数学快速计算方法:乘法速算

合集下载

手脑速算口诀(乘法

手脑速算口诀(乘法

一、个位数字的和为十,其他各位数字相同的两个数的速算方法。

个位前的数字加1乘自己的积的末尾添上个位上的数字的积。

如:56×54 5+1=6,6×5=30,在30的末尾添上个位上的数4与6的积24,得到3024,这样56×54=3024。

再如:61×69(6+1)×6=42,1×9=9,当个位上的数相乘的积是一位数时,仍要占两位,故在9的前面还应添一个0。

故61×69=4209。

二、十位相同,个位数字和不为10的两位数乘两位数的速算方法。

用一个数加上另一个数的个位上的数,乘以由十位上的数字组成的整十数,再加上个位上两个数的积。

例如:53×54=(53+4)×50+3×4=57×50+12=2850+12=2862三、个位上的数字相同,十位上的数字和为10的两个两位数相乘的速算方法,十位相乘加个位,末尾添上个位积。

(个位积不足两位,积前添0补足两位),例如:24×84 十位相乘加个位:2×8+4=20,个位积是:4×4=16,故24×84=2016。

练习:35×75 、17×97、48×68四、各位数字和为10的两位数,与各位数字相同的两位数相乘的速算方法。

数字和为10的两位数的十位加1乘以各位相同的两位数的十位的积的末尾添上两个个位数的积。

(个位积不足两位添0补足两位)如:46×33数字和为10的两位数的十位加1乘以各位相同的两位数的十位的积:(4+1)×3=15,个位数字的积为:3×6=18,故46×33=1518五:个位上的数和为10,十位上的数相差1的两个两位数相乘的速算方法。

