2002年高考数学试题 (2)

合集下载

数学_2002年天津市高考数学试卷(理科)(含答案)

数学_2002年天津市高考数学试卷(理科)(含答案)

2002年天津市高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1. 曲线{x =cosθy =sinθ(θ为参数)上的点到两坐标轴的距离之和的最大值是( )A 12 B √22C 1D √22. 复数(12+√32i)3的值是( )A −1B 1C −iD i3. 已知m ,n 为异面直线,m ⊂平面α,n ⊂平面β,α∩β=l ,则l( )A 与m ,n 都相交B 与m ,n 中至少一条相交C 与m ,n 都不相交D 至多与m ,n 中的一条相交4. 不等式(1+x)(1−|x|)>0的解集是( )A {x|0≤x <1}B {x|x <0且x ≠−1}C {x|−1<x <1}D {x|x <1且x ≠−1}5. 在(0, 2π)内,使sinx >cosx 成立的x 的取值范围是( ) A (π4, π2)∪(π, 5π4) B (π4, π) C (π4, 5π4) D (π4, π)∪(5π4, 3π2)6. 设集合M ={x|x =k2+14, k ∈Z},N ={x|x =k4+12, k ∈Z},则( ) A M =N B M ⊂N C M ⊃N D M ∩N =⌀7. 正六棱柱ABCDEF −A 1B 1C 1D 1E 1F 1的底面边长为1,侧棱长为√2,则这个棱柱侧面对角线E 1D 与BC 1所成的角是( ) A 90∘ B 60∘ C 45∘ D 30∘8. 函数y =x 2+bx +c(x ∈[0, +∞))是单调函数的充要条件是( ) A b ≥0 B b ≤0 C b >0 D b <0 9. 已知0<x <y <a <1,则有( )A log a (xy)<0B 0<log a (xy)<1C 1<log a (xy)<2D log a (xy)>2 10. 平面直角坐标系中,O 为坐标原点,已知两点A(3, 1)、B(−1, 3),若点C 满足OC →=αOA →+βOB →,其中α、β∈R ,且α+β=1,则点C 的轨迹方程为( )A 3x +2y −11=0B (x −1)2+(y −2)2=5C 2x −y =0D x +2y −5=0 11. 从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( ) A 8种 B 12种 C 16种 D 20种12. 据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年−2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为( ) A 115000亿元 B 120000亿元 C 127000亿元 D 135000亿元二、填空题(共4小题,每小题4分,满分16分)13. 函数y =2x1+x (x ∈(−1, +∞))图象与其反函数图象的交点为________.14. 椭圆5x 2−ky 2=5的一个焦点是(0, 2),那么k =________. 15. 求由三条曲线y =x 2,4y =x 2,y =1所围图形的面积. 16. 已知函数f(x)=x 21+x2,那么f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=________.三、解答题(共6小题,满分74分) 17. 已知cos(α+π4)=35,π2≤α<3π2,求cos(2α+π4)的值. 18. 选做题:(甲、乙两题任选一题作答)甲、如图,正三棱柱ABC −A 1B 1C 1的底面边长为a ,侧棱长为√2a .(I)建立适当的坐标系,并写出点A 、B 、A 1、C 1的坐标; (II)求AC 1与侧面ABB 1A 1所成的角乙、如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直.点M 在AC 上移动,点N 在BF 上移动,若CM =BN =a(0<a <√2). (I)求MN 的长;(II)当a 为何值时,MN 的长最小;(III)当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小.19. 某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立), (1)求至少3人同时上网的概率;(2)至少几人同时上网的概率小于0.3?20. 已知a >0,函数f(x)=x 3−a ,x ∈(0, +∞),设x 1>0,记曲线y =f(x)在点(x 1, f(x 1))处的切线为l , (1)求l 的方程;(2)设l 与x 轴交点为(x 2, 0)证明: ①x 2≥a 13;②若x 2>a 13则a 13<x 2<x 1.21. 已知两点M(−1, 0),N(1, 0),且点P 使MP →⋅MN →,PM →⋅PN →,NM →⋅NP →成公差小于零的等差数列.(1)点P 的轨迹是什么曲线?(2)若点P 坐标为(x 0, y 0),记θ为PM →与PN →的夹角,求tanθ.22. 已知{a n }是由非负整数组成的数列,满足a 1=0,a 2=3,a n+1a n =(a n−1+2)(a n−2+2),n =3,4,5,…, (1)求a 3;(2)证明a n =a n−2+2,n =3,4,5,…; (3)求{a n }的通项公式及其前n 项和S n .2002年天津市高考数学试卷(理科)答案1. D2. A3. B4. D5. C6. B7. B8. A9. D 10. D 11. B 12. C13. (0, 0),(1, 1) 14. −115. 解:如图,因为y =x 2,4y =x 2是偶函数,根据对称性,只算出y 轴右边的图形的面积再两倍即可. 解方程组{y =x 2y =1 和{4y =x 2y =1,得交点坐标(−1, 1),(1, 1),(−2, 1),(2, 1). 选择x 为积分变量,则S =2[∫(1x 2−x 24)dx +∫(211−x 24)dx]=43.∴ 由三条曲线y =x 2,4y =x 2,y =1 所围图形的面积4316. 7217. 解:cos(2α+π4)=cos2αcos π4−sin2αsin π4=√22(cos2α−sin2α).∵ cos(α+π4)=35>0,π2≤α<3π2,∴ 3π2<α+π4<7π4,∴ sin(α+π4)=−√1−cos 2(α+π4)=−45,从而cos2α=sin(2α+π2)=2sin(α+π4)cos(α+π4)=−2425,sin2α=−cos(2α+π2)=1−2cos 2(α+π4)=725, ∴ cos(2α+π4)=√22×(−2425−725)=−31√250. 18. 甲、解:(1)如图,以点A 为坐标原点O ,以AB 所在直线为Oy 轴,以AA 1所在直线为Oz 轴,以经过原点且与平面ABB 1A 1垂直的直线为Ox 轴,建立空间直角坐标系. 由已知,得A(0, 0, 0),B(0, a, 0), A 1(0,0,√2a),C 1(−√32a,a2,√2a) (2)坐标系如上.取A 1B 1的中点M , 于是有M(0,a2,√2a), 连AM ,MC 1有MC 1→=(−√32a,0,0), 且AB →=(0,a,0),AA 1→=(0,0,√2a) 由于MC 1→⋅AA 1→=0,MC 1→⋅AA 1→=0所以,MC 1⊥面ABB 1A 1∴ AC 1与AM 所成的角就是AG 1与侧面ABB 1A 1所成的角. ∵ AC 1→=(−√32a ,a 2,√2a),AM →=(0,a2,√2a)∴ AC 1→⋅AM →=0+a 24+2a 2=94a 2而|AC 1→|=√3a 24+a 24+2a 2=√3a|AM →|=√a 24+2a 2=32a ∴ cos <AC 1→,AM →>=94a 2√3a⋅32a=√32所以,AC 1→与AM →所成的角,即AC 1与侧面ABB 1A 1所成的角为30∘ 乙、解:(1)作MP // AB 交BC 于点P ,NQ // AB 交BE 于点Q ,连接PQ ,依题意可得MP // NQ ,且MP =NQ , 即MNQP 是平行四边形.∴ MN =PQ 由已知,CM =BN =a ,CB =AB =BE =1,∴ AC =BF =√2CP 1=a √2,BQ 1=a√2即CP =BQ =a √2∴ MN =PQ =√(1−CP)2+BQ 2 =√(1−√2)2+(√2)2=√(a −√22)2+12(0<a <√2) (2)由(1)MN =√22)12所以,当a =√22时,MN =√22即M ,N 分别移动到AC ,BF 的中点时, MN 的长最小,最小值为√22(3)取MN 的中点G ,连接AG 、BG ,∵ AM =AN ,BM =BN ,∴ AG ⊥MN ,BG ⊥MN , ∴ ∠AGB 即为二面角α的平面角. 又AG =BG =√64, 所以由余弦定理有cosα=(√64)2+(√64)2−1⋅=−13.故所求二面角α=arccos(−13).19. 解:(1)根据题意,可得,“至少3人同时上网”与“至多2人同时上网”互为对立事件, 故“至少3人同时上网”的概率等于1减去“至多2人同时上网”的概率,即“至少3人同时上网”的概率为1−C 60(0.5)6−C 61(0.5)6−C 62(0.5)6=1−1+6+1564=2132.(2)至少4人同时上网的概率为C 64(0.5)6+C 65(0.5)6+C 66(0.5)6=1132>0.3,至少5人同时上网的概率为(C 65+C 66)(0.5)6=764<0.3,因此,至少5人同时上网的概率小于0.3. 20. 解:(1)f(x)的导数f ′(x)=3x 2,由此得切线l 的方程y −(x 13−a)=3x 12(x −x 1); (2)①依题意,在切线方程中令y =0, 得x 2=x 1−x 13−a 3x 12=2x 13+a 3x 12,x 2−a 13=13x12(2x 13+a −3x 12a 13)=13x 12(x 1−a 13)2(2x 1+a 13)≥0,∴ x 2≥a 13,当且仅当x 1=a 13时取等成立.②若x 1>a 13,则x 13−a >0,x 2−x 1=x 13+a 3x 12<0,且由①x 2≥a 13, 所以a 13<x 2<x 1.21. 解:(1)记P(x, y),由M(−1, 0),N(1, 0)得PM →=−MP →=(−1−x, −y), PN →=−NP →=(1−x, −y),MN →=−NM →=(2, 0), ∴ MP →⋅MN →=2(1+x), PM →⋅PN →=x 2+y 2−1, NM →⋅NP →=2(1−x),∵ MP →⋅MN →,PM →⋅PN →,NM →⋅NP →是公差小于零的等差数列 ∴ {x 2+y 2−1=12[2(1+x)+2(1−x)]2(1−x)−2(1+x)<0即x 2+y 2=3(x >0),∴ 点P 的轨迹是以原点为圆心,√3为半径的右半圆.(2)点P 的坐标为(x 0, y 0),则x 02+y 02=3,PM →⋅PN →=x 02+y 02−1=2,∵ |PM →|⋅|PN →|=√(1+x 0)2+y 02⋅√(1−x 0)2+y 02 =√(4+2x 0)(4−2x 0)=2√4−x 02,∴ cosθ=|PM →|⋅|PN →|˙=√4−x 0,∵ 0<x0≤√3,∴ 12<cosθ≤1,0≤θ<π3,sinθ=√1−cos2θ=√1−14−x02,tanθ=sinθcosθ=√1−14−x02√14−x02=√3−x02=|y0|22. 解:(1)由题设得a3a4=10,且a3、a4均为非负整数,所以a3的可能的值为1,2,5,10.若a3=1,则a4=10,a5=32,与题设矛盾,若a3=5,则a4=2,a5=352,与题设矛盾,若a3=10,则a4=1,a5=60,a6=35,与题设矛盾,所以a3=2.(2)用数学归纳法证明,①当n=3,a3=a1+2,等式成立,②假设当n=k(k≥3)时等式成立,即a k=a k−2+2,由题设a k+1a k=(a k−1+2)(a k−2+2),∵ a k=a k−2+2≠0,∴ a k+1=a k−1+2,也就是说,当n=k+1时,等式a k+1=a k−1+2成立.根据①和②,对于所有k≥3,有a k+1=a k−1+2.(3)由a2k−1=a2(k−1)−1+2,a1=0及a2k=a2(k−1)+2,a2=3,得a2k−1=2(k−1),a2k=2k+1,k=1,2,3,即a n=n+(−1)n,n=1,2,3,所以S n={12n(n+1),当n为偶数12n(n+1)−1,当n为奇数。

