高中数学 第一章 立体几何初步 1.7 简单几何体的面积和体积 1.7.2 柱体、锥体、台体的表面积

合集下载

2024-2025学年高中数学第1章立体几何初步1简单几何体(教师用书)教案北师大版必修2

2024-2025学年高中数学第1章立体几何初步1简单几何体(教师用书)教案北师大版必修2
肯定学生的表现,鼓励他们继续努力。
布置作业:
根据本节课学习的简单几何体的内容,布置适量的课后作业,巩固学习效果。
提醒学生注意作业要求和时间安排,确保作业质量。
拓展与延伸
1. 提供与本节课内容相关的拓展阅读材料:
- 《几何原本》是古希腊数学家欧几里得的代表作,其中包含了关于立体几何的详细论述,对于理解立体几何的概念和定理非常有帮助。
举例:可以用坐标系表示几何体的顶点或中心点的位置,用向量表示几何体的尺寸和方向。
(3)几何体的表面积和体积计算:如何计算简单几何体的表面积和体积。
举例:正方体的表面积公式为6a²,其中a为边长;正方体的体积公式为a³。
2.教学难点
(1)理解并应用几何体的特征:学生可能对几何体的特征和性质理解不深,难以运用到实际问题中。
互动探究:
设计小组讨论环节,让学生围绕简单几何体的问题展开讨论,培养学生的合作精神和沟通能力。
鼓励学生提出自己的观点和疑问,引导学生深入思考,拓展思维。
技能训练:
设计实践活动或实验,让学生在实践中体验几何体的应用,提高实践能力。
在新课呈现结束后,对简单几何体的知识点进行梳理和总结。
强调重点和难点,帮助学生形成完整的知识体系。
- 学习如何表示和描述简单几何体的尺寸和位置;
- 掌握如何计算简单几何体的表面积和体积。
2.教学目标:
- 学生能准确识别和描述常见简单几何体的特征;
- 学生能运用数学语言和符号表示简单几何体的尺寸和位置;
- 学生能计算简单几何体的表面积和体积,并能解决相关实际问题。
三、教学步骤
1.导入(5分钟):通过展示一些实际生活中的几何体模型,引导学生思考和讨论这些模型的特征和数学关系。

高中数学 必修二-第一章 立体几何初步 知识点整理

高中数学 必修二-第一章  立体几何初步 知识点整理

底面为三角形、四边形、五边形„„的棱锥分别叫做三棱锥、四棱锥、五棱锥„„,
其中三棱锥又叫四面体。
4
必修二
正棱锥:如果一个棱锥的底面是正多边形,并且顶点在底面上的射影是底面的中心, 这样的棱锥叫做正棱锥。
正棱锥的性质: ①各侧棱相等,各侧面都是全等的等腰三角形; ②棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形,棱锥的高、侧棱和侧 棱在底面上的射影也组成一个直角三角形。 (4)棱台的结构特征 用一个平行于棱锥底面的平面去截棱 锥,底面与截面之间的部分叫做棱台。 原棱锥的底面和截面分别叫做棱台的 下底面和上底面;其它各面叫做棱台的侧 面;相邻侧面的公共边叫做棱台的侧棱; 底面与侧面的公共顶点叫做棱台的顶点; 当棱台的底面水平放置时,铅垂线与两底 面交点间的线段叫做棱台的高。 由正棱锥截得的棱台叫做正棱台。正棱台的性质: ①各侧棱相等,侧面是全等的等腰梯形;②两底面以及平行于底面的截面是相似多边 形;③两底面中心连线、相应的边心距和斜高组成一个直角梯形;④两底面中心连线、侧 棱和两底面外接圆相应半径组成一个直角梯形;⑤正棱台的上下底面中心的连线是棱台的 一条高;⑥正四棱台的对角面是等腰梯形。
8
必修二
②在已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x′轴或 y′ 轴的线段。
③在已知图形中平行于 x 轴的线段,在直观图中保持原长度不变,平行于 y 轴的线段, 长度变为原来的一半。
用斜二测法画直观图,关键是掌握水平放置的平面图形的直观图的画法,而画水平放 置的平面图形的关键是确定多边形的顶点。因为多边形顶点的位置一旦确定,依次连接这 些顶点就可画出多边形。
在一束平行光线照射下形成的投影,叫做平行投影。平行投影的投影线是平行的。在 平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影。

1.7.1 简单几何体的侧面积

1.7.1  简单几何体的侧面积

h
d
b
h
h
b
a
a
d
S直棱柱侧=(a + b + d ) ⋅ h = ch
1 S正棱锥侧 = ch' 2
h'
h'
C′
h'
1 S正棱台侧 (c + c' )h' = 2
h'
C
思考:将直棱柱、正棱锥、正棱台的侧面积公式进行比较, 思考:将直棱柱、正棱锥、正棱台的侧面积公式进行比较, 你能发现它们的联系和区别吗? 你能发现它们的联系和区别吗?
2
答:锅炉的表面积约为 8.8m 2.
例2
圆台的上下底面半径分别是10cm和20cm,它的侧面 圆台的上下底面半径分别是10cm和20cm,它的侧面 10cm
展开图的扇环的圆心角是180° 展开图的扇环的圆心角是180°,那么圆台的侧面积是多 180 少?(结果中保留 π ) ?(结果中保留 解 如图,设上底面周长为c,因为扇环 如图,设上底面周长为c,因为扇环 c, 的圆心角是180° 所以c= 的圆心角是180°,所以c= π·SA 180
r1 = r2
S圆柱侧 = 2p rl
例1.一个无上盖圆柱形的锅炉,底面直径 d = 1m , 1.一个无上盖圆柱形的锅炉, 一个无上盖圆柱形的锅炉 求锅炉的表面积(保留2个有效数字) 高 h = 2.3m ,求锅炉的表面积(保留2个有效数字)
骣÷ çd ÷ 解: S = S侧面积 + 2S底面积 = p dh + 2p ç ÷ ç2 桫 1 = p 创 2.3 + 2p 椿 1 4 8.8 (m 2 )
又因为c=2 ,所以SA=20.同理 所以SA=20. 又因为c=2 π×10=20 π ,所以SA=20.同理 SB=40.所以,AB=SBSB=40.所以,AB=SB-SA=20,S圆台侧= 所以

五种版本教材比较

五种版本教材比较

关于五种版本必修教材章节设置的比较研究──使用人教B版教材后的思考北京人大附中吴中才人教B版教材是人民教育出版社根据课程标准编写的一套教科书,与人教A版、北师大版、苏教版、湘教版一样,属于“一纲多本”。

这些不同版本的教材有什么不同呢?它们难道就是呈现知识的背景材料不同、习题设置不同吗?或者说简单的就是难易程度不一样吗?或者说是体例不同?栏目设置不同?本文将研究其核心的东西——课程内容,就目前五套教材必修教材的章节设置作一比较与分析。

特别说明之一,由于笔者使用的教材有的是电子版,教材具体版本不详,故可能会有一些章节目录设置存在一些出入;之二,各套教材表示章节的符号有所不同,为了便于对比,本文统一了表示符号;之三,本文仅比较到二级目录,不比较到更细致的目录。

一、各版本必修教材的目录设置几何点、线、面关何和解方角第一章三角函数[1]1.1 弧度制与任意角1.2 任意角的三角函数1.3 三角函数的图象与性质1.4 函数的图象与性质第二章向量2.1 什么是向量2.2 向量的加法2.3 向量与实数相乘2.4 向量的分解与坐标表示2.5 向量的数量积2.6 向量的应用第三章三角恒等变换3.1 两角和与差的三角函数3.2 二倍角的三角函数3.3 简单的三角恒等变换2.1 随机抽样2.2 用样本估计总体2.3 变量间的相关关系第三章概率3.1 随机事件的概率3.2 古典概型3.3 几何概型案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 事件与概率3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用字特征1.5 用样本估计总体1.6 统计活动:结婚年龄的变化1.7 相关性1.8 最小二乘估计第二章算法初步2.1 算法的基本思想2.2 算法的基本结构及设计2.3 排序问题2.4 几种基本语句第三章概率3.1 随机事件的概率3.2 古典概型3.3 模拟方法――概率的应用1.4 算法案例第二章统计2.1 抽样方法2.2 总体分布的估计2.3 总体特征数的估计2.4 线性回归方程第三章概率3.1 随机事件及其概率3.2 古典概型3.3 几何概型3.4 互斥事件2.1 点的坐标2.2 直线的方程2.3 圆与方程2.4 几何问题的代数解法2.5 空间直角坐标系必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数的图象1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示第一章基本初等函数(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与第一章三角函数1.1 周期现象与周期函数1.2 角的概念的推广1.3 弧度制1.4 正弦函数1.5 余弦函数1.6 正切函数1.7 函数的图象1.8 同角三角函数的基本关系第二章平面向量2.1 从位移、速度、力到向量2.2 从位移的合成到向量的加法2.3 从速度的倍数到数乘向量2.4 平面向量第一章三角函数1.1 任意角、弧度1.2 任意角的三角函数1.3 三角函数的图象和性质第二章平面向量2.1 向量的概念及表示2.2 向量的线性运算2.3 向量的坐标表示2.4 向量的数量积2.5 向量的应用第三章三角恒等变换3.1 两角和与差的三角函数3.2 二倍角的三角函数第一章解三角形1.1 正弦定理1.2 余弦定理1.3 解三角形的应用举例第二章数列2.1 数列的概念2.2 等差数列2.3 等比数列2.4 分期付款问题中的有关计算第三章不等式3.1 不等式的基本性质3.2 一元二次不等式3.3 基本不等式及其应用3.4 简单线性规划第一章解三角形1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业第二章数列2.1 数列的概念与简单表示2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题3.4 基本不等式:第形1.1和余弦定理1.2第二章数列2.12.22.3第三章不等式3.1与不等式3.2式3.3不法3.4应用3.5不等式简划问题日中角理中形举次等性第一章解三角形1.1 正弦定理1.2 余弦定理1.3 正弦定理、余弦定理的应用第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系3.2 一元二次不等式3.3 二元一次不等式组与简单的线性规划问题3.4 基本不等式第步1.1念1.2与程序框图1.3语句1.4第初步2.1体2.2方法2.3布布2.4关性第三章概率3.1件3.2计算3.3率二、差异性比较1. 必修次序的调整人教A版、人教B版、北师大版、苏教版的必修次序设置与课程标准完全一致,湘教版将必修五个模块的次序作了一些调整:它的第一册内容是课程标准的必修1,第二册是必修4,第三册是必修2,第四册是必修5,第五册是必修3。