大数十位上的数乘10后的平方减去大数个位数的平方。

如:46×34=(4×10)×(4×10)-6×6=1600-36=1564。

数学速算:十大实用技巧

数学速算:十大实用技巧

数学速算:十大实用技巧1. 快速乘法通过将大数分解成更小的数字,使用分配律和结合律,可以简化乘法运算。

例如,计算 83 × 25 可以分解为 (80 + 3) × 25 = 80 × 25 + 3 × 25,然后将结果相加。

2. 快速除法利用乘法的逆运算,可以通过将除数转化为乘法表达式,再进行乘法运算得到商。

例如,计算 648 ÷ 8 可以转化为 648 × (1/8)。

3. 平方运算对于以5为结尾的数字的平方运算,可以利用特殊的规律。

例如,计算 35²可以通过将5²乘以7再在最后加上25的方式得到结果。

4. 百分比转化将一个百分数转化为小数可以十分简单,只需将百分数除以100即可。

例如,将75%转化为小数,直接计算 75 ÷ 100 = 0.75。

5. 近似计算在一些场景下,不需要精确计算,近似计算可以节省时间。

例如,对于长数字相加,可以舍去末尾几位进行估算。

6. 快速开方对于完全平方数的开方运算,可以通过找出最接近的完全平方数,再进行微调得到结果。

例如,计算√106 可以找出最接近的完全平方数 100,在此基础上微调得到结果。

7. 数字转化将一个小数转化为百分数可以通过将小数乘以100,并在末尾加上百分号。

例如,将0.625转化为百分数,直接计算 0.625 × 100 = 62.5%。

8. 简化分数将一个分数化简可以通过找到分子和分母的最大公约数,然后将两者同时除以最大公约数得到最简分数。

例如,将12/18化简,可以找到最大公约数为6,然后同时除以6得到最简分数 2/3。

9. 快速乘方对于整数的乘方运算,可以利用连乘的方式简化计算。

例如,计算 3³可以通过连乘 3 × 3 × 3 = 27 得到结果。

10. 快速负数运算对于负数的加减运算,可以将负号分别应用于每个数字,然后进行正常的加减运算。

大学数学神奇速算

大学数学神奇速算

大学数学神奇速算
速算是指利用一些特定的方法,快速的得出结果。

在数学中,
很多人都会觉得速算比较难,但实际上,只要掌握方法,速算也可
以变得非常简单。

以下是一些常见的数学神奇速算方法:
1. 乘法口诀法:
乘法口诀法就是利用口诀来记忆乘法表。

例如,想要计算9x6
的答案,你可以用“九九一八六”这个口诀,先记忆九九得八十一,
然后一八加一等于十,再将十与八十相加得出最终答案54。

2. 快速平方法:
利用快速平方法可以计算较大数的平方。

例如,若要计算25^2,可以先计算2x3,得出6,然后在6的后面写25的差值,即6 25,
所以结果为625。

3. 快速除法法:
快速除法法可以快速计算一个数除以2、3、4、5、6、7、8、9等单数的商。

例如,若要计算15÷3的商,先将15的各位数字累加
(即1+5=6),再判断6是否可以被3整除。

由于6可以被3整除,所以15÷3的商为5。

以上这些速算方法只是数学中的冰山一角,通过学习这些方法,我们可以更好地掌握数学的技巧,提高自己的数学能力。

小学数学技巧快速计算乘法的技巧

小学数学技巧快速计算乘法的技巧

小学数学技巧快速计算乘法的技巧在小学的数学学习中,乘法是一个非常重要的内容。

掌握好乘法技巧可以帮助我们快速、准确地计算数字乘法,提高计算效率。

本文将介绍一些适用于小学生的数学技巧,帮助他们在乘法运算中更加得心应手。

一、十位数乘法技巧当计算两个个位数之间的乘法时,我们可以通过个位数相乘得到结果的个位数,并将十位数相加。

例如,计算 7 × 8:·个位数相乘得到 7 × 8 = 56,结果的个位数是 6。

·十位数相加得到 7 + 8 = 15,结果的十位数是 5。

因此,7 × 8 = 56。

这种技巧适用于所有的十位数乘法计算。

通过分别计算个位数和十位数,并进行简单的加法运算,我们可以迅速得到结果。

二、九倍法九倍法是一个简单有效的乘法技巧。

当计算一个数字与 9 相乘时,我们只需要将这个数字的个位数减去 1,得到乘法结果的个位数,并将十位数设置为 9。

例如,计算 7 × 9:· 7 的个位数减去 1 得到 7 - 1 = 6,结果的个位数是 6。

·结果的十位数是 9。

因此,7 × 9 = 63。

利用九倍法,我们可以更快速地计算乘法表中的乘法结果。

只需要熟记九倍法的规则和计算步骤,就能够在乘法运算中事半功倍。

三、相邻乘法相邻乘法是一种通过数字的相对关系进行计算的技巧。

当计算两个接近的数字之间的乘法时,我们可以通过近似值进行计算,并稍后进行修正。

例如,计算 17 × 18:·取较小的数(17)与较大数(18)的差(1)进行相乘:17 × 1 = 17。

·把差(1)加到较小的数(17)上得到较接近的数(18),即 17 + 1 = 18。

·最后,将两个乘积(17 和 18)相加得到结果:17 + 18 = 35。

因此,17 × 18 = 306。

通过相邻乘法,我们可以快速估算出乘法结果的大致范围,并最终得到比较准确的答案。

乘法中的速算技巧

乘法中的速算技巧

乘法中的速算技巧乘法是数学中常见的运算之一,学好乘法不仅可以提高计算速度,还有助于培养逻辑思维和数学能力。

在进行乘法运算时,有许多速算技巧可以帮助我们更快、更准确地完成计算。

本文将介绍一些常见的乘法速算技巧,希望对读者有所帮助。

一、倍数速算倍数速算是指利用乘法的交换律和结合律,找出两个乘数中较容易计算的数进行相乘。

例如,计算75×8,可以先计算75×10,然后再将结果减去两倍的75,即75×2,得到最终的结果。

这样,我们只需要计算两步,而不是直接计算75×8,大大提高了计算速度。

二、平方数速算平方数速算是指计算一个数的平方的技巧。

当乘法题目中的两个乘数相等时,可以利用平方数速算的方法。

例如,计算12×12,可以将12拆分成10和2,然后运用(10+2)²=100+20+20+4的公式,得到144另外,还有一些常见的平方数速算公式可供利用:1. (a + b)² = a² + 2ab + b²2. (a - b)² = a² - 2ab + b²3.(a+b)(a-b)=a²-b²4. (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac5. (a + b + c)³ = a³ + b³ + c³ + 3ab(a + b) + 3bc(b + c) +3ac(a + c) + 6abc利用这些公式,我们可以进一步简化平方数的计算,提高速算的效率。