2002年全国卷高考理科数学试题及标准答案

2002年全国卷高考理科数学试题及标准答案

2002年普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I卷1至2页.第II卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I卷(选择题)和第II 卷(非选择题)两部分.第I卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A)21 (B )23 (C)1 (D )3 (2)复数3)2321(i +的值是 (A )i - (B)i (C )1- (D )1(3)不等式0|)|1)(1(>-+x x 的解集是(A)}10|{<≤x x (B )0|{<x x 且}1-≠x(C )}11|{<<-x x (D )1|{<x x 且}1-≠x(4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B)),4(ππ (C))45,4(ππ (D))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 (A)N M = (B )N M ⊂ (C )N M ⊃ (D)∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A)0 (B)1 (C )2 (D)2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A )43 (B )54 (C)53 (D)53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A)︒90 (B )︒60 (C)︒45 (D)︒30(9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是(A )0≥b (B)0≤b (C)0>b (D)0<b(10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A )8种 (B)12种 (C)16种 (D )20种(12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A)115000亿元 (B)120000亿元 (C )127000亿元 (D)135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(15)72)2)(1(-+x x 展开式中3x 的系数是。

山东2002高考数学真题

山东2002高考数学真题

山东2002高考数学真题2002年山东高考数学试题,共有12道题目,包括选择题和解答题两部分,总分150分。

以下将分析并解答这些数学题目。

第一题:已知⊙O⊙O与直线AB的交点是C,从点C作射到,使得|∠ACB|=30°,过B、C两点分别作两条直线,使得两线与BA分别交于D、E,则AE=______。

解析:题目中给出了∠ACB=30°,可以得出△ACB为等边三角形,进而得到AB=AC。

在∆ADB内填长度等于AB的线段BD;在∆AEC内填长度等于AC的线段EC。

连接DB、EC。

易得△AEC与直线BA平行,因此△ ADE与直线AE平行。

从而得到AE=AD=2×AD=2d。

而在△ADB内填直角CD(超过)=d,因此AE=2d=2×BD=(3×CD)+BD=3d-CD,因此3d=2(3d⁻CD),即AE=AD=2d=2CD=CD(1)×2乘1。

答案为CD。

第二题:一螺旋桨在旋转时端点所在的圆的半径与时间t的函数关系为r=t^2+1(t≥0),则直线L:2x-y=1与螺旋桨最多有几个交点?解析:题目中给出的螺旋桨的半径与时间t的函数关系为r=t²+1(t≥0),则可以通过r=t²+1算出端点P的坐标为(1+t²,t)。

而直线L:2x-y=1可改写为y=2x-1。

因此,我们可以将x代入y=2x-1,得到y=2(1+t²)-1=2t²+1-y=t,即得到交点。

由于螺旋桨在t≥0时都在第一象限,所以交点只能为一个。

答案为1。

第三题:已知等差数列{an}满足a1-a3=4,a1×a2×a3=-6,求d与an的公约数大于1的全部正整数。

解析:题目中给出a1-a3=4,可以得到a1=(a3+4)。

代入a1×a2×a3=-6,得到(a3+4)×a2×a3=-6,整理得到(a3-2)×a2×a3=2,因此(a3-2)必须是2的积(1,2)之一。

2002年全国统一高考文科数学试卷

2002年全国统一高考文科数学试卷

第1页(共14页) 2002年全国统一高考数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)直线(1)10a x y +++=与圆2220x y x +-=相切,则a 的值为( )A .1-B .2-C .1 D2.(5分)复数31()2的值是( ) A .1- B .1 C .i - D .i3.(5分)不等式(1)(1||)0x x +->的解集是( )A .{|01}x x <„B .{|0x x <且1}x ≠-C .{|11}x x -<<D .{|1x x <且1}x ≠-4.(5分)函数x y a =在[0,1]上的最大值与最小值的和为3,则(a = )A .12B .2C .4D .145.(5分)在(0,2)π内,使sin cos x x >成立的x 的取值范围是( )A .(4π,)(2ππ⋃,5)4π B .(4π,)π C .(4π,5)4π D .(4π,5)(4ππ⋃,3)2π 6.(5分)设集合1{|24k M x x ==+,}k Z ∈,1{|42k N x x ==+,}k Z ∈,则( ) A .M N = B .M N ⊂ C .M N ⊃ D .M N =ΦI 7.(5分)椭圆2255x ky +=的一个焦点是(0,2),那么k 等于( )A .1-B .1 CD.8.(5分)一个圆锥和一个半球有公共底面,如果圆锥的体积与半球的体积恰好相等,则圆锥轴截面顶角的余弦值是( )A .34B .43C .35-D .359.(5分)已知01x y a <<<<,则有( )A .log ()0a xy <B .0log ()1a xy <<C .1log ()2a xy <<D .log ()2a xy >10.(5分)函数2([0,))y x bx c x =++∈+∞是单调函数的充要条件是( )A .0b …B .0b „C .0b >D .0b <。

2002年高考数学试题(江苏卷)及答案

2002年高考数学试题(江苏卷)及答案

A 2002年普通高等学校招生全国统一考试〔江苏卷〕数学第I 卷〔选择题共60分〕一、选择题:本大题共12小题,每题5分,共60分,在每题给出的四个选项中,只有一项是符合题目要求的。

〔1〕函数xxx f cos 2sin )(=的最小正周期是〔 〕。

A.2πB. πC. π2D. π4 〔2〕圆1)1(22=+-y x 的圆心到直线x y 33=的距离是〔 〕。

A.21 B. 23 C. 1 D. 3 〔3〕不等式0|)|1)(1(>-+x x 的解集是〔 〕A. }10|{<≤x xB. }10|{-≠<x x x 且C. }11|{<<-x xD. }11|{-≠<x x x 且 〔4〕在)2,0(π内,使x x cos sin >成立的x 取值范围为〔 〕A. )45,()2,4(ππππ⋃ B. ),4(ππ C. )45,4(ππ D. )23,45(),4(ππππ⋃ 〔5〕设集合},214|{},,412|{Z k k x x N Z k k x x M ∈+==∈+==,则〔 〕A. N M =B. N M ⊂C. N M ⊃D. φ=N M〔6〕一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是〔 〕。

A.43 B. 54 C. 53 D. 53- 〔7〕函数b a x x x f ++=||)(是奇函数的充要条件是〔 〕A.ab=0B. a+b=0C. a=bD. 022=+b a 〔8〕已知10<<<<a y x ,则有〔 〕。

A. 0)(log <xy aB. 1)(log 0<<xy aC. 2)(log 1<<xy aD.2)(log >xy a 〔9〕函数111--=x y A. 在〔+∞-,1〕内单调递增 B. 在〔+∞-,1〕内单调递减 C. 在〔+∞,1〕内单调递增 D. 在〔+∞,1〕内单调递减〔10〕 极坐标方程θρcos =与1cos =θρ〔11〕从正方体的6个面中选取3个面,其中有2种 B. 12种 C. 16种 D. 20种 〔12〕据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值到达95933亿元,比上年增长7.3%,”如果“五十⋅”期间〔2001年—2005年〕每年的国内生产总值都按此年增长率增长,那么到“五十⋅”末,我国国内生产总值约为〔 〕。

2002年高考数学试卷

2002年高考数学试卷

2002年高考数学试题(文史类答案)一.选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

DCDBC BBCDA DB二.填空题:本大题共4小题,每小题4分,共16分。

把答案填在题中横线上。

(13)1995 2000;(14))0,0(,)1,1(;(15)1008;(16)○2,○5。

三.解答题:本大题共6小题,共74分。

解答应写出文字说明,证明过程或演算步骤。

(17)本小题主要考查正弦函数的基本概念、基本性质等基础知识,考查读图识图能力和基本的运算技能。

满分12分。

解:(Ⅰ)由图示知,这段时间的最大温差是201030=-(C )………2分(Ⅱ)图中从6时到14时的图象是函数b x A y ++=)sin(ϕω的半个周期的图象, ∴614221-=⋅ωπ,解得8πω=………5分 由图示,10)1030(21=-=A 20)1030(21=+=b ………7分 这时20)8sin(10++=ϕπx y将6=x ,10=y 代入上式,可取43πϕ=………10分 综上,所求的解析式为20)438sin(10++=ππx y ,]14,6[∈x 。

………12分 (18)本小题主要考查等差数列求和等知识,以及分析和解决问题的能力。

满分12分。

解:(Ⅰ)设n 分钟后第1次相遇,依题意,有7052)1(2=+-+n n n n ………3分 整理得0140132=-+n n解得7=n ,20-=n (舍去)第1次相遇是在开始运动后7分钟。

………6分(Ⅱ)设n 分钟后第2次相遇,依题意,有70352)1(2⨯=+-+n n n n ………9分 整理得0706132=⨯-+n n解得15=n ,28-=n (舍去)第2次相遇是在开始运动后15分钟。

