沉淀溶解平衡的计算与应用
沉淀溶解平衡计算课件
05
CATALOGUE
沉淀溶解平衡计算案例分析
案例一:溶度积常数的测定与计算
1 2
溶度积常数的定义
溶度积常数是指沉淀溶解平衡时,溶液中相应离 子浓度幂之积,其数值与物质的溶度积相等。
沉淀生成与溶解的计算方法
根据沉淀平衡方程式,计算不同离子浓度下的沉淀生成与 溶解情况。
沉淀生成与溶解的影响因素
离子浓度、温度、压力、溶剂的性质以及沉淀颗粒的大小 和形状等都会影响沉淀生成与溶解。
06
CATALOGUE
总结与展望
沉淀溶解平衡计算的重要性和应用价值
沉淀溶解平衡是化学平衡的一种,对于研究和应用化学反应、材料制备、环境治 理等方面都具有重要的意义。
在环境科学中的应用
沉淀溶解平衡在环境科学领域具有广泛的应用价值。
例如,自然界的矿物质溶解和沉淀对于维持生态平衡和环境质量至关重要。一些矿物质溶解 后能够为植物提供必要的营养元素,而一些则通过沉淀作用将重金属离子固定下来,降低其 对环境的危害。
在环境治理方面,沉淀溶解平衡理论可以指点污染物处理过程中沉淀剂的投加和反应条件的 控制,提高污染治理效果。
在生物化学中的应用
沉淀溶解平衡在生物化学领域的应用也十分重要 。
掌握沉淀溶解平衡规律可以帮助人们更好地理解 生物分子的结构和功能,为研究生命现象的本质 和药物设计提供理论支持。
例如,生物体内的各种生物分子(如蛋白质、核 酸等)在溶液中的溶解度及其相互作用的平衡状 态对于生物分子的正常功能和代谢过程至关重要 。
表示在一定温度下,难溶 电解质在水中到达沉淀溶 解平衡时,其饱和溶液中 各离子浓度的乘积。
沉淀溶解平衡及常数的应用
沉淀溶解平衡及常数的应用沉淀溶解平衡及常数是化学中一种非常重要的概念,它在溶解反应、溶液中溶质的浓度以及沉淀的生成与溶解等方面有着广泛的应用。
下面我将详细介绍沉淀溶解平衡及常数的基本概念和应用。
沉淀溶解平衡描述的是一种溶解度平衡,即在溶液中存在着一种物质的溶解和沉淀的动态平衡。
在溶液中,当溶质的溶解速度等于沉淀速度时,就达到了溶解平衡。
溶解平衡常常涉及到溶解性产物的生成和溶解,并且可以用沉淀溶解常数来表示。
沉淀溶解常数(Ksp)是描述沉淀物溶解程度和溶液中离子浓度的一个指标。
对于溶解度为x的化学物质MnXm可溶解与其溶解反应的晶体溶液,其离解反应可以用化学方程式表示为:MnXm(s) nM^m+(aq) + mX^n-(aq)其中,M^m+是金属离子,X^n-是非金属离子,n和m分别是它们在溶液中的摩尔数。
当晶体溶解时,Ksp可通过以下公式计算:Ksp = [M^m+]^n [X^n-]^m其中,[M^m+]和[X^n-]分别表示溶质MnXm的离子浓度,n和m分别对应离子的个数。
Ksp值是一个常数,它与温度有关,可以用于预测溶液中沉淀物的生成和溶解情况。
沉淀溶解平衡及常数的应用非常广泛。
一方面,它可以帮助我们预测和控制沉淀物的生成。
通过计算沉淀溶解常数,我们可以得知溶液中沉淀物的生成趋势。
当已知反应物的浓度时,Ksp值可以帮助我们判断溶液中是否会生成沉淀物。
当Ksp大于溶液中反应物的离子积时,会生成沉淀物;当Ksp小于离子积时,溶液中的沉淀物会溶解。
这个原理可以应用于实际养殖、环境治理等领域,帮助我们控制溶液中的沉淀物生成和去除。
另一方面,沉淀溶解平衡及常数还可以用于定量分析和标准溶液的制备。
通过测定沉淀物和溶液中的离子浓度,配合沉淀溶解常数的计算,可以推断溶液中化学物质的浓度。
这种方法被广泛应用于化学定量分析中,例如重金属离子的测定、药物中活性成分的含量分析等。
此外,沉淀溶解平衡及常数还可以用于探究溶解反应的速率和影响因素。
难溶电解质的溶解平衡---2023年高考化学一轮复习(新高考)
三、沉淀溶解平衡的应用
5.金属氢氧化物在酸中的溶解度不同,因此可以利用这一性质,控制溶液的pH,达 到分离金属离子的目的。难溶金属的氢氧化物在不同pH下的溶解度(S/mol·L-1)如图 所示。 (1)pH=3时溶液中铜元素的主要存在形式是__C_u_2_+__ (填化学式)。
据图知pH=4~5时,Cu2+开始沉淀为Cu(OH)2,因此 pH=3时,主要以Cu2+形式存在。
Cu2+等重金属离子
_生__成__沉__淀____
(2)沉淀的溶解 如要使Mg(OH)2沉淀溶解,可加入 盐酸、NH4Cl溶液 。 (3)沉淀的转化 锅炉除垢,将CaSO4转化为CaCO3的离子方程式为_C__a_S_O_4_(s_)_+__C_O__23-__(a_q_)____C_a_C_O__3_(s_)_ +__S__O_24_-_(_a_q_) __;ZnS沉淀中滴加CuSO4溶液得到CuS沉淀的离子方程式为__Z_n_S_(_s_)+__ _C__u_2+_(_a_q_)____C_u_S_(_s_)+__Z__n_2+__(a_q_)_。
× Ksp(AgCl)>Ksp(AgI) ( )
6.AgCl 的 Ksp=1.8×10-10,则在任何含 AgCl 固体的溶液中,c(Ag+)=c(Cl-)= 1.8