三、近似数速算当乘法题目中的乘数接近一些特定的数时,可以利用近似数速算的方法。

例如,计算97×82,我们可以将82去一个数得到80,然后再将结果乘以两倍,得到结果7840。

这种方法在乘法运算中经常用到,能够有效简化计算过程,提高速算的能力。

数学快速计算方法乘法速算

数学快速计算方法乘法速算

一、两个20以内数的乘法两个20以内数相乘,将一数的个位数与另一个数相加乘以10,然后再加两个尾数的积,就就是应求的得数。

如12×13=156,计算程序就是将12的尾数2,加至13里,13加2等于15,15×10=150,然后加各个尾数的积得156,就就是应求的积数。

二、首同尾互补的乘法两个十位数相乘,首尾数相同,而尾十互补,其计算方法就是:头加1,然后头乘为前积,尾乘尾为后积,两积连接起来,就就是应求的得数。

如26×24=624。

计算程序就是:被乘数26的头加1等于3,然后头乘头,就就是3×2=6,尾乘尾6×4=24,相连为624。

三、乘数加倍,加半或减半的乘法在首同尾互补的计算上,可以引深一步就就是乘数可加倍,加半倍,也可减半计算,但就是:加倍、加半或减半都不能有进位数或出现小数,如48×42就是规定的算法,然而,可以将乘数42加倍位84,也可以减半位21,也可加半倍位63,都可以按规定方法计算。

48×21=1008,48×63=3024,48×84=4032。

有进位数的不能算。

如87×83=7221,将83加倍166,或减半41、5,这都不能按规定的方法计算。

四、首尾互补与首尾相同的乘法一个数首尾互补,而另一个数首尾相同,其计算方法就是:头加1,然后头乘头为前积,尾乘尾为后积,两积相连为乘积。

如37×33=1221,计算程序就是(3+1)×3×100+7×3=1221。

五、两个头互补尾相同的乘法两个十位数互补,两个尾数相同,其计算方法就是:头乘头后加尾数为前积,尾自乘为后积。

如48×68=3264。

计算程序就是4×6=24 24+8=32 32为前积,8×8=64为后积,两积相连就得3264。

六、首同尾非互补的乘法两个十位数相乘,首位数相同,而两个尾数非互补,计算方法:头加1,头乘头,尾乘尾,把两个积连接起来。

小学数学12种速算方法

小学数学12种速算方法

小学数学12种速算方法小学数学中有很多种速算方法可以帮助学生快速计算,提高计算能力。

下面将介绍12种常用的小学数学速算方法:一、九九乘法口诀法:九九乘法口诀法是小学数学中最基础也是最重要的速算方法之一、通过背诵九九乘法口诀表,可以快速计算任意两个小于10的数的乘积。

二、区域乘法法:区域乘法法是一种用于计算两个大数相乘的方法。

通过画出乘法方块区域,然后将区域内的数进行相乘,最后相加得到结果。

三、前导零法:前导零法是一种在计算两个大数相乘时,通过在乘数的前面补零的方法,使乘法过程更简单。

四、去零法:去零法是一种在计算两个大数相乘时,通过把乘数中的零去掉,然后再计算得到结果。

这样可以减少计算过程中的错误。

五、整数加减补法:整数加减补法是一种通过补数的方式,将带有负号的整数加减法转化为正数加减法的方法。

六、连加连减法:连加连减法是一种通过逐级相加或逐级相减的方式计算多个数相加或相减的方法。

可以将复杂的计算过程简化。

七、倍数和法:倍数和法是一种通过计算多个数的倍数和来计算多个数之和或之差的方法。

可以简化计算过程。

八、求平均值法:求平均值法是一种通过计算多个数的平均值来计算多个数之和的方法。

可以简化计算过程。

九、拆法:拆法是一种将一个数拆分成不同的数然后进行计算的方法。

通过拆分可以使计算过程更简单。

十、逆向思维法:逆向思维法是一种通过将问题进行逆向思考,找到相反的运算方法来解题的方法。

可以减少计算的复杂度。

十一、估算法:估算法是一种通过适当的放大或缩小数值,然后进行估算得到结果的方法。

可以提高计算速度。

十二、约分法:约分法是一种通过将分数进行约分,将分子和分母进行简化,使计算更简单的方法。

可以减少计算过程中的错误。

以上是小学数学中常用的12种速算方法。

通过灵活运用这些方法,学生可以在数学计算中更快速、准确地得出结果,提高计算能力和解决问题的能力。

一分钟速算及十大速算技巧

一分钟速算及十大速算技巧

一分钟速算及十大速算技巧一、快速乘法1.单位数相乘:任何数和9相乘,其个位数之和一定为9;任何数和11相乘,其个位数和十位数加和一定相等。

2.两位数相乘:将两个数的个位数相乘得到个位数,将十位数相乘得到百位数,再将个位数和十位数相乘得到十位数。

3.分解乘法:将一个数分解成两个更小的数相乘。

二、快速除法1.整除9的倍数:如果一个数每个位上的数字之和是9的倍数,那么这个数就可以整除92.数根法:将一个数的各位数字相加,如果大于9,则再将相加的结果的各位数字再相加,一直重复这个过程,直到结果小于或等于9为止,这个结果就是数的“数根”。

