线性规划的对偶理论

合集下载

第三章 线性规划的对偶理论

第三章 线性规划的对偶理论

s.t. AX=b X≥0 由于 AX=b 即 AX=b
AX≤b AX≥b
AX≤b -AX≤-b 所以,原问题可化为 max z=CX s.t. AX≤b -AX≤-b X≥0
A
X≤ -A
b
-b
14
设Y':AX≤b的对偶变量(行向量) Y'':-AX≤-b的对偶变量(行向量) 按对称形式的对偶关系可得出原问题的对偶问题如下: min w =Y'b-Y''b= (Y'-Y'')b (Yb=bTYT) s.t Y'A-Y''A≥C ( YA=ATYT) Y'≥0,Y''≥0 令Y= Y'-Y'',则对偶问题为 min w =Yb s.t YA≥C Y符号不限 结论:原问题中约束条件为等式,对应的对偶变量 无非负要求;反过来同样成立。
s.t. 2y1+ y2+ 4y3 ≥2
2y1+2y2+ 4y4 ≥3 y1, y2 , y3 , y4 ≥ 0
解:2.首先将原式变形
m axZ 2 x1 3 x 2 4 x 3 2 x 3 x 2 5 x 3 2 3 x1 x 2 7 x 3 3 x1 4 x 2 6 x 3 5 x1 , x 2 , x 3 0
对于非对称形式的规划,可以按照下面的对应关系直接给 出其对偶规划。 (1)对原问题模型为“max,约束条件为≤”或“min,约 束条件为≥” 的形式,对应的对偶规划的变量大于 0 ;反之, 若原问题模型为“max,≥”或“min,≤” 的形式,对应的 对偶规划的变量小于0。 ( 2 )原问题线性规划的决策变量大于 0 ,则对偶问题的模 型为“max,约束条件为≤”或“min,约束条件为≥” 的形 式;若原问题线性规划的决策变量小于0;则对偶问题的模型 为“max,≥”或“min,≤” 的形式。

第二章 线性规划的对偶理论

第二章 线性规划的对偶理论
max 3 2 A= 2 1 0 3 c=
对偶问题: Min f = 65 y1 + 40 y2 + 75 y3
s.t. 3y1 + 2 y2
y1, y2 , y3
min
≥1500
≥ 0
2y1 + y2 + 3y3 ≥2500
b=
65 40 75
A=
3 2
2 1
0 3
b=
1500 2500
1500 2500
例:
Min z= 5x1+ 25x2 7x1+ 75x2 ≤98 s.t. 5x1 + 6x2 = 78 24x1+ 12x2≥54 x1≥0 、x2 ≤ 0
怎么样, 没问题吧!
Max w= 98y1+ 78y2 + 54y3 7y1+ 5y2 + 24y3 ≤ 5 s.t. 75y1+ 6y2 + 12y3 ≥25 y1 ≤ 0 、y2无限制、 y3≥0
二、对偶规划问题的求解
1、利用原问题的最优单纯形表
3x1 x2 3x3 ≤100 x1, x2 , x3 ≥0 解: 对偶问题为
min w 100y1 100y2
max z 4 x1 3x2 7 x3 s.t. x1 2 x2 2 x3≤100
s.t.
2 y1 y2 ≥3 2 y1 3 y2≥7
原问题检验数与对偶问题的解的总结
•在主对偶定理的证明中我们有:对偶(min型)变量的最 优解等于原问题松弛变量的机会成本,或者说原问题松 弛变量检验数的绝对值 •容易证明,对偶问题最优解的剩余变量解值等于原问 题对应变量的检验数的绝对值 •由于原问题和对偶问题是相互对偶的,因此对偶问题 的检验数与原问题的解也有类似上述关系。 •更一般地讲,不管原问题是否标准,在最优解的单纯 型表中,都有原问题虚变量(松弛或剩余) 的检验数对应 其对偶问题实变量 (对偶变量)的最优解,原问题实变量 (决策变量) 的检验数对应其对偶问题虚变量 (松弛或剩 余变量)的最优解。因此,原问题或对偶问题只需求解 其中之一就可以了。