北师大版高中数学必修2第一章《立体几何初步》简单几何体

北师大版高中数学必修2第一章《立体几何初步》简单几何体

9
问题4: 如图所示:把矩形 问题 如图所示 把矩形ABCD绕着其一边 绕着其一边 把矩形 AB所在的直线在空间中旋转一周,则矩形的 所在的直线在空间中旋转一周, 所在的直线在空间中旋转一周 其它三条边在旋转的过程中所形成的曲面围 成的几何体会是什么呢? 成的几何体会是什么呢?
C
B
A
D
10
四、圆柱的结构特征
27
2、棱柱的分类:棱柱的底面可以是三角形、四 、棱柱的分类:棱柱的底面可以是三角形、 边形、五边形、 边形、五边形、 …… 我们把棱柱按照底面多边 形边数的多少,可分三棱柱、四棱柱、 形边数的多少,可分三棱柱、四棱柱、五棱 柱、……
三棱柱 四棱柱
五棱柱
28
3、棱柱的表示法(下图 、棱柱的表示法 下图 下图)
相邻侧面的公共边叫做棱柱的侧棱。 相邻侧面的公共边叫做棱柱的侧棱。 侧面与底的公共顶点叫做棱柱的顶点。 侧面与底的公共顶点叫做棱柱的顶点。
24
底面
侧面 侧棱 顶点
底 面
25
观察下列几何体并思考:棱柱(1), 一、 观察下列几何体并思考:棱柱(1), (3)与棱柱(2)的不同之处? 与棱柱(2)的不同之处? 的不同之处
1、定义:以矩形的一边所在直线为 、定义: O1 旋转轴,把它在空间中旋转一周后, 旋转轴,把它在空间中旋转一周后,其余 三边旋转形成的曲面所围成的几何体叫做 圆柱。 圆柱。
矩形
O
圆柱的轴。 (1)旋转轴叫做圆柱的轴。 )旋转轴叫做圆柱的轴 (2) 垂直于轴的边旋转而成 ) 的圆面叫做圆柱的底面 圆柱的底面。 的圆面叫做圆柱的底面。 (3)由平行于轴的边旋转而 ) 成的曲面叫做圆柱的侧面 圆柱的侧面。 成的曲面叫做圆柱的侧面。 (4)无论旋转到什么位置不 ) 11 垂直于轴的边都叫做圆柱的母线 圆柱的母线。 垂直于轴的边都叫做圆柱的母线。

高中数学:第一章(立体几何初步)学案(新人教版B版必修2) 学案

高中数学:第一章(立体几何初步)学案(新人教版B版必修2) 学案

数学:第一章《立体几何初步》学案(新人教版B 版必修2)第一章《立体几何初步》单元小结导航知识链接点击考点(1)了解柱,锥,台,球及简单组合体的结构特征。

(2) 能画出简单空间图形的三视图,能识别三视图所表示的立体模型,并会用斜二测法画出它们的直观图。

(3) 通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式。

(4) 理解柱,锥,台,球的表面积及体积公式。

(5) 理解平面的基本性质及确定平面的条件。

(6) 掌握空间直线与直线,直线与平面,平面与平面平行的判定及性质。

(7) 掌握空间直线与平面,平面与平面垂直的判定及性质。

名师导航1.学习方法指导 (1) 空间几何体①空间图形直观描述了空间形体的特征,我们一般用斜二测画法来画空间图形的直观图。

②空间图形可以看作点的集合,用符号语言表述点,线,面的位置关系时,经常用到集合的有关符号,要注意文字语言,符号语言,图形语言的相互转化。

③柱,锥,台,球是简单的几何体,同学们可用列表的方法对它们的定义,性质,表面积及体积进行归纳整理。

④对于一个正棱台,当上底面扩展为下底面的全等形时,就变为一个直棱柱;当上底面收缩为中心点时,就变为一个正棱锥。

由1()2S c c h ''=+正棱台侧和()3hV s s '=正棱台,就可看出它们的侧面积与体积公式的联系。

(2) 点,线,面之间的位置关系①“确定平面”是将空间图形问题转化为平面图形问题来解决的重要条件,这种转化最基本的就是三个公理。

②空间中平行关系之间的转化:直线与直线平行 直线与平面平行平面与平面平行。

③空间中垂直关系之间的转化:直线与直线垂直 直线与平面垂直平面与平面垂直。

2.思想方法小结在本章中需要用到的数学思想方法有:观察法,数形结合思想,化归与转化思想等。

主要是立体几何问题转化为平面几何问题,平行与垂直的相互转化等。

3.综合例题分析例1:如图,P 是∆ABC 所在平面外一点,A ',B ',C '分别是PBC ∆,PCA ∆,PAB ∆的重心。

苏教版必修2数学课件-第1章立体几何初步第3节空间几何体的表面积和体积教学课件

苏教版必修2数学课件-第1章立体几何初步第3节空间几何体的表面积和体积教学课件
6π [S=2π×1×2+2π×12=6π.]
栏目导航
合作探究 提素养
栏目导航
棱柱、棱锥和棱台的侧面积和表面积 【例 1】 正四棱锥的侧面积是底面积的 2 倍,高是 3,求它的 表面积. 思路探究:由 S 侧与 S 底的关系,求得斜高与底面边长之间的关系, 进而求出斜高和底面边长,最后求表面积.
所以 S 侧=3×12×(20+30)×DD′=75DD′. 又 A′B′=20 cm,AB=30 cm,则上、下底面面积之和为 S 上+S 下 = 43×(202+302)=325 3(cm2).
栏目导航
由 S 侧=S 上+S 下,得 75DD′=325 3, 所以 DD′=133 3(cm), 又因为 O′D′= 63×20=103 3(cm), OD= 63×30=5 3(cm),
错点)
运算核心素养.
3.会求简单组合体的体积及表面积.(难点)
栏目导航
自主预习 探新知
栏目导航
1.柱体、锥体、台体的体积
几何体
体积
柱体 锥体
V 柱体= Sh (S 为底面面积,h 为高), V 圆柱= πr2h (r 为底面半径) 1
V 锥体= 3Sh (S 为底面面积,h 为高), V 圆锥= π3r2h (r 为底面半径)
栏目导航
台体
V 台体= 13h(S+ SS′+S′) (S′,S 分别为上、下底面面 积,h 为高),V 圆台= 13πh(r′2+rr′+r2) (r′,r 分别为上、 下底面半径)
思考:柱体、锥体、台体的体积公式之间的关系. 提示:V=Sh―S′―=→S V=13(S′+ S′S+S)h―S′―=→0 V=13Sh.
栏目导航
[解] 如图所示,设 SE 是侧面三角形 ABS 的高,则 SE 就是正 四棱锥的斜高.

人教B高中数学必修二课时跟踪检测:第一章 立体几何初步 含解析

人教B高中数学必修二课时跟踪检测:第一章 立体几何初步   含解析

第一章立体几何初步1.1空间几何体1.1.7柱、锥、台和球的体积课时跟踪检测[A组基础过关]1.某三棱锥的三视图如图所示,该三棱锥的体积为()A.2 B.3C.4 D.6解析:由三视图可知三棱锥的直观图如图所示.其中AB为高,底面是直角三角形,V=13AB×12BD×CD=13×2×12×3×2=2,故选A.答案:A2.某几何体的三视图如图所示,则该几何体的体积为()A.13+π B.23+πC.13+2π D.23+2π解析:由该几何体的三视图可知该几何体是由一个三棱锥和半个圆柱组合而成,由此可知该几何体的体积为13×12×2×1×1+12π×12×2=13+π,故选A.答案:A3.某几何体的三视图如图所示,其中俯视图是等腰三角形,那么该几何体的体积是()A.96 B.128C.140 D.152解析:由三视图可知,该几何体是一个三棱柱,V=S·h=12×6×4×8=96.答案:A4.正三棱柱的侧面展开图是边长为2和4的矩形,则该正三棱柱的体积是()A.839B.439C.239D.439或839解析:当2为正三棱柱的底面周长时,正三棱柱底面三角形的边长a=2 3,底面面积S=34a2=39,正三棱柱的高h=4,所以正三棱柱的体积V=Sh=439;同理,当4为正三棱柱的底面周长时,正三棱柱底面三角形的边长a′=43,底面面积S′=34a′2=439,正三棱柱的高h′=2,所以正三棱柱的体积V′=S′h′=839.所以正三棱柱的体积为439或839.答案:D5.若正方体的棱长为2,则以该正方体各个面的中心为顶点的凸多面体的体积为()A.26B.23C.33D.23解析:以正方体各个面的中心为顶点的凸多面体是由两个全等的正四棱锥构成,正四棱锥的底面边长为1,高为22,∴V=2×13×1×1×22=23.故选B.答案:B6.已知圆锥的母线长为5,侧面积为20π,则此圆锥的体积为________.解析:由S侧=πrl=20π,l=5得r=4,∴圆锥的高h=l2-r2=3.∴圆锥的体积为V=13πr2·h=16π.答案:16π7.(2018·江苏卷)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.解析:由图可知,该多面体为两个全等正四棱锥的组合体,且正四棱锥的高为1,底面正方形的边长等于2,所以该多面体的体积为2×13×1×(2)2=43.答案:438.已知某几何体的俯视图是边长分别为8和6的矩形,主视图是一个底边长为8,高为4的等腰三角形,左视图是一个底边长为6,高为4的等腰三角形.(1)求该几何体的体积; (2)求该几何体的侧面积.解:由已知可得该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥V -ABCD .如图所示,(1)V =13×(8×6)×4=64.(2)该四棱锥有两个侧面VAD ,VBC 是全等的等腰三角形,且BC 边上的高为h 1=42+⎝ ⎛⎭⎪⎫822=42,另两个侧面VAB ,VCD 也是全等的等腰三角形,AB边上的高为h 2=42+⎝ ⎛⎭⎪⎫622=5,因此S 侧=2×⎝ ⎛⎭⎪⎫12×6×42+12×8×5=40+24 2.[B 组 技能提升]1.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15解析:由三视图可知,正方体被平面截去三棱锥A1-AB1D1,设正方体的边长为a,V正=a3,VA1-AB1D1=13×12a2·a=16a3,∴V A1-AB1D1V剩=16a3a3-16a3=15,故选D.答案:D2.一个正方体的顶点都在球面上,它的棱长为3,则这个球的体积为() A.9π B.932πC.27π D.2732π解析:∵棱长为3的正方体的体对角线长为33,∴球半径为332,∴V=43π⎝⎛⎭⎪⎫3233=2732π.故选D.答案:D3.一个底面半径为R的圆柱形水桶中装有适量的水,若放入一个半径为r的实心铁球(水面漫过球),水面高度恰好升高r,则Rr=________.解析:由题知43πr3=πR2·r,∴R r=233.答案:23 34.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的主视图如图所示,则该三棱锥的体积是________.解析:由主视图知,三棱锥的高为1,底面是腰长为2,底边为23的等腰三角形,∴V=13×12×23×1×1=33.答案:3 35.如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的主视图和左视图在下面画出(单位:cm).(1)在主视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积.解:(1)如图.(2)所求多面体的体积V=V长方体-V正三棱锥=4×4×6-13×⎝⎛⎭⎪⎫12×2×2×2=2843.6.圆台的母线长为6 cm,它的轴截面等腰梯形的一条对角线与一腰垂直且与下底所成的角为30°,求该圆台的体积.解:如图,等腰梯形AA1B1B为圆台的轴截面,AA1=6 cm,∠AA1B=90°,∠ABA1=30°,于是AB=2AA1=12 cm,由A1B1∥AB,得∠B1A1B=∠A1BA=30°,又∠A=90°-30°=60°,得∠A1BB1=60°-30°=30°,故△A1B1B为等腰三角形,∴A1B1=B1B=6 cm.又OO1·AB=AA1·A1B得,OO1=AA1·A1BAB=6×6312=33(cm),由圆台的体积公式:V圆台=13π·OO1·(A1O21+A1O1·AO+AO2)=13·π·33·(32+3×6+62)=633π(cm3).。

最新人教A版高中数学教材目录(全)

最新人教A版高中数学教材目录(全)

人教A版高中数学目录必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式 2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。