三、快速加法1.换位相加:交换加法式中的加数的位置,得到一个易于计算的式子。

2.累加法则:将要加的数按照一定的规律进行拆分,再进行相加,可大大减少计算量。

四、快速减法1.单位减去一个数:减去9,和结果个位数加和等于92.补数相减法:将被减数变为最接近的一个整十数或整百数,然后将结果加上原被减数的差值,再减去减数得到结果。

五、平方速算1.以5为中心:以数字5为中心,平方数的规律是,个位数从1开始递增,十位数从0开始递增,十位数固定为5六、平方根速算1.提取平方数:将一个数分解成连续的平方数之和。

2.数位法:利用平方数的位数关系,找出目标数的范围,然后用试除法逼近平方根。

七、三角函数速算1.角度换算:根据不同的角度单位进行换算,并利用分数的特点简化运算。

八、百分数运算1.取整数法:将百分数转化为整数进行运算,最终再把结果转化为百分数。

九、分数运算1.通分法:将两个分数的分母找到公倍数,然后进行通分运算。

2.分数加法和减法:将两个分数的分母找到公倍数,然后进行加法或减法运算。

十、立方速算1.规律法:利用立方数的规律,把目标数拆解成立方数的和。

以上是一分钟速算及十大速算技巧的完整版,掌握这些技巧可以帮助我们在短时间内更快速、准确地完成各种数学运算。

通过反复练习和应用,可以提高计算速度和准确性,提高数学能力。

乘法速算法则

乘法速算法则

一) 十几乘以十几例: 13*12方法:百位是1 十位是俩个位数的和个位是俩各位数的积即百位1 十位5 个位 6遇到十位或个位上满十的情况,满几十就向前一位进几就可以了.如 14*19 百位是1 十位是13 就向百位进1 个位是36 就向十位进3 得数为266.(二) 九十几乘以九是几例: 92*97方法:用其中一个数减去另一个数与100的差作为得数的前俩位.用10分别减去俩数个位所得的差相乘就是得数的后俩位.不足俩位的用零补足.92-(100-97)=89 (10-2)*(10-7)=24 所以得数就是8924(三)五十几乘以五十几例:58*56方法:先用5*5的积作为得数的前俩位.用6*8的积作为得数的后俩位. 即2548 下一步用8+6的和再除以2 乘以100加上原来的2548 得3248如果碰到55*56 5与6 的和再除以2还余1是该怎么办呢? 取商和前面的方法一样.另外得数再加50 就可以了(四)十位相同,个位互补的俩位数相乘例 34*36方法: 用其十位数与比十位数大一的数相乘作为得数的前俩位.用个位相乘的积作为积的后俩位.即34*36=(3*4)*100+4*6 =1224 如58*52=3016 (五)十位互补,个位相同的俩位数相乘例 37x77方法: 用十位相乘,再加个位的和作为积的前俩位. 用个位的平方作为积的后俩位.即 37x77=(3x7+7)x100+7x7=2849 如68x48=3264(六)个位与十位互补,乘以一个叠数例如 37x99方法用十位数加1 乘以叠数作为积的前俩位.用个位数乘以叠数的积作为后俩位即 37x99=(3+1)x9x100+7x9=3663如 46x77=3542(七)几十一乘以几十一例如:31x51方法:十位相乘的积做得数的前俩位或是前一位.得数的个位是1 .十位是俩因数的十位数的和.即31x51=3x5x100+(3+5)x10 +1=1581如61x81=4941(八)十位数差1,个位数互补例如37x43方法:取较大数用其十位的平方减去其个位数的平方就可以了如 37x43=40x40-7x7=155189x71=6319(九) 俩位数乘以99例如 38x99方法直接写出答案前俩位是这个俩位数减1 后俩位是这个俩位数的补数即3762此法同样适用于几位数乘以几个9的算式(十)俩个数相差2例如49x51方法取这俩数的平均数的平方减去1即49x51=50x50-1=2499(十一)普通的俩位数相乘例如:37x64取十位数的乘积做前积,个位数的乘积做后积.然后在加上内项之积与外项之积的和的十倍即 37x64=1828+(3x4+7x6)x10=2368铺地锦算法:37x64我的算法:37x64取其较小的数为准,找其与整十报数之差,即3。