(19)本小题考查线面关系和二面角的概念,已经空间想象能力和逻辑推理能力。

满分12分。

(Ⅰ)解:∵PB ⊥面ABCD∴BA 是PA 在面ABCD 上的射影又DA ⊥AB ,∴PA ⊥DA∴∠PAB 是面PAD 与面ABCD 所成的二面角的平面角,∠PAB60=………3分而PB 是四棱锥ABCD P -的高,a AB PB 360tan =⋅= ∴锥V 3233331a a a =⋅=………6分(Ⅱ)证明:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为全等三角形, 作AE ⊥DP ,垂足为E ,连结EC ,则⊿ADE ≌⊿CDE , ∴AE =EC ,∠CED = 90,故∠CEA 是面PAD 与面PCD 所成的二面角的平面角。

2002年江西省高考文科数学试题

2002年江西省高考文科数学试题

2002年普通高等学校招生全国统一考试(数学)文及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 A .1,1-B .2.2-C .1D .1-2.复数3)2321(i +的值是 A .i -B .iC .1-D .13.不等式0|)|1)(1(>-+x x 的解集是 A .}10|{<≤x x B .0|{<x x 且}1-≠x C .}11|{<<-x xD .1|{<x x 且}1-≠x4.函数xa y =在]1,0[上的最大值与最小值这和为3,则a = A .21B .2C .4D .41 5.在)2,0(π内,使x x cos sin >成立的x 的取值范围是A .)45,()2,4(ππππ B .),4(ππC .)45,4(ππD .)23,45(),4(ππππ 6.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则A .N M =B .N M ⊂C .N M ⊃D .∅=N M7.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k A .1-B .1C .5D .5-8.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 A .43B .54C .53D .53-9.10<<<<a y x ,则有 A .0)(log <xy aB .1)(log 0<<xy aC .2)(log 1<<xy aD .2)(log >xy a10.函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 A .0≥b B .0≤bC .0>bD .0<b11.设)4,0(πθ∈,则二次曲线122=-θθtg y ctg x 的离心率取值范围A .)21,0(B .)22,21( C .)2,22(D .),2(+∞12.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 A .8种 B .12种 C .16种 D .20种第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.13.据新华社2002年3月12日电,1985年到2000年间.我国农村人均居住面积如图所示,其中,从 年2000年的五年间增长最快. 14.函数xxy +=12(),1(+∞-∈x )图象与其反函数图象的交点为 15.72)2)(1(-+x x 展开式中3x 的系数是16.对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上;②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为)1,2(. 能使这抛物线方程为x y 102=的条件是第 (要求填写合适条件的序号) 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. 17.如图,某地一天从6时至14时的温度变化曲线近似满足函数b x A y ++=)sin(ϕω(1)求这段时间的最大温差; (2)写出这段时间的函数解析式;18.甲、乙物体分别从相距70米的两处同时相向运动.甲第1分钟走2米,以后每分钟比前1分钟多走1米,乙每分钟走5米. (1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1米,乙继续每分钟走5米,那么开始运动几分钟后第二相遇?19.四棱锥ABCD P -的底面是边长为a 的正方形,⊥PB 平面ABCD .(1)若面PAD 与面ABCD 所成的二面角为︒60,求这个四棱锥的体积;(2)证明无论四棱锥的高怎样变化.面PAD 与面PCD 所成的二面角恒大于︒9020.设函数1|2|)(2+-+=x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值.21.已知点P 到两定点)0,1(-M 、)0,1(N 距离的比为2,点N 到直线PM 的距离为1,求直线PN 的方程. 22.(本小题满分12分,附加题满分4分)(I )给出两块相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明; (II )试比较你剪拼的正三棱锥与正三棱柱的体积的大小; (III )(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分) 如果给出的是一块任意三角形的纸片(如图3),要求剪栟成一个直三棱柱,使它的全面积与给出的三角形的面积相等.请设计一种剪拼方法,用虚线标示在图3中,并作简要说明.参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DCCBCBBCDADB二、填空题(13)1995 (14))1,1(),0,0( (15)1008 (16)②⑤ 三、解答题 (17)解:(1)由图示,这段时间的最大温差是201030=-℃ (2)图中从6时到14时的图象是函数b x A y ++=)sin(ϕω的半个周期∴614221-=⋅ωπ,解得8πω=由图示,10)1030(21=-=A 20)3010(21=+=b这时,20)8sin(10++=ϕπx y将10,6==y x 代入上式,可取43πϕ=综上,所求的解析式为20)438sin(10++=ππx y (]14,6[∈x ) (18)解:(1)设n 分钟后第1次相遇,依题意,有7052)1(2=+-+n n n n ,整理得0140132=-+n n ,解得7=n ,20-=n (舍) 第1次相遇是在开始后7分钟.(2)设n 分钟后第2次相遇,依题意,有70352)1(2⨯=+-+n n n n ,整理得0420132=-+n n ,解得15=n ,28-=n (舍) 第2次相遇是在开始后15分钟.(19)解(1)∵⊥PB 平面ABCD ,∴BA 是PA 在面ABCD 上的射影,∴DA PA ⊥∴PAB ∠是面PAD 与面ABCD 所成二面角的平面角,︒=∠60PAB而PB 是四棱锥ABCD P -的高,a tg AB PA 360=︒⋅=∴3233331a a a V ABCD P =⋅⋅=- (2)证:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为全等三角形.作DP AE ⊥,垂足为E ,连结EC ,则CDE ADE ∆≅∆.∴EC AE =,︒=∠90CED ,故CFA ∠是面PAD 与面PCD 所成的二面角的平面角. 设AC 与DB 相交于点O ,连结EO ,则AC EO ⊥.a AD AE OA a =<<=22在△AEC 中,0)2)(2(2)2(cos 2222<-+=⋅⋅-+=∠AEOA AE OA AE EC AE OA EC AE AEC 所以,面PAD 与面PCD 所成的二面角恒大于︒90(20)解:(I )3)2(=f ,7)2(=-f ,由于)2()2(f f ≠-,)2()2(f f -≠- 故)(x f 既不是奇函数,也不是偶函数.(2)⎪⎩⎪⎨⎧<+-≥-+=2123)(22x x x x x x x f由于)(x f 在),2[+∞上的最小值为3)2(=f ,在)2,(-∞内的最小值为43)21(=f 故函数)(x f 在),(∞-∞内的最小值为43 (21)解:设P 的坐标为),(y x ,由题意有2||||=PN PM ,即2222)1(2)1(y x y x +-⋅=++,整理得01622=+-+x y x因为点N 到PM 的距离为1,2||=MN所以︒=30PMN ,直线PM 的斜率为33±直线PM 的方程为)1(33+±=x y 将)1(33+±=x y 代入01622=+-+x y x 整理得0142=+-x x 解得32+=x ,32-=x则点P 坐标为)31,32(++或)31,32(+--)31,32(--+或)31,32(---直线PN 的方程为1-=x y 或1+-=x y .(22)解(I )如图1,沿正三角形三边中点连线折起,可拼得一个正三棱锥.如图2,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的41,有一组对角为直角,余下部分按虚线折起,可成一个缺上底的正三棱柱,而剪出的三个相同的四边形恰好拼成这个正三棱锥的上底.(II )依上面剪拼方法,有锥柱V V >.推理如下:设给出正三角形纸片的边长为2,那么,正三棱锥与正三棱柱的底面都是边长为1的正三角形,其面积为43.现在计算它们的高: 36)2332(12=⋅-=锥h ,633021=︒=tg h 柱. 02422343)9663(43)31(>-=⋅-=⋅=-锥柱锥柱-h h V V所以锥柱V V >.(III )如图3,分别连结三角形的内心与各顶点,得三条线段,再以这三条线段的中点为顶点作三角形.以新作的三角形为直棱柱的底面,过新三角形的三个顶点向原三角形三边作垂线,沿六条垂线剪下三个四边形,可心拼成直三棱柱的上底,余下部分按虚线折起,成为一个缺上底的直三棱柱,即可得到直三棱柱.。

2002年高考数学试题(江苏卷)及答案

2002年高考数学试题(江苏卷)及答案

A 2002年普通高等学校招生全国统一考试(江苏卷)数学第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)函数xxx f cos 2sin )(=的最小正周期是( )。

A.2πB. πC. π2D. π4 (2)圆1)1(22=+-y x 的圆心到直线x y 33=的距离是( )。

A.21B. 23C. 1D. 3(3)不等式0|)|1)(1(>-+x x 的解集是( )A. }10|{<≤x xB. }10|{-≠<x x x 且C. }11|{<<-x xD. }11|{-≠<x x x 且 (4)在)2,0(π内,使x x cos sin >成立的x 取值范围为( )A. )45,()2,4(ππππ⋃B. ),4(ππC. )45,4(ππD. )23,45(),4(ππππ⋃(5)设集合},214|{},,412|{Z k k x x N Z k k x x M ∈+==∈+==,则( )A. N M =B. N M ⊂C. N M ⊃D. φ=N M(6)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是( )。

A.43 B. 54 C. 53 D. 53- (7)函数b a x x x f ++=||)(是奇函数的充要条件是( )A.ab=0B. a+b=0C. a=bD. 022=+b a (8)已知10<<<<a y x ,则有( )。

A. 0)(log <xy aB. 1)(log 0<<xy aC. 2)(log 1<<xy aD.2)(log >xy a(9)函数111--=x yA. 在(+∞-,1)内单调递增B. 在(+∞-,1)内单调递减C. 在(+∞,1)内单调递增D. 在(+∞,1)内单调递减(10) 极坐标方程θρcos =与1cos =θρ(11)从正方体的6个面中选取3个面,其中有2 A.8种 B. 12种 C. 16种 D. 20种(12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%,”如果“五十⋅”期间(2001年—2005年)每年的国内生产总值都按此年增长率增长,那么到“五十⋅”末,我国国内生产总值约为( )。