高中数学 第一章 立体几何初步 1.7.1 柱、锥、台的侧面展开与面积课件高一数学课件

高中数学 第一章 立体几何初步 1.7.1 柱、锥、台的侧面展开与面积课件高一数学课件
提示:这三种几何体侧面积之间的关系
12/13/2021
第十五页,共五十八页。
3.如何求简单多面体的侧面积? 提示:(1)关键:找到多面体的特征几何图形,如棱柱中的矩 形,棱台中的直角梯形,棱锥中的直角三角形,它们是联系高与 斜高、侧棱、底面边长间的桥梁,架起了求侧面积公式中未知量 与条件中已知几何元素间的桥梁. (2)策略:①正棱柱、正棱锥、正棱台的所有侧面的面积都相 等,因此求侧面积时,可先求一个侧面的面积,然后乘以侧面的 个数;②解决台体的问题,通常要补上截去的小棱锥,寻找上下 底面之间的关系.
B.100π
C.168π
4 4,母线长为 D.169π
解析:
12/13/2021
第三十五页,共五十八页。
先画轴截面,圆台的轴截面如图,则它的母线长 l= h2+r2-r12
= 4r12+3r12=5r1=10,∴r1=2,r2=8,∴S 侧=π(r2+ r1)l=π×(8+2)×10=100π,S 表=S 侧+πr12+πr22=100π+4π+64π =168π.
12/13/2021
第二十四页,共五十八页。
类型二 锥体的侧面积与表面积 【例 2】 正四棱锥底面边长为 4 cm,高和斜高的夹角为 30°,如图,求正四棱锥的侧面积.
12/13/2021
第二十五页,共五十八页。
【解】 正棱锥的高 PO、斜高 PE、底面边心距 OE 组成 Rt △POE.
∵OE=2 cm,∠OPE=30°, ∴PE=siOn3E0°=4 cm. 因此 S 棱锥侧=12ch′=12×4×4×4=32(cm2).
12/13/2021
第十页,共五十八页。
知识点二 直棱柱、正棱锥、正棱台的侧面积 [填一填]

【三维设计】高中数学 第一部分 第一章 立体几何初步§7 简单几何体的面积和体积 7.3 球的表

【三维设计】高中数学 第一部分 第一章 立体几何初步§7 简单几何体的面积和体积 7.3 球的表

【三维设计】2013高中数学 第一部分 第一章 立体几何初步§7 简单几何体的面积和体积 7.3 球的表面积和体积课时训练 北师大版必修21.三个球的半径之比为1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的( )A .1倍B .2倍C.95倍D.74倍 解析:由已知,可设最小的球的半径为r ,则另两个球的半径为2r,3r ,所以各球的表面积分别为4πr 2,16πr 2,36πr 2.∴36πr 24πr 2+16πr 2=3620=95(倍). 答案:C2.用与球心距离为1的平面去截球,所得截面面积为π,则球的体积为( ) A.323 π B.8π3C .8 2πD.8 23π [ 解析:设球的半径为R ,截面的半径为r .∴πr 2=π.∴r =1.∴R = 2.∴V =43πR 3=4π3(2)3 =823π. 答案:D3. (2012·临沂高一检测)一个正方体与一个球表面积相等,那么它们的体积比是( ) A.3π2π B.2π2 C.π2 D. 6π6解析:设正方体的棱长为a ,球的半径为R ,则6a 2=4πR 2,即a =6π3R . ∴V 正=a 3=6π6π27R 3,V 球=43πR 3, ∴V 正V 球=6π6. 答案:D4.(2012·温州高一检测)长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ) A .25πB .50πC .125πD .都不对 解析:设球的半径为R .则2R = 32+42+52=5 2.∴S 表=4πR 2=π(2R )2=π (52)2=50π.答案:B5.若一个球的体积为4 3π,则它的表面积为________. 解析:设球的半径为R ,则V 球=43πR 3=43π, ∴R = 3.∴S 球=4πR 2=4π×3=12π.答案:12π6.圆柱形容器内部盛有高度为8 cm 的水,若放入三个相同的球(球的半径与 圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的 半径是________cm.解析:设球的半径为r cm ,则底面圆的半径为r cm , 从而有8πr 2+3×43πr 3=6r ·πr 2,由此解得r =4. 答案:4[7.设正方体的全面积为24,求其内切球的体积及外接球的体积.解:设正方体的边长为a ,则6a 2=24.∴a =2.∴内切球的半径r =a2=1,∴V 内切球=43πR 3=4π3. 外接球的半径R =2 32= 3. V 外接球=43πR 3=4 3π .8.如图,一个长、宽、高分别是80 cm 、60 cm 、55 cm 的水槽中有水200 000 cm 3.现放入一个直径为50 cm 的木球,如果木球的2/3在水中,1/3在水上,那么水是否会从水槽中流出?解:水槽的容积V =80×60×55=264 000(cm 3), 木球的体积V 木=43π×253≈65 417(cm 3). ∵200 000+65 417×23≈243 611<V , ∴水不会从水槽中流出.。

高中数学 第一章 立体几何初步 1.7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积 1.7.3 球

高中数学 第一章 立体几何初步 1.7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积 1.7.3 球

