离散数学章节练习4

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学章节练习4K E Y(总

5页)

-CAL-FENGHAI.-(YICAI)-Company One1

-CAL-本页仅作为文档封面,使用请直接删除

离散数学 章节练习 4

范围:代数系统

一、单项选择题 1. 是群,则对* ( A ) A 、有单位元,可结合 B 、满足结合律、交换律 C 、有单位元、可交换 D 、有逆元、可交换

2. 设N 和Z 分别表示自然数和整数集合,则对减法运算封

闭的是 ( B )

A 、N

B 、{x ÷2|x ∈Z}

C 、{x|x ∈N 且x 是素数}

D 、{2x+1| x ∈Z }

3. 设Z 为整数集,A 为集合,A 的幂集为P(A),+、-、/为数

的加、减、除运算,∩为集合的交运算,下列系统中是群

的代数系统的有 ( B ) A.〈Z ,+,÷〉 B.〈Z ,÷〉 C.〈Z ,-,÷〉 D.〈P(A),⋂〉 4. 设S={0,1},*为普通乘法,则< S , * >是 ( B ) A 、半群,但不是独异点; B 、只是独异点,但不是群; C 、群; D 、环,但不是群。 5. 设f 是由群到群的同态映射,则ker (f)是 ( B ) A 、G '的子群 B 、G 的子群 C 、包含G ' D 、包含G 6. 在整数集Z 上,下列哪种运算不是封闭的 ( C ) A + B - C ÷ D X 7. 设S={0,1},*为普通乘法,则< S , * >是 ( B )

A 、半群,但不是独异点;

B 、只是独异点,但不是群;

C 、群;

D 、环,但不是群。 8. 设R 是实数集合,“⨯”为普通乘法,则代数系统 是( A )。 A .群; B .环; C .半群 D.都不是 9. 设︒是集合S 上的二元运算,如果集合S 中的某元素eL,对∀x ∈S 都有 eL ︒x=x ,则称eL 为 ( C ) A 、右单位元 B 、右零元 C 、左单位元 D 、左零元 10. 整数集上的加法系统中0是 ( A ) A 单位元 B 逆元 C 零元 D 陪集 11. 若V=是半群,则它具有下列那些性质 ( A ) A 、封闭性、结合性 B 、封闭性、交换性 C 、有单位元 D 、有零元 二、判断题 1.若半群含有零元,则称为独异点。 ( ) 2、代数系统的零元是0 ( ) 3、<{e},*>是的子群。 ( ) 4、小于6阶群都是可交换群。 ( ) 5、设*是S 上的二元运算,若存在零元和单位元e ,则|S| >1 ( )

6、代数系统的单位元是1。 ( ) 7.若群中的运算可交换,则称为交换群。 ( )

8、在代数系统中如果元素A a ∈的左逆元1

-e a 存在,

则它一定唯一且1

1--=e a a 。 ( ) 9、设是群的子群,则中幺元e 是中幺元。 ( ) 10、设},,3|{均为有理数b a b a x x A +==, +,·为普

通加法和乘法,则代数系统是域。

( )

11、设*是S 上的二元运算,若存在零元和单位元e ,则

|S| >1 ( ) 12、设为偏序集, B ⊆A, y ∈B ,若∀x(x ∈B→y ≼x)成立, 则称 y 为A 的最小元 ( )

13、若V=是封闭、可结合,则称V 为半群。 ( ) 14、 整数集上的加法独异点 ( ) 15、设G 为群且|G|>1,则G 中没有零元。 ( ) 16、设为群,对于a, b ∈G , 必存在唯一的 x ∈G ,使

得a *x=b 。 ( )

17、设是群,若G 存在一个元素a ,使得G 中任意元

素都由a 的幂组成,则称该群为循环群。 ( ) 18、设︒与*是集合S 上的二种可交换的二元运算,若∀x,y ∈S 都有 x*(x ︒y)=x , x ︒(x*y)=x 则称*与︒是满足吸

收律 ( ) 19、设︒是集合S 上的二元运算,若∀x ∈S 都有x ︒x=x,则称︒

在S 上是幂等的,或者说运算︒ 在S 上满足幂等律。

( )

20、设︒是集合S 上的二元运算,若∀x,y ∈S 都有x ︒y=y ︒x,则称︒在S 上是可交换的,或者说运算︒ 在S 上满足交换律。

( )

21、设是群,若G 存在一个元素a ,使得G 中任意元

素都由a 的幂组成,则称该群为交换群。 ( ) 22、设是半群,集合B ⊆S,且运算♥在B 上封闭,则是半群。 ( )

23、设G 为群且|G|>1,则G 中没有单位零元 ( ) 【参考答案】

1-10 ×√√√× √√×√√ 11-20 ××√√√ √√√√√ 21-23 ×√×

三、填空题 1.代数系统的单位元是 0 。 2.代数系统的单位元e 的逆元是 e 。 3.对代数系统,其中*是S 上的二元运算,若存在a ∈S ,且对任意的x ∈S ,都有a*x=x*a=x ,则称a 为运算“*”的 单位 元。 4.自然数乘法代数系统的单位元是 1 。 5.集合A 和A 上的偏序关系≼一起叫做 偏序集 。

