 1, 2 ,
, n下的坐标为
x01 A ,
x0n
x01
而0
的坐标是
0
x0n
21 11
k 1 k
k k 1
.
例. 在线性空间 P3 中,线性变换 定义如下:
(1 ) (2 )
( 5, 0, (0, 1,
3) 6)
,
(3 ) (5, 1,9)
其中, 12((01,,10,,12)) 3 (3, 1,0)
(1)求 在标准基 1, 2 , 3 下的矩阵. (2)求 在 1,2 ,3 下的矩阵.
② 若 是 的属于特征值 0的特征向量,则 k (k P,k 0) 也是 的属于0 的特征向量.
(k ) k ( ) k(0 ) 0(k )
由此知,特征向量不是被特征值所唯一确定的, 但是特征值却是被特征向量所唯一确定的,即
若 ( ) 且 ( ) ,则 .
2、特征值与特征向量的求法
5 0 5
因而,
AX
0 3
1 6
1 9
,
5 0 5
5 0 5 1 0 3 1
A
0 3
1 6
1 9
X
1
0 3
1 6
1 9
0 2
1 1
1 0
1 7
5 4 27
20 5 18
20
2 24
(2)设 在1,2 ,3下的矩阵为B,则A与B相似,且
《矩阵论》课件 共39页PPT资料
n
x 1
xi ;
i1
1
x
2
n i1
xi
2 2
;
x
max
1 i n
xi
;
1
x
n p i 1
xi
p p ,
p1
x , x , x , x ( p 1)都是 C n上的向量范数。
1
2
p
引6理 .1.1 如 果p实 1,q数 1且111,则 对 pq
向 量 范,数1,,n为V的 一 组,V基中 任 一 向量
n
可唯一地表示为xii, x(x1,, xn)T Pn. i1
则 是x1,, xn的连续函. 数
定义6.1.2 设 , 是n维线性V空 上间 定义的 ab
种 向 量,范 如数 果 存 在 两 无个关与的 正 常
其中p 实 1,q 数 1且 111. pq
定理6.1.2(Minkowski不等式)
设 x ( x 1 , ,x n ) T ,y ( y 1 , ,y n ) T C n ,则
1
1
1
i n1xiyi p p i n1xi p p i n1yi p p
定理6.1.5 设V是 数 域 P上 的n维 线 性 空,间 1,,n 为V的 一 组,基 则V中 任 一 向可 量唯 一 地 表 示
n
xii , x (x1,, xn)T Pn.又 设 是Pn上 的
i1
向 量 范,数 令 v
x,
则 是V上的向量范. 数 v
定理6.1.6 设 是数域 P上n维线性空V上 间的任一
(课件)矩阵论
=
aB 11 1
+
(a12
−
a 11
)
B 2
+
( a 21
−
a 12
)
B 3
+
( a 22
−
a
21
)
B 4
坐标为
β
=
(a11
,
a 12
−
a 11
,
a
21
−
a 12
,
a 22
− a21 )Τ
[注] 一个元素在两个不同的基下的坐标可能相同,也可能不同.
例如:
A
=
E 22
在上述两个基下的坐标都是 (0,
0,
(Ⅱ) 定义的数乘运算封闭, 即
∀ x ∈V , ∀ k ∈ K , 对应唯一 元素(kx)∈V , 且满足 (5) 数对元素分配律: k( x + y) = kx + ky (∀y ∈V ) (6) 元素对数分配律: (k + l )x = kx + lx (∀l ∈ K ) (7) 数因子结合律: k(lx) = (kl )x (∀l ∈ K ) (8) 有单位数:单位数1∈ K , 使得 1x = x . 则称V 为 K 上的线性空间.
mn
∑ ∑ (2) A = (ai j )m×n =
ai j Ei j .
i=1 j=1
故 Ei j (i = 1,2,L, m ; j = 1,2,L, n) 是 R m×n 的一个基, dimR m×n = mn .
第一章 线性空间与线性变换(第 1 节)
5
2.坐标:给定线性空间V
n
的基
x 1
解 采用中介法求过渡矩阵.
矩阵论PPT
• 有关正规阵的4个性质: 推论1: Hermite矩阵的特征值均为实数, 反Hermite 矩阵的特征值为零或纯虚数.
推论2: 实对称矩阵的特征值均为实数, 实反对称矩 阵的特征值为零或纯虚数.
推论3: 设 A C nn是正规矩阵, 是 A 的特征值, x 是对应 的特征向量, 则 是 AH 的特征值, AH 的 对应 的特征向量仍为 x .
第一章:矩阵的相似变换
§1. 1 特征值与特征向量
• 有关定义回顾: 特征值; 特征向量; 特征矩阵; 特征多项式.