× ×10-5 mol·L-1( )
提升关键能力
一、Ksp的大小比较
1.分别进行下列操作,由现象得出的结论正确的是
选项
操作
现象
结论
A 将稀硫酸和Na2S反应生成的气体通入 AgNO3与AgCl组成的悬浊液中
Q Q(AmBn)=__c_m_(_A_n_+_)_·c_n_(_B_m_-_)__, 式中的浓度是任意浓度
应用
沉淀溶解平衡、溶度积及计算
例1:将4×10-3mol·L-1的AgNO3溶液与4×10-3mol·L-1 的NaCl溶液等体积混合能否有沉淀析出? Ksp(AgCl)= 1.8×10-10mol2·L-2 解:只有当 Qc > Ksp时,离子才能生成沉淀。混合后:
⑤ 滴定
左手控制旋塞,右手拿住锥形瓶颈,边滴边振荡;眼 睛要始终注视锥形ቤተ መጻሕፍቲ ባይዱ中溶液的颜色变化。 ⑥ 判断终点并记录实验数据 当看到滴加一滴盐酸时,锥形瓶中溶液红色突变为无 色,且在半分钟内不褪色时。 ⑦ 滴定操作重复三次。
次 待测液体积
标准液体积(L)
数 (L) 滴定前 滴定后 实际 平均值
1 2
3
A.加入Na2SO4可以使溶液由a点变到b点
C
B.通过蒸发可以
使溶液由d点变到c点
C.d点无BaSO4 沉淀生成
D.a点对应的Ksp大
于c点对应的Ksp
2、已知Ag2SO4的KSP 为2.0×10-5,将适量Ag2SO4固
体溶于100 mL水中至刚好饱和,该过程中Ag+和SO42浓度随时间变化关系如右图(饱和Ag2SO4溶液中
4、以MnO2为原料制得的MnCl2溶液中常含有Cu2+、 Pb2+、Cd2+等金属离子,通过添加过量难溶电解质
MnS,可使这些金属离子形成硫化物沉淀,经过滤除
去包括MnS在内的沉淀,再经蒸发、结晶,可得纯净
的MnCl2。根据上述实验事实,可推知MnS具有的相
沉淀溶解平衡
当溶解与结晶速度相等时, 当溶解与结晶速度相等时,达到平衡状态 KoAgCl为一常数: KoAgCl = [c(Ag+)/co][c(Cl-)/co] 为一常数: 溶度积常数, 表示。 该常数称为溶度积常数 该常数称为溶度积常数,用Kosp表示。 AnBm(s) nAm+(aq) + mBn-(aq)
- 2Ag+(aq) + CrO42-(aq)
(2)设Ag2CrO4的溶解度为 2(mol L-1),则: 设 的 直接比较其 不同类型的难溶电解质,不能用Kosp直接比较其 溶解度大小。 溶解度大小。 例 :AgCl 在 1L 1.0 mol L-1的盐酸溶液中的溶解度 是多少? 是多少? Ag+(aq) + Cl-(aq) 解:AgCl(s) 平衡时: s s+ 1 ≈1 平衡时: + Kosp ≈ s =1.77 ×10-10 (mol.L-1) 同离子效应和盐效应可影响沉淀的溶解度 PbSO4在Na2SO4溶液中的溶解度(实验值/mol.L-1) 溶液中的溶解度(实验值/
Na2SO4浓度 0 0.01 0.04 0.10 0.35 PbSO4浓度 1.5×10-4 1.6×10-5 1.3×10-5 1.6×10-5 2.3×10-5 × × × × ×
5.2 溶度积规则
AnBm(s) nAm+(aq) + mBn-(aq) Q = [c(Am+)/co]n[c(Bn-)/co]m (1) Q>Kosp 时,沉淀从溶液中析出(溶液过饱和) > 沉淀从溶液中析出(溶液过饱和) (2) Q =Kosp 时,沉淀与溶解达到平衡(饱和溶液) 沉淀与溶解达到平衡(饱和溶液) (3) Q< Kosp时,溶液不饱和,若体系中有沉淀, < 溶液不饱和,若体系中有沉淀, 则沉淀会溶解 溶度积规则(溶度积原理) 溶度积规则(溶度积原理)
沉淀溶解平衡的计算与应用
沉淀溶解平衡的计算与应用沉淀溶解平衡是指在溶液中存在固体物质与其对应的离子之间处于动态平衡的过程。
在这个平衡过程中,溶质从溶解态转变为沉淀态并重新溶解,直到达到溶液中固体和溶质之间的动态平衡。
了解和研究这个平衡及其计算和应用对于理解和控制溶液中沉淀反应的产生具有重要意义。
在沉淀溶解平衡的计算中,我们需要考虑溶解度积(solubility product)的概念。
溶解度积是指在给定温度下,平衡溶液中完全溶解沉淀物质所需要达到的离子浓度的积。
沉淀溶解平衡的表达式可以写作如下形式:M_aA_b(s) ⇄ aM^b+(aq) + bA^a-(aq)平衡常数(K_sp)是溶解度积的数值表示,它的值等于各离子浓度的积除以固体溶度。
根据这个式子,我们可以通过测量溶液中离子浓度的变化来计算平衡常数。
1.制定沉淀反应方程和澄清工艺:了解沉淀溶解平衡可以帮助我们确定沉淀反应方程,并且帮助我们控制澄清工艺,以在工业生产中获得高纯度的溶液。
2.毒物处理和废水处理:有些毒物或废水中的物质可以通过沉淀溶解平衡的分析来移除。
通过调整溶液的条件,例如pH值、浓度等,可以促使这些毒物或废物沉淀下来,从而净化溶液。
3.药物研发和生物科学研究:了解药物在溶液中的相互作用和沉淀溶解平衡对于研发药物和理解生物化学过程非常重要。