数学快速计算方法_乘法速算

数学快速计算方法_乘法速算

数学快速计算方法_乘法速算乘法速算是数学中常用的一种计算方法,它可以帮助我们快速、准确地进行乘法运算。

下面我们将介绍一些常用的乘法速算技巧。

一、倍数与商数法倍数与商数法是一种常见的乘法速算方法。

它利用了乘法的交换律、结合律和分配律。

例如,我们要计算23×8,我们可以将8展开成倍数与商数的和:23×8=23×(5+3)=23×5+23×3=115+69=184二、分解法分解法是一种常见的乘法速算方法。

它利用了乘法的交换律和结合律。

例如,我们要计算38×4,我们可以将4分解成10-6:38×4=38×(10-6)=38×10-38×6=380-228=152三、尾数相同法尾数相同法是一种常见的乘法速算方法。

它适用于计算两个乘数的尾数相同的情况。

例如,我们要计算25×25,可以按照以下步骤进行计算:1.确定尾数,即5×5=25;2.计算十位数,即2×(2+1)=6;3.结合尾数和十位数,即625四、平方差法平方差法是一种常见的乘法速算方法。

它适用于计算两个数的平方差。

例如,我们要计算42×38,可以按照以下步骤进行计算:1.计算稍大数的平方,即(42+38)×(42-38)=80×4=320;2.计算差的平方,即(42-38)²=16²=256;3.两者之差即为所求,即320-256=64五、倍增法倍增法是一种常见的乘法速算方法。

它适用于计算一个数与2的倍数相乘的情况。

例如,我们要计算24×16,可以按照以下步骤进行计算:1.通过倍增不断计算2的幂次方,即2²=4,2⁴=16;2.通过分解24为2的倍数之和,即24=16+8;3.结合上述两步,即24×16=16×16+8×16=256+128=384以上介绍的是一些常见的乘法速算方法,它们可以通过巧妙的运用数学运算律来简化乘法运算,从而提高计算效率。

万能乘法速算法大全

万能乘法速算法大全

万能乘法速算法大全在日常生活和学习中,乘法是我们经常会遇到的计算问题之一。

而对于一些大数字的乘法计算,我们往往需要花费较长的时间和精力来完成。

因此,掌握一些乘法速算法不仅可以提高我们的计算效率,还可以在一定程度上展现我们的数学能力。

下面,我将为大家介绍一些常用的乘法速算法,希望能对大家有所帮助。

一、快速乘以11的方法。

当我们需要计算一个两位数乘以11的结果时,可以采用以下方法:例如,计算35乘以11,首先将3和5分别放在结果的两端,然后将3+5的结果(8)放在中间,即385,即为35乘以11的结果。