2002年高考数学试题

2002年高考数学试题

2002年普通高等学校春季招生考试数学试卷北京附简解一、选择题(1)不等式组⎩⎨⎧<-<-030122x x x 的解集( )(A ){x|–1<x<1} (B ){x|0<x,3} (C ){x|0<x<1} (D ){x|–1<x<3}(2)已知三条直线m 、n 、l ,三个平面α、β、γ,下列四个命题中,正确的是( )(A )βαγβγα//⇒⎭⎬⎫⊥⊥ (B )ββ⊥⇒⎭⎬⎫⊥l m l m //(C )n m n m //////⇒⎭⎬⎫γγ (D )n m n m //⇒⎭⎬⎫⊥⊥γγ (3)已知椭圆的焦点是F 1、F 2、P 是椭圆上的一个动点.如果延长F 1P 到Q ,使得|PQ|=|PF 2|,那么动点Q 的轨迹是( )(A )圆 (B )椭圆 (C )双曲线的一支 (D )抛物线 (4)如果θ∈(π/2,π)那么复数(1+i)(cos θ+isin θ)的辐角的主值是( )(A )θ+9π/4 (B )θ+π/4 (C )θ–π/4 (D )θ+7π/4 (5)若角α满足条件sin2α<0,cos α–sin α<0,则α在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限(6)从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作.若其中甲、乙两名支援者都不能从事翻译工作,则选派方案共有( )(A )280种 (B )240种 (C )180种 (D )96种 (7)在∆ABC 中,AB=2,BC=1.5,∠ABC=120︒(如图).若将∆ABC绕直线BC 旋转一周,则所形成的旋转体的体积是()(A )9π/2 (B )7π/2 (C )5π/2 (D )3π/2 (8)(理)圆2x 2+2y 2=1与直线xsin θ+y –1=0 (θ∈R, θ≠π/2+k π, k ∈Z)的位置关系是( ) (A )相交 (B )相切 (C )相离 (D )不能确定 (文)到两坐标轴距离相等的点的轨迹方程是( )(A )x –y=0 (B )x+y=0 (C )|x|–y=0 (D )|x|–|y|=0 (9)(理)在极坐标系中,如果一个圆的方程ρ=4cos θ+6sin θ,那么过圆心且与极轴平行的直线方程是( )(A )ρsin θ=3 (B )ρsin θ = –3 (C )ρcos θ =2 (D )ρcos θ = –2 (文)函数y=2sinx 的单调增区间是( )(A )[2k π–π/2, 2k π+π/2] (k ∈Z) (B )[2k π+π/2, 2k π+3π/2] (k ∈Z) (C )[2k π–π, 2k π] (k ∈Z) (D )[2k π, 2k π+π] (k ∈Z) (10)(理)对于二项式(1/x+x 3)n ,四位同学作出了四种判断:①存在n ∈N ,展开式中有常数项;②对任意n ∈N ,展开式中没有常数项;③对任意n ∈N ,展开式中没有x 的一次项;④存在n ∈N ,展开式中有x 的一次项.上述判断中正确的是( )(A )①与③ (B )②与③ (C )②与④ (D )④与① (文)在(1/x+x 2)6的展开式中,x 3的系数和常数项依次是( )(A )20,20 (B )15,20 (C )20,15 (D )15,15(11)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项 (12)用一张钢板制作一个容积为4m 3的无盖长方体水箱.可用的长方形钢板有四种不同的规格(长×宽的尺寸如各项所示,单位均为m ).若既要够用,又要所剩够用,则应选择钢板的规则是( ) (A )2×5 (B )2×5.5 (C )2×6.1 (D )3×5 二、填空题(13)若双曲线x 2/4–y 2/m=1的渐近线方程为y=±√3 x/2,则双曲线的焦点坐标是 (14)如果cos θ= –12/13 θ∈(π, 3π/2),那么cos(θ+π/4)的值等于_____(15)正方形ABCD 的边长是2,E 、F 分别是AB 和CD 的中点,将正方形沿EF 折成直二面角(如图所示).M 为矩形AEFD 内 的一点,如果∠MBE=∠MBC ,MB 和平面BCF 所成角的正切值 为1/2,那么点M 到直线EF 的距离为________(16)对于任意两个复数z 1=x 1+y 1i ,z 2=x 2+y 2i (x 1、y 1、x 2、y 2为实数),定义运算⊙为: z 1⊙z 2=x 1x 2+y 1y 2.设非零复数w 1、w 2在复平面内对应的点分别为P 1、P 2,点为O 为坐标原点.如果w 1⊙w 2=0,那么在∆P 1OP 2中,∠P 1OP 2的大小为_______ 三、解答题(17)在∆ABC 中,已知A 、B 、C 成等差数列,求tg(A/2)+3tg(A/2)tg(C/2)+tg(C/2)的值. (18)已知f(x)是偶函数,而且在(0,+∞)上是减函数.判断f(x)在(–∞,0)上是增函数还是减函数,并加以证明(19)在三棱锥S –ABC 中,∠SAB=∠SAC=∠ACB=90︒,AC=2,BC=√13,SB=√29. (Ⅰ)证明:SC ⊥BC ;(Ⅱ)求侧面SBC 与底面ABC 所成的二面角大小; (Ⅲ)(理)求异面直线SC 与AB 所成的角的大小(用反三角函数表示). (文)求三棱锥的体积V S –ABC .(20)假设A 型进口汽车关税税率在2001年是100﹪,在2006年是25﹪,2001年A 型进口车每辆价格为64万元(其中含32万元关税税款).(Ⅰ)已知与A 型车性能相近的B 型国产车,2001年每辆价格为46万元.若A 型车的价格只受关税降低影响,为了保证2006年B 型车的价格不高于A 型车价格的90﹪,B 型车价格要逐年降低,问平均每年至少下降多少万元? (Ⅱ)某人在2001年将33万元存入银行,假如该银行扣利息税后的年利率为1.8﹪(五年内不变),且每年按复利计算(例如,第一年的利息记入第二年的本金),那么五年到期时这笔钱连本带息是否一定够买一辆按(Ⅰ)中所述降价后的B 型汽车? (21)(理)已知点的序列A n (x n ,0),n ∈N ,其中x 1=0,x 2=a (a>0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,···,A n 是线段A n –2A n –1的中点,···. (Ⅰ)写出x n 与x n –1、x n –2之间的关系式 (n ≥3);(Ⅱ)设a n =x n+1–x n ,计算a 1,a 2,a 3,由此推测数列{a n }的通项公式,并加以证明;(Ⅲ)求n n x ∞→lim .(文)同理(22)(Ⅰ)(Ⅱ) (22)(理)已知某椭圆的焦点是F 1(–4,0)、F 2(4,0),过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B|+|F 2B|=10,椭圆上不同的两点A(x 1,y 1)、C(x 2,y 2)满足条件:|F 2A|、|F 2B|、|F 2C|成等差数列.(Ⅰ)求该椭圆方程;(Ⅱ)求弦AC中点的横坐标;(Ⅲ)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.(文)同理(21)【答案】一、选择题:CDABB BDC(D)A(A)D(C) AC二、填空题;(13)(±√7, 0);(14)-7√2/26;(15)√2/2;(16)π/2.三、解答题:(17)√3;(18)增函数;(19)(Ⅰ)略;(Ⅱ)60︒;(Ⅲ)(理)arccos√17/17,(文)125√3/6;(20)(Ⅰ)2万元;(Ⅱ)5年后本息和为36 .07692>36,可以.(21)(理)(Ⅰ)x n=(x n–1+x n–2)/2;(Ⅱ)a n=(–1/2)n–1 (n∈N);(Ⅲ)2a/3;(文)同理(Ⅰ)(Ⅱ).(22)(理)(Ⅰ)x2/25+y2/9=1;(Ⅱ)x0=4;(Ⅲ)–16<m<16/5;(文)同理(21).2002年普通高等学校招生全国统一考试(数学)理及答案本试卷分第I卷(选择题)和第II卷(非选择题)两部分.第I卷1至2页.第II卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I卷(选择题)和第II卷(非选择题)两部分.第I卷1至2页.第II卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)圆1)1(22=+-y x 的圆心到直线3y x =的距离是 (A )21 (B )23 (C )1 (D )3 (2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a = (14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(x x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.(17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值(18)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==(20<<a )(1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小(19)设点P 到点)0,1(-、)0,1(距离之差为m 2,到x 、y 轴的距离之比为2,求m 的取值范围(20)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?(21)设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ADE(1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值(22)设数列}{n a 满足:121+-=+n n n na a a , ,3,2,1=n (I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式; (II )当31≥a 时,证明对所的1≥n ,有 (i )2+≥n a n (ii )2111111111321≤++++++++n a a a a参考答案(13)2 (14)1 (15)1008 (16)27 三、解答题(17)解:由12cos cos 2sin 2sin 2=-+αααα,得0cos 2cos sin 2cos sin 42222=-+ααααα0)1sin sin 2(cos 222=-+ααα 0)1)(sin 1sin 2(cos 22=+-ααα∵)2,0(πα∈∴01sin ≠+α,0cos 2≠=α∴01sin 2=-α,即21sin =α ∴6πα=∴33=αtg (18)解(I )作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且NQ MP =,即MNQP 是平行四边形∴PQ MN =由已知a BN CM ==,1===BE AB CB ∴2==BF AC ,a BQ CP 22== )20( 21)22( )2()21( )1(22222<<+-=+-==+-==a a a a BQ CP PQ MN(II )由(I )21)22( 2+-=a MN 所以,当22=a 时,22=MN 即当M 、N 分别为AC 、BF 的中点时,MN 的长最小,最小值为22(III )取MN 的中点G ,连结AG 、BG , ∵BN BM AN AM ==,,G 为MN 的中点∴MN BG MN AG ⊥⊥,,即AGB ∠即为二面角的平面角α又46==BG AG ,所以,由余弦定理有 31464621)46()46(cos 22-=⋅⋅-+=α 故所求二面角为31arccos-=πα (19)解:设点P 的坐标为),(y x ,依题设得2||||=x y ,即x y 2±=,0≠x 因此,点),(y x P 、)0,1(-M 、)0,1(N 三点不共线,得2||||||||=<-MN PN PM∵0||2||||||>=-m PN PM ∴1||0<<m因此,点P 在以M 、N 为焦点,实轴长为||2m 的双曲线上,故112222=--my m x 将x y 2±=代入112222=--m y m x ,并解得222251)1(mm m x --=,因012>-m 所以0512>-m解得55||0<<m 即m 的取值范围为)55,0()0,55( -(20)解:设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则301=b ,x b b +⨯=94.012对于1>n ,有)94.01(94.0 94.0211x b xb b n n n ++⨯=+⨯=-+ 所以)94.094.094.01(94.0211n n n x b b +++++⨯=+x b nn06.094.0194.01-+⨯=n x x 94.0)06.030(06.0⨯-+= 当006.030≥-x,即8.1≤x 时 3011=≤≤≤+b b b n n当006.030<-x,即8.1>x 时 数列}{n b 逐项增加,可以任意靠近06.0x 06.0]94.0)06.030(06.0[lim lim 1x x x b n n n n =⨯-+=-+∞→+∞→ 因此,如果要求汽车保有量不超过60万辆,即60≤n b ( ,3,2,1=n )则6006.0≤x,即6.3≤x 万辆 综上,每年新增汽车不应超过6.3万辆(21)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43 当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.(22)解(I )由21=a ,得311212=+-=a a a 由32=a ,得4122223=+-=a a a 由43=a ,得5133234=+-=a a a由此猜想n a 的一个通项公式:1+=n a n (1≥n ) (II )(i )用数学归纳法证明:①当1=n 时,2131+=≥a ,不等式成立. ②假设当k n =时不等式成立,即2+≥k a k ,那么3521)2)(2(1)(1+≥+=+-++≥+-=+k k k k k k a a a k k k .也就是说,当1+=k n 时,2)1(1++≥+k a k 据①和②,对于所有1≥n ,有2n a n ≥+. (ii )由1)(1+-=+n a a a n n n 及(i ),对2≥k ,有1)1(11++-=--k a a a k k k121)121(11+=++-+-≥--k k a k k a……1)1(2122211211-+=++++≥---a a a k k k k于是11211111-⋅+≤+k k a a ,2≥k2131212211121111111111121111=+≤+≤+=+++≤+∑∑∑=-=-=a a a a a n k k n k k nk k2002年普通高等学校招生全国统一考试(数学)文及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题:本大题共12个小题,每小题5分,共60分。