线性规划的对偶理论(第一部分

线性规划的对偶理论(第一部分

对偶问题的约束条件 对应于原问题的目标 函数和约束条件的系 数。
对偶问题的可行解集 是原问题可行解集的 凸包。
原问题与对偶问题关系
弱对偶性
对于任意一对原问题和对偶问题 的可行解,原问题的目标函数值 总是大于或等于对偶问题的目标
函数值。
强对偶性
当原问题和对偶问题都存在可行 解时,它们的最优解对应的目标
强对偶性定理
若原问题和对偶问题都有可行解,则 它们分别存在最优解,且这两个最优 解的目标函数值相等。
在满足某些约束规格(如Slater条件) 的情况下,强对偶性成立。
互补松弛条件
在原问题和对偶问题的最优解中,如果某个约束条件的对偶变量值为正,则该约束 条件必须是紧的(即取等号)。
如果原问题(对偶问题)的某个变量在最优解中取正值,则其对应的对偶问题(原 问题)的约束条件必须是紧的。
标准形式
通常将线性规划问题转化为标准 形式,即求解目标函数的最小值 ,约束条件为一系列线性不等式 。
对偶问题定义与性质
对偶问题定义:对于 给定的线性规划问题, 可以构造一个与之对 应的对偶问题,该问 题的目标函数和约束 条件与原问题密切相 关。
对偶问题性质
对偶问题的目标函数 是原问题约束条件的 线性组合。
解决对偶间隙等关键问题
在实际应用中,由于原问题和对偶问题之间可能存在对偶间隙,导致对偶理论的实用性受到一定的限制。 未来可以研究如何缩小或消除对偶间隙,提高对偶理论的实用性和应用范围。
THANKS
感谢您的观看
简化了复杂问题的求解过程
对偶理论能够将一些复杂的线性规划问题转化为相对简单的对偶问题进行求解,从而降低了问题 的求解难度和计算量。
揭示了原问题和对偶问题之间的内在联系

第二章线性规划的对偶理论

第二章线性规划的对偶理论

2.1 写出线性规划问题的对偶问题,并进一步写出其对偶问题的对偶问题(a) min z=2x1+2x2+4x3(b) max z=5x1+6x2+3x3s.t. x1+3x2+4x3≥2 s.t. x1+2x2+2x3=52x1+x2+3x3≤3 -x1+5x2-3x3≥3x1+4x2+3x3=5 4x1+7x2+3x3≤8x1, x2≥0, x3无约束x1无约束,x2≥0, x3≤0解:(a)对偶问题的原问题为max w=2y1+3y2+5y3s.t. y1+2y2+y3≤23y1+y2+4y3≤24y1+3y2+3y3=4y1≥0, y2≤0, y3无约束(b)原问题的对偶问题为min w=5y1+3y2+8y3s.t. y1-y2+4y3=52y1+5y2+7y3≥62y1-3y2+3y3≤3y1无约束, y2≤0, y3≥02.3 已知线性规划问题:max z=x1+x2s.t. -x1+ x2+ x3 ≤2-2x1+x2- x3 ≤1x1, x2, x3≥0试应用对偶理论证明上述线性规划问题最优解为无界。

解:原问题的对偶问题为min w=2y1+ y2s.t. -y1- 2y2 ≥12y1+ 5y2 ≥1y1- y2 ≥0y1, y2≥0由于约束条件3可得y1-y2 ≥0 →y1≥y2 →-y1≤-y2 且y2≥0所以-y1-2y2 ≤-3y2≤0 (1)由于约束条件1可得-y1- 2y2 ≥1 (2)(1)(2)不等式组无解所以其对偶问题无可行解,又知点X=(1,1,1)为原问题一个可行解,即原问题有可行解, 现在其对偶问题无可行解。

根据对偶理论性质3原问题无界.2.4 已知线性规划问题:max z=2x 1+4x 2+ x 3+x 4 s.t. x 1+ 3x 2 +x 4 ≤8 2x 1+ x 2 ≤6 x 2+ x 3 +x 4 ≤6 x 1+ x 2+ x 3 ≤9 x j ≥0 (j=1,…4)要求(a)写出其对偶问题;(b)已知原问题最优解X=(2,2,4,0),试根据对偶理论,直接求出对偶问题的最优解. 解:对偶问题: min w=8y 1+ 6y 2+6y 3+9 y 4 s.t. y 1+ 2y 2 +y 4 ≥2 3y 1+ y 2 + y 3 +y 4 ≥4 y 3+ y 4 ≥1 y 1 +y 3 ≥1 y 1, y 2,y 3, y 4≥0将最优解X=(2,2,4,0)代入原问题的约束条件得: x 1+ 3x 2 +x 4 =8 2x 1+ x 2 =6 x 2+ x 3 +x 4 =6 x 1+ x 2+ x 3 =8<9根据对偶理论性质5, 如果∑=<ni i j ij b xa 1ˆ,则0ˆ=i y 。

2.454线性规划的对偶理论

2.454线性规划的对偶理论

故y=CBB-1 是对偶问题的最优解
由对偶定理可得:
(1)对偶问题最优解的表达式:
Y* =CB B-1 (2) 对于Y* 没必要重新求解,可从原问题的
最终单纯形表中获得。
即:对偶问题的最优解(即实变量的值)是原 问题虚变量(即松弛变量)检验数的负值.
任何一个LP问题总是属于下列三种情况之一
⑴有最优解; ⑵问题无界; ⑶无可行解. 一个原问题和它的对偶问题有四种可能的组合
(5) 主对偶定理(可行解是最优解的性质)
互为对偶的线性规划问题中,若一个有最优解, 则另一个也有最优解,且目标函数值相等.
推论:若原问题和对偶问题两者皆可行,则
两者均有最优解,且此时目标函数值相等.
由于原问题和对偶问题均可行,根据弱对偶性, 可知两者均有界,于是均有最优解.
证:设原问题有最优解, 当XB=B-1b是原问题的最优解时,有
解: 对偶问题是
因为x1≠0, x2≠0, 所以对偶问题的第一,第
二约束的松弛变量为0
即y1 + 2y2 = 3 2y1 +2y2 =4
得解y1 =1 , y2=1 从而对偶的最优解为
Y=(1 ,1), 最优值为 w=26
利偶m用问ax上题述(Z 关或 系原3x,问1 建题4立)x2对的 x3 约程2x束组x1 线的12性解2x方即x2 2程为x组最x3 3,优1则解016方, 即解x得可j 到由 0另一, 一个j 个问1,问题2,题的3 的最最优
2x1 2x2 x3
12 y1
4x1
5x2
x4
16 y2
x5 15 y3
xj 0(j 1,,5)
s.t.
22yy11
4y
2