二、快速乘以9的方法。

当我们需要计算一个两位数乘以9的结果时,可以采用以下方法:例如,计算35乘以9,首先将35减去1,即34,然后将3和4相加,得到7,即为35乘以9的结果。

三、快速乘以5的方法。

当我们需要计算一个整数乘以5的结果时,可以直接将该整数的末尾加上0,即可得到结果。

例如,计算35乘以5,直接在35的末尾加上0,得到350,即为35乘以5的结果。

四、快速乘以25的方法。

当我们需要计算一个整数乘以25的结果时,可以先将该整数乘以100,然后再除以4,即可得到结果。

例如,计算35乘以25,首先将35乘以100得到3500,然后再除以4,得到875,即为35乘以25的结果。

五、快速乘法竖式计算法。

在进行大数字的乘法计算时,我们可以采用快速竖式计算法,将乘数和被乘数分别在竖直方向上排列,然后逐位相乘,并将结果相加得到最终的乘法结果。

六、快速乘法横式计算法。

在进行大数字的乘法计算时,我们也可以采用快速横式计算法,将乘数和被乘数分别在横向方向上排列,然后逐位相乘,并将结果相加得到最终的乘法结果。

七、快速乘法结合分配律和结合律。

在进行乘法计算时,我们可以灵活运用分配律和结合律,将乘法问题化简为更简单的计算问题,从而提高计算效率。

以上就是我为大家介绍的一些乘法速算法,希望能对大家有所帮助。

通过掌握这些方法,我们可以在日常生活和学习中更快、更准确地完成乘法计算,提高我们的计算效率和数学能力。

数学快速计算方法_乘法速算

数学快速计算方法_乘法速算

数学快速计算方法_乘法速算乘法速算是指在不借助计算器或其他工具的情况下,通过一些特殊的计算方法快速而准确地完成乘法运算。

乘法速算的目的是提高计算效率,减少错误的发生,并培养学生对数学的逻辑思维。

以下是一些常见的乘法速算方法:1.乘法竖式乘法竖式是我们最常见的计算乘法的方法,适用于任何乘法运算。

将两个数相乘时,将第一个数的每一位分别与第二个数的每一位进行相乘,然后将部分乘积相加得到最终结果。

在竖式中,我们可以通过一些简化的方法来减少计算量,例如将数整理为最简形式。

2.九九乘法口诀九九乘法口诀是最基本也是最重要的乘法速算方法之一、通过记忆九九乘法口诀表,可以在一定程度上减少计算量,特别是对于小于10的数的乘法运算。

例如,当我们计算7乘以8时,可以根据九九乘法口诀中7乘以8的结果直接得到答案563.对数法对数法是一种将乘法转化为加法的速算方法。

对数法的核心思想是将乘法问题转化为指数运算问题。

例如,若要计算23乘以14,可以将23转化为10的对数形式,2.3,将14转化为10的对数形式,1.4、然后将对数相加得到3.7,并将结果反向转化为普通形式得到37、对数法适用于相对较大的乘法运算,尤其是涉及较多位数的乘法。

4.交换法则交换法则指的是改变乘法运算中数字的顺序,并不会改变结果的法则。

例如,6乘以8的结果与8乘以6的结果是相同的。

通过利用交换法则,我们可以选择更简单的乘法运算来得到结果。

交换法则在降低计算量和提高计算效率方面非常有效。

5.平方法平方法是指将一个数平方后再相加或相减得到结果的速算方法。

它适用于解决近似于平方数的乘法运算。

例如,如果要计算14乘以16,可以将其分解为(10+4)乘以(10+6),先计算10的平方得到100,然后将10乘以4和10乘以6分别得到40和60,在将4的平方和6的平方分别得到16和36、最后将这些结果相加得到(100+40+60+16+36)=252以上是一些常见的乘法速算方法。