药物的溶解度和稳定性可以通过计算和研究沉淀溶解平衡来评估。
4.地球化学和矿物学研究:地球化学和矿物学也涉及到沉淀溶解平衡的研究。
通过了解溶液中矿物和地球化学元素的相互作用和溶解行为,可以更好地理解地球的地球化学过程和矿物形成。
总结起来,沉淀溶解平衡的计算和应用对于很多领域都有重要的意义。
通过研究和控制溶液中的沉淀反应,我们可以解决一些相关的问题,如水质净化、药物开发和地球科学研究等。
此外,这些计算和应用也帮助我们更好地理解和利用这些溶液中的化学反应及其动态平衡的过程。
第8章 沉淀溶解平衡
2、加入Na2SO4 cr,e(SO42-)≈cr(Na2SO4) = 5.0×10-2 cr,e (Ba2+)(5.0×10-2) = 1.08×10-10
cr,e(Ba2+) = 2.2×10-9
化铵时,能正好阻止沉淀的形成。已知
Mg(OH)2标准溶度积常数、氨水的标准解离
常数分别为1.2 × 10-11、1.8 × 10-5。
第8章 沉淀溶解平衡
1、思路:2、解题过程: 第一问
3、解(1)cr(Mg2+) = 0.2/2 = 0.1
(2) cr,e(OH-) = √ Kbө × cr(NH3)
MS(s) + 2H+ ⇌ M2++H2S
Kjө=
cr,e(M2+) cr,e (H2S)
cr,e
2(H+)
×cr,e(S2-) × cr,e
比较Ba2+浓度 :10-9 ~ 10-5
•同离子效应
第8章 沉淀溶解平衡
三、 Ksp 与反应ΔrGm ( T )的关系
ө
ө
ΔrGm (T) = - RT lnKsp
ө
ө
第8章 沉淀溶解平衡
例4 、 根据AgCl的有关热力学数据,计算 25℃时AgCl 的 Kspө
数 据 AgCl
-127 96.2
的强电解质溶液中,或在其饱和溶液
中加入含有相同离子的强电解质,则
难溶电解质的溶解度会如何变化呢?
第8章 沉淀溶解平衡
例3. 25℃时BaSO4饱和溶液浓度为1.04×10-5 mol· -1 L 计算BaSO4在0.050 mol· -1Na2SO4溶液中的溶解度。 L 解: 1、BaSO4(s) ⇌ Ba2+ + SO42
第三节沉淀溶解平衡
例3(2009山东卷28)运用化学反应原理研究氮、氧等单质及 其化合物的反应有重要意义。
(3)在25℃下,向浓度均为0.1 mol·L-1的MgCl2和CuCl2混合
溶液中逐滴加入氨水,先生成C__u_(_O__H__)_2沉淀(填化学式)。
练习(08山东卷)某温度时,BaSO4在水中的沉淀溶解
平A.衡加曲入线N如a2图SO所4可示以。使下溶列液说由法a正点确变的到是b点( C )
B.通过蒸发可以使溶液由d点变到c点 C.d点无BaSO4沉淀生成 D.a点对应的Ksp大于c点对应的Ksp
总结:
⑴在温度不变时,无论改变哪种离子的浓度,另一种离子的浓度 只能在曲线上变化,不会出现在曲线外的点 ⑵溶液在蒸发时,离子浓度的变化分两种情况: ①原溶液不饱和时,离子浓度要增大都增大; ②原溶液饱和时,离子浓度都不变。 ⑶溶度积常数只是温度的函数,与溶液中溶质的离子浓度无关, 在同一曲线上的点,溶度积常数相同。
FeS(s) + Hg2+=HgS(s) + Fe2+ FeS(s) + Pb2+=PbS(s) + Fe2+
除FeS之外,难溶物MnS也可以做沉淀剂。常见的 沉淀剂还有H2S、Na2S、NaHS、(NH4)2S等都可以 除去废水中的Cu2+、Hg2+、Pb2+等重金属离子。
课堂小结 沉淀的溶解、生成与转化都是通
练习 (2010·山东高考)某温度下,Fe(OH)3(s)、Cu(OH)2(s) 分别在溶液中达到沉淀溶解平衡后,改变溶液pH,金属阳 离子浓度的变化如图所示.据图分析,下列判断错误的是
沉淀溶解平衡及应用
沉淀溶解平衡及应用考点一沉淀溶解平衡及应用1.沉淀溶解平衡(1)沉淀溶解平衡的概念在一定温度下,当难溶强电解质溶于水形成饱和溶液时,溶解速率和生成沉淀速率相等的状态。
(2)溶解平衡的建立固体溶质溶解沉淀溶液中的溶质①v溶解>v沉淀,固体溶解②v溶解=v沉淀,溶解平衡③v溶解<v沉淀,析出晶体(3)溶解平衡的特点(4)影响沉淀溶解平衡的因素①内因难溶电解质本身的性质,这是决定因素。
②外因以AgCl(s)Ag+(aq)+Cl-(aq) ΔH>0为例外界条件移动方向平衡后c(Ag+)平衡后c(Cl-)K sp升高温度正向增大增大增大加水稀释正向不变不变不变加入少量AgNO3逆向增大减小不变通入HCl 逆向减小增大不变通入H2S 正向减小增大不变(5)电解质在水中的溶解度20 ℃时,电解质在水中的溶解度与溶解性存在如下关系:2.沉淀溶解平衡的应用(1)沉淀的生成①调节pH法如:除去NH4Cl溶液中的FeCl3杂质,可加入氨水调节pH至7~8,离子方程式为Fe3++3NH3·H2O===Fe(OH)3↓+3NH+4。
②沉淀剂法如:用H2S沉淀Cu2+,离子方程式为H2S+Cu2+===CuS↓+2H+。