• 矩阵的特征值与特征向量的性质. 定理1.1: 设 i 是 A C nn 的 ri 重特征值, 对应 i
有 si 个线性无关的特征向量, 则: 1 si r i 简言之: 矩阵特征值的几何重数小于或等于其代
定理 1.21: 设 A, B C nn.
(1) 若 A是酉矩阵, 则 A1也是酉矩阵. (2) 若 A, B是酉矩阵, 则 AB也是酉矩阵.
(3) 若 A是酉矩阵, 则 det A 1
(4) A是酉矩阵的充要条件是: 它的 n 个列向量是两
两正交的单位向量.
§1. 6 酉相似下的标准形
定理 1.22 (Schur): 设 A C nn , 则 A 可酉相似于上 三角矩阵 T , 即存在 n 阶酉矩阵 U , 使得
(研究生课程)
高等工程数学
教师: 李晓东
• 课程主要内容:
矩阵论:矩阵的相似变换;向量范数与矩阵范数 的理论及应用;矩阵分析及应用;矩阵的各种分 解方法等。 泛函分析:距离空间;赋范空间与Banach空间; 内积空间与Hilbert空间等。
• 主要参考书目:
1.徐仲等著,《矩阵论简明教程》,科学出 版 社,2007。 2.姚泽清等著,《应用泛函分析》,科学出版 社,2008。
矩阵论课件
第一讲线性空间一、线性空间的定义及性质[知识预备]★集合:笼统的说是指一些事物(或者对象)组成的整体集合的表示:枚举、表达式集合的运算:并(),交()另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。
★数域:一种数集,对四则运算封闭(除数不为零)。
比如有理数域、实数域(R)和复数域(C)。
实数域和复数域是工程上较常用的两个数域。
线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。
线性空间的概念是某类事物从量的方面的一个抽象。
1.线性空间的定义:设V是一个非空集合,其元素用x,y,z等表示;K是一个数域,其元素用k,l,m等表示。
如果V满足[如下8条性质,分两类](I)在V中定义一个“加法”运∈时,有唯一的和算,即当x,y V+∈(封闭性),且加法运算x y V满足下列性质(1)结合律()()++=++;x y z x y z(2)交换律 x y y x +=+;(3)零元律 存在零元素o ,使x +o x =;(4)负元律 对于任一元素x V ∈,存在一元素y V ∈,使x y +=o ,且称y 为x 的负元素,记为(x -)。
则有()x x +-= o 。
(II )在V 中定义一个“数乘”运算,即当x V ∈,k K ∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质(5)数因子分配律()+=+;k x y kx ky(6)分配律()+=+;k l x kx lx(7)结合律()()=;k lx kl x=;(8)恒等律1x x [数域中一定有1]则称V为数域K上的线性空间。
注意:1)线性空间不能离开某一数域来定义,因为同一个集合,如果数域不同,该集合构成的线性空间也不同。
(2)两种运算、八条性质数域K中的运算是具体的四则运算,而V中所定义的加法运算和数乘运算则可以十分抽象。
(3)除了两种运算和八条性质外,还应注意唯一性、封闭性。
唯一性一般较显然,封闭性还需要证明,出现不封闭的情况:集合小、运算本身就不满足。
矩阵论矩阵的分解 ppt课件
结论:如果矩阵A能用两行互换以外的 初等行变换 化为阶梯形,则A有LU分解。
三角分解的存在性和惟一性
定理3.1 (P.62) :
• 矩阵的k 阶主子式:取矩阵的前k行、前k列得到 的行列式,k=1,2, … ,n。
• 定理: AFnn有惟一LDV分解的充要条件是A的顺 序主子式Ak非零,k =1,2,…,n-1。
LU分解:AFnn, 有下三角形矩阵L ,上 三角形矩阵U ,使得A=LU。
LDV分解:AFnn, L、V分别是主对角线 元素为1的下三角形和上三角形矩阵,D为 对角矩阵,使得A=LDV。
已知的方法:Gauss-消元法
例题1 (P.61eg1)设
2 2 3
A
4
7
7
求A的LU和LDV分解。 2 4 5
2 、Schur 分解
定理3.7(P.74 )对矩阵ACnn,存在酉矩
阵U和上三角矩阵T,使得 UHAU=T=
1
2
证明要点:
n
➢A=PJ AP–1 ,
➢P=UR
➢A= PJ AP–1 =U(RJR–1 )UH =UTUH。
二、正规矩阵(Normal Matrices)
1、 定义3.3(P.77 )A是正规矩阵 AHA=AAH。 常见的正规矩阵:
对角矩阵 对称和反对称矩阵:AT=A,AT=–A。 Hermite矩阵和反Hermite矩阵:AH=A,AH=–A 正交矩阵和酉矩阵:ATA=AAT=I,AHA=AAH=I。
例题1 (P.78,eg 10)设A为正规矩阵,B酉相似于A,
证明B也是正规矩阵。
正规是酉相似的不变性质
例题2、AFmn,矩阵AHA 和矩阵AAH是正规矩阵。
在内积空间中讨论问题,涉及:
矩阵论课件
P 是数域, 若 n是正整数, 则系数属于 P 而未知元为 x 的
所有次数不超过 n 的多项式的集合,此集合连同零多 项式在内按通常多项式的加法及数与多项式的乘法, 构成数域 P 上的一个线性空间全体记作: Pn [ x ].