运筹学基础-对偶线性规划(2)

运筹学基础-对偶线性规划(2)

用单纯形法同时求解原问题和对偶问题
原问题是:
maxZ=2x1 +x2 5x2 ≤15 6x1 + 2x2 ≤ 24 x1 + x2 ≤ 5 x1 , x2 ≥0
5x2 +x3 =15 6x1 + 2x2 +x4 = 24 x1 + x2 +x5 = 5 xi ≥0
原问题的标准型是:maxZ=2x1 +x2+0x3+0x4 +0x5
b
15 24 5 0
x1 0 6 1 2
比 值
-
24/6=4
5/1=5
检验数j
对偶问题剩余变量 y4、y5
对偶问题变量 y1、y2 、y3
检验数行的- (cj-zj)值是其对偶问题的一个基本解yi ;
原问题变量
0 2
原问题松驰变量
1 0 0 0 0 1/6 -1/6 -1/3 0 0 1 0
3
x3 x1
x2 1 检验数j= cj-zj
-1/4 -1/2
对偶问题剩余变量 y4、y5
对偶问题变量 y1、y2 、y3
此时得原问题最优解:X*=(7/2,3/2,15/2,0,0)T,Z*=17/2 则对偶问题最优解:Y*=(0,1/4,1/2,0,0)T,S*=17/2
又例:用单纯形法同时求解原问题和对偶问题
定理6(互补松弛定理)
在线性规划问题的最优解中,如果对应某一约束条件的 对偶变量值为非零,则该约束条件取严格等式;反之如果约 束条件取严格不等式,则其对应的对偶变量一定为零。
注:证明过程参见教材59页性质5证明
讨论:
互补松弛定理也称松紧定理,它描述了线性规划达到最