7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积7.3 球的表面积和体积学习目标 1.理解柱体、锥体、台体的体积公式(重点);2.理解球的表面积和体积公式(重点);3.能运用体积公式求解有关的体积问题,并且熟悉台体与柱体和锥体之间的转换关系(重、难点).知识点一 柱、锥、台体的体积公式几何体体积公式柱体圆柱V 柱体=ShS —柱体底面积 h —柱体的高棱柱 锥体圆锥V 锥体=13ShS —锥体底面积 h —锥体的高 棱锥 台体圆台V 台体=13(S 上+S 下+S 上·S 下)·hS 上、S 下—台体的上、下底面面积,h —高棱台【预习评价】简单组合体分割成几个几何体,其表面积如何变化?其体积呢? 提示 表面积变大了,体积不变. 知识点二 球的体积公式与表面积公式 1.球的体积公式V =43πR 3(其中R 为球的半径).2.球的表面积公式S =4πR 2. 【预习评价】球有底面吗?球面能展开成平面图形吗? 提示 球没有底面,球的表面不能展开成平面.题型一 柱体、锥体、台体的体积【例1】 (1)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析 由所给三视图可知,该几何体是由相同底面的两个圆锥和一个圆柱组成,底面半径为1 m ,圆锥的高为1 m ,圆柱的高为2 m ,因此该几何体的体积V =2×13×π×12×1+π×12×2=83π(m 3). 答案 83π(2)在四棱锥E -ABCD 中,底面ABCD 为梯形,AB ∥CD ,2AB =3CD ,M 为AE 的中点,设E -ABCD 的体积为V ,那么三棱锥M -EBC 的体积为多少?解 如图,设点B 到平面EMC 的距离为h 1,点D 到平面EMC 的距离为h 2. 连接MD .因为M 是AE 的中点, 所以V M -ABCD =12V .所以V E -MBC =12V -V E -MDC .而V E -MBC =V B -EMC ,V E -MDC =V D -EMC , 所以V E -MBC V E -MDC =V B -EMC V D -EMC =h 1h 2. 因为B ,D 到平面EMC 的距离即为到平面EAC 的距离,而AB ∥CD ,且2AB =3CD ,所以h 1h 2=32.所以V E -MBC =V M -EBC =310V .规律方法 (1)求柱体的体积关键是求其底面积和高,底面积利用平面图形面积的求法,常转化为三角形及四边形,高常与侧棱、斜高及其在底面的投影组成直角三角形,进而求解. (2)锥体的体积公式V =13Sh 既适合棱锥,也适合圆锥,其中棱锥可以是正棱锥,也可以不是正棱锥.(3)三棱锥的体积求解具有较多的灵活性,因为三棱锥的任何一个面都可以作为底面,所以常常需要根据题目条件对其顶点和底面进行转换,这一方法叫作等积法.(4)台体的体积计算公式是V =13(S 上+S 下+S 上S 下)h ,其中S 上,S 下分别表示台体的上、下底面的面积.计算体积的关键是求出上、下底面的面积及高,求解相关量时,应充分利用台体中的直角梯形、直角三角形.另外,台体的体积还可以通过两个锥体的体积差来计算. 【训练1】 某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1 B.π2+3 C.3π2+1 D.3π2+3 解析 由三视图可知原几何体为半个圆锥和一个三棱锥的组合体,半圆锥的底面半径为1,高为3,三棱锥的底面积为12×2×1=1,高为3.故原几何体体积为:V =12×π×12×3×13+1×3×13=π2+1.答案 A【训练2】 四边形ABCD 中,A (0,0),B (1,0),C (2,1),D (0,3),绕y 轴旋转一周,求所得旋转体的体积.解 ∵C (2,1),D (0,3), ∴圆锥的底面半径r =2,高h =2. ∴V 圆锥=13πr 2h =13π×22×2=83π. ∵B (1,0),C (2,1),∴圆台的两个底面半径R =2,R ′=1,高h ′=1. ∴V 圆台=13πh ′(R 2+R ′2+RR ′)=13π×1×(22+12+2×1)=73π, ∴V =V 圆锥+V 圆台=5π.【训练3】 如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明PQ ⊥平面DCQ ;(2)求棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值. (1)证明 由条件知PDAQ 为直角梯形. 因为QA ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD . 又四边形ABCD 为正方形,DC ⊥AD , 所以DC ⊥平面PDAQ ,可得PQ ⊥DC . 在直角梯形PDAQ 中可得DQ =PQ =22PD ,则PQ ⊥QD .又DC ∩QD =D .所以PQ ⊥平面DCQ . (2)解 设AB =a .由题设知AQ 为棱锥Q -ABCD 的高, 所以棱锥Q -ABCD 的体积V 1=13a 3.由(1)知PQ 为棱锥P -DCQ 的高. 而PQ =2a ,△DCQ 的面积为22a 2, 所以棱锥P -DCQ 的体积V 2=13a 3.故棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值为1.题型二 球的表面积和体积【例2】 (1)已知球的表面积为64π,求它的体积; (2)已知球的体积为5003π,求它的表面积.解 (1)设球的半径为R ,则4πR 2=64π,解得R =4, 所以球的体积V =43πR 3=43π·43=2563π.(2)设球的半径为R ,则43πR 3=5003π,解得R =5,所以球的表面积S =4πR 2=4π×52=100π.规律方法 (1)已知球的半径,可直接利用公式求它的表面积和体积. (2)已知球的表面积和体积,可以利用公式求它的半径.【训练4】 (1)若圆锥与球的体积相等,且圆锥底面半径与球的直径相等,则圆锥侧面积与球面面积之比是________.(2)如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为________.解析 (1)设圆锥的底面半径为R , 由题意知球的半径为R2, V 圆锥=13πR 2h (h 为圆锥的高),V 球=43π(R 2)3=16πR 3,∴13πR 2h =16πR 3,h =12R ,则圆锥的母线l =R 2+h 2=52R , 圆锥的侧面积为π×R ×52R =52πR 2. 球的表面积为4π×(R2)2=πR 2. ∴圆锥的侧面积与球面面积之比为5∶2.(2)由三视图知该几何体由圆锥和半球组成,且球的半径和圆锥底面半径都等于3,圆锥的母线长等于5,所以该几何体的表面积为S =2π×32+π×3×5=33π. 答案 (1)52(2)33π【例3】 已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的直径为( )A.3172B.210C.13D.310解析 因为三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,所以三棱柱的底面是直角三角形,侧棱与底面垂直.△ABC 的外心是斜边的中点,上下底面的中心连线垂直底面ABC ,其中点是球心,即侧面B 1BCC 1,经过球的球心,球的直径是侧面B 1BCC 1的对角线的长,因为AB =3,AC =4,BC =5,BC 1=52+122=13,所以球的直径为13.答案 C【迁移1】 本例若将直三棱柱改为“棱长为4的正方体”,则此正方体外接球和内切球的体积各是多少?解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R ,内切球的半径为r . 又正方体的棱长为4,故其体对角线长为43, 从而V 外接球=43πR 3=43π×(23)3=323π,V 内切球=43πr 3=43π×23=32π3. 【迁移2】 本例若将直三棱柱改为“正四面体”,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为多少?解 设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π. 【迁移3】 本例中若将直三棱柱改为“侧棱和底面边长都是32的正四棱锥”,则其外接球的半径是多少?解 依题意得,该正四棱锥的底面对角线的长为32×2=6,高为(32)2-(12×6)2=3,因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.规律方法 空间几何体与球接、切问题的求解方法:(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解. (2)若球面上四点P ,A ,B ,C 构成的三条线段PA ,PB ,PC 两两互相垂直,且PA =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解(其R为球的半径).课堂达标1.设正方体的表面积为24,那么其外接球的体积是( ) A.43π B.8π3C.43πD.323π解析 由题意可知,6a 2=24,∴a =2. 设正方体外接球的半径为R ,则3a =2R ,∴R =3,∴V 球=43πR 3=43π.答案 C2.已知高为3的直棱柱ABC -A 1B 1C 1的底面是边长为1的正三角形,则三棱锥B 1-ABC 的体积为( ) A.14 B.12 C.36D.34解析 S 底=12×1×1-⎝ ⎛⎭⎪⎫122=34,所以V 三棱锥B 1-ABC =13S 底·h =13×34×3=34.答案 D3.某几何体的三视图如图所示,则其表面积为________.解析 由三视图可知,该几何体为一个半径为1的半球,其表面积为半个球面面积与截面圆面积的和,即12×4π+π=3π.答案 3π4.一个几何体的三视图(单位:m)如图所示,则该几何体的体积为________ m 3.解析 由三视图知,几何体下面是两个球,球半径为32;上面是长方体,其长、宽、高分别为6、3、1, 所以V =43π×278×2+1×3×6=9π+18(m 3).答案 9π+185.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,求该球的表面积. 解 如图,设球心为O ,半径为r ,则Rt△AOF 中,(4-r )2+(2)2=r 2,解得r =94,∴该球的表面积为4πr 2=4π×(94)2=814π.课堂小结1.柱体、锥体、台体的体积之间的内在关系为2.在三棱锥A -BCD 中,若求点A 到平面BCD 的距离h ,可以先求V A -BCD ,h =3VS △BCD.这种方法就是用等体积法求点到平面的距离,其中V 一般用换顶点法求解,即V A -BCD =V B -ACD =V C -ABD =V D -ABC ,求解的原则是V 易求,且△BCD 的面积易求.3.求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.4.利用球的半径、球心到截面圆的距离、截面圆的半径可构成直角三角形,进行相关计算.5.解决球与其他几何体的切接问题,通常先作截面,将球与几何体的各量体现在平面图形中,再进行相关计算.基础过关1.某三棱锥的三视图如图所示,则该三棱锥的体积是( )A.16B.13C.23D.1解析 如图,三棱锥的底面是一个直角边长为1的等腰直角三角形,有一条侧棱和底面垂直,且其长度为2,故三棱锥的高为2,故其体积V =13×12×1×1×2=13,故选B. 答案 B2.已知长方体的过一个顶点的三条棱长的比是1∶2∶3,对角线的长是214,则这个长方体的体积是( ) A.6B.12C.24D.48解析 设长方体的过一个顶点的三条棱长分别为x 、2x 、3x (x >0),又对角线长为214,则x 2+(2x )2+(3x )2=(214)2,解得x =2,∴三条棱长分别为2、4、6,∴V 长方体=2×4×6=48. 答案 D3.一空间几何体的三视图如图所示,则该几何体的体积为( )A.2π+2 3B.4π+2 3C.2π+233D.4π+233解析 该空间几何体由一圆柱和一四棱锥组成,圆柱的底面半径为1,高为2,体积为2π,四棱锥的底面边长为2,高为3,所以体积为13×(2)2×3=233,所以该几何体的体积为2π+233.答案 C4.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm.解析 设球的半径为r ,则圆柱形容器的高为6r ,容积为πr 2×6r =6πr 3,高度为8 cm 的水的体积为8πr 2,3个球的体积和为3×43πr 3=4πr 3,由题意6πr 3-8πr 2=4πr 3,解得r =4 cm. 答案 45.如图为某个几何体的三视图,则该几何体的体积为________.解析 由三视图可知,该几何体是由一个正四棱柱挖掉一个半圆锥所得到的几何体,其直观图如图所示,其中正四棱柱的底面正方形的边长a =2,半圆锥的底面半径r =1,高h =3,所以正四棱柱的体积V 1=a 2h =22×3=12,半圆锥的体积V 2=12×π3r 2h =π6×12×3=π2,所以该几何体的体积V =V 1-V 2=12-π2. 答案 12-π26.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,求A 到平面A 1BD 的距离d .解 在三棱锥A 1-ABD 中,AA 1⊥平面ABD ,AB =AD =AA 1=a ,A 1B =BD =A 1D =2a ,∵V A 1-ABD =V A -A 1BD ,∴13×12a 2×a =13×12×2a ×32×2a ×d . ∴d =33a . 7.已知底面半径为 3 cm ,母线长为 6 cm 的圆柱,挖去一个以圆柱上底面圆心为顶点,下底面为底面的圆锥,求所得几何体的表面积及体积.解 作轴截面如图,设挖去的圆锥的母线长为l ,底面半径为r ,则l =(6)2+(3)2=9=3(cm),r = 3 (cm).故几何体的表面积为 S =πrl +πr 2+2πrAD=π×3×3+π×(3)2+2π×3× 6=33π+3π+62π=(33+3+62)π(cm 2).几何体的体积为V =V 圆柱-V 圆锥=πr 2AD -13πr 2AD =π×3×6-13×π×3× 6 =26π(cm 3).能力提升8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4C.π2D.π4 解析 如图画出圆柱的轴截面ABCD ,O 为球心.球半径R =OA =1,球心到底面圆的距离为OM =12. ∴底面圆半径r =OA 2-OM 2=32,故圆柱体积V =πr 2h =π⎝ ⎛⎭⎪⎫322×1=3π4. 答案 B9.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器厚度,则球的体积为( )A.500π3cm 3 B.866π3 cm 3 C.1 372π3 cm 3 D.2 048π3 cm 3 解析 作出该球的轴截面图如图所示,依题意BE =2,AE =CE =4,设DE =x ,故AD =2+x ,因为AD 2=AE 2+DE 2,解得x =3,故该球的半径AD =5,所以V =43πR 3=500π3(cm 3). 答案 A10.若球的半径由R 增加为2R ,则这个球的体积变为原来的________倍,表面积变为原来的________倍.解析 球的半径为R 时,球的体积为V 1=43πR 3,表面积为S 1=4πR 2,半径增加为2R 后,球的体积为V 2=43π(2R )3=323πR 3,表面积为S 2=4π(2R )2=16πR 2. 所以V 2V 1=323πR 343πR 3=8,S 2S 1=16πR 24πR 2=4, 即体积变为原来的8倍,表面积变为原来的4倍.答案 8 411.已知三棱锥A -BCD 的所有棱长都为2,则该三棱锥的外接球的表面积为________. 解析 如图,构造正方体ANDM -FBEC .因为三棱锥A -BCD 的所有棱长都为2,所以正方体ANDM -FBEC 的棱长为1.所以该正方体的外接球的半径为32. 易知三棱锥A -BCD 的外接球就是正方体ANDM -FBEC 的外接球,所以三棱锥A -BCD 的外接球的半径为32.所以三棱锥A -BCD 的外接球的表面积为S 球=4π⎝ ⎛⎭⎪⎫322=3π. 答案 3π12.已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB =18,BC =24,AC =30,求球的表面积和体积.解 ∵AB ∶BC ∶AC =18∶24∶30=3∶4∶5,∴△ABC 是直角三角形,∠B =90°.∵球心O 到截面△ABC 的投影O ′为截面圆的圆心,也即是Rt△ABC 的外接圆的圆心,∴斜边AC 为截面圆O ′的直径(如图所示).设O ′C =r ,OC =R ,则球半径R ,截面圆半径r ,在Rt△O ′CO 中,由题设知sin∠O ′CO =OO ′OC =12, ∴∠O ′CO =30°,∴rR =cos 30°=32,即R =23r ,① 又2r =AC =30⇒r =15,代入①得R =10 3.∴球的表面积为S =4πR 2=4π(103)2=1 200π.球的体积为V =43πR 3=43π(103)3=4 0003π. 13.(选做题)有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度. 解 由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V=V 圆锥-V 球=13π·(3r )2·3r -43πr 3=53πr 3, 而将球取出后,设容器内水的深度为h ,则水面圆的半径为33h , 从而容器内水的体积是V ′=13π·(33h )2·h =19πh 3,由V =V ′,得h =315r . 即容器中水的深度为315r .。

北师大版高中数学课本目录(含重难点及课时分布)

北师大版高中数学课本目录(含重难点及课时分布)