2002年全国统一高考理科数学试卷

2002年全国统一高考理科数学试卷

第1页(共13页)2002年全国统一高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)圆22(1)1x y -+=的圆心到直线y 的距离是( ) A .12 BC .1 D2.(5分)复数31()2的值是( ) A .1- B .1 C .i - D .i3.(5分)不等式(1)(1||)0x x +->的解集是( )A .{|01}x x <„B .{|0x x <且1}x ≠-C .{|11}x x -<<D .{|1x x <且1}x ≠-4.(5分)在(0,2)π内,使sin cos x x >成立的x 的取值范围是( )A .(4π,)(2ππ⋃,5)4π B .(4π,)π C .(4π,5)4π D .(4π,5)(4ππ⋃,3)2π 5.(5分)设集合1{|24k M x x ==+,}k Z ∈,1{|42k N x x ==+,}k Z ∈,则( ) A .M N = B .M N ⊂ C .M N ⊃ D .M N =ΦI 6.(5分)点(1,0)P 到曲线22x t y t ⎧=⎨=⎩(其中参数)t R ∈上的点的最短距离为( ) A .0 B .1 CD .27.(5分)一个圆锥和一个半球有公共底面,如果圆锥的体积与半球的体积恰好相等,则圆锥轴截面顶角的余弦值是( )A .34B .43C .35-D .358.(5分)正六棱柱111111ABCDEF A B C D E F -的底面边长为1,则这个棱柱侧面对角线1E D 与1BC 所成的角是( )A .90︒B .60︒C .45︒D .30︒9.(5分)函数2([0,))y x bx c x =++∈+∞是单调函数的充要条件是( )A .0b …B .0b „C .0b >D .0b <。

2002年高考数学试题(江苏卷)及答案

2002年高考数学试题(江苏卷)及答案

2002年高考数学试题(江苏卷)及答案2002年普通高等学校招生全国统一考试(江苏卷)数学第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)函数xxx f cos 2sin )(=的最小正周期是( )。

A. 2π B. π C. π2 D.π4 (2)圆1)1(22=+-y x 的圆心到直线x y 33=的距离是( )。

A. 21 B. 23 C. 1 D.3(3)不等式0|)|1)(1(>-+x x 的解集是( )A. }10|{<≤x xB. }10|{-≠<x x x 且C. }11|{<<-x xD. }11|{-≠<x x x 且(4)在)2,0(π内,使x x cos sin >成立的x 取值范围为( )A. )45,()2,4(ππππ⋃B. ),4(ππC. )45,4(ππ D.)23,45(),4(ππππ⋃(5)设集合},214|{},,412|{Z k k x x N Z k k x x M ∈+==∈+==,则( ) A. N M = B. N M ⊂ C. N M ⊃ D. φ=N M I(6)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是( )。

A. 43B. 54C. 53D. 53- (7)函数b a x x x f ++=||)(是奇函数的充要条件是( )A.ab=0B. a+b=0C. a=bD. 022=+b a(8)已知10<<<<a y x ,则有( )。

A. 0)(log <xy aB. 1)(log 0<<xy aC. 2)(log 1<<xy aD.2)(log >xy aO21 x O21xO21 x O21xA (9)函数111--=x y A. 在(+∞-,1)内单调递增 B. 在(+∞-,1)内单调递减C. 在(+∞,1)内单调递增D. 在(+∞,1)内单调递减(10) 极坐标方程θρcos =与21cos =θρ的图形是( )。

2002年全国Ⅱ高考数学试题(理)

2002年全国Ⅱ高考数学试题(理)

2002年普通高等数学招生全国统一考试(全国Ⅱ)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.参考公式:三角函数的积化和差公式:[]1sin cos sin()sin()2αβαβαβ=++- []1cos sin sin()sin()2αβαβαβ=+--[]1cos cos cos()cos()2αβαβαβ=++-[]1sin sin cos()cos()2αβαβαβ=-+--正棱台、圆台的侧面积公式1()2S c c l ='+台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长.球的体积公式:343V r π=球,其中R 表示球的半径.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆22(1)1x y -+=的圆心到直线3y x =的距离是 A .12B.2C .1D2.复数31(2+的值是 A .i -B .iC .1-D .13.不等式(1)(1||)0x x +->的解集是A .{}|01x x ≤<B .{}|01x x x <≠-且C .{}|11x x -<<D .{}|11x x x <≠-且4.在(0,2)π内,使sin cos x x >成立的x 的取值范围是A .5(,)(,)424ππππ B .(,)4ππC .5(,)44ππD .53(,)(,)442ππππ 5.设集合1|,24k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1|,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则 A .M N =B .M N ⊂C .M N ⊃D .M N =∅6.点(1,0)P 到曲线22x t y t⎧=⎨=⎩(其中参数t R ∈)上的点的最短距离为A .0B .1CD .27.一个圆锥和一个半球有公共底面,如果圆锥的恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是A .34B .45C .35D .35-8.正六棱柱111111ABCDEF A BC D E F -的底面边长为1线1E D 与1BC 所成的角是A .90°B .60°C .45°D .30°9.函数2([0,))y x bx c x =++∈+∞是单调函数的充要条件是A .0b ≥B .)b ≤C .0b >D .0b <10.函数11y =-的图像是 A .B .C .D .11.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有A .8种B .12种C .16种D .20种12.据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.2%.”如果“十·五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十·五”末我国国内年生产总值约为A .115000亿元B .120000亿元C .127000亿元D .135000亿元第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.函数x y a =在[]0,1的最大值与最小值和为3,则a = . 14.椭圆2255x ky +=的一个焦点是(0,2),那么k = . 15.27(1)(2)x x +-的展开式中3x 的系数是 .16.已知函数22()1x f x x=+,那么111(1)(2)()(3)()(4)()234f f f f f f f ++++++= .三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知2sin 2sin 2cos cos21αααα+-=,(0,)2πα∈,求s i n α,tan α的值.18.(本小题满分12分)如图,正方形ABCD ,ABEF 的边长都是1,而且平面ABCD ,ABEF 互相垂直.点M 在AC 上移动,点N 在BF 上移动,若(0CM BN a a ==<<. (1)求MN 的长;(2)当a 为何值时,MN 的长最小; (3)当MN 长最小时,求面MNA 与面MNB 所成的二面角θ的大小.19.(本小题满分12分)设点P 到点(1,0)M -,(1,0)N 的距离之差为2m ,到x 轴,y 轴的距离之比为2,求m 的取值范围.ABEFCDMN20.(本小题满分12分)某城市2001年末汽车保有量为30万,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同.为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?21.(本小题满分12分)设a 为实数,函数2()||1f x x x a =+-+,x R ∈. (1)讨论()f x 的奇偶性; (2)求()f x 的最小值.22.(本小题满分12分)设数列{}n a 满足211n n n a a na +=-+,1,2,3,n = .(1)当12a =时,求2a ,3a ,4a ,并由此猜想出n a 的一个通项公式; (2)当13a ≥时,证明对所有的1n ≥,有 ①2n a n ≥+; ②1211111112n a a a +++≤+++ .数学试题参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力二、填空题.本题考查基础知识,基本概念和基本运算技巧 13. 14. 15. 16. 三、解答题 17.数学试题(理工农医类)参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答末改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分. A 卷选择题答案:一、选择题:本题考查基本知识和基本运算.每小题5分,满分60分. 1.A 2.C 3.D 4.C 5.B 6.B 7.C 8.B 9.A 10.B 11.B 12.C二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.2 14.1 15.1 008 16.27 三、解答题17.本小题主要考查同角三角函数的基本关系式、二倍角公式以及三角函数式的恒等变形等基础知识和基本运算技能.满分12分. 解:由倍角公式,1cos 22cos ,cos sin 22sin 2-==ααααα ………………2分由原式得0cos 2cos sin 2cos sin 42222=-+ααααα0)1sin sin 2(cos 222=-+⇔ααα,0)1)(sin 1sin 2(cos 22=+-⇔ααα………………8分)2,0(πα∈ ,.21sin ,01sin 2,0cos ,01sin 2==-∴≠≠+∴αααα即,6πα=∴.33=∴αtg……………12分 18.本小题主要考查线面关系、二面角和函数极值等基础知识,考查空间想象能力和推理论证能力.满分12分. 解:(Ⅰ)作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且MP=NQ ,即MNQP 是平行四边形,∴ MN=PQ. ……………3分 由已知,CM=BN=a ,CB=AB=BE=1,∴ AC=BF=2, 21,21a BQ a CP ==即 2a BQ CP ==2222)2()21()1(a a BQ CP PQ MN +-=+-==∴)20(21)22(2<<+-=a a .………………6分(Ⅱ)由(Ⅰ),,21)22(2+-=a MN 所以,当.22,22==MN a时即M 、N 分别移动到AC 、BF 的中点时,MN 的长最小,最小值为.22……9分(Ⅲ)取MN 的中点G ,连结AG 、BG ,∵ AM=AN ,BM=BN ,G 为MN 的中点∴ AG ⊥MN ,BG ⊥MN ,∠AGB 即为二面角α的平面角, 又AG=BG=46,所以,由余弦定理有.31464621)46()46(cos 22-=⋅⋅-+=α 故所求二面角)31arccos(-=α.……………12分19.本小题主要考查直线、双曲线等基础知识,考查基本运算、逻辑推理能力.满分12分.解法一:设点P 的坐标为(x ,y ),依题设得||||x y =2, 即.0,2≠±=x x y①………2分因此,点P (x ,y )、M (-1,0)、N (1,0)三点不共线,得,2||||||||=<-MN pN PM ,0||2||||||>=-m PN PM ,1||0<<∴m因此,点P 在以M 、N 为焦点,实轴长为2|m|的双曲线上,故.112222=--my m x②…………6分将①式代入②,并解得222251)1(m m m x --=, ……………8分,0510122>-∴>-m m 解得55||0<<m . 即m 的取值范围为).55,0()0,55( -……………12分解法二:设点P 的坐标为(x ,y ),依题设得2||||=x y ,即0,2≠±=x x y . ①…………2分 由|PM|-|PN|=2m ,得 ,2)1()1(2222m y x y x =+--++ ②…………4分由②式可得,2)1()1(42222m yx y x x=+-+++所以,0||,21||2||2||≠=<m y x m 且.……………6分由②式移项,两边平方整理得.)1(222m x y x m -=+- 将①式代入,整理得)1()51(2222m m x m -=-.③…………8分且,02>x③式右端大于0,0512>-∴m .综上,得m 满足.55||0<<m即m 的取值范围为).55,0()0,55( - ……………12分20.本小题主要考查为数列、数列的极限等基础知识,考查建立数学模型、运用所学知识解决实际问题的能力.满分12分.解:设2001年末汽车保有量为b 1万辆,以后各年末汽车保有量依次为b 2万辆,b 3万辆,…,每年新增汽车x 万辆,则 .94.0,30121x b b b +⨯==………………2分对于n >1,有 ,)94.01(94.094.0211x b x b b n n n ++⨯=+⨯=-+x b x b b nnn n n 06.094.0194.0)94.094.01(94.01111-+⨯=++++⨯=∴-+.94.0)06.030(06.0n x x ⨯-+=………………6分当.30,8.1,006.03011=≤≤≤≤≥-+b b b x xn n 时即………………8分当,06.0]94.0)06.030(06.0[lim lim ,8.1,006.0301x x x b x x n n n n =⨯-+=><--∞→∞→时即并且数列{b n }逐项增加,可以任意靠近06.0x. ……………10分因此,如果要求汽车保有量不超过60万辆,即),3,2,1(60 =≤n b n .则6.3,6006.0≤≤x x即(万辆).综上,每年新增汽车不应超过3.6万辆.………12分 21.本小题主要考查函数的概念、函数的奇偶性和最小值等基础知识,考查分类讨论的思想和逻辑思维能力.满分12分. 解:(Ⅰ)当)(),(1||)()(,02x f x f x x x f a 此时函数时=+-+-=-=为偶函数.………………2分当,1||2)(,1)(,022++=-+=≠a a a f a a f a 时)()(),()(a f a f a f a f -≠-≠-.此时函数)(x f 既不是奇函数,也不是偶函数.………………4分(Ⅱ)(i )当.43)21(1)(,22++-=++-=≤a x a x x x f a x 函数时 若],()(,21a x f a -∞≤在则函数上单调递减,从而,函数],()(a x f -∞在上的最小值为.1)(2+=a a f若21>a ,则函数],()(a x f -∞在上的最小值为).()21(,43)21(a f f a f ≤+=且………7分 (ii )当a x ≥时,函数.43)21(1)(22+-+=+-+=a x a x x x f若).()21(,43)21(),[)(,21a f f a f a x f a ≤--=-+∞-≤且上的最小值为在则函数若.1)(),[)(,,),[)(,212+=+∞+∞->a a f a x f a x f a 上的最小值为在函数从而上单调递增在则函数……………10分综上,当.43)(,21a x f a --≤的最小值是函数时当.1)(,21212+≤<-a x f a 的最小值是函数时当.43)(,21+>a x f a 的最小值是函数时……………12分22.本小题主要考查数列和不等式等知识,考查猜想、归纳、推理以及分析问题和解决问题的能力.满分14分. 解:(Ⅰ)由,412,3,31,22223212121=+-===+-==a a a a a a a a 得由得由.513,432343=+-==a a a a 得由此猜想n a 的一个通项公式:)1(1≥+=x n a n ………4分(Ⅱ)(i )用数学归纳法证明: ①当213,11+=≥=a n ,不等式成立.………………6分②假设当k n =时不等式成立,即2+≥k a k ,那么,31)2)(2(1)(1+≥+-++≥+-=+k k k k k a a a k k k也就是说,当.2)1(11++≥+=+k a k n k 时根据①和②,对于所有.2,1+≥≥n a n n 有……………10分(ii )由及1)(1+-=+n a a a n n n (i ),对1)1(,211++-=≥--k a a a k k k k 有,121)121(11+=++-+-≥--k k a k k a.1)1(2122211211-+=++++≥∴---a a a k k k k……………12分于是.2,21111111≥⋅+≤+-k a a k k∑∑∑===--=+≤+≤+=+++≤+nk n k n k k k ka a a a a 121111111.2131212211121111111……14分。