线性规划对偶理论

线性规划对偶理论

线性规划对偶理论前言线性规划(linear programming, LP)是一种求解线性模型的算法,该算法可以在目标函数下寻找最佳的解决方案。

通常情况下,线性规划可以被看作是一种最优化问题,其目的是在满足一组约束条件的前提下,找到可以最大化或最小化目标函数的变量值。

而对偶理论是线性规划问题中的重要概念之一,在很多情况下,使用对偶理论能够有效地求解出更优的解答。

线性规划与对偶理论在介绍线性规划对偶理论之前,我们先来简单了解一下线性规划的概念。

线性规划可以被定义为一组决策变量的线性函数,该函数的取值范围应在满足一组线性方程(或不等式)约束条件的前提下,使得目标函数达到最小(或最大)值。

换句话说,线性规划要求我们在可接受的条件下,寻找到最优的决策变量值。

围绕这种思想,我们可以进一步探讨线性规划的对偶问题。

在实践中,我们常常会面对一些较复杂的线性规划问题,此时我们可以使用对偶理论对其进行简化处理。

形式化地说,对于一个线性规划问题,我们可以构建一个对应的对偶问题,二者之间的关系可以被描述为一种对称的互补关系。

具体而言,在每个线性规划问题中,我们可以根据不同的约束条件求出一个对应的乘法因子,这个乘法因子可以在构建对偶问题时被使用。

通过这种方式,我们总是可以在对偶问题中找到一组最优解,而这组最优解实际上是原始问题的一个下界。

同时,我们可以利用对偶问题的最优解来求解原始问题的最优解,这种方法被称为对偶算法。

相比于原始的线性规划问题,对偶问题有着更为简洁的约束条件和更为易于求解的优化问题,因此其求解效率较高。

对偶问题的分析与求解在实际求解中,我们通常需要对给定的线性规划问题进行对偶化处理,并使用一系列的对偶算法来求解对偶问题。

下面,我们将会举两个例子来说明对偶问题的分析与求解。

例1:最小费用最大流问题最小费用最大流问题是一种最优化问题,其目的是在给定图中求出最大流量下的最小费用。

在具体求解中,我们可以通过建立一个对应的线性规划问题,并将其对偶化得到一个更加简洁的对偶问题。

运筹学课件 第2章:线性规划的对偶理论

运筹学课件 第2章:线性规划的对偶理论

min w 16y1 36y2 65y3
90 y1 3 y 2 y1 2 y 2 5 y 3 70 y , y , y 0 1 2 3
原问题 A b C 约束系数矩阵
对偶问题 约束系数矩阵的转臵
约束条件的右端项向量 目标函数中的价格系数向量 目标函数中的价格系数向量 约束条件的右端项向量 Max z=CX Min w=Y’b 目标函数 AX≤b A’Y≥C’ 约束条件 X≥0 Y≥0 决策变量
若原问题为求极小形式的对称形式线性规划问题, 对偶问题应该具有什么形式?
Min w Y 'b A'Y C Y 0
max w Y 'b A'Y C Y 0
min z CX
Max z CX
AX b X 0
AX b X 0
min w 5 y1 4 y2 6 y3 4 y1 3 y2 2 y3 2 y1 2 y2 3 y3 3 3 y1 4 y3 5 2 y 7 y y 1 2 3 1 y1 0, y2 0, y3无约束
对偶问题 约束系数矩阵的转臵
目标函数中的价格系数向量
目标函数 约束条件
变量
Max z=CX m个 ≤ ≥ = n个 ≥0 ≤0 无约束
约束条件的右端项向量 目标函数 Min w=Y’b m个 ≥0 变量 ≤0 无约束 n个 ≥ 约束条件 ≤ =
【例2-3】写出下列线性规划问题的对偶问题
min 2x1 3x2 5x3 x4
1.初始表中单位阵在迭代后单纯形表中对应的位臵就是B-1 2.对于原问题的最优解,各松弛变量检验数的相反数恰好 是其对偶问题的一个可行解,且两者具有相同的目标函数 值。根据下面介绍的对偶问题的基本性质还将看到,若原 问题取得最优解,则对偶问题的解也为最优解。

第2章线性规划的对偶理论

第2章线性规划的对偶理论

max z 5x1 6x2 3x3
x1 2x2 2x3 5
(1)
s.t
.
4xx1 175xx223xx33

3 8
x2 0, x3 0
n
max z c j x j j1


n
aij x j
bi
(i 1,, m1 m)
-15 y3 1/5 0 -4/5 1
zj - cj
0 4 0
原问题松 弛变量
00
y4 y5 -1/2 0
1/5 -1/5
3 3
原问题 变量
第19页
说明:1)只需求解其中一个问题, 从最优解的单纯形表中同时得
到另一个问题的最优解.
2)单纯形法迭代的每一步中, 原问题及对偶问题解的关系
目标函数值
n)
m
min w bi yi i 1
yi 0 (i 1,, m1 )
yi无约束(i m1 1,, m)
m
aij yi c j ( j 1,, n1 )
i 1 m
aij yi c j ( j n1 1,, n)
i 1
第10页
写出下列线性规划的对偶问题

m i 1
aij
yi

c
j
(
j

1,, n)
yi 0 (i 1,, m)
min w bY
AY C
s.t.
Y 0
第4页
2-2 原问题与对偶问题
对应关系: (1) max
min
= (2)
约束条 件个数
变量的 个数

线性规划对偶理论(含影子价格)_21136

线性规划对偶理论(含影子价格)_21136

对 偶
a11 a12
s.t.
a21
a22
a1n x1 b1
a2n
x2
b2
对 称

am1 am2
amn
xn
bm


x1, x2 , , xn 0

min Z c1x1 c2 x2 cn xn
定 义
a11 a21
s.t.
a12
a22
a1n a2n
x2 0,
x2
2
0
无界
关于无界性有如下结论: minW 4 y1 2 y2
原问题
问题无界
无可 行解
对偶问题 无可行解 无可行解
问题无界
y1 y2 2
(对)
y1
y1
y2 0, y2
1 0
无可 行解
原 : max Z x1 2x2
x1 x2 x3 2
2x1 x2 x3 1
m
m
A
≥b
n
对偶问题的特点
〔1〕目标函数在一个问题中是求最大值在 另一问题中则为求最小值
〔2〕一个问题中目标函数的系数是另一个 问题中约束条件的右端项
〔3〕一个问题中的约束条件个数等于另一 个问题中的变量数
〔4〕原问题的约束系数矩阵与对偶问题的 约束系数矩阵互为转置矩阵
一般
线性规 划问题 的对偶 问题
〔4〕强对偶性〔最优解的目标函数之间的关系〕 如果原问题有最优解,则其对偶问题也一定有 最优解,且两者的目标函数值相等
3、互补松弛性
在线性规划问题的最优解中, 如果对应某一约束条件的对偶变量值为非零,
则该约束条件取严格等式;
反之如果约束条件取严格不等式,