高中数学课本内容及其重难点北师大版高中数学必修一1、集合的基本关系ﻫ·2、集合·第一章集合(考点的难度不是很大,是高考的必考点)ﻫ·的含义与表示ﻫ·3、集合的基本运算(重点)(2课时)1、生活中的变量关系··第二章函数ﻫ·4、二次函数性质的再研究(重点)3、函数的单调性(重点)ﻫ· 2、对函数的进一步认识ﻫ··5、简单的幂函数(5课时)ﻫ·第三章指数函数和对数函数·2、指数概念的扩充·1、正整数指数函数ﻫ· 3、指数函数(重点)· 4、对数· 5、对数函数(重点)· 6、指数函数、幂函数、对数函数增减性(重点)(3课时)ﻫ·第四章函数应用ﻫ·1、函数与方程ﻫ·2、实际问题的函数建模(2课时)北师大版高中数学必修二·第一章立体几何初步ﻫ·1、简单几何体ﻫ2、三视图(重点)·· 3、直观图(1课时)ﻫ·4、空间图形的基本关系与公理(重点)ﻫ·5、平行关系(重点)ﻫ·6、7、简单几何体的面积和体积(重点)·垂直关系(重点)ﻫ· 8、面积公式和体积公式的简单应用(重点、难点)(4课时)·第二章解析几何初步·3、空间直角坐标系· 1、直线与直线的方程ﻫ·2、圆与圆的方程ﻫ(4课时)北师大版高中数学必修三1、统计活动:随机选取数字··第一章统计ﻫ· 2、从普查到抽样ﻫ·3、抽样方法6、用样本估计总体·4、统计图表ﻫ·5、数据的数字特征(重点)ﻫ·· 7、统计活动:结婚年龄的变化· 8、相关性ﻫ·9、最小二乘法(3课时)ﻫ·第二章算法初步· 1、算法的基本思想·3、排序问题(重点)· 2、算法的基本结构及设计(重点)ﻫ·4、几种基本语句(2课时)1、随机事件的概率(重点)··第三章概率ﻫ· 2、古典概型(重点)·3、模拟方法――概率的应用(重点、难点)(4课时)ﻫ北师大版高中数学必修四·第一章三角函数·1、周期现象与周期函数ﻫ·2、角的概念的推广ﻫ·3、弧度制· 4、正弦函数(重点)· 5、余弦函数(重点)· 6、正切函数(重点)·7、函数的图像(重点)·8、同角三角函数的基本关系(重点、难点)(5课时)1、从位移、速度、力到向量ﻫ·2、从位移的合成到向量的加法(重ﻫ·第二章平面向量ﻫ·3、从速度的倍数到数乘向量(重点)·点)ﻫ· 4、平面向量的坐标(重点)·5、从力做的功到向量的数量积(重点)ﻫ·6、平面向量数量积的坐标表示(重点)·7、向量应用举例(难点)(5课时)ﻫ·第三章三角恒等变形(重点)·2、二倍角的正弦、余弦和正切·1、两角和与差的三角函数ﻫ·3、半角的三角函数·4、三角函数的和差化积与积化和差· 5、三角函数的简单应用(难点)(4课时)北师大版高中数学必修五·第一章数列ﻫ·1、数列的概念· 2、数列的函数特性4、等差数列的前n项和(重点)· 3、等差数列(重点)ﻫ·· 5、等比数列(重点)·6、等比数列的前n项和(重点)ﻫ·7、数列在日常经济生活中的应用·3、2、正弦定理ﻫ1、正弦定理与余弦定理正弦定理ﻫ(6课时)ﻫ·第二章解三角形(重点)ﻫ··4、三角形中的几何计算(难点)ﻫ·5、解三角形的实际应用举例·余弦定理ﻫ(6课时)ﻫ·第三章不等式·1、不等关系ﻫ· 1.1、不等式关系· 1.2、比较大小(重点)ﻫ2,一元二次不等式(重点)ﻫ·2.1、一元二次不等式的解法(重点)ﻫ·2.2、一元二次不等式的应用【4课时】· 3、基本不等式(重点)3.1 基本不等式· 3.2、基本不等式与最大(小)值4线性规划(重点)·4.1、二元一次不等式(组)与平面区(重点)ﻫ·4.2、简单线性规划(重点)· 4.3、简单线性规划的应用(重点、难点) 【3课时】选修1-1第一章常用逻辑用语1命题2.2必要条件2充分条件与必要条件(重点)ﻫ2.1充分条件ﻫ2.3充要条件3全称量词与存在量词ﻫ3.1全称量词与全称命题ﻫ3.2存在量词与特称命题ﻫ3.3全称命题与特称命题的否定ﻫ4逻辑联结词“且’’‘‘或…‘非(重点)4.1逻辑联结词“且ﻫ4.2逻辑联结词“或4.3逻辑联结词‘‘非【1.5课时】ﻫ第二章圆锥曲线与方程(重点)ﻫ1椭圆ﻫ1.1椭圆及其标准方程1.2椭圆的简单性质ﻫ2抛物线2.1抛物线及其标准方程2.2抛物线的简单性质3 曲线3.2双曲线的简单性质3.1双曲线及其标准方程ﻫ【8课时】第三章变化率与导数(重点)ﻫ1变化的快慢与变化率ﻫ2导数的概念及其几何意义2.1导数的概念ﻫ2.2导数的几何意义3计算导数(重点)ﻫ4导数的四则运算法则(重点)ﻫ4.1导数的加法与减法法则4.2导数的4.2导数的乘法与除法法则ﻫ第四章导数应用(重点)ﻫ4.1导数的加法与减法法则ﻫ乘法与除法法则【6课时】ﻫ选修1-2第一章统计案例1 回归分析ﻫ1.1 回归分析ﻫ1.2相关系数ﻫ1.3可线性化的回归分析ﻫ2独立性检验(重点、重点)2.1条件概率与独立事件2.2独立性检验2.3独立性检验的基本思想ﻫ2.4独立性检验的应用(重点、难点)【4课时】第二章框图(重点,高考必考点)1 流程图ﻫ2结构图【1.5课时】第三章推理与证明1归纳与类比ﻫ1.1归纳推理1.2类比推理ﻫ2数学证明3综合法与分析法3.1综合法3.2分析法4反证法【2课时】1.2复1.1数的概念的扩充ﻫﻫ第四章数系的扩充与复数的引入ﻫ1数系的扩充与复数的引入ﻫ数的有关概念(重点)ﻫ2复数的四则运算(重点、高考必考点)2.1复数的加法与减法ﻫ2.2复数的乘法与除法【1.5课时】ﻫ选修2-1ﻫ第一章常用逻辑用语1命题2充分条件与必要条件ﻫ3全称量词与存在量词4逻辑联结词“且”“或”“非”&…&…(重点)【1.5课时】第二章空间向量与立体几何(重点,在解决立体几何方面有很大的帮助)1 从平面向量到空间向量2 空间向量的运算ﻫ3向量的坐标表示和空间向量基本定理4用向量讨论垂直与平行ﻫ5夹角的计算ﻫ6距离的计算【6课时】ﻫ第三章圆锥曲线与方程(重点、高考大题必考知识点)1 椭圆ﻫ1.1椭圆及其标准方程1.2 椭圆的简单性质2 抛物线2.1抛物线及其标准方程3.1双曲线及其标准方程ﻫ3.2双曲线的简单性质2.2抛物线的简单性质ﻫ3双曲线ﻫﻫ4 曲线与方程4.1 曲线与方程4.2 圆锥曲线的共同特征ﻫ4.3 直线与圆锥曲线的交点【8课时】选修2-2第一章推理与证明(重点)ﻫ1归纳与类比ﻫ2综合法与分析法ﻫ3反证法4数学归纳法【2课时】ﻫ第二章变化率与导数(重点)ﻫ1变化的快慢与变化率ﻫ2导数的概念及其几何意义2.1导数的概念2.2导数的几何意义ﻫ3计算导数ﻫ4导数的四则运算法则4.1导数的加法与减法法则ﻫ4.2导数的乘法与除法法则5简单复合函数的求导法则【2课时】第三章导数应用(重点)1函数的单调性与极值1.1导数与函数的单调性ﻫ1.2函数的极值(重、难点)ﻫ2导数在实际问题中的应用ﻫ2.1实际问题中导数的意义2.2最大、最小值问题(重、难点)【5课时】第四章定积分1定积分的概念1.1定积分背景-面积和路程问题(重点)ﻫ1.2定积分2微积分基本定理3定积分的简单应用(重点)3.1平面图形的面积3.2简单几何体的体积【4课时】ﻫ第五章数系的扩充与复数的引入(重点)1 数系的扩充与复数的引入1.1数的概念的扩展1.2复数的有关概念2复数的四则运算ﻫ2.1复数的加法与减法2.2复数的乘法与除法【2课时】选修2-3第一章计数原理(重点)1.分类加法计数原理和分步乘法计数原理1.1 分类加法计数原理1.2分步乘法计数原理ﻫ2.排列(重点、难点)ﻫ2.1排列的原理2.2排列数公式3.组合3.1 组合及组合数公式3.2 组合数的两个性质ﻫ4.简单计数问题ﻫ5.二项式定理(重、难点)5.2二项式系数的性质5.1二项式定理ﻫ【8课时】第二章概率(重点)ﻫ1.离散型随机变量及其分布列2.超几何分布ﻫ3.条件概率与独立事件4.二项分布5.离散型随机变量均值与方差5.1 离散型随机变量均值与方差(一)5.2离散型随机变量均值与方差(二)6.正态分布6.1 连续型随机变量6.2正态分布【4课时】ﻫ第三章统计案例1.1回归分析1.回归分析ﻫ1.2 相关系数1.3 可线性化的回归分析2.1独立性检验2.独立性检验(重点)ﻫ2.2 独立性检验的基本思想2.3 独立性检验的应用【2课时】选修3-1ﻫ第一章数学发展概述第二章数与符号ﻫ第三章几何学发展史ﻫ第四章数学史上的丰碑----微积分第五章无限第六章数学名题赏析ﻫ选修3-2选修3-3ﻫ第一章球面的基本性质1.直线、平面与球面的我诶制关系ﻫ2.球面直线与球面距离ﻫ第二章球面上的三角形1.球面三角形2.球面直线与球面距离ﻫ3.球面三角形的边角关系4.球面三角形的面积【2课时】ﻫ第三章欧拉公式与非欧几何1.球面上的欧拉公式2.简单多面体的欧拉公式3.欧氏几何与球面几何的比较ﻫ选修4-1第一章直线、多边形、圆(重点)1.全等与相似ﻫ2.圆与直线ﻫ3.圆与四边形【2课时】第二章圆锥曲线ﻫ1.截面欣赏ﻫ2.直线与球、平面与球的位置关系3.柱面与平面的截面ﻫ4.平面截圆锥面5.圆锥曲线的几何性质【3课时】ﻫ选修4-2ﻫ第一章平面向量与二阶方阵ﻫ1平面向量及向量的运算2向量的坐标表示及直线的向量方程ﻫ3二阶方阵与平面向量的乘法ﻫ第二章几何变换与矩阵1几种特殊的矩阵变换2 矩阵变换的性质ﻫ第三章变换的合成与矩阵乘法ﻫ1变换的合成与矩阵乘法2矩阵乘法的性质ﻫ第四章逆变换与逆矩阵1 逆变换与逆矩阵2 初等变换与逆矩阵ﻫ3二阶行列式与逆矩阵4 可逆矩阵与线性方程组第五章矩阵的特征值与特征向量ﻫ1矩阵变换的特征值与特征向量ﻫ2特征向量在生态模型中的简单应用ﻫ选修4-4ﻫ第一章坐标系1 平面直角坐标系2 极坐标系ﻫ3柱坐标系和球坐标系ﻫ第二章参数方程ﻫ1参数方程的概念2 直线和圆锥曲线的参数方程ﻫ3参数方程化成普通方程4平摆线和渐开线ﻫ选修4-5第一章不等关系与基本不等式(重点)l不等式的性质ﻫ2含有绝对值的不等式(难点)3平均值不等式ﻫ4不等式的证明5不等式的应用第二章几个重妻的不等式1柯西不等式ﻫ2排序不等式ﻫ3数学归纳法与贝努利不等式选修4-6第一章带余除法与书的进位制1、整除与带余除法ﻫ2、二进制ﻫ第二章可约性1、素数与合数2、最大公因数与辗转相除法ﻫ3、算术基本定理及其应用ﻫ4、不定方程第三章同余ﻫ1、同余及其应用ﻫ2、欧拉定理还在更新。

(必考题)高中数学必修二第一章《立体几何初步》测试题(有答案解析)(3)

(必考题)高中数学必修二第一章《立体几何初步》测试题(有答案解析)(3)