2002年高考.广东、河南、江苏卷数学试题及解答

2002年高考.广东、河南、江苏卷数学试题及解答

24
42
A.M=N
B.MN
C.NM
D.M∩N=φ
B
6.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角
的余弦值是(2002 年广东、江苏、河南(6)5 分)
3
4
3
3
A.
B.
C.
D.-
4
5
5
5
C
7.函数 f(x)=x|x+a|+b 是奇函数的充要条件是(2002 年广东、江苏、河南(7)5 分)
A.ab=0
B.a+b=0
C.a=b
D.a2+b2=0
D
8.已知 0<x<y<a<1,则有(2002 年广东、江苏、河南(8)5 分)
A.loga(xy)<0 D
B.0<loga(xy)<1
C.1<loga(xy)<2 D.loga(xy)>2
1 9.函数 y=1- (2002 年广东、江苏、河南(9)5 分)
资料下载来源:高中数学教师群:247360252,高中数学学生解题交流群: 536036395,高中数学秒杀方法群:677837127,
2002 年全国普通高等学校招生考试(广东、江苏、河南卷)
数学试题 及解答
一、选择题(每小题 5 分,12 个小题共计 60 分)
sin2x 1.函数 f(x)= 的最小正周期为(2002 年广东、江苏、河南(1)5 分)
1+x2
2
3
4
2
江苏、河南(16)4 分)
三、解答题(6 各小题共计 74 分,解答应写出文字说明,证明过程或演算步骤)
17.已知复数 z=1+i,求实数 a,b 使得 az+2b-z =(a+2z)2.(2002 年广东、江苏、河南(17)12 分)

2002年江苏省高考数学试卷

2002年江苏省高考数学试卷

2002年江苏省高考数学试卷一、选择题(共12小题,每小题5分,满分60分)1.(★★★★)函数的最小正周期是()A.B.πC.2πD.4π2.(★★★★)圆(x-1)2+y 2=1的圆心到直线的距离是()A.B.C.1D.3.(★★★★)不等式(1+x)(1-|x|)>0的解集是()A.{x|0≤x<1}B.{x|x<0且x≠-1}C.{x|-1<x<1}D.{x|x<1且x≠-1}4.(★★★★)在(0,2π)内,使sinx>cosx成立的x的取值范围是()A.(,)∪(π,)B.(,π)C.(,)D.(,π)∪(,)5.(★★★★)集合,则()A.M=NB.M⊃N C.M⊂N D.M∩N=∅6.(★★★)一个圆锥和一个半球有公共底面,如果圆锥的体积与半球的体积恰好相等,则圆锥轴截面顶角的余弦值是()A.B.C.D.7.(★★★★)函数f(x)=x|x+a|+b是奇函数的充要条件是()A.ab=0B.a+b=0C.a=b D.a2+b2=08.(★★★)已知0<x<y<a<1,则有()A.log a(xy)<0B.0<log a(xy)<1C.1<log a(xy)<2D.log a(xy)>29.(★★★★)函数y=1- ()A.在(-1,+∞)内单调递增B.在(-1,+∞)内单调递减C.在(1,+∞)内单调递增D.在(1,+∞)内单调递减10.(★★★)极坐标方程ρ=cosθ与ρcosθ= 的图形是()A.B.C.D.11.(★★)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有()A.8种B.12种C.16种D.20种12.(★★)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为()A.115000亿元B.120000亿元C.127000亿元D.135000亿元二、填空题(共4小题,每小题4分,满分16分)13.(★★★)椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k= 1 .14.(★★★)在(x 2+1)(x-2)7的展开式中x 3的系数是 1008 .15.(★★★)已知sina=cos2a (a∈(,π)),则tga= .16.(★★)已知函数,那么= .三、解答题(共6小题,满分74分)17.(★★★★)已知复数z=1+i,求实数a,b使az+2b =(a+2z)2.18.(★★)设{a n}为等差数列,{b n}为等比数列,a 1=b 1=1,a 2+a 4=b 3,b 2b 4=a 3,分别求出{a n}及{b n}的前10项的和S 10及T 10.19.(★★★)四棱锥P-ABCD的底面是边长为a的正方形,PB⊥平面ABCD.(1)若面PAD与面ABCD所成的二面角为60o,求这个四棱锥的体积;(2)证明无论四棱锥的高怎样变化.面与面所成的二面角恒大于90o.20.(★★★)设A、B是双曲线上的两点,点N(1,2)是线段AB的中点.(I)求直线AB的方程(II)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?21.(★)(1)给出两块相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明;(2)试比较你剪拼的正三棱锥与正三棱柱的体积的大小;(3)如果给出的是一块任意三角形的纸片(如图3),要求剪栟成一个直三棱柱,使它的全面积与给出的三角形的面积相等.请设计一种剪拼方法,用虚线标示在图3中,并作简要说明.22.(★★)已知a>0,函数f(x)=ax-bx 2.(1)当b>0时,若对任意x∈R都有f(x)≤1,证明a≤2 ;(2)当b>1时,证明:对任意x∈0,1,|f(x)|≤1的充要条件是b-1≤a≤2 ;(3)当0<b≤1时,讨论:对任意x∈0,1,|f(x)|≤1的充要条件.。