运筹学第2章-线性规划的对偶理论

运筹学第2章-线性规划的对偶理论
❖ 影子价格不是市场价格,而是在现有技术和管理条件下, 新增单位资源所能够创造的价值,是特定企业的一种边 际价格;不同企业或同一企业不同时期,同种资源的影 子价格可能不同;当市场价格高于影子价格,可以卖出; 相反,则应买进,以获取更大收益
Ma例x:Z ( 2第x一1 章3例x22)
2 x1 2 x2 12
当原问题和对偶问题都取得最优解时,这 一对线性规划对应的目标函数值是相等的:
Zmax=Wmin
二、原问题和对偶问题的关系
1、对称形式的对偶关系
(1)定义:若原问题是
MaxZ c1 x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn b1
s.t.a21
x1
a22
二、 手工进行灵敏度分析的基本原则 1、在最优表格的基础上进行; 2、尽量减少附加计算工作量;
5y3 3
,y
2
3
0
(用于生产第i种产 品的资源转让收益不 小于生产该种产品时 获得的利润)
对偶变量的经济意义可以解释为对工时及原材 料的单位定价 ;
若工厂自己不生产产品A、B和C,将现 有的工时及原材料转而接受外来加工时, 那么上述的价格系统能保证不亏本又最富 有竞争力(包工及原材料的总价格最低)
内,使得产品的总利润最大 。
MaxZ 2x1 3x 2
2x1 2x2 12
s.t.54xx12
16 15
x1, x 2 0
它的对偶问题就是一个价格系统,使在平衡了 劳动力和原材料的直接成本后,所确定的价格系统 最具有竞争力:
MinW 12y1 16y2 15y3
2y1 4y2
2
s.t.2y1y,1y
y1, y2, , ym 0

第2章 线性规划的对偶理论

第2章 线性规划的对偶理论

≤9
y1≤0, y2≥0, y3无约束
2.1 线性规划的对偶模型 Dual model of LP
1.本节以实例引出对偶问题; 2.介绍了如何写规范与非规范问题的对偶问题;
作业:教材P61 T 1、2 下一节:对偶性质
2.2 对偶性质
Dual property
2.2 对偶性质 Dual property
时得到最优解,C CB B 1 A 是 X=(X B,X N)的检验数 CB CB B 1B 和
CN CB B1N 的合并。
令 Y CB B1 ,由 C CB B 1 A 0与 CB B 1 0 得
YA C Y 0
可见,这是Y是对偶问题的一个可行解。 思考:Y右边的部分是什么?
C X°≤Y°AX≤Y°b
这一性质说明了两个线性规划互为对偶时,求最大值的 线性规划的任意目标值都不会大于求最小值的线性规划 的任一目标值,不能理解为原问题的目标值不超过对偶 问题的目标值。
2.2 对偶性质 Dual property
由这个性质可得到下面几个结论:
(1)(LP)的任一可行解的目标值是(DP)的最优值下界; (DP)的任一可行解的 目标是(LP)的最优值的上界;
【例2.3】 写出下列线性规划的对偶问题
max Z 4x1 3x2
5x1 x2 6 7x1x135x2x2108 x1 0, x2 0
【解】这是一个规范形式的线性规划,它的对偶问题求 最小值,有三个变量且非负,有两个“ ≥”约束,即
min w 6 y1 8 y2 10 y3
5yy1172yy22
y3 3y3
4
3
yi 0,i 1,2,3
2.1 线性规划的对偶模型 Dual model of LP

(运筹学第二章)线性规划的对偶理论

(运筹学第二章)线性规划的对偶理论

第二章线性规划的对偶理论1.对偶问题的提出2.原问题与对偶问题3.对偶问题的基本性质4.影子价格5对偶单纯形法5.对偶单纯形法6.灵敏度分析7.参数线性规划1§1.对偶问题的提出原问题设某企业有m种资源用于生产n种不同产品,各种(i=1m)又生产单位第j种资源的拥有量分别为b i (i=1,…,m),又生产单位第j种产品(j=1,…,n)消费第i种资源a ij 单位,产值为c j 元。

用x 代表第j种产品的生产数量,为使该企业产值最大,可将上述问题建立线性规划模型j 将上述问题建立线性规划模型:max z =c 1x 1+c 2x 2+…+c n x n a 11x 1+a 12x 2+…+a 1n x n ≤b 1a 21x 1+a 22x 2+…+a 2n x n ≤b 2………………2a m 1x 1+a m 2x 2+…+a m n x n ≤b m x 1,x 2,…,x n ≥0§1.对偶问题的提出现在从另一角度提出问题:假定有另一企业欲将上述企业拥有的资源收买过来,至少应付出多少代价,才能使前一拥有的资源收买过来,至少应付出多少代价,才能使前企业愿意放弃生产活动,出让资源。