小学数学技巧快速计算乘法的小技巧

小学数学技巧快速计算乘法的小技巧

小学数学技巧快速计算乘法的小技巧数学是小学阶段学生们学习的重要科目之一,其中乘法运算是数学学习的基础内容。

然而,对于一些学生来说,乘法计算可能会带来困难和复杂性。

本文将介绍一些小学数学技巧,帮助学生快速计算乘法,提高他们的计算效率和准确性。

1、利用倍数和分配律进行简化计算在乘法计算中,我们经常需要计算两个数的乘积。

如果其中一个数是另一个数的倍数,那么计算就会变得容易。

例如,计算24 × 5,我们可以知道24是5的倍数,所以可以将计算简化为计算5的倍数,即120。

分配律也是乘法计算的一个重要性质。

例如,计算23 × 6,我们可以将这个计算分解成20 × 6 和 3 × 6,然后再将两个结果相加。

这样我们只需要计算两个小运算就能得到最终的结果。

2、利用九九乘法表快速计算九九乘法表是小学数学学习中一个重要的工具。

学生们可以通过熟记九九乘法表来快速计算乘法。

例如,计算7 × 8,我们可以在九九乘法表中找到7的行和8的列的交汇处,得到结果56。

通过反复练习和记忆九九乘法表,学生们可以提高计算速度和准确性。

3、运用相近数和近似数快速估算乘法结果当我们需要估算一个较大的乘法结果时,可以运用相近数或近似数的方法快速获取一个接近的结果。

例如,计算87 × 23,我们可以将23近似为20,然后计算87 × 20,得到结果1740。

虽然这个结果不是准确的,但它可以帮助我们快速估算这个乘法的结果。

4、利用乘法和除法的逆运算快速计算在乘法计算中,我们可以利用乘法和除法的逆运算来进行快速计算。

例如,计算300 ÷ 25,我们需要将25乘以一个数等于或接近300。

通过观察,我们可以发现25 × 12 = 300,所以300 ÷ 25 = 12。

这种方法可以帮助学生在没有计算器的情况下快速计算乘法和除法的结果。

5、利用数字性质简化计算过程在乘法计算中,有一些数字性质可以帮助我们简化计算过程。

五个方法帮你迅速计算大数乘法

五个方法帮你迅速计算大数乘法

五个方法帮你迅速计算大数乘法在计算中,大数乘法是一种常见的操作,它能够帮助我们高效地进行数字相乘的计算。

然而,由于大数乘法涉及到的数字较多,有时候会让人感到困惑和繁琐。

在本文中,我将为你介绍五个方法,帮助你迅速计算大数乘法,让这个过程变得更加简单和高效。

方法一:竖式计算法竖式计算法是大数乘法中最常见的一种方法。

它通过将乘数和被乘数均垂直地写在横线上,然后逐位相乘,再将结果累加得出最终答案。

这种方法的优势在于思路清晰,简单易懂,适用于任何大小的数字。

下面是一个示例:示例:计算12345 × 67891 2 3 4 5× 6 7 8 9------------------8 7 4 6 5 (12345 × 9)7 4 1 6 0 (12345 × 8,向左移动一位)+6 1 7 2 5 (12345 × 7,向左移动两位)+4 9 3 5 (12345 × 6,向左移动三位)------------------8 4 0 2 3 0 0 5通过竖式计算法,我们得出了12345 × 6789 = 84023005 的结果。

你可以尝试使用这种方法来解决其他大数乘法的问题。

方法二:分组计算法分组计算法是一种适用于大数乘法的高效计算方法。

它通过将乘数和被乘数分别分解成多个子序列,然后逐个相乘并将结果相加,最终得到乘法的结果。

下面是一个示例:示例:计算12345 × 6789将乘数和被乘数分别拆分成两个两位数和两个三位数:12345 = 12 × 1000 + 34 × 100 + 56789 = 67 × 100 + 89计算各个子序列的乘积并相加:12 × 67 × 10000 + 12 × 89 × 1000 + 34 × 67 × 100 + 34 × 89 × 10 + 5 ×67 + 5 × 89再将各个子序列的乘积相加并得出最终结果:80640000 + 1068000 + 227800 + 3036 + 335 + 445 = 84023005通过分组计算法,我们得出了12345 × 6789 = 84023005 的结果。

数学技巧:快速计算乘法的窍门

数学技巧:快速计算乘法的窍门

数学技巧:快速计算乘法的窍门1. 引言在日常生活和学习中,我们经常会遇到需要进行乘法运算的场景。

然而,对于一些较复杂的乘法运算,传统的列竖式计算可能会比较繁琐和耗时。

为了提高计算效率,掌握一些快速计算乘法的窍门就显得尤为重要了。

2. 窍门一:近似数相乘当我们需要计算两个接近数之间的乘积时,可以使用近似数相乘的方法。

这个方法基于以下原理:接近数之间的差距较小,所以它们的乘积也应该接近。

具体步骤如下:•将两个数分别表示成基准数加上其离基准数的偏移量(即a = x + r1, b = x + r2),其中x是基准数,r1和r2是两个数与基准数之间的偏移量。