(2)沉淀的溶解①酸溶解法如:CaCO3溶于盐酸,离子方程式为CaCO3+2H+===Ca2++H2O+CO2↑。
②盐溶液溶解法如:Mg(OH)2溶于NH4Cl溶液,离子方程式为Mg(OH)2+2NH+4===Mg2++2NH3·H2O。
③氧化还原溶解法如:不溶于盐酸的硫化物Ag2S溶于稀HNO3。
④配位溶解法如:AgCl溶于氨水,离子方程式为AgCl+2NH3·H2O===[Ag(NH3)2]++Cl-+2H2O。
(3)沉淀的转化①实质:沉淀溶解平衡的移动(沉淀的溶解度差别越大,越容易转化)。
②应用:锅炉除垢、矿物转化等。
深度思考1.下列方程式:①AgCl(s)Ag+(aq)+Cl-(aq)、②AgCl===Ag++Cl-、③CH3COOH CH3COO-+H+各表示什么意义?答案①AgCl的沉淀溶解平衡;②AgCl是强电解质,溶于水的AgCl完全电离;③CH3COOH的电离平衡。
第五章沉淀溶解平衡与沉淀滴定法
[H+]
0
0
[H+]-0.02 0.01 0.01
K
H2S Sn2
H 2
H2S Sn2 S 2 KSP,SnS
H
2
S
2
K1 K 2
1.0 1025 1.3107 7.11015
1.08104
H 0.02
H2S Sn2
K
0.01 0.01 1.08 104
0.96
H 0.98mol dm3
代入相关数据,解得: [HAc]=[H+]-0.2=1.67mol.L-1 [H+]=1.87mol.L-1 所以MnS沉淀可溶于乙酸中。
② CuS(S ) 2H =Cu2 H2S
平衡
[H+]-0.2 0.1 0.1
K=[Cu2+][H2S]/[H+]2 =[Cu2+][S2-][H2S]/[S2-][H+]2 = KspCuS°/( Ka1°Ka2°)H2S 代入数据得:[H+]=2.81×107mol.L-1
pOH 4.6
pH 9.4
当pH=9.4时,Fe3+早已沉淀完全,因此只要将pH值 控制在2.89.4之间,即可将Fe3+和Mg2+分离开来。
4.沉淀转化
有些沉淀既不溶于水也不溶于酸,也不能用配位溶解 和氧化还原的方法将其溶解。这时,可以把一种难溶电解 质转化为另一种更难溶电解质,然后使其溶解。
例如,锅炉中的锅垢含有CaSO4,可以用Na2CO3溶液 处理,使之转化为疏松且可溶于酸的CaCO3沉淀,这样锅 垢就容易清除了。在含有沉淀的溶液中加入适当的沉淀剂, 把一种难溶电解质转化为另一种难溶电解质的过程,称为 沉淀的转化。
第3节 沉淀溶解平衡 第2课时 沉淀溶解平衡的应用-2024-2025学年高中化学选择性必修1 化学
第2课时 沉淀溶解平衡的应用【课程标准要求】1.能用平衡移动原理分析理解沉淀的溶解与生成、沉淀转化的实质。
2.学会用沉淀溶解平衡的移动解决生产、生活中的实际问题。
一、沉淀的溶解与生成1.溶度积规则利用浓度商(Q )与平衡常数(K sp )的相对大小判断沉淀的溶解和生成:(1)Q >K sp ,溶液中的离子生成沉淀,直至平衡; (2)Q =K sp ,沉淀溶解与离子生成沉淀处于平衡状态;(3)Q <K sp ,若体系中有足量固体,则固体溶解,直至平衡。
2.应用(1)常使用BaSO 4作为内服造影剂,这种透视技术俗称钡餐透视,但BaCO 3不可用作钡餐,如果误服可溶性钡盐,中毒者应尽快使用5%的Na 2SO 4洗胃。
(2)石笋、钟乳石和石柱的形成,涉及的化学反应有:CaCO 3+CO 2+H 2O===Ca(HCO 3)2、Ca(HCO 3)2=====△CaCO 3↓+H 2O +CO 2↑。
(3)珊瑚虫可以从周围的海水中获取Ca 2+和HCO -3,经反应Ca 2++2HCO -3CaCO 3+CO 2+H 2O 形成珊瑚。
【微自测】1.下列描述中,正确的画“√”,错误的画“×”。
(1)为了减少BaSO 4的损失,洗涤BaSO 4沉淀时可用稀硫酸代替水(√)(2)CaCO 3溶解时常用盐酸而不用稀硫酸,是因为稀硫酸不与CaCO 3反应(×)(3)温度不变,向AgCl 悬浊液中加入少量NaCl 粉末,平衡向左移动,K sp 减小(×)二、沉淀的转化1.ZnS 沉淀转化为CuS 沉淀(1)当向ZnS 沉淀上滴加CuSO 4溶液时,ZnS 沉淀逐渐转化为CuS ,这种转化的总反应为ZnS(s)+Cu 2+(aq)===CuS(s)+Zn 2+(aq)。
(2)沉淀转化实质是沉淀溶解平衡的移动,一种沉淀可以转化为更难溶的沉淀;两种难溶物的溶解能力差别越大,这种转化的趋势就越大。
4. 沉淀溶解平衡
溶度积原理是沉淀反应的基本原理, Ksp 与温度 和难溶电解质的本性有关。
The solubility product is the equilibrium constant for the equilibrium between an undissolved salt and its ions in a saturation solution.