设用y i 代表收买该企业一单位i种资源时付给的代价,则总收买价为:ωb ω = b1y 1+…+b m y m 前一企业生产一单位第j种产品时,消耗各种资源的数量分别为a 1j ,a 2j ,…,a mj ,如果出让这些资源,价值应不低于单位j种产品的价值c j 元,因此:a 1 j y 1+ a 2 j y 2 + …+ a m j y m ≥ c j 3j j j j (j =1,…,n)§1.对偶问题的提出对后一企业来说,希望用最小代价把前一企业所有资源收过来此有有资源收买过来,因此有:min ω=b1y 1+b 2y 2+…+b m y m a11y 1+a 21y 2+…+a m 1y m ≥c 1a 12y 1+a 22y 2+…+a m 2y m ≥c 2………………a 1n y 1+a 2n y 2+…+a mn y m ≥c ny 1,y 2,…,y m ≥04§1对偶问题的提出§1.对偶问题的提出max z = c 1x 1+ c 2x 2+ … + c n x na x +a x ++a xb a 1 1x 1+ a 1 2x 2 + … + a 1 n x n ≤b 1a 2 1x 1+ a 2 2x 2 + … + a 2 n x n ≤b 2………………a m 1x 1+ a m 2x 2 + … + a m n x n ≤b mmin ω = b 1y 1+b 2y 2+…+b m y mx 1 ,x 2 ,… ,x n ≥0a 1 1y 1+ a 21 y 2 + … + a m 1y m ≥c 1a 1 2y 1+ a 22y 2 + … + a m 2y m ≥c 2………………a 1n y + a 2n y 2+ … + a y ≥c 51 n 12 n 2 mn m ny 1,y 2,… ,y m ≥0§2.原问题与对偶问题后一个线性规划问题是前一个问题从不同角度作的阐述如前者称为线性规划问的话的阐述。

线性规划的对偶理论(NO8)

线性规划的对偶理论(NO8)

AX b
(P)
s.t
X
0
minW Yb YA C
(D) s.t Y 0
从上述性质中,可看到原问题与对偶问题的解必然是下列三种情况之一: ①原问题与对偶问题都有最优解,且CX=Yb; ②一个问题具有无界解,则它的对偶问题无可行解; ③两个问题均无可行解。
7
(5)(互补松驰性定理),若X*、Y*分别是原问题和对偶问题的可行
max Z 2x1 x2 x3
2x1 x2 2
s.t.3x1 x2 x3 4
x1
,
x2 ,
x3
0
目标函数 无界
其对偶问题为:
min W 2 y1 4 y2
2 y1 3 y2 2
s.t
.
y1
y2 1 y2 1
y1 , y2 , y3 0
无可行解
6
max Z CX
3
一、对偶问题的基本定理
对偶问题的基本定理
MaxZ=CX
MinW=Yb
AX b
X
0
YA C Y 0
(1)(弱对偶定理)若X(0)是原问题的可行解,Y(0)是对偶
问题的可行解, 则有 证明:
C X(()) Y(0) b
CX (0) YAX(0) Y ( AX (0) ) Yb
(2)(最优性定理),若X(0) 、 Y(0)分别是互为对偶问题 LP和DP的可行解,且C X(0) = Y(0) b,则X(0) 、 Y(0)分别是 它们的最优解
4
(3)(强对偶定理)若互为对偶问题之一有最优解,则另一 问题必有最优解,且它们的目标函数值相等。
证明:设X*是原问题的最优解,对应的最优基是B,引入松弛
变量Xs后化为标准形式

第四章线性规划对偶

第四章线性规划对偶

n
m
CXYb,即cjxj yibi
j1
i1
__ __
推论__ ⑴.若 X 和Y 分别是问题(P)和(D)的可__ 行解,
则C X 是(D)的目标函数最小值的一个下界; Y b 是
(P)的目标函数最大值的一个上界。
第四章线性规划对偶
11
推论⑵.在一对对偶问题(P)和(D)中,若其中 一个问题可行但目标函数无界,则另一个问题不可 行;反之不成立。这也是对偶问题的无界性。
矩 阵 形 式 :P max Z CX
AX b
(2)
X
0
D minW Yb YA C Y 无符号限制(无约束)
第四章线性规划对偶
10
(二)、对偶问题的性质
1、对称性定理:对偶问题的对偶是原问题。
__ __
2、弱对偶原理(弱对偶性):设 X和Y 分别是问题
(P)和(D)的可行解,则必有
__ __
相当于:在换基迭代过程中逐渐使得对应的对 偶消问 失题 ,( 直D到)中yT,CyBTTB1CBT是B对1 偶的问不题可的行可性行逐解渐 时,就是原问题的最优解。
第四章线性规划对偶
17
回顾(单纯形法):
m ax zcx (1)
(LP)
Ax b
(2)
s.t.
x
0
(3)
(b0)
r(Amn)m,A P 1 P m P m 1 P n B N
对偶问题(D Dual Problem)
m in 100y1 150y2
2 y1 y2 4
s .t .
1.5 y1 3 y1
2
2 y2 y2
7
5
y 1 , y 2 0