4 December 2014 河北科技大学
机动 目录 上页 下页 返回 结束
, t 可以由1 , 2 ,
, s 线性表
, t 线性相关.
推论1 若 1 , 2 ,
, t 可 以 由 1 , 2 ,
, s 线 性 表 示 , 且
1 , 2 , , t 线性无关,则 t s .
推论2 若 1 , 2 ,
, t 与 1 , 2 , , s 等 价 ,且 均 线性 无
实数域 R 上的线性空间简称为实线性空间; 复数域 C 上的线性空间简称为复线性空间.
下面看几个线性空间的例子.
4 December 2014
河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
例1 若 P= 是数域,V 是分量属于 P= 的 n元有序数组的集合
V a1 , a2 ,
, an | ai P,i 1, 2,
矩阵论
例4 所有定义在区间 a , b a t b 上的实值连续
函数全体构成的集合, 按照函数的加法及数与函数 的数量乘法,构成实数域 R 上的一个线性空间,记 作: R a , b .
例5 实(复)系数齐次线性方程组 Ax 0( A R mn
或 C mn ; x R n 或 C n ;行向量和列向量不做区别) 的解空间 S 构成 R 或C 上的一个线性空间.
才成立,称 x1 , x2 ,
矩阵论简明教程整理全PPT课件
k
ei
e
H j
E ei , ej , k
第45页/共188页
Remark
det E u,v, det In uvH det 1 vHu
1 vHu (由n Im AB m In BA 得到)
第46页/共188页
四、其他特殊矩阵
1幂零矩阵:Ak 0, k : 某正整数; 2幂等矩阵:A2 A; 3 实对称正定矩阵:
a a jn 1 j1 2 j2
anjn
j1 j2 jn
第13页/共188页
二、块矩阵的行列式
1、设A Cmm , B Cmn , C Cnm , D Cnn , 则
1 A
0A
BA
0 AD
0D 0D CD
2 A B 1mn C D 1mn B A
CD
AB
DC
3 A B m A B
minrank A, rank B
第30页/共188页
推论1
设ACmn , B Cnk ,且AB 0,则
rank A rank B n
第31页/共188页
§1.4 特殊矩阵
一、 几类基本的特殊矩阵
1、零矩阵,单位矩阵 2、对角矩阵
a11
D
a22
diag
a11
,
a22
,
ann
第50页/共188页
§2.1 矩阵的特征值与特征向量
一、特征值与特征向量 1、定义 定义1
设ACnn ,若存在数 C和x Cn , x 0使得 Ax x
则称是A的特征值,x称为A属于的特征向量。
第51页/共188页
2、特征多项式 定义2
设ACnn , 称In A为A的特征矩阵,称detIn A 为A的特征多项式,称detIn A 0为A的特征方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 当A,B分别为可逆矩阵时,AB和BA均为可
逆矩阵,而且有 (AB)–1 = A–1 B–1
• 当方阵AFmm,BFnn时,方阵ABFmnmn
的行列式为 |AB| = |BA| = |A|n |B|m
•若A,B是Hermite矩阵,则AB 和BA均是
• K-积与矩阵乘法
– 定理6.2(P. 138)设矩阵A,B,C,D使 得下列运算有意义,则有
(AB) (CD) = (AC) (BD)
– 意义:建立Kronecker积和矩阵乘法的相互转换。
– 特别情形:设 AFmm ,B Fnn,则 – AB = (ImA)(BIn) = (AIm)(InB)
例 其 于题中是有3 快H速N WaHHlsNNh//(22HaHdHaNNm/2/2ar,dN)变 换2n ,ynN=1,H2N,xN,,H1 [1].
HN
1 1
1 1 H N /2
H2 HN/2
H
n 2
.