用称为同离子效应。
4.1.5盐效应对溶解度的影响
盐效应:加入强电解质而使沉淀溶解度增大的效应。
(静电吸引使不易沉淀) BaSO4
1.8 S/S0 1.4
AgCl
1.0 0.005 0.01 KNO3 (mol /dm3) S0: 纯水中的溶解度; S:在KNO3溶液中的溶解度。 0.001
向饱和的 AgCl 溶液中加入 KNO3 ,溶液的离 子强度增大,使 Ag+和 Cl- 的活度降低,导致
3S2-(aq) + 8HNO3(aq) = 3S(s)+2NO(g)+4H2O(l)+6NO3-(aq)
3CuS+8HNO3===3Cu(NO3)2+3S↓+2NO↑+4H2O 3.生成配离子
AgCl (s) = Ag+ (aq) + Cl- (aq) Ksp = [Ag+][Cl-]
Ag+ (aq) + 2 NH3 (aq) = Ag(NH3)2+ (aq)
Ag2CrO4的 Ksp = 2.0×10-12,
S Ag2CrO4 : 7.9×10-5 mol· -1 L
为什么同样可以定量表示物质溶解性能的 Ksp 和溶解 度,在大小关系上却不一致呢? 其原因是 AgCl 的正负离子数目之比为 1:1,而 Ag2CrO4 为 2:1 ( Ag2CrO4是A2B型结构, AgCl是AB型 结构)。故 Ksp 与溶解度的关系会出现上述情形。不难得 出结论,只要两种难溶物具有相同的正负离子个数比,其 Ksp 和溶解度的大小关系就会一致。
(完整版)沉淀溶解平衡计算及图像分析
沉淀溶解平衡的计算:1:已知一定温度下,Mg(OH)2在水中的溶解度为5.8 ×10-3g/L。
(1)求Mg(OH)2饱和溶液中的溶度积K sp(2)求Mg(OH)2饱和溶液中的pH和[OH-](3)求Mg(OH)2在0.001mol/L的NaOH溶液中的溶解度。
(4)求Mg(OH)2在0.001mol/L的MgCl2溶液中的溶解度。
2.(1)已知25 ℃时,K sp[Mg(OH)2]=5.6×10-12;酸碱指示剂百里酚蓝变色的pH范围如下:25 ℃时,在Mg(OH)2____________。
(2)向50 mL 0.018 mol·L-1的AgNO3溶液中加入50 mL 0.020 mol·L-1的盐酸,生成沉淀。
已知该温度下AgCl的K sp=1.0×10-10,忽略溶液的体积变化,请计算:①完全沉淀后,溶液中c(Ag+)=__________。
②完全沉淀后,溶液的pH=__________。
③如果向完全沉淀后的溶液中继续加入50 mL 0.001 mol·L-1的盐酸,是否有白色沉淀生成?________________(填“是”或“否”)。
(3)在某温度下,K sp(FeS)=6.25×10-18,FeS饱和溶液中c(H+)与c(S2-)之间存在关系:c2(H+)·c(S2-)=1.0×10-22,为了使溶液里c(Fe2+) 达到1 mol·L-1,现将适量FeS投入其饱和溶液中,应调节溶液中的c(H+)约为__________________。
沉淀溶解平衡的应用:例1:已知:Cu(OH)2: Ksp为2.2×10-20, Fe(OH)3: Ksp为1.6×10-39现有浓度均为0.1mol/L的 Cu2+、Fe3+的混合溶液, 1.6×10-39则:⑴Fe3+开始沉淀时的c(OH-)=_____,完全沉淀时的c(OH-)=_____ ,(离子浓度小于10-5时可看成完全沉淀) Cu2+开始沉淀时的c(OH-)=_____ 。
沉淀溶解平衡原理的应用
4
2、沉淀的生成
例1:将4×10-3mol· -1的AgNO3溶液与4×10-3mol· -1的NaCl溶液等 L L 体积混合能否有沉淀析出?Ksp(AgCl)= 1.8×10-10 解:只有当 Qc > Ksp时,离子才能生成沉淀。 混合后:c(Ag+)=2×10-3mol· -1,c(Cl-)=2×10-3mol· -1 L L Qc=c(Ag+)· -)=2×10-3×2×10-3=4.0×10-6>1.8×10-10 c(Cl Qc>Ksp,所以有AgCl沉淀析出。 2、用5%的Na2SO4溶液给误食的Ba2+的患者洗胃, 能否有效除去?已知:Ksp(BaSO4)=1.1×10-10 解:5% 的Na2SO4溶液中的c(SO42-)≈0.352mol/L, c(Ba2+)=(1.1×10-10)/(0.352)=2.9×10-10mol· -1 L 因为剩余的c(Ba2+)<10-5mol/L,所以有效除去了误食的Ba2+。
实验现象 实验1 实验2 实验3
8
AgCl
I-
AgI
S2-
Ag2S
已知AgCl、AgI和Ag2S的Ksp分别为:1.8×10-10、8.3×10-17、 1.6×10-49,分析上述实验现象的产生原因,归纳沉淀转化的方向。
KSP(AgCl)=1.8×10-10
KSP(AgI)=8.3×10-17
沉淀溶解平衡
所以,此时Mg2+和CO32-能共存
(5)利用溶度积判断沉淀平衡移动方向:
已知:KSP(AgCl)=1.8 × 10-10 KSP(AgI)=8.3 × 10-17 往AgCl固体中加入蒸馏水,使其达到溶解平衡,
(1)求溶液中c(Ag+)有多大?