运筹学第二章——第八节—线性规划的对偶理论

运筹学第二章——第八节—线性规划的对偶理论

四、对偶问题经济学含义——影子价格
因为Z*=Y*=Yb 所以:Δ Z/ Δ b=Y b——资源的量 Z——目标函数 经济学含义:资源每变动一个单位,目标函 数(利润、总产值等)变动的大小。 资源对生产做出的贡献。(影子价格) 是对现有资源实现最大效益的一个评价,叫 机会成本。
V*X=0, Y*U=0,其中V是对偶问题的剩余变量,U是 原问题的松弛变量。
(七)原问题在单纯性法迭代过程中的检验 数对应于对偶问题的一个基本解。(对应性 定理) 原问题 XB XN 对应基B检验数 0 CN-CBB-1BN 对偶问题的变量 -YS1 -YS2 XS –CBB-1 -Y
对偶问题性质的启示
原问题 有最优解 无可行解 有可行解无上界 无有限最优解 对偶问题 有最优解 无可行解 无有限最优解 有可行解但无下界
由互补松弛性定理可知: 当U>0,即AX <b时,资源未充分利用时,影 子价格为0。
二、原问题与对偶问题之间的转化
1、目标函数 MAX——Min 2、约束条件——变量 约束条件n个——变量n个 约束条件≥0 ——变量≤ 0 约束条件≤ 0 ——变量 ≥ 0 约束条件=0——变量无约束 要点:max为反向关系(约束条件——变量)
二、原问题与对偶问题之间的转化
3、变量——约束条件 变量m个——约束条件m个 变量≥0——约束条件≥ 0 变量≤ 0 ——约束条件≤ 0 变量无约束——约束条件=0 4、目标函数中变量的系数C为对偶问题中约 束条件的右端常数项b,个数对等变动。
(五)若原问题和对偶问题具有可行解,若 原问题或对偶问题之一有最优解,则另一个 对偶问题也必有最优解,且最优值相同。 (主对偶性定理) 证明 含义: 若原问题有一个对应于基B的最优解,则 CBB-1为对偶问题的最优解。

线性规划的对偶理论

线性规划的对偶理论
0
xB x3 x4
cj - zj
b
8 4 4 2
1 x1 2 0
1 y3 2 0 1
2 x2 2 2
2 y4 0 1 0
0 x3 1 0
0 y1 1 0 0
0 x4 0 1
0 y2 -1 1/2 -1
Θ 8/2=4 4/2=2 Min 4/2=2
2 1
2
x3 x2
cj - z j
/
x1 x2
cj - z j
[例5] 用对偶单纯形法求解下列LP问题 (P64)
min w = 12y1 + 16y2 + 15y3
2y1 + 4 y2 ≥2 2y1 + 5y3 ≥ 3
y1 , y2 , y3 ≥ 0
标准形式为:
max w’ = -12y1 - 16y2 - 15y3+ 0y4 + 0y5 -2y1 - 4 y2 + y4 =-2 -2y1 - 5y3 + y5 = - 3 y1 , y2 , y3 , y4 , y5 ≥ 0
y1 y2 y3
设备 A B C 单位产品利润
产品 I 2 4 0 2元
产品 II 2 0 5 3元
设备有效台时 12 16 15
问如何安排生产最有利?
Next
生产产品的数学模型
设产品I和产品II的产量分别为x1和x2件, 利润为Z,
y1 y2 y3
Max Z 2 x1 + 4 x1 + 0x1 + x1 , = 2 x1 + 3 x2 2 x2 ≤ 12 0 x2 ≤ 16 5 x2 ≤ 15 x2 ≥ 0
一、对偶问题的概念
内容一致但从相反角度提出的一对问题 称为对偶问题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1 写出线性规划问题的对偶问题,并进一步写出其对偶问题的对偶问题
(a) min z=2x1+2x2+4x3(b) max z=5x1+6x2+3x3
s.t. x1+3x2+4x3≥2 s.t. x1+2x2+2x3=5
2x1+x2+3x3≤3 -x1+5x2-3x3≥3
x1+4x2+3x3=5 4x1+7x2+3x3≤8
x1, x2≥0, x3无约束x1无约束,x2≥0, x3≤0
解:(a)对偶问题的原问题为
max w=2y1+3y2+5y3
s.t. y1+2y2+y3≤2
3y1+y2+4y3≤2
4y1+3y2+3y3=4
y1≥0, y2≤0, y3无约束
(b)原问题的对偶问题为
min w=5y1+3y2+8y3
s.t. y1-y2+4y3=5
2y1+5y2+7y3≥6
2y1-3y2+3y3≤3
y1无约束, y2≤0, y3≥0
2.3 已知线性规划问题:
max z=x1+x2
s.t. -x1+ x2+ x3 ≤2
-2x1+x2- x3 ≤1
x1, x2, x3≥0
试应用对偶理论证明上述线性规划问题最优解为无界。

解:原问题的对偶问题为
min w=2y1+ y2
s.t. -y1- 2y2 ≥1
2y1+ 5y2 ≥1
y1- y2 ≥0
y1, y2≥0
由于约束条件3可得
y1-y2 ≥0 → y1≥y2 → -y1≤-y2 且y2≥0
所以
-y1-2y2 ≤-3y2≤0 (1)
由于约束条件1可得
-y1- 2y2 ≥1 (2)
(1)(2)不等式组无解
所以其对偶问题无可行解,又知点X=(1,1,1)为原问题一个可行解,即原问题有可行解, 现在其对偶问题无可行解。