6.设︒是集合S 上的二元运算,如果集合S 中的某元素eL 对∀x ∈S 都有e L ︒x=x ,则称e L 为 左单位元 。

7.某x ∈S 若有yL ∈S,使得 y L ︒x=e ,则称y L 为 左逆元 。 8.H 是G 的子群,a ∈G,H 的右陪集Ha = {x | x=h ︒a, h ∈H},其中a 称为Ha 的 代表元或特征元 。

9.设︒是S 上的二元运算,若存在零元θ与单位元e,且集合S 中至少有2个元素,则θ与e 的关系为 θ≠ e 。

10.设是偏序集,B ⊆A, y0∈B, 若∀x ∈B,均有 ∈R ,则y 0是B 的 最大元 。

11.设有代数系统,在A 上定义了等价关系R ⊆A ⨯A 。如果∈R 时均有∈R,称R 为A 上关于♥的 同余关系 。

12.设是群,若G 存在一个元素a ,使得G 中任意元素都由 a 的幂 组成,则称该群为循环群。记成G=,a 称为该群的生成元。

13.设︒与*是集合S 上的二种可交换的二元运算,若

∀x,y ∈S 都有 x*(x ︒y)=x , x ︒(x*y)=x, 则称*与︒是满足 吸收律 。

四、计算题

1 .判断自然数中的加法是否是半群。 【参考答案】

2.判断整数中的加法是否是群,并证明。 【参考答案】

3. 判断自然数中的乘法是否是半群。

【参考答案】

4. 证明:设是半群,集合B ⊆S ,且运算♥在B 上封闭,则是半群。 【参考答案】

5. 设 * 为+

Z 上的二元运算+

∈∀Z y x ,,X * Y = min ( x ,y ),即x 和y 之中较小的数.求4 * 6,7 * 3,9 * 1,15 * 2的结果。 【参考答案】 4 3 1 2

6. 设 * 为+Z 上的二元运算+∈∀Z y x ,,X * Y = min ( x ,y ),即x 和y 之中较小的数,求*运算的单位元,零元及

+Z 中所有可逆元素的逆元。

【参考答案】

单位元 无,零元 1, 所有元素无逆元

7. 设S={0,1,2,3},为模4乘法,即 "∀x,y ∈S, x y=(xy)mod 4 。问〈S ,〉是否构成群为什么 【参考答案】 解:(1) ∀x,y ∈S, x y=(xy)mod 4S ∈,

是S 上的代数

运算。

(2) ∀x,y,z ∈S,设xy=4k+r 30≤≤r

(x y)z =((xy)mod 4)z=r z=(rz)mod 4 =(4kz+rz)mod 4=((4k+r)z)mod 4 =(xyz)mod 4

同理x (y z) =(xyz)mod 4 所以,(x

y)

z = x (y

z),结合律成立。

(3) ∀x ∈S, (x 1)=(1

x)=x,,所以1是单位元。

(4)

,33,1111==-- 0和2没有逆元

所以,〈S ,〉不构成群

8. 设Z 为整数集合,在Z 上定义二元运算为∀x,y ∈Z,xoy= x+y-2,问Z 关于o 运算能否构成群为什么 【参考答案】

解:(1) ∀x,y ∈Z, xoy= x+y-2Z ∈,o 是Z 上的代数运算。 (2) ∀x,y,z ∈Z,

(xoy) oz =(x+y-2)oz=(x+y-2)+z-2=x+y+z-4 同理(xoy)oz= xo(yoz),结合律成立。

(3)设e 是单位元,∀x ∈Z, xo e = e ox=x,即x+e -2= e +x-2=x, e=2

(4) ∀x ∈Z , 设x 的逆元是y, xoy= yox=e , 即x+y-2=y+x-2=2,

所以,

x y x -==-41

所以〈Z ,o 〉构成群

9. 令S={a ,b},S 上有三个运算分别如下表确

定。

(a) (b) (c)

这三个运算中哪些运算满足交换律,结合律,幂等律? 【参考答案】

(a)满足交换律和结合律,不满足幂等律,单位元为a,没有零元

b b a a ==--11,

(b)满足交换律,不满足幂等律,不满足结合律 a b a b b a b a a b b a ==== )(,)(

b b a b b a )()(≠

没有单位元, 没有零元

(c) 不满足交换律,满足结合律和幂等律 没有单位元, 没有零元

10 .设集合A = {1 , 2 , 3 , 4} , * 是A 上的二元运算, 其定义为: a * b = a+ ab , 请写出*的运算表。 【参考答案】 其运算表如表所示。

* 1 2 3 4 1 2 3 4 5 2

4

6

8

10