(2)再向该溶液加入KI,使I 浓度达到0.1mol/L,请判 断有没有AgI生成?
硫酸中硫酸根浓度大,使平衡左移 有利于沉淀生成。
例2:已知AgI的Ksp=8.5×10-17, AgCl的Ksp=1.8×10-10. 在含有0.01mol/LNaI和0.01mol/LNaCl的 溶液中,逐滴加入AgNO3溶液,先析出什 么沉淀?
分步沉淀 溶液中含有几种离子,加入某沉淀剂均可生 成沉淀,沉淀生成的先后顺序按离子积大于溶度 积的先后顺序沉淀,叫作分步沉淀。 对同一类型的沉淀,且被沉淀离子的起始浓 度基本一致,按Ksp由小到大的顺序沉淀 对不同类型的沉淀,或被沉淀离子的起始浓 度不同,不能只根据 Ksp 大小判断沉淀顺序,应 根据溶度积规则求出各离子沉淀所需沉淀剂的最 小浓度,然后按照所需沉淀剂浓度由小到大顺序 沉淀
(4)利用溶度积判断离子共存:
例4、已知298K时, MgCO3的 Ksp = 6.82×10-6,溶液中c(Mg2+)=0.0001mol· L-1, c(CO32-) = 0.0001mol· L-1,此时Mg2+和CO32能否共存? 2+ 2 MgCO Mg + CO
3 3
解:
c(Mg2+) . c(CO32-) = (0.0001)2 =1×10-8
n(AgCl)=1.92×10-4g×1000g÷100g÷143.5 g ·mol-1
化学-难溶电解质的溶解平衡讲义-原卷版
4.影响沉淀溶解平衡的因素(1)内因难溶电解质本身的性质,这是决定因素。
(2)外因①浓度:加水稀释,平衡向沉淀溶解的方向移动;②温度:绝大多数难溶盐的溶解是吸热过程,升高温度,平衡向沉淀溶解的方向移动;③同离子效应:向平衡体系中加入难溶物溶解产生的离子,平衡向生成沉淀的方向移动;④其他:向平衡体系中加入可与体系中某些离子反应生成更难溶或更难电离或气体的离子时,平衡向沉淀溶解的方向移动。
二、沉淀溶解平衡的应用1.沉淀的生成当溶液中离子积(Q c )大于溶度积(K sp )时有沉淀生成。
①调节pH 法:如除去NH 4Cl 溶液中的FeCl 3杂质,可加入氨水调节pH 至4左右,离子方程式为Fe 3++3NH 3·H 2O===Fe(OH)3↓+3NH 。
+4②沉淀剂法:如用H 2S 沉淀Cu 2+,离子方程式为Cu 2++H 2S===CuS↓+2H +。
2.沉淀的溶解当溶液中离子积(Q c )小于溶度积(K sp )时,沉淀可以溶解。
①酸溶解:用离子方程式表示CaCO 3溶于盐酸:CaCO 3+2H +===Ca 2++CO 2↑+H 2O 。
②碱溶解法如Al 2O 3溶于NaOH 溶液,离子方程式为:Al 2O 3+2OH -===2AlO +H 2O -2③盐溶解:用离子方程式表示Mg(OH)2溶于NH 4Cl 溶液:Mg(OH)2+2NH===Mg 2++2NH 3·H 2O 。
+4④配位溶解:用离子方程式表示AgCl 溶于氨水:AgCl +2NH 3·H 2O===[Ag(NH 3)2]++Cl -+2H 2O 。
⑤氧化还原溶解:如不溶于盐酸的硫化物Ag 2S 溶于稀HNO 3。
3.沉淀的转化通常,一种沉淀可以转化为更难溶的沉淀,两种难溶物的溶解能力差别越大,这种转化的趋势就越大。
①实质:沉淀溶解平衡的移动。
②实例:AgNO 3溶液AgCl AgBr ,则K sp (AgCl)>K sp (AgBr)。
知识清单24 沉淀溶解平衡(教师版) 2025年高考化学一轮复习知识清单
知识清单24沉淀溶解平衡知识点01沉淀溶解平衡及影响因素1.25℃时,溶解性与溶解度的关系溶解性易溶可溶微溶难溶溶解度>10g1~10g0.01~1g<0.01g2.难溶电解质的沉淀溶解平衡(1)沉淀溶解平衡的概念在一定温度下,当沉淀和溶解的速率相等时,形成电解质的饱和溶液,达到平衡状态,人们把这种平衡称为沉淀溶解平衡。
(2)沉淀溶解平衡的特征①动态平衡:v 溶解=v 沉淀≠0。
②达到平衡时,溶液中离子的浓度保持不变。
③当改变外界条件时,溶解平衡将发生移动,达到新的平衡。
3.难溶电解质沉淀溶解平衡的影响因素(1)内因(决定因素):难溶电解质本身的性质。
(2)外因:温度、浓度等条件的影响符合勒夏特列原理。
①温度:绝大多数难溶盐的溶解是吸热过程,升高温度,平衡向溶解的方向移动。
②浓度:加水稀释,平衡向溶解的方向移动。
③离子效应:向平衡体系中加入难溶物相应的离子,平衡逆向移动。
④其他:向平衡体系中加入可与体系中某些离子反应生成更难溶或更难电离或气体的离子时,平衡向溶解的方向移动。