根据对偶理论性质3原问题无界.
2.4 已知线性规划问题:
max z=2x 1+4x 2+ x 3+x 4
s.t. x 1+ 3x 2 +x 4 ≤8 2x 1+ x 2 ≤6 x 2+ x 3 +x 4 ≤6 x 1+ x 2+ x 3 ≤9 x j ≥0 (j=1,…4)
要求(a)写出其对偶问题;(b)已知原问题最优解X=(2,2,4,0),试根据对偶理论,直接求出对偶问题的最优解. 解:
对偶问题:
min w=8y 1+ 6y 2+6y 3+9 y 4 s.t. y 1+ 2y 2 +y 4 ≥2 3y 1+ y 2 + y 3 +y 4 ≥4 y 3+ y 4 ≥1 y 1 +y 3 ≥1 y 1, y 2,y 3, y 4≥0
将最优解X=(2,2,4,0)代入原问题的约束条件得: x 1+ 3x 2 +x 4 =8 2x 1+ x 2 =6 x 2+ x 3 +x 4 =6 x 1+ x 2+ x 3 =8<9
根据对偶理论性质5, 如果

=<n
i i j ij b x
a 1
ˆ,则0ˆ=i y 。

于是从第四个约束方程计算可有0ˆ4=y
将性质5应用于其对偶问题,这时有:如果0ˆ>j x
,则∑
==m
i j i ij c y
a 1
ˆ 因为本题中x 1=2 >0,x 2=2>0, x 3=4>0.
所以得到约束方程组(其中04=y )
y 1+ 2y 2 +y 4 =2 3y 1+ y 2 + y 3+ y 4 =4 y 3+ y 4 =1
解此方程组得Y=(4/5 ,3/5 , 1, 0).(对偶问题的最优解)
2.8 已知线性规划问题:
max z=2x 1-x 2+ x 3
s.t. x 1+ x 2 +x 3 ≤6 -x 1+ 2x 2 ≤4 x 1, x 2 ,x 3≥0
先用单纯形法求出最优解,再分别就下列情形进行分析:
(a) 目标函数中变量x 1, x 2 ,x 3的系数分别在什么范围内变化,问题的最优解不变; (b) 两个约束的右端项分别在什么范围内变化,问题的最优基不变; 解:
将此问题化成标准形式, max z=2x 1-x 2+x 3+0x 4 s.t. x 1+x 2+x 3+x 4 =6 -x 1+2x 2 +x 5=4
x 1, x 2, x 3, x 4, x 5≥0
其约束系数矩阵:
⎥⎦
⎤⎢⎣⎡-100210111154321P P P P P
由于2>1, 选择x 1作为换入基的变量。

对于P 1有:
θ=min{ b 1/a 11 | a 11>0 }=min{6/1 }=6. 确定x 4为换出基变量。

a 11=1为主元素
至此,所有检验数σj ≤0,表明现有对应的基可行解为最优解 x 1=6, x 2=0, x 3=0, x 4=0,x 5=10。

原线性规划问题的最优解为x 1=6, x 2=0, x 3=0,
相应目标函数值max z=2x
1-x
2
+x
2
=12。

(a)若要目标函数中变量x
1, x
2
,x
3
的系数变化,而问题的最优解不变
分析下面已知线性规划问题:
max z=(2+λ1)x1+(-1+λ2)-x2+(1+λ3) x3
s.t. x1+ x2 +x3 ≤6
-x1+ 2x2≤4
x1, x2 ,x3≥0
λ1,λ2和λ3分别在什么范围变化,问题的最优解不变
解:当λ2=λ3=0时上述线性规划问题的最终单纯性表为
要使所有检验数σj≤0,则需-3-λ1≤0,-1-λ1≤0,-2+λ1≤0解得λ1≥-1。

当λ1=λ3=0时上述线性规划问题的最终单纯性表为
要使所有检验数σj≤0,则需λ2-3≤0,解得λ2≤3。

当λ1=λ2=0时上述线性规划问题的最终单纯性表为
要使所有检验数σj≤0,则需λ3-1≤0,解得λ3≤1。

综合上述结果:c1+λ1≥2-1=1,c2+λ2≤-1+3=2, c3+λ3≤1+1=2,
即x1, x2 ,x3的系数分别在≥1,≤2,≤2范围内,问题的最优解不变。

(b )
有这个线性规划问题最终单纯性表可知:()51P P B =
为方便改写初始单纯性表:
所以⎥⎦


⎣⎡-=1101B
分析下面已知线性规划问题:
max z=2x 1-x 2+λ3) x 3 s.t. x 1+ x 2 +x 3 ≤6+λ1 -x 1+ 2x 2 ≤4+λ2 x 1, x 2 ,x 3≥0
λ1,λ2分别在什么范围变化,问题的最优解不变
先分析λ1的变化。

由公式(2.17)有
⎥⎦

⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=∆=∆-111*1*01101λλλb B b 使最优基不变的条件是
010611**≥⎥⎦

⎢⎣⎡++=∆+λλb b
由此推出61-≥λ 同理有
⎥⎦
⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥
⎦⎤⎢⎣⎡=∆=∆-22*
1
*
001101λλb B b 01062*
*
≥⎥⎦⎤⎢⎣
⎡+=∆+λb b
由此推出102-≥λ
(注:文件素材和资料部分来自网络,供参考。

请预览后才下载,期待你的好评与关注。

)。

相关文档
最新文档