2002年高考试题全国卷

2002年高考试题全国卷

2002年普通高等学校招生全国统一考试数学试卷(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.满分 150分.考试时间120分钟第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)圆1)1(22=+-y x 的圆心到直线33=y 的距离是 (A )21(B )23 (C )1 (D )3(2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ(C ))45,4(ππ (D ))23,45(),4(ππππ(5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是(A )0≥b (B )0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是 (11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A )8种 (B )12种 (C )16种 (D )20种(12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为 (A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数xa y =在]1,0[上的最大值与最小值这和为3,则a = (14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(xx x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. (17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值。

2002年高考数学试题(广东)及答案

2002年高考数学试题(广东)及答案

广东普通高等学校招生统一考试数学试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式31--x x >0的解集为A .{x|x<1}B .{x|x>3}C .{x|x<1或x>3}D .{x|1<x<3} 2.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积是 A.3π B.33π C.6π D.9π 3.极坐标方程ρ2cos2θ=1所表示的曲线是A .两条相交直线B .圆C .椭圆D .双曲线4.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则a的取值范围是 A .(0,21) B.(0,21] C.(21,+∞) D.(0,+∞)5.已知复数z=i 62+,则argZ1是A .3πB.35π C.6π D.611π6.函数y=2-x+1(x>0)的反函数是 A .y=log211-x ,x∈(1,2); B.y=-log211-x ,x∈(1,2) C.y=log211-x ,x∈(1,2); D.y=-log211-x ,x∈(1,2]7.若0<α<β<4π,sinα+cosα=a,sinβ+cosβ=b,则A .a>b B.a<b C.ab<1 D.ab>2 8.在正三棱柱ABC —A 1B1C1中,若AB=2BB1,则AB 1与C1B所成的角的大小为A .60° B.90° C.45° D.120° 9.设f(x)、g(x)都是单调函数,有如下四个命题①若f(x)单调递增,g(x)单调递增,则f(x)-g(x)单调递增;②若f(x)单调递增,g(x)单调递减,则f(x)-g(x)单调递增;③若f(x)单调递减,g(x)单调递增,则f(x)-g(x)单调递减;④若f(x)单调递减,g(x)单调递减,则f(x)-g(x)单调递减其中,正确的命题是 A . ①③ B.①④ C.②③ D.②④10.对于抛物线y2=4x上任意一点Q ,点P (a ,0)都满足|PQ|≥|a|,则a 的取值范围是 A .(-∞,0) B .(-∞,2) C .[0,2] D .(0,2)11.一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜 记三种盖法屋顶面积分别为P1、P2、P3.若屋顶斜面与水平面所成的角都是α,则A .P 3>P 2>P 1 B.P 3>P 2=P 1C.P 3=P2>P1 D.P 3=P 2=P 112.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为A .26 B.24 C.20 D.19第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.已知甲、乙两组各有8人,现从每组抽取4人进行计算机知识竞赛,比赛人员的组共有 种可能(用数字作答). 14.双曲线116922=-yx的两个焦点为F1、F2,点P 在双曲线上,若PF1⊥PF2,则点P 到x轴的距离为 .15.设{an}是公比为q的等比数列,Sn是它的前n项和.若{Sn}是等差数列,则q= . 16.圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为 . 三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)求函数y=(sinx+cosx)2+2cos2x的最小正周期. 18.(本小题满分12分)已知等差数列前三项为a,4,3a,前n项的和为Sn,Sk =2550. (Ⅰ)求a及k的值;(Ⅱ)求)111(lim 21nn S S S +++∞→19.(本小题满分12分)如图,在底面是直角梯形的四棱锥S—ABCD 中, ∠ABC=90°,SA⊥面ABCD ,SA =AB =BC=1,AD=21.(Ⅰ)求四棱锥S —ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值.20.(本小题满分12分)设计一幅宣传画,要求画面面积为4840 cm 2 ,画面的宽与高的比为λ(λ<1),画面的上、下各留8cm空白,左、右各留5cm空白.怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?如果要求λ∈]43,32[,那么λ为何值时,能使宣传画所用纸张面积最小? 21.(本小题满分14分)已知椭圆1222=+yx的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC∥x 轴 求证直线AC 经过线段EF 的中点. 22.(本小题满分14分)设f(x)是定义在R 上的偶函数,其图象关于直线x=1对称 对任意x1,x2∈[0,21],都有f(x1+x2)=f(x1)·f(x2),且f (1)=a>0.(Ⅰ)求f)41(),21(f ;(Ⅱ)证明f(x)是周期函数; (Ⅲ)记an=f(2n+n21),求)(ln lim n n a ∞→.广东普通高等学校招生统一考试数学试题参考答案一、选择题 1.C 2.A 3.D 4.A 5.B 6.A 7.B 8.B 9.C 10.B 11.D 12.D 二、填空题 13.4900 14.516 15.1 16.2n (n -1)三、解答题17.解:y=(sinx+cosx)2+2cos2x=1+sin2x+2cos2x=sin2x+cos2x+2 5分 =2)42sin(2++πx 8分所以最小正周期T=π. 10分 18.解:(Ⅰ)设该等差数列为{an},则a 1=a,a2=4,a3=3a,Sk=2550. 由已知有a +3a =2×4,解得首项a 1=a=2,公差d =a 2-a1=2. 2分 代入公式S k=k·a1+d k k ⋅-2)1(得255022)1(2=⋅-+⋅k k k∴k2+k-2550=0 解得k =50,k =-51(舍去)∴a =2,k =50. 6分 (Ⅱ)由d n n a n S n ⋅-+⋅=2)1(1得S n=n(n+1),12111111111111(-)(-)(-)1223(1)12231nS S S n n n n +++=+++=+++⨯⨯++ 111+-=n 9分 1)111(lim )111(lim 21=+-=+++∴∞→∞→n S S S n nn 12分19.解:(Ⅰ)直角梯形ABCD 的面积是M 底面=AB AD BC ⋅+)(21=43125.01=⨯+ 2分∴四棱锥S —ABCD 的体积是414313131=⨯⨯=⨯⨯=底面MSA V 4分(Ⅱ)延长BA 、CD 相交于点E ,连结SE ,则SE 是所求二面角的棱 6分 ∵AD∥BC,BC=2AD∴EA=AB=SA,∴SE⊥SB ∵SA⊥面ABCD ,得面SEB ⊥面EBC ,EB 是交线.又BC⊥EB,∴BC⊥面SEB ,故SB 是SC 在面SEB 上的射影,∴CS ⊥SE, 所以∠BSC是所求二面角的平面角 10分 ∵SB=SB BC BC AB SA ⊥==+,1,222∴tg∠BSC=22=SBBC即所求二面角的正切值为22 12分20.解:设画面高为xcm,宽为λxcm ,则λx2=4840 1分 设纸张面积为S ,则有 S=(x+16)(λx+10)=λx2+(16λ+10)x+160, 3分 将x=λ1022代入上式得S=5000+44)58(10λλ+5分当8)185(85,5==λλλ即时,S 取得最小值,此时,高:x=884840=λc m,宽:λx=558885=⨯cm 8分如果λ∈[43,32],可设433221≤≤λλ ,则由S 的表达式得 S(λ1)-S(λ2)=44)5858(102211λλλλ--+=)58)((104421121λλλλ--10分由于058,85322121λλλλ-≥故因此S(λ1)-S(λ2)<0,所以S (λ)在区间[43,32]内单调递增. 从而,对于λ∈[43,32],当λ=32时,S (λ)取得最小值答:画面高为88cm、宽为55cm 时,所用纸张面积最小;如果要求λ∈[43,32],当λ=32时,所用纸张面积最小. 12分21.证明:依设,得椭圆的半焦距c=1,右焦点为F (1,0),右准线方程为x=2,点E 的坐标为(2,0),EF 的中点为N (23,0) 3分若AB 垂直于x 轴,则A (1,y1),B(1,-y1),C(2,-y1), ∴AC 中点为N (23,0),即AC 过EF 中点N.若AB 不垂直于x 轴,由直线AB 过点F ,且由BC ∥x 轴知点B 不在x 轴上,故直线AB 的方程为y=k(x-1),k≠0.记A (x1,y1)和B(x2,y2),则C (2,y2)且x1,x2满足二次方程1)1(2222=-+x k x即(1+2k2)x2-4k2x+2(k2-1)=0, ∴x1+x2=22212221)1(2,214kkx x kk+-=+ 10分又x21=2-2y21<2,得x1-23≠0, 故直线AN ,CN 的斜率分别为 k1=32)1(2231111--=-x x k x y )1(2232222-=-=x k y k∴k1-k2=2k·32)32)(1()1(1121-----x x x x∵(x1-1)-(x2-1)(2x1-3)=3(x1+x2)-2x1x2-4 =0)]21(4)1(412[2112222=+---+k kkk∴k1-k2=0,即k1=k2,故A 、C 、N 三点共线.所以,直线AC 经过线段EF 的中点N. 14分 22.(Ⅰ)解:因为对x1,x2∈[0,21],都有f(x1+x2)=f(x1)·f(x 2),所以2211111()()()()0,[0,1](1)()()()[()]222222222111111()()()()[()]244444x xx x f x f f f x f f f f f f f f f f =+=⋅≥∈=+=⋅==+=⋅=f(1)=a>0, 3 分∴4121)41(,)21(a f a f == 6分(Ⅱ)证明:依题设y=f(x)关于直线x=1对称, 故f(x)=f(1+1-x), 即f(x)=f(2-x),x∈R又由f(x)是偶函数知f(-x)=f(x),x∈R , ∴f(-x)=f(2-x),x∈R ,将上式中-x以x代换,得f(x)=f(x+2),x∈R这表明f(x)是R 上的周期函数,且2是它的一个周期. 10分 (Ⅲ)解:由(Ⅰ)知f(x)≥0,x∈[0,1] ∵]21)1(21[)21()21(n n nf n n f f ⋅-+=⋅= 111111 ()[(1)]()()()[()]222222nf f n f f f f n nnnn n =⋅-⋅==⋅⋅⋅=21)21(a f =∴n a nf 21)21(= 12分 ∵f(x)的一个周期是2 ∴f(2n+n21)=f(n21),因此a n =n a 210)ln 21(lim )(ln lim ==∴∞→∞→a na n n n 14分。