一、选择题1.若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,当该圆锥体积取最小值时,该圆锥体积与其内切球体积比为( )A .2:1B .4:1C .8:1D .8:3 2.某几何体的三视图如图所示(单位:cm ),则该几何体的外接球的表面积(单位:2cm )是( )A .36πB .54πC .72πD .90π 3.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A 3B 6C .23D .264.在空间四边形ABCD 中,AB BC =,AD DC =,则对角线AC 与BD 所成角的大小是( )A .90︒B .60︒C .45︒D .305.在三棱锥P ABC -中,PA ⊥平面ABC ,120224BAC AP AB AC ∠====,,则三棱锥P ABC -的外接球的表面积是( )A .18πB .36πC .40πD .72π6.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面ABDA '是铅垂面,下宽3m AA '=,上宽4m BD =,深3m ,平面BDEC 是水平面,末端宽5m CE =,无深,长6m (直线CE 到BD 的距离),则该羡除的体积为( )A .324mB .330mC .336mD .342m 7.已知正三棱柱111ABC A B C -中,1AB AA =,M 是1CC 的中点,则异面直线AM 与1A B 所成角的大小为( )A .π6B .π4C .π3D .π28.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .79.在长方体1111ABCD A B C D -中,2AB =,1AD =,12AA =,点E 为11C D 的中点,则二面角11B A B E --的余弦值为( )A .3B .3C .33D 310.如下图所示是一个正方体的平面展开图,在这个正方体中①//BM 平面ADE ;②DE BM ⊥;③平面//BDM 平面AFN ;④AM ⊥平面BDE .以上四个命题中,真命题的序号是( )A .①②③④B .①②③C .①②④D .②③④ 11.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .212.已知长方体1111ABCD A B C D -的顶点A ,B ,C ,D ,在球O 的表面上,顶点1A ,1B ,1C ,1D ,在过球心O 的一个平面上,若6AB =,8AD =,14AA =,则球O 的表面积为( )A .169πB .161πC .164πD .265π二、填空题13.已知直三棱柱111ABC A B C -,14AB BC AA ===,42AC =P 是上底面111 A B C 所在平面内一动点,若三棱锥P ABC -的外接球表面积恰为41π,则此时点P 构成的图形面积为________.14.如图,在矩形ABCD 中,2AB =,1AD =,点E 为CD 的中点,F 为线段CE (端点除外)上一动点.现将DAF △沿AF 折起,使得平面ABD ⊥平面ABC .设直线FD 与平面ABCF 所成角为θ,θ的取值范围为__________.15.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;16.已知等腰直角三角形ABC 中,2C π∠=,22CA =,D 为AB 的中点,将它沿CD 翻折,使点A 与点B 间的距离为22,此时三棱锥C ABD -的外接球的表面积为____.17.如图,已知一个八面体的各条棱长均为2,四边形ABCD 为正方形,给出下列说法:①该八面体的体积为83;②该八面体的外接球的表面积为8π; ③E 到平面ADF 3;④EC 与BF 所成角为60°.其中正确的说法为__________.(填序号)18.如图,在三棱锥V ABC -中,22AB =,VA VB =,1VC =,且AV BV ⊥,AC BC ⊥,则二面角V AB C --的余弦值是_____.19.已知扇形的面积为56π,圆心角为6π,则由该扇形围成的圆锥的外接球的表面积为_________. 20.在一个密闭的容积为1的透明正方体容器内装有部分液体,如果任意转动该正方体,液面的形状都不可能是三角形,那么液体体积的取值范围是 .三、解答题21.如图,四棱锥P ABCD -中,2PC PD DC AD ===,底面ABCD 为矩形,平面PCD ⊥平面ABCD ,O 、E 分别是棱CD 、PA 的中点.(1)求证://OE 平面PBC ;(2)求二面角P AB C 的大小.22.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是梯形,,//AB CD AB AD ⊥,22CD AB AD ==.(1)求证:BD ⊥平面1BCC ;(2)在线段11C D 上是否存在一点E ,使//AE 面1BC D .若存在,确定点E 的位置并证明;若不存在,请说明理由.23.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设1AP =,3AD =,四棱锥P ABCD -的体积为1,求证:平面PAC ⊥平面PBD .24.已知四棱锥S ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=︒,6SA SD ==,22SB =,点E 是棱AD 的中点,点F 是棱SC 上靠近S 的一个三等分点.(1)求证:平面SBE ⊥平面ABCD ;(2)求三棱锥F SEB -的体积.25.如图,已知三棱锥P ABC -﹐PC AB ⊥,ABC 是边长为233PB =60PBC ∠=,点F 为线段AP 的中点.(1)证明:PC ⊥平面ABC ;(2)求直线BF 与平面PAC 所成角的大小.26.如图,四棱锥P ABCD -中,底面ABCD 是正方形,PD ⊥平面ABCD ,226AB PD ==,,O 为AC 与BD 的交点,E 为棱PB 上一点.(1)证明:平面EAC ⊥平面PBD ;(2)若//PD 平面EAC ,求三棱锥B AEC -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据三角形相似得出圆锥的底面半径和高的关系,根据体积公式和基本不等式得出答案.【详解】设圆锥的高为h ,底面半径为r ,则当球面与圆锥的侧面以及底面都相切时,轴截面如图,由~AOE ACF 可得:22(1)11h r --=,即22r h h =-, ∴圆锥的体积22148[(2)4]33(2)323h V r h h h h ππππ===-++--. 当且仅当22h -=,即4h =时取等号.∴该圆锥体积的最小值为83π. 内切球体积为43π. 该圆锥体积与其内切球体积比2:1.故选:A .【点睛】方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.2.A解析:A【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积.【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆,且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-, 222(3)3R R ∴=-+,解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A .【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.3.A解析:A【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12A C ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值,因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M =因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥,则222211111(2)3M B A A M B =+=+=故选:A.【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题.4.A解析:A【分析】取AC 中点O ,根据条件分析AC 与平面BOD 的位置关系,由此得到异面直线AC 与BD 所成角的大小.【详解】取AC 中点O ,连接,,BO DO BD ,如图所示:因为AB BC =,AD DC =,所以,BO AC DO AC ⊥⊥,且BODO O =,所以AC ⊥平面BOD ,又BD ⊂平面BOD ,所以AC BD ⊥,所以AC 与BD 所成角为90︒,故选:A.【点睛】关键点点睛:解答问题的关键是通过找AC 中点证明线面垂直,从而确定出线线垂直关系,和常规的求解异面直线所成角的方法不同.5.D解析:D【分析】先找出ABC 的外接圆的半径,然后取ABC 的外接圆的圆心N ,过N 作平面ABC 的垂线NG ,作PA 的中垂线,交NG 于O ,则O 是外接球球心, OA 为外接球半径,求解半径并求表面积即可.【详解】如图所示,1204BAC AB AC ∠===,,取BC 中点M ,连接AM 并延长到N 使AM =MN ,则四边形ABNC 是两个等边三角形组成的菱形,AN =BN =CN ,点N 是ABC 的外接圆圆心,过N 作平面ABC 的垂线NG ,则球心一定在垂线NG 上,因为PA ⊥平面ABC ,则PA //NG ,PA 与NG 共面,在面内作PA 的中垂线,交NG 于O ,则O 是外接球球心,半径R =OA ,Rt AON 中,122ON AP ==,4AN =,故()224232R =+=2441872S R πππ==⨯=.故选:D.【点睛】求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.本题就是采用这个方法.本题使用了定义法. 6.C解析:C【分析】在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算.【详解】如图,在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',则三棱柱ABC A B C '''-是斜三棱柱,该羡除的体积V V =三棱柱ABC A B C '''-V +四棱锥A B DEC '''-()311123636336m 232+⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故选:C .【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力.7.D解析:D【分析】取AC 中点E ,连接1,A E BE ,先通过BE ⊥平面11ACC A 可得BE AM ⊥,再由1ACM A AE ≅可得1AM A E ⊥,即可得出AM ⊥平面1A BE ,即1AM A B ⊥.【详解】取AC 中点E ,连接1,A E BE , ABC 为正三角形,BE AC ∴⊥,正三棱柱111ABC A B C -中,1CC ⊥平面ABC ,BE ⊂平面ABC ,1CC BE ∴⊥,1AC CC C =,BE ∴⊥平面11ACC A ,AM ⊂平面11ACC A ,BE AM ∴⊥,在直角三角形ACM 和直角三角形1A AE 中,1,AC A A CM AE ==,1ACM A AE ∴≅,1CAM AA E ∴∠=∠,12CAM A EA π∴∴∠+∠=,则1AM A E ⊥,1BE A E E ⋂=,AM ∴⊥平面1A BE , 1A B ⊂平面1A BE ,1AM A B ∴⊥,故异面直线AM 与1A B 所成角的大小为2π.【点睛】本题考查异面直线所成角的求解,解题的关键是通过证明AM ⊥平面1A BE 判断出1AM A B ⊥.8.D解析:D【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-7 所以几何体的体积为11(24)676732⋅+⋅=. 故选:D【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解. 9.C解析:C【分析】取11A B 的中点F ,过F 作1FG A B ⊥,垂足为G ,连EG ,可证EGF ∠为二面角11B A B E --的平面角,通过计算可得结果.【详解】取11A B 的中点F ,过F 作1FG A B ⊥,垂足为G ,连EG ,因为,E F 分别为1111,C D A B 的中点,所以11//EF A D ,在长方体1111ABCD A B C D -中,因为11A D ⊥平面11ABB A ,所以EF ⊥平面11ABB A , 因为1A B ⊂平面11ABB A ,所以1EF A B ⊥,因为1FG A B ⊥,且FG EF F =,所以1A B ⊥平面EFG ,因为EG ⊂平面EFG ,所以1A B EG ⊥,所以EGF ∠为二面角11B A B E --的平面角,因为12AB AA ==,所以14FAG π∠=,因为11A F =,所以12222FG A F ==, 在直角三角形EFG 中,221612EG EF FG =+=+=, 所以cos FG EGF EG ∠==23236=. 所以二面角11B A B E --3. 故选:C【点睛】关键点点睛:根据二面角的定义作出其中一个平面角是解题关键. 10.A解析:A【分析】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,得出BM ∥平面ADNE ,判断①正确;由连接AN ,则AN ∥BM ,又ED AN ⊥,判断②正确;由BD ∥FN ,得出BD ∥平面AFN ,同理BM ∥平面AFN ,证明平面BDM ∥平面AFN ,判断③正确;由MC BD ⊥,ED ⊥AM ,根据线面垂直的判定,判断④正确.【详解】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,如图1所示;对于①,平面BCMF ∥平面ADNE ,BM ⊂平面BCMF ,∴BM ∥平面ADNE ,①正确;对于②,如图2所示,连接AN ,则AN ∥BM ,又ED AN ⊥,所以DE BM ⊥,②正确; 对于③,如图2所示,BD ∥FN ,BD ⊄平面AFN ,FN ⊂平面AFN ,∴BD ∥平面AFN ;同理BM ∥平面AFN ,且BD ∩BM =B ,∴平面BDM ∥平面AFN ,③正确;对于④,如图3所示,连接AC ,则BD AC ⊥,又MC ⊥平面ABCD ,BD ⊂平面ABCD ,所以MC BD ⊥,又ACMC C ,所以BD ⊥平面ACM ,所以BD ⊥AM , 同理得ED ⊥AM ,ED BD D =,所以AM ⊥平面BDE ,∴④正确.故选:A .【点睛】关键点点睛:解决本题的关键在于展开空间想象,将正方体的平面展开图还原,再由空间的线线,线面,面面关系及平行,垂直的判定定理去判断命题的正确性.11.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD △是等腰三角形,且底边和底边上的高线都是2;且侧棱AD ⊥底面BCD ,1AD =, 所以112=221=323V ⨯⨯⨯⨯, 故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下: (1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.12.C解析:C【分析】把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体外接球的直径等于体对角线的长,求出直径,即可得出球的表面积.【详解】如下图所示:把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体的结构特征可得,其外接球直径等于体对角线的长,所以球O 的半径R 满足2222688164R =++=所以球O 的表面积24164S R ππ==.故选:C.【点睛】关键点点睛:本题主要考查几何体外接球的表面积,熟记长方体结构特征,其外接球的球心和半径与长方体的关系,以及球的表面积公式,是解决此类问题的关键.二、填空题13.【分析】确定是等腰直角三角形的中点分别是和的外心由直棱柱性质得的外接球的球心在上外接球面与平面的交线是圆是以为圆心为半径的圆求出可得面积【详解】则设分别是的中点则分别是和的外心由直三棱柱的性质得平面 解析:4π【分析】确定ABC 是等腰直角三角形,11,AC A C 的中点1,D D 分别是ABC 和111A B C △的外心,由直棱柱性质得P ABC -的外接球的球心O 在1DD 上,外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,求出1PD 可得面积.