(3)实例分析:已知沉淀溶解平衡:Mg(OH)2(s)Mg 2+(aq)+2OH -(aq),请分析当改变下列条件时,对该沉淀溶解平衡的影响,填写下表(浓度变化均指平衡后和原平衡比较):条件改变移动方向c (Mg 2+)c (OH -)加少量水正向移动不变不变升温正向移动增大增大加MgCl 2(s)逆向移动增大减小加盐酸正向移动增大减小加NaOH(s)逆向移动减小增大(1)升高温度,沉淀溶解平衡一定正向移动。
(×)(2)NaCl溶解性很好,饱和NaCl溶液中不存在溶解平衡。
(×)错因易溶电解质作溶质时只要是饱和溶液也可存在溶解平衡。
(3)沉淀达到溶解平衡时,溶液中难溶电解质电离出的各个离子浓度均相等。
(×)错因溶解平衡时,溶液中各离子浓度不再改变,不一定相等。
(4)室温下,AgCl在水中的溶解度小于在食盐水中的溶解度。
高考化学考点48 沉淀的溶解平衡及其应用
3
(5)Ksp 小的难溶电解质也能向 Ksp 大的难溶电解质转化,需看溶液中生成沉淀的离子浓度的大小。 三、沉淀溶解平衡图像分析
1.第一步:明确图像中纵、横坐标的含义 纵、横坐标通常是难溶物溶解后电离出的离子浓度。 2.第二步:理解图 像中线上点、线外点的含义 (1)以氯化银为例,在该沉淀溶解平衡图像上,曲线上任意一点都达到了沉淀溶解平衡状态,此时 Qc=Ksp。在温度不变时,无论改变哪种离子的浓度,另一种离子的浓度只能在曲线上变化,不会出现在曲线 外的点。 (2)曲线上方区域的点均为过饱和溶液,此时 Qc>Ksp。 (3)曲线下方区域的点均为不饱和溶液,此时 Qc<Ksp。 3.第三步:抓住 Ksp 的特点,结合选项分析判断 (1)溶液在蒸发时,离子浓度的变化分两种情况: ①原溶液不饱和时,离子浓度要增大都增大; ②原溶液饱和时,离子浓度都不变。 (2)溶度积常数只是温度的函数,与溶液中溶质的离子浓度无关,在同一曲线上的点,溶度积常数相同。
2
2.溶度积的应用 (1)沉淀的生成 原理:当 Qc>Ksp 时,难溶电解质的溶解平衡向左移动,就会生成沉淀。 方法:①调节 pH 法。如工业原料氯化铵中含杂质氯化铁,使其溶解于水中,再加入氨水调节 pH 至 7~8,
可使 Fe3+转化为 Fe(OH)3 沉淀除去。反应的离子方程式为 Fe3++3NH3·H2O
一、沉淀溶解平衡及其影响因素 1.沉淀溶解平衡的概念 在一定温度下,当难溶强电解质溶于水形成饱和溶液时,溶解速率和生成沉淀的速率相等的状态。 2.沉淀溶解平衡的建立
3.沉淀溶解平衡的特征
4.影响沉淀溶解平衡的因素 (1)内因 难溶电解质本身的性质。 (2)外因 ①浓度:加水稀释,沉淀溶解平衡向溶解的方向移动,但 Ksp 不变。 ②温度:多数难溶电解质的溶解过程是吸热的,所以升高温度,沉淀溶解平衡向溶解的方向移动,同 时 Ksp 变大。 ③同离子效应:向沉淀溶解平衡体系中,加入相同的离子,使平衡向沉淀方向移动,但 Ksp 不变。 ④其他:向沉淀溶解平衡体系中,加入可与体系中某些离子反应生成更难溶或气体的离子,使平衡向 溶解的方向移动,Ksp 不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二.填空题
1.电子填充壳层的原则 ___泡_利__不__相__容_原__理__、__能_量__最__低__原_理__。___
2.某原子基态时其电子填满了 K,L壳层和3s支壳层,并在 3
壳层上填了 3个电子,则其原子序数 Z= 15 ,基态的原子态 ________4_S__3_/2_____ 。这种原子束在斯特恩 ─ 盖拉赫实验中 分 能裂级成的间4隔束—?,—B—在B—均(匀?磁B场为B玻中尔将磁分子裂)成。4 个子能级,各相邻
中,
[D
]
A. 状态数和能级间隔 状态数和量子数 S相同 D. 状态数和量子数 J相同
4.单个d电子的总角动量数可能值为: [ D ]
A. 2, 3
B. 3, 4
C. 5/2 ,7/2 D. 3/2, 5/2
提示:对于d电子,l=2,s=1/2,
则 j=l?s=2 ?1/2=5/2,3/2
A. 1D,3D;
B. 1P,1D,3P,3D;
C. 1D,3P,1S;
D. 1D,3D,1P,3P,1S,3S。
提示:根据同科电子耦合的偶数规则:即L+S= 偶数 对于p电子,l1=l2=1,s1=s2=1/2,于是L=2,1,0,S=1,0 当S=0时,L=0,2, 对应原子态为1S0,1D2 当S=1时,L=1, 对应的原子态为3P 2,1,0
2.下列粒子中不服从泡利不相容原理的是: [ B] A. 质子; B. 光子; C. 中子; D. 电子。