HN
I I
N N
/ /
2 2
IN /2 HN /2
I
N
/
2
HN
/2
(H2
IN
B的Hadamard被定义为 AaB11b:11 a12b12 a1nb1n
AB= [aijbij]m na21b21
a22b22
a2nb2n
am1bm1
am2bm2
amnbmn
6.1 K-积和H-积的定
义
例题1
设A
1 2
43,
3 B 0
0 1
A B [aij B] A B [aijbij ]
= (ImB) (AIn) = (AIn) (ImB) – (AB) k = Ak Bk
(A1B1C1)(A2B2C2) = (A1A2)(B1B2)(C1C2 (A1B1)(A2B2)(A3B3) = (A1A2A3)(B1B2B3)
6.2 Kronecker积和Hadamard积的性 质
• Kronecker积的矩阵性质
HN
1 1
1 1 H N /2
H2 HN/2
H
n 2
.
HN
H
N
/
2
I N / 2
H
N
/
2
I
N
/
2
IN/2 IN/2
(I2
HN
/2 )(H2
IN
/2)
6.1 K-积和H-积的定义
例题2 设分块矩阵A = (Ast),则 AB = (Ast B)
特别地,若A = (A1, A2, …, An),则 AB = (A1B, A2B,…, AnB)
Hermite矩阵
• 若A,B是酉矩阵,则AB和BA均是酉矩阵。
• Kronecker与矩阵等价、相似关系
定理6.5(P. 141)
设矩阵A,B,为等价矩阵,则(AI)等价于(BI)
设方阵A相似与JA,方阵B相似于JB,则(AB) 相 似于(JAJB)
• K-积特征值和特征向量
定理6.6(P . 142)设AFmm 的特征值、特征向
量分别是i,xi,B Fnn的特征值、特征向量分 别是 j , yj,则
– (AB) 的特征值是ij 。特征向量是(xiyj) 。
– (AIn) +(ImB) 的特征值是i + j ,特征向量
是(xiyj)
Kronecker和,记为AB
• Kronecker与矩阵等价、相似关系
推论
若A,B正定(半正定),则AB和AB均正定 (半正定);
6.1 K-积和H-积的定义
例题1 设
A
1 2
43,
3 B 0
01,计算
AB,BA,I2B,AB,I2A
A B [aij B] A B [aijbij ]
3 0 0 0
B
I
2
B
0
0 B
0 0
1 0
0 3
0
,
0
0 0 0 1
分块对角矩阵
A
B
1 3 2 0
4
30 (1)
3 0
0 4,
义
• 定义6.1(P. 136)
– 设矩阵 A=[aij]mn和 B=[bij]st ,则A和B的
Kronecker被定义为 AB: a11B a12B a1nB
AB=[aijB]msnt
a21B
a22 B
a2n
B
am1B am2B amnB
设A =[aij]mn和 B=[bij]mn为同阶矩阵,则A和
,计算
AB,BA,I2B,AB,I2A
A
B
1
3 0
0 1
3
3 0
0 3
1
0
0 1
9 0
0 3,
AB
3 0 3 0
2
0
1
4 0
1
6 0 12 0 0 2 0 4
B
A
B
A
3
1 2
3 4
0
1 2
3 4
3
6
9 12
0 0
0
0
,
1 3 1 3
0
2
4
1 2
4
0 0 1 3 0 0 2 4
• H-积的基本性质:
设A,B为同阶矩阵,则
– AB = BA
– (kA)B = A(kB)
– A(B + C) = AB + AC – (AB)C = A(BC) – (AB)H = AH BH
• Kronecker和Hadamard的关系:
– 定理6.3(P. 139) AB 可由AB的元素构成。
AB B A
I
2
A
11 0 2
0 1 1 4
1 0
0 4.
对角矩阵
6.1 K-积和H-积的定义
例题2 设分块矩阵A = (Ast),则 AB = (Ast B)
特别地,若A = (A1, A2, …, An),则 AB = (A1B, A2B,…, AnB)
例 其 于题中是有3 快H速N WaHHlsNNh//(22HaHdHaNNm/2/2ar,dN)变 换2n ,ynN=1,H2N,xN,,H1 [1].
矩阵论
概述:
主要内容:
• 介绍Kronecker积和Hadamard积 • 讨论
– K-积,H-积的运算性质、之间的关系 – K-积与矩阵乘积的关系 – K-积,H-积的矩阵性质 – K-积的矩阵等价与相似关系
• 应用:求解矩阵方程
– 向量化算子
• 重点:K-积及其应用
6.1 Kronecker积和Hadamard积的定
/2 )(I2
HN
/2)
• K-积,H-积的基本结果:
– A和B中有一个为零矩阵,则 AB=0,AB=0
– II=I,II=I
– 若A为对角矩阵,则AB为分块对角矩阵,AB为 对角矩阵。
• K-积的基本性质
– 定理6.1(P. 138)设以下矩阵使计算有意义, 则
•(kA)B = A(kB) •A(B + C) = AB + AC •(AB)C = A(BC) • (AB)H = AH BH •AB BA