【详解】4,2AB BC AC ===90ABC ∠=︒,设1,D D 分别是11,AC A C 的中点,则1,D D 分别是ABC 和111A B C △的外心,由直三棱柱的性质得1DD ⊥平面ABC , 所以P ABC -的外接球的球心O 在1DD 上,如图,24()41OA ππ=,则412OP OA ==,2222413(22)22OD OA AD ⎛⎫=-=-= ⎪ ⎪⎝⎭, 所以11135422OD DD OD AA OD =-=-=-=, 222211415222PD OP OD ⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭,P ABC -的外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆, 其面积为224S ππ=⨯=.故答案为:4π.【点睛】关键点点睛:本题考查立体几何中动点轨迹问题的求解,重点考查了几何体的外接球的有关问题的求解,关键是根据外接球的性质确定球心位置,结合勾股定理得出动点所满足的具体条件,结论:三棱锥的外接球的球心在过各面外心且与此面垂直的直线上. 14.【分析】在矩形中作交于交于在翻折后的几何体中证得平面平面从而平面得是直线与平面所成的角设C 求得的范围后可得范围【详解】在矩形中作交于交于设由图易知∴即∴则在翻折后的几何体中又平面∴平面又平面∴平面平 解析:(0,]6π 【分析】在矩形ABCD 中作DO AF ⊥,交AF 于O ,交AB 于M ,在翻折后的几何体中,证得平面ODM ⊥平面ABCF ,从而DM ⊥平面ABCF ,得DFM ∠是直线FD 与平面ABCF 所成的角.设(01)CF x x =<<C ,求得sin θ的范围后可得θ范围.【详解】在矩形ABCD 中作DO AF ⊥,交AF 于O ,交AB 于M ,设(01)CF x x =<<,AM t =,由图易知DAM FDA △△, ∴AM AD DA DF =,即112t x =-,∴12t x=-,01x <<,则112t <<. 在翻折后的几何体中,AF OD ⊥,AF OM ⊥,又OD OM O =,,OD OM ⊂平面ODM ,∴AF ⊥平面ODM ,又AF ⊂平面ABCF ,∴平面ODM ⊥平面ABCF ,又平面ABD ⊥平面ABC AB =.平面ODM 平面ABD DM =,∴DM ⊥平面ABCF ,连接MF ,则DFM ∠是直线FD 与平面ABCF 所成的角.DFM θ∠=,而21DM t =-,12DF x t =-=, ∴2422211sin 1()24DM t t t t t DF θ==-=-+=--+, ∵112t <<,∴2114t <<,∴10sin 2θ<≤,即06πθ<≤. 故答案为:(0,]6π.【点睛】方法点睛:本题考查求直线与平面所成的角,求线面角常用方法:(1)定义法:作出直线与平面所成的角并证明,然后在直角三角形中计算可得;(2)向量法:建立空间直角坐标系,由直线的方向向量与平面的法向量夹角的余弦的绝对值等于直线与平面所成角的正弦值计算.15.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认 解析:22【分析】由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案.【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==,所以DE AB ⊥,DE A E ⊥',3DE =30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED '平面EDCB DE =,所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥, 所以221722A C A E EC ''=+=+=.故答案为:22.【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力.. 16.12【分析】根据题意可判断出两两垂直即可求出外接球半径得出表面积【详解】等腰直角三角形中为的中点满足两两垂直设外接球的半径为则即三棱锥的外接球的表面积为故答案为:【点睛】本题考查三棱锥外接球问题解题 解析:12π【分析】根据题意可判断出,,DC DA DB 两两垂直,即可求出外接球半径,得出表面积.【详解】等腰直角三角形ABC 中,2C π∠=,22CA CB ==,D 为AB 的中点,2CD AD BD ∴===,,CD AD CD BD ∴⊥⊥, 22AB =,满足222AD BD AB +=,AD BD ∴⊥,,,DC DA DB ∴两两垂直,设外接球的半径为R ,则222222223R =++=,即3R =,∴三棱锥C ABD -的外接球的表面积为2412R ππ=.故答案为:12π.【点睛】本题考查三棱锥外接球问题,解题的关键是得出,,DC DA DB 两两垂直.17.②④【分析】①求出该八面体的体积即可判断;②可得球心为正方形ABCD 对角线交点即可得出半径求出表面积;③取AD 的中点G 连接EGFGEF 过E 作求出即可;④可得为所成角【详解】①八面体的体积为;②八面体 解析:②④【分析】①求出该八面体的体积即可判断;②可得球心为正方形ABCD 对角线交点,即可得出半径求出表面积;③取AD 的中点G ,连接EG ,FG ,EF ,过E 作EH FG ⊥,求出EH 即可;④可得DEC ∠为所成角.【详解】①八面体的体积为21822(22)3⨯⨯⨯=; ②八面体的外接球球心为正方形ABCD 对角线交点,易得外接球半径为2,表面积为8π;③取AD 的中点G ,连接EG ,FG ,EF ,易得3EG FG ==AD ⊥平面EGF ,过E 作EH FG ⊥,交FG 的延长线于H ,又EH AD ⊥,AD FG G ⋂=,故EH ⊥平面ADF ,解得63EH =,所以E 到平面ADF 的距离为263; ④因为//ED BF ,所以EC 与BF 所成角为60︒.故答案为:②④.【点睛】解本题的关键是正确理解正八面体的性质,根据线面垂直关系得到点到平面的垂线段. 18.【分析】取的中点连接证明出可得出面角的平面角为计算出利用余弦定理求得由此可得出二面角的余弦值【详解】取的中点连接如下图所示:为的中点则且同理可得且所以二面角的平面角为由余弦定理得因此二面角的余弦值为解析:34【分析】 取AB 的中点O ,连接VO 、OC ,证明出VO AB ⊥,OC AB ⊥,可得出面角V AB C --的平面角为VOC ∠,计算出VO 、OC ,利用余弦定理求得cos VOC ∠,由此可得出二面角V AB C --的余弦值.【详解】取AB 的中点O ,连接VO 、OC ,如下图所示:VA VB =,O 为AB 的中点,则VO AB ⊥,且AV BV ⊥,22AB =122VO AB ∴== 同理可得OC AB ⊥,且2OC =V AB C --的平面角为VOC ∠,由余弦定理得2223cos 24VO OC VC VOC VO OC +-∠==⋅, 因此,二面角V AB C --的余弦值为34. 故答案为:34. 【点睛】本题考查二面角余弦值的计算,考查二面角的定义,考查计算能力,属于中等题. 19.【分析】由扇形的面积及圆心角可得扇形的半径再由扇形的弧长等于圆锥的底面周长可得底面半径再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径进而求出球的表面积【详解】设扇形的长为l 半径为R 则解得 解析:36π【分析】由扇形的面积及圆心角可得扇形的半径,再由扇形的弧长等于圆锥的底面周长可得底面半径,再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径,进而求出球的表面积.【详解】设扇形的长为l ,半径为R ,则221116562223S lR R R παπ===⨯=,解得30R =,扇形弧长l 为锥底面周长2r π,∴底面的半径5r =,∴圆锥的高为225R r -=.设外接球的半径为1R ,∴()222115(5)R R =-+,解得13R =,∴该外接球的表面积为21436R ππ=,故答案为:36π.【点睛】本题考查扇形的弧长与圆锥的底面周长的关系及外接球的半径和圆锥的高及底面半径的关系,和球的表面积公式的应用,属于中档题.20.【详解】试题分析:如图正方体ABCD-EFGH 此时若要使液面不为三角形则液面必须高于平面EHD 且低于平面AFC 而当平面EHD 平行水平面放置时若满足上述条件则任意转动该正方体液面的形状都不可能是三角形解析:15,66⎛⎫ ⎪⎝⎭【详解】试题分析:如图,正方体ABCD-EFGH ,此时若要使液面不为三角形,则液面必须高于平面EHD ,且低于平面AFC .而当平面EHD 平行水平面放置时,若满足上述条件,则任意转动该正方体,液面的形状都不可能是三角形.所以液体体积必须>三棱柱G-EHD 的体积16,并且<正方体ABCD-EFGH 体积-三棱柱B-AFC 体积15166-=考点:1.棱柱的结构特征;2.几何体的体积的求法三、解答题21.(1)证明见解析;(2)3π. 【分析】(1)取PB 中点F ,连接,EF FC ,证明EFCO 是平行四边形,得线线平行后可证得线面平行;(2)取AB 中点G ,连接,,OG PG OP ,可证PGO ∠(或其补角)是二面角PAB C 的平面角.然后在PGO △中求解.【详解】(1)取PB 中点F ,连接,EF FC , 因为E 是PA 中点,∴//EF AB ,且12EF AB =, 又ABCD 是矩形,//,AB CD AB CD =,O 是CD 中点,∴//,EF OC EF OC =,∴EFCO 是平行四边形,∴//OE CF ,而OE ⊄平面PBC ,CF ⊂平面PBC ,∴//OE 平面PBC .(2)取AB 中点G ,连接,,OG PG OP ,ABCD 是矩形,O 是CD 中点,则OG AB ⊥,又PA PC CD ==,∴PO CD ⊥,而平面PCD ⊥平面ABCD ,平面PCD 平面ABCD CD =,PO ⊂平面PCD , ∴PO ⊥平面ABCD ,∵,OG AB ⊂平面ABCD ,∴PO AB ⊥,PO OG ⊥. PO OG O =,,PO OG ⊂平面POG ,∴AB ⊥平面POG ,而PG ⊂平面POG , ∴AB PG ⊥,∴PGO ∠(或其补角)是二面角PAB C 的平面角. 设1AD =,则1OG =,2CD =,3PO =,∴3tan 3PO PGO OG ∠===,[0,]PGO π∠∈,∴3PGO π∠=. ∴二面角P AB C 的大小为3π.【点睛】方法点睛:本题考查证明线面平行,考查求二面角.求二面角的方法:(1)定义法:根据定义作出二面角的平面角,然后通过解三角形得解;(2)空间向量法:建立空间直角坐标系,求出二面角的两个面的法向量,由法向量夹角得二面角.22.(1)证明见解析(2)存在,点E 是11C D 的中点,证明见解析【分析】(1)根据线面垂直的判定定理即可证明BD ⊥平面1BDC ;(2)存在点E 是11C D 的中点,使//AE 平面1BDC ,由线面平行的判定定理进行证明即可得到结论.【详解】(1)因为1AA ⊥底面ABCD ,所以1CC ⊥底面ABCD ,因为BD ⊂底面ABCD ,所以1CC BD ⊥,因为底面ABCD 是梯形,//AB DC ,90BAD ∠=︒,22CD AB AD ==,设1AB =,则1AD =,2CD = 所以2BD =,2BC =,所以在BCD ∆中,222BD BC CD +=, 所以90CBD ∠=︒,所以BD BC ⊥,又因为1CC BD ⊥,且1CC BC C ⋂=所以BD ⊥平面1BCC .(2)存在点E 是11C D 的中点,使//AE 平面1BDC证明如下:取线段11C D 的中点为点E ,连结AE ,如图,所以11//C D CD ,且112C P CD = 因为//AB CD ,12AB CD =, 所以1//C E AB ,且1C E AB =所以四边形1ABC E 是平行四边形.所以1//AE CB .又因为1BC ⊂平面1BDC ,AE ⊂/平面1BDC ,所以//AE 平面1BDC .【点睛】关键点点睛:解决是否存在问题时,可以先寻求特殊位置,再证明,本题中取中点后连结AE ,可利用平行四边形 1//AE CB ,再根据线面平行的判定定理求证即可,属于先猜后证的方法.23.(1)证明见解析;(2)证明见解析.【分析】( 1)设BD 与AC 的交点为O ,连接EO ,通过直线与平面平行的判定定理证明//PB 平面AEC ;( 2)通过体积得到底面为正方形,再由线面垂直得到面面垂直即可.【详解】(1)连接BD 交AC 于点O ,连结EO ,因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以//EO PB ,EO ⊂平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .(2)因为113P ABCD V AB AD AP -=⨯⨯⨯=, 所以3AB =,所以底面ABCD 为正方形,所以BD AC ⊥,因为PA ABCD ⊥,所以BD PA ⊥,且AC PA A ⋂=,所以BD ⊥平面PAC , 又BD ⊂平面PBD ,所以平面PAC ⊥平面PBD .【点睛】本题主要考查了立体几何及其运算,要证明线面平行先证明线线平行,要证明面面垂直,先证明线面垂直,考查了学生的基础知识、空间想象力.24.(1)证明见解析;(2)159. 【分析】(1)根据等腰三角形三线合一证明SE AD ⊥,BE AD ⊥,即可证明出AD ⊥平面SEB ,所以平面SBE ⊥平面ABCD ;(2)先证明出BC ⊥平面SEB ,利用三角形相似可得F 到平面SBE 的距离1233d BC ==,计算出SEB △的面积,再代入体积计算公式求解.【详解】(1)证明:∵E 是AD 的中点,6SA SD ==∴SE AD ⊥ 因为ABCD 是菱形,60BAD ∠=︒,∴BE AD ⊥, ∵BE SE E =∩∴AD ⊥平面SEB ,∵AD ⊂平面ABCD ,∴平面SBE ⊥平面ABCD .(2)连接BE ,AC 相交于点G ,则由三角形相似得2CG AG =∵//AD BC ,∴BC ⊥平面SEB ,∵点E 是棱AD 的中点,F 是棱SC 上靠近S 的一个三等分点.∴//SA FG ,∴21CF CG BC SF GA AE ===, ∴F 到平面SBE 的距离1233d BC ==,115352SBE S ∆=⨯⨯= ∴三棱锥F SEB -的体积1153F SEB SBE V S d -∆=⨯⨯=.【点睛】方法点睛:关于三棱锥的体积的求解常见的有两种解法,一是利用等体积法,需要证明出线面垂直,再换底换高计算;二是利用空间直角坐标系,计算点到面的距离,然后代入体积计算公式即可.25.(1)证明见解析;(2)45.【分析】(1)利用余弦定理求出PC ,利用勾股定理可证得PC BC ⊥,再由PC AB ⊥结合线面垂直的判定定理可证得PC ⊥平面ABC ;(2)取AC 的中点H ,连接BH 、FH ,推导出直线BF 与平面PAC 所成的角为BFH ∠,求出BH 、FH ,即可求得BFH ∠,即为所求.【详解】(1)在PBC 中,43PB =23BC =60PBC ∠=,由余弦定理可得2222cos 36PC PB BC PB BC PBC =+-⋅∠=,222PC BC PB ∴+=, PC BC ∴⊥,PC AB ⊥,AB BC B ⋂=,PC ∴⊥平面ABC ;(2)取AC 的中点H ,连接BH 、FH ,如下图所示:ABC 是边长为3H 为AC 的中点,BH AC ∴⊥且sin 603BH AB ==,PC ⊥平面ABC ,BH ⊂平面ABC ,BH PC ∴⊥,AC PC C ⋂=,BH ∴⊥平面PAC ,所以,BFH ∠就是直线BF 与平面PAC 所成角.HF ⊂平面PAC ,BH FH ∴⊥, F 、H 分别为PA 、AC 的中点,132FH PC ∴==,BH FH ∴=, 所以,BHC △为等腰直角三角形,且BHF ∠为直角,所以,45BFH ∠=.因此,直线BF 与平面PAC 所成角为45.【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin h lθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.26.(1)证明见解析;(2)263. 【分析】(1)证明出AC ⊥平面PBD ,利用面面垂直的判定定理可证得结论成立;。