提示:费米子是自旋量子数为半整数的粒子 (如电子,质子,中子等),满足泡利原理; 而玻色子为自旋量子数为整数的粒子(如光子,? 介 等),不满足泡利原理。
3. 两个价电子的组态 pd,利用LS耦合和jj耦合分别求出的原子
对L ? S耦合:? S ? 0; ? L ? 0,?1;
? J ? 0,?1(J ? 0 ? J '? 0除外)
10.设原子的两个价电子是 p电子和d电子,在L-S耦合下可
的原子态有: [ A.4个 ; B.9个
;C
] C.12个
;
D.15个。
提示:对于 p电子,l1=1,s1=1/2,对于d电子,l2=2,s2=1/2,
态应是:[ C ]
A. 2s2s 1S0; C. 3s3s 1S0;
B. 2s2p 3P0; D. 3s3p 3P0。
13.氩(Z= 18)原子基态的电子组态及原子态是: [ A
A.1s22s22p63s23p6 1S0 B.1s22s22p62p63d8 3P0
C.1s22s22p63p8 1S0
15.碳原子(C,Z=6)的基态谱项为 [ A ] A.3P0; B.3P2; C.3S1; D.1S0.
提示:碳原子的电子组态为1s22s22p2, 排除满壳层后,剩下2p2组态, 两个2p电子属于同科电子,故满足L-S耦合 的偶数定则,即L+S=偶数。 对于2p电子,l1=l2=1,s1=s2=1/2; 所以L=2,1,0,S=1,0; 当S=1时,L=1,对应的原子态为3P2,1,0, 根据洪特规则1知,此时能量最低, 再根据洪特规则2,其中3P0能量最低。
于是L=3,2,1,S=1,0. 当S=0 时,L=3,2,1 对应的原子态分别为1F,1D,1P; 当S=1 时,L=3,2,1 对应的原子态分别为3F,3D,3P;
11.满壳层或满次壳层电子组态相应的原子态是 : [ B ] A.3S0 B. 1S0 C. 3P0 D.1P1
12. 镁原子( Z=12)处于基态时价电子的电子组态及基态原子
5.试判断原子态: 1s1s3S1,1s2p3P2,1s2p1D1, 2s2p3P2中下列
组是完全存在的?
[ C]
A. 1s1s3S1 1s2p3P2 2s2p3P2 B .1s2p3P2 1s2p1D1
C. 1s2p3P2 2s2p3P2
D.1s1s3S1 2s2p3P2 1s2p1D1
6.在LS耦合下,两个等价 p电子能形成的原子态是: [ C ]
同科电子:n和l二量子数相同的电子
元素周期律: 每个壳层可容纳的最多电子数: 2n2 每个支壳层可容纳的最多电子数: 2(2l+1)
洪特定则:对于一个给定的电子组态形成的一组原子态, 当某原子态具有的 S最大时,它所处的能及位置最低; 对于同一个 S,又以L值大的为最低。 附则:对于同科电子,当同科电子数 小于或等于 闭壳层 占有数一半时,具有最小 J 值的能级位置最低,为 正常次序 当同科电子数 大于闭壳层占有数的一半时,则具有最大 J 值 能级为最低,为 倒转次序。
能级次序:1s<2s<2p<3s<3p< 4s<3d<4p<5s<4d<5p<6 <4f<5d <6p<7s< 5f<…
一、选择题
1.泡利不相容原理说 :[ D ] A.自旋为整数的粒子不能处于同一量子态中 B.自旋为整数的粒子能处于同一量子态中 C.自旋为半整数的粒子能处于同一量子态中 D.自旋为半整数的粒子不能处于同一量子态中
磁 场 ,若原子处于 5F1态,试问原子束分裂成 [ A ]
A. 不分裂 B.3条
C.5条
D.7条
提示:mj=j,j- 1,…-j共有2j+1个值
9.由状态2p3p 3P到2s2p 3P的辐射跃迁: [ ]
A. 可产生9条谱线;
B. 可产生7条谱线;
C. 可产生6条谱线;
D. 不能发生。
提示: 3P态对应的原子态有 3P2,1,0, 能级之间跃迁满足跃迁选择定则:
D. 1s22s22p63p43d2 2D1/2
14. 由壳层结构理论和洪德定则可知,氯原子(
的原子态应是: [ B ]
A. 2P1/2;
B. 2P3/2;
C. 4P1/2;
Z=17 )基态 D. 4P3
提示:氯原子的外层电子组态为3s23p5,3p5与3p1互补
即得到的原子态相同 ,于是可得其原子态2P 3/2,1/2,再 洪特规则2,可得基态为2P3/2
7.处于L=3, S=2原子态的原子 ,其总角动量量子数 J的可能取值
为: A. 3, 2,1;
B. 5, 4, 3, 2, 1;
[B ]
C. 6, 5, 4, 3; D. 5/2, 4/2, 3/2, 2/2, 1/2。
提示:J=L+S,L+S- 1,…|L-S|,
8.使窄的原子束按照施特恩 —盖拉赫的方法通过极不均匀的