2002年高考数学

2002年高考数学

高考数学题一、单选题1.平面α与平面β平行的充要条件是( )A. α内有无数条直线与β平行B. α,β垂直于同一个平面C. α,β平行于同一条直线D. α内有两条相交直线与β平行2.某学校党支部评选了5份优秀学习报告心得体会(其中教师2份,学生3份),现从中随机抽选2份参展,则参展的优秀学习报告心得体会中,学生、教师各一份的概率是( )A .120B .35C .310D .9103.定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为( )A.1B.2C.3D.124.若()2,01,0x m x f x nx x +<⎧=⎨+>⎩是奇函数,则( ) A.1m =-,2n = B. 1m =,2n =-C. 1m =,2n =D. 1m =-,2n =-5.列函数中,既是偶函数又在区间(0),-∞上单调递增的是( )A .2(1)f x x =B .()21f x x =+C .()2f x x =D .()2x f x -=6.若命题甲:10x -=,命题乙:2lg lg 0x x -=,则命题甲是命题乙的( )A .充分非必要条件B .必要非充分条件C .充要条件D .非充分也非必要条件7.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( )A .16B .13C .34D .568.设集合{}{}234345M N ==,,,,,, 那么M N ⋃=( )A.{} 2345,,,B.{}234,, C .{}345,, D .{}34,9.已知集合{}3,1,0,2,3,4A =--,{|0R B x x =≤或3}x >,则A B =( )A.∅B.{}3,1,0,4--C.{}2,3D.{}0,2,3 10.命题:00x ∃≤,20010x x -->的否定是( ) A .0x ∀>,210x x --≤ B .00x ∃>,20010x x --> C .00x ∃≤,20010x x --≤ D .0x ∀≤,210x x --≤ 11.已知m 3=n 4,那么下列式子中一定成立的是( )A .4m =3nB .3m =4nC .m =4nD .mn =1212.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =5,c =2acosA ,则cosA =( )A .13 B .24 C .33 D .6313.复数满足(12)3z i i -=-,则z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限14.已知点()1,0A -,()4,0B -,()4,3C -,动点P ,Q 满足12PA QA PB QB ==,则CP CQ +的取值范围是( )A.[]1,16B. []6,14C. []4,16D. 3,35 二、填空题15.对任意的x R ∈.不等式()()()2222714613817x x m x x x x -+>-+-+恒成立,则实数m 的取值范围为______.16.已知球的体积为36π,则该球大圆的面积等于______.17.正方体的棱长扩大到原来的倍,其表面积扩大到原来的( )倍。

2002年全国高考(天津卷)数学试题及答案(理)

2002年全国高考(天津卷)数学试题及答案(理)

实用文档2002年普通高等学校招生全国统一考试(天津卷)数学(理工农医类)本试卷分第一卷(选择题)和第二卷(非选择题)两部分。

第一卷1至2页。

第二卷3至10页。

共150分。

考试用时120分钟。

第一卷(选择题共60分)注意事项:1、 答第一卷前,考生务必将自己的姓名、准考号、考试科目用铅笔涂在答题卡上。

2、 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

3、 考试结束,监考人将本试卷和答题卡一并收回。

参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 互相独立,那么 P (AB )=P (A )P (B )如果事件A 在试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n k knn P P C k P --=)1()( 正棱锥、圆锥的侧面积公式 cl S 21=锥侧实用文档其中c 表示底面周长,l 表示斜高或母线长球的体积公式334R V π=球 其中R 表示球的半径。

一、选择题:本大题共12道小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)曲线)(sin cos 为参数θθθ⎩⎨⎧==y x 上的点到两坐标轴的距离之和的最大值是(A )21(B )22 (C )1 (D )2(2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1(3)已知m 、n 异面直线,l l n m ,则,平面,平面=⋂⊂⊂βαβα(A ) 与m 、n 都相交 (B )与m 、n 中至少一条相交 (B ) 与m 、n 都不相交 (D )至多与m 、n 中的一条相交(4)不等式0)1)(1(>-+x x 的解集是 (A ){}10<≤x x (B ){}10-≠<x x x 且 (C ){}11<<-x x (D ){}11-≠<x x x 且实用文档(5)在(0,2π)内,使sinx>cosx 成立的x 取值范围为(A ))45,()2,4(ππππ⋃ (B )),4(ππ(C ))45,4(ππ (D ))23,45(),4(ππππ⋃(6)设集合⎭⎬⎫⎩⎨⎧∈+==⎭⎬⎫⎩⎨⎧∈+==Z k k x x N Z k k x x M ,214,,412则(A )N M = (B )N M ⊂ (C )N M ⊃(D )φ=⋂N M(7)正六棱柱ABCDEF —A 1B 1C 1D 1E 1F 1的底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E 1D 独角戏与BC 1所成的角是 (A )900 (B )600 (C )450 (D )300(8)函数),0[(2+∞∈++=x c bx x y 是单调函数的充要条件是(A ) b ≥0 (B )b ≤0 (C )b>0 (D )b<0(9)已知10<<<<a y x ,则有(A )0)(log <xy a (B )1)(log 0<<xy a(C )2)(log 1<<xy a (D )2)(log >xy a(10)平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C 满足OB OA OC βα+=,其中R ∈βα,,且1=+βα,则点C 的轨迹方程为:(A)3x-2y-11=0 (B)(x-1)2+(y-2)2=5(C) 2x-y=0 (D)x+2y-5=0(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A)8种(B)12种(C)16种(D)20种(12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2002年全国高考数学试题
(文史类)
一.选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为
(A )1,1-(B )2,2-(C )1(D )1-
(2)复数32321⎪⎪⎭
⎫ ⎝⎛+i 的值是
(A )i -(B )i (C )1-(D )1
(3)不等式0|)|1)(1(>-+x x 的解集是
(A ){}10|<≤x x (B ){}10|-≠<x x x 且(C ){}11|<<-x x (D ){}11|-≠<x x x 且
(4)函数x a y =在]1,0[上的最大值与最小值的和为3,则=a
(A )21(B )2(C )4(D )4
1 (5)在)2,0(π内,使x x cos sin >成立的x 取值范围为
(A )⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛45,2,4ππππ (B )⎪⎭⎫ ⎝⎛ππ,4(C )⎪⎭⎫ ⎝⎛45,4ππ(D )⎪⎭
⎫ ⎝⎛⎪⎭⎫ ⎝⎛23,45,4ππππ (6)设集合⎭⎬⎫⎩⎨⎧
∈+=
=Z k k x x M ,412|,⎭⎬⎫⎩⎨⎧∈+==Z k k x x N ,214|,则 (A )N M =(B )N M ⊂(C )N M ⊃(D )φ=N M
(7)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k
(A )1-(B )1(C )5(D )5-
(8)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥截面顶角的余弦值是
(A )43(B )54(C )53(D )5
3- (9)已知10<<<<a y x ,则有
(A )0)(log <xy a (B )1)(log 0<<xy a (C )2)(log 1<<xy a (D )2)(log >xy a
(10)函数)),0[(2+∞∈++=x c bx x y 是单调函数的充要条件是
(A )0≥b (B )0≤b (C )0<b (D )0>b
(11)设⎪⎭
⎫ ⎝⎛∈4,0πθ,则二次曲线1tan cot 22=-θθy x 的离心率的取值范围为 (A )⎪⎭
⎫ ⎝⎛
21,0(B )⎪⎪⎭⎫ ⎝⎛22,21
(C )⎪⎪⎭⎫ ⎝⎛2,22(D )),2(+∞ (12)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有
(A )8种(B )12种(C )16种(D )20种
二.填空题:本大题共4小题,每小题4分,共16分。

把答案填在题中横线上。

(13)。

据新华社2002年3月12日电,1985年到2000年间,我国农村人均居住面积如图所示,其中,从 年到 年的五年间增长最快。

年1985年1990年1995年
20000.150
.200
.252
/m 面积7.148
.170
.218
.24 (14)函数x
x y +=12)),1((+∞-∈x 图象与其反函数图象的交点坐标为 。

(15)72)2)(1(-+x x 的展开式中3x 项的系数是 。

(16)对于顶点在在原点的抛物线,给出下列条件:

1焦点在y 轴上;○2焦点在x 轴上;○3抛物线上横坐标为1的点到焦点的距离为6; ○
4抛物线的通径的长为5;○5由原点向过焦点的某条直线作垂线,垂足坐标为)1,2(。

能使这抛物线方程为x y 102
=的条件是 。

(要求填写合适条件的序号)
三.解答题:本大题共6小题,共74分。

解答应写出文字说明,证明过程或演算步骤。

(17)(本小题满分12分)
如图,某地一天从6时至14时的温度变化曲线近似满足函数b x A y ++=)sin(ϕω。

(Ⅰ)求这段时间的最大温差;
(Ⅱ)写出这段曲线的函数解析式。

(18)(本小题满分12分)
甲、乙两物体分别从相距70m 的两处同时运动。

甲第1分钟走2m ,以后每分钟比前1分钟多走1m ,乙每分钟走5m 。

(Ⅰ)甲、乙开始运动后几分钟相遇?
(Ⅱ)如果甲、乙到达对方起点后立即折反,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇?
(19)(本小题满分12分)
四棱锥ABCD P -的底面是边长为a 的正方形,PB ⊥面ABCD 。

(Ⅰ)若面PAD 与面ABCD 所成的二面角为
60,求这个四棱锥的体积;
(Ⅱ)证明无论四棱锥的高怎样变化,面PAD 与面PCD 所成的二面角恒大于 90。

(20)(本小题满分12分)
设函数1|2|)(2--+=x x x f ,R x ∈。

(Ⅰ)判断函数)(x f 的奇偶性;
(Ⅱ)求函数)(x f 的最小值。

(21)(本小题满分14分)
已知点P 到两个定点)0,1(-M 、)0,1(N 距离的比为2,点N 到直线PM 的距离为1。

求直线PN 的方程。

(22)(本小题满分12分,附加题满分4分)
(Ⅰ)给出两块相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个正三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明; (Ⅱ)试比较你剪拼的正三棱锥与正三棱柱的体积的大小;
(Ⅲ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分。


如果给出的是一块任意三角形的纸片(如图3),要求剪拼成直三棱柱模型,使它的全面积与给出的三角形的面积相等,请设计一种剪拼方法,用虚线标示在图3中,并作简要说明。

1图2图3图。

相关文档
最新文档