第一章立体几何初步

第一章立体几何初步

D1
E
C1
A1
F
D
A
B1 C
B
例2、一个三棱柱可以分割成几个三 棱锥?
C1
B1C1
B1
A1
A1
C
BC
B
A
A
课堂练习一
D 1.A、B为球面上相异两点,则通过A、B所作的大圆个数为( )
A、1 个 B、无数个 C、一个也没有 D、1个或无数个 2、下列说法:①球的半径是球面上任意一点与球心的连线段;
知识探究(二): 简单旋转体
3、圆柱、圆锥、圆台的表示
圆柱、圆锥、圆台的表示方法:用表示它们的轴的字 母表示,如:
分别表示为:圆柱oo'、圆锥so'、圆台oo'
思考题:1.平行于圆柱,圆锥,圆台的底面的 截面是什么图形?
2.过球、圆柱,圆锥,圆台的旋转轴
的截面是什么图形? 3.用一个平面去截球体得到的截面
多边形面叫做棱锥的底面,有公共顶点的各三 角形面叫做棱锥的侧面,相邻侧面的公共边叫做 棱锥的侧棱,各侧面的公共顶点叫做棱锥的顶点.
顶点
侧面
底面
侧棱
知识探究(三): 简单多面体
②棱锥的分类
棱锥按底面的边数分为:三棱锥(四面体) 、 四棱锥、五棱锥、……
棱锥按底面是否为正多边形且各侧面全等分为: 正棱锥、非正棱锥(正棱柱)
4、有下列命题:
(1)在圆柱的上下底面圆周上各取一点,则这两点
的连线是圆柱的母线;
(2)圆锥顶点与底面圆周上任意一点的连线是圆锥
的母线;
(3)在圆台上下底面的圆周上各取一点,则这两点
的连线是圆台的母线;
(4)圆柱的任意两条母线所在的直线是互相平行的。

简单几何体的表面积与体积_课件

简单几何体的表面积与体积_课件

总结
旋转体的面积和体积公 式
名称
圆柱
圆锥
圆台

V
表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,x、x分别表示圆台上、 下底面半径,R表示半径
棱柱体积
长方体体积: 正方体体积:
底面积 高
棱柱体积
(其中S为底面面积,h为柱体的高 )
棱锥体积 (底面积S,高h)
注意:三棱锥的顶点和底面可以根据需要变换,四面体的 每一个面都可以作为底面,可以用来求点到面的距离。
棱锥体积 (底面积S,高h)
棱锥的体积公式 :
(其中S为底面面积,h为高 )
类比利用圆周长求圆面积的方法,我们可以利用球的表面积求球的体积。如 图把球O的表而分成n个小网格,连接球心O和每个小网格的顶点,整个球体 就被分割成n个“小锥体”。 当n越大,每个小网格越小时,每个“小锥体”的底面 就越平,“小锥体”就越近似于棱锥,其高越近似于球 半径R.设 O-ABCD是其中一个“小锥体”,它的体积是
圆台的侧面展开图是扇 环
圆柱、圆锥、圆台三者的表面积公式之间有什么关系 ?
r’ =r
上底扩大
r’ =0
上底缩小
圆柱、圆锥和圆台的表面 积
理解并掌握圆柱、圆锥和圆台的表面积公 式 能够根据公式进行求 值
圆柱体积
h
圆锥体积
h
(其中S为底面面积,h为高 )
圆台体积
上下底面积分别是s',s,高是h, 则
某广场设置了一些石凳供大家休息,这些石凳是由正方体截去八个一样 的四面体得到的,如果被酸正方体的棱长是50cm,那么石凳的体积是多 少?
求证:直三棱柱的任意两个侧面的面积和大于第三个侧面的面
积. 提示:侧面均为矩

人教A版高中数学教材目录(全)

人教A版高中数学教材目录(全)

必修 1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2. 1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3. 1 函数与方程3.2 函数模型及其应用必修 2第一章空间几何体1 .1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2 .1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3. 1 直线的倾斜角与斜率3.2 直线的方程3 . 3 直线的交点坐标与距离公式必修 3第一章算法初步1 .1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2 .1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2 .2 用样本估计总体阅读与思考生产过程中的质量控制图人教 A 版高中数学目录2. 3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3 .1 随机事件的概率阅读与思考天气变化的认识过程3. 2 古典概型3. 3 几何概型必修 4第一章三角函数1 .1 任意角和弧度制1. 2 任意角的三角函数1. 3 三角函数的诱导公式1. 4 三角函数的图象与性质1. 5 函数 y=Asin (ωx+ψ)1. 6 三角函数模型的简单应用第二章平面向量2 .1 平面向量的实际背景及基本概念2. 2 平面向量的线性运算2. 3 平面向量的基本定理及坐标表示2. 4 平面向量的数量积2. 5 平面向量应用举例第三章三角恒等变换3 .1 两角和与差的正弦、余弦和正切公式3. 2 简单的三角恒等变换必修 5第一章解三角形1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n 项和2.4 等比数列2.5 等比数列的前n 项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题3.3.1 二元一次不等式(组)与平面区域3.3.2 简单的线性规划问题3.4 基本不等式选修 1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 变化率与导数3.2 导数的计算3.3 导数在研究函数中的应用3.4 生活中的优化问题举例选修 1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4. 1 流程图4. 2 结构图人教 A 版高中数学目录选修 2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2 立体几何中的向量方法选修 2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修 2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2二项分布及其应用2.3 离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修 3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝人教 A 版高中数学目录选修 3-2选修 3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修 4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修 4-3选修 4-4第一讲坐标系第二讲参数方程第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修 3-4第一讲平面图形的选修 4-5对称群第一讲不等式和绝对值不等式第二讲代数学中的对称与抽象群的概念第二讲证明不等式的基本方法第三讲对称与群的故事第三讲柯西不等式与排序不等式选修 4-1第四讲数学归纳法证明不等式第一讲相似三角形的判定及有关性质选修 4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修 4-7第一讲优选法第二讲试验设计初步选修 4-8选修 4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版( B)教材目录介绍必修一第一章集合1. 1 集合与集合的表示方法1.2 集合之间的关系与运算人教 A 版高中数学目录第二章函数2.1 函数2. 2 一次函数和二次函数2. 3 函数的应用(Ⅰ)2. 4 函数与方程第三章基本初等函数(Ⅰ)3 .1 指数与指数函数3. 2 对数与对数函数3.3 幂函数3. 4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1. 2 点、线、面之间的位置关系第二章平面解析几何初步2 .1 平面真角坐标系中的基本公式2. 2 直线方程2. 3 圆的方程2. 4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1. 2 基本算法语句1. 3 中国古代数学中的算法案例第二章统计2.1 随机抽样2. 2 用样本估计总体2. 3 变量的相关性第三章概率3.1 随机现象3. 2 古典概型3. 3 随机数的含义与应用3. 4 概率的应用必修四第一章基本初等函(Ⅱ )1 .1 任意角的概念与弧度制1. 2 任意角的三角函数1. 3 三角函数的图象与性质第二章平面向量2 .1 向量的线性运算2 .2 向量的分解与向量的坐标运算2. 3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3 .1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修 1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修 1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修 4-5第一章不等式的基本性质和证明的基本方法1 .1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式人教 A 版高中数学目录1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2. 1 柯西不等式2.2 排序不等式2.3 平均值不等式 ( 选学 )2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3. 1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3.1柱体、锥体、台体的表面积与体积
一、教学目标
1、知识与技能:(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。

(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。

(3)培养学生空间想象能力和思维能力。

2、过程与方法:(1)让学生经历几何全的侧面展一过程,感知几何体的形状。

(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系。

3、情感与价值:通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响。

从而增强学习的积极性。

二、教学重点、难点
重点:柱体、锥体、台体的表面积和体积计算。

难点:台体体积公式的推导
三、学法与教法
1、学法:通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标。

2、教法:探究讨论法。

四、教学过程
(一)、创设情境
1、教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类。

2、教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容。

(二)、探究新知
1、利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图
2、组织学生分组讨论:这三个图形的表面由哪些平面图形构成?表面积如何求?
3、教师对学生讨论归纳的结果进行点评。

(三)、质疑答辩、排难解惑、发展思维
1、教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:
)''22rl l r r r S +++=(圆台表面积π
r 1
为上底半径 r 为下底半径 l 为母线长
2、组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系。

3、教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥?
由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解。


图:
4、教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系。

(s ’,s 分别我上下底面面积,h 为台柱高)
(四)、例题分析讲解 (课本)例1、 例2、 例3
(五)、巩固深化、反馈矫正
练习:
1、已知圆锥的表面积为 a ㎡,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为 。

(答案:m a ππ
332) 2、棱台的两个底面面积分别是245c ㎡和80c㎡,截得这个棱台的棱锥的高为35cm ,求这个棱台的体积。

(答案:2325cm 3

(六)、课堂小结:本节课学习了柱体、锥体与台体的表面积和体积的结构和求解方法及公式。

用联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握。

(七)、作业:习题1.3 A 组1.3
五、教后反思:。

相关文档
最新文档