•将a和b相乘得到ab = (x + r1)(x + r2)。

•忽略掉偏移量与基准数相乘得到xr1和xr2。

•计算基准数与自身相乘得到x^2。

•最终结果为ab = x^2 + xr1 + xr2。

这种方法适用于计算近似数之间的乘积,可以快速得出一个接近的结果。

3. 窍门二:分解乘法分解乘法是将一个较大的乘法问题拆解成一系列较小的乘法问题来进行计算。

具体步骤如下:•将较大数拆解成更小的数字,例如将45拆解成40和5。

•用另外一个因子分别乘以拆解后的数字,然后对这些乘积进行累加。

•最终结果即为所求。

这种方法可以减少计算复杂度,特别适用于处理多位数相乘的情况。

4. 窍门三:跨界相乘跨界相乘是指将两个数中一个数减去或加上与另一个数之间的差值,在不改变最终结果的情况下简化计算过程。

具体步骤如下:•假设需要计算a * b,其中a比b大很多。

•计算差值c = a - b。

•将差值c与较小的那个数b相加或相减得到新的数d。

•计算d * (d + b) 或 d * (d - b) 得到中间结果。

•加上中间结果与差值c的乘积即为所求。

这种方法适用于处理较大数相乘的情况,可以减少计算的复杂性。

5. 窍门四:9的倍数乘法当我们需要计算一个数与9的乘积时,可以使用这个窍门。

具体步骤如下:•将该数各位数字相加得到和s。

数学快速计算方法乘法速算

数学快速计算方法乘法速算

数学快速计算方法乘法速算乘法速算是指使用一些特殊技巧和方法,在不借助计算器的情况下,快速而准确地进行乘法计算。

下面我将介绍几种常用的乘法速算方法。

1.乘以11的方法:当乘数是两位数或更小的数时,我们可以使用乘以11的方法进行快速计算。

假设有一个两位数的乘数ab,那么乘积为abb。

简单来说,我们将ab的十位数和个位数保持不变,然后将十位数和个位数的和作为新的十位数,个位数不变。

例如,56 * 11 = 5(5+6)6 = 6162.乘以9的方法:当乘数是一个个位数时,我们可以使用乘以9的方法进行快速计算。

假设有一个个位数的乘数a,那么乘积为a*9=a再加上a的补数(10-a)。

例如,6*9=6+(10-6)=543.乘以5的方法:当乘数是一个整数后面跟着一个0时,我们可以使用乘以5的方法进行快速计算。

假设有一个整数a0,那么乘积为a0*5=a*10+0*5、也就是说,我们只需要在原数后面加一个0。

例如,36*5=360。

4.乘以2的方法:当乘数是一个整数后面跟着一个0时,我们可以使用乘以2的方法进行快速计算。

假设有一个整数a0,那么乘积为a0*2=a*10+0*2、也就是说,我们只需要在原数后面加一个0。

例如,46*2=460。

5.大数相乘的方法:当乘数和被乘数非常大时,我们可以采用分段相乘和竖式相乘的方法进行计算。

具体步骤如下:(1)将乘数和被乘数分别分为若干段,每段的长度通常是一位数或两位数。

(2)从被乘数的最右边开始,分别与乘数的每一段相乘。

(3)然后将每一段的乘积相加,得到最后的结果。

以上是一些常用的乘法速算方法,通过熟练掌握这些方法,我们可以在不使用计算器的情况下,快速地进行乘法计算。

当然,要熟练掌握这些技巧,需要多加练习和实践。

12种数学速算技巧

12种数学速算技巧

12种数学速算技巧在学习数学过程中,速算技巧是必备的。

掌握速算技巧不仅可以提高数学计算的效率,还能提高数学思维能力。

本文将介绍12种数学速算技巧。

一、乘法口诀乘法口诀是小学阶段我们必须掌握的一种速算技巧。

通过乘法口诀我们可以快速地进行乘法运算。

例如,当算9 × 8时,可以快速地用乘法口诀:9 × 8 = 72。

二、加减法逆运算加减法逆运算指的是,在做加减法运算时,我们可以反向思考,从结果推算出来运算式。

例如,当算30 + 20时,我们可以将结果50拆分为25 + 25,再相加得到结果。

三、平方之和公式平方之和公式指的是,当算两个数平方之和时,我们可以使用公式(a+ b)²= a²+2ab+b²。

例如,当算9² + 13²时,我们可以使用公式(9+13)²=9²+2×9×13+13²=250 。

四、减法分配律减法分配律指的是,当要减去一个数时,我们可以将这个数分别减去每一个加数,再相减得到结果。

例如,当算18 - 9时,我们可以用减法分配律:18 - 9 = 18 - 8 -1 = 10。

五、倍数关系倍数关系指的是,两个数有倍数关系时,它们的差是这两个数中较小的数的倍数。

例如,当算72 - 36时,我们可以知道36是72的一半,所以答案是36 × 1 = 36。

六、除法结合律除法结合律指的是,当除以一个数时,我们可以将这个数分别除以每一个因数,再相除得到结果。

例如,当算108÷3÷4时,我们可以用除法结合律:108÷3÷4=108÷(3×4)=9。

七、水仙花数水仙花数是指,一个三位数,其每位的数字的立方和等于这个数本身。

例如,153是一个水仙花数,因为1³+5³+3³=153。

通过水仙花数的规律,我们可以推广到四、五位的水仙花数。

数学快速计算方法乘法速算

数学快速计算方法乘法速算

数学快速计算方法乘法速算乘法速算是指在没有使用计算器的情况下,能够快速准确地进行乘法运算的方法。

下面我将介绍几种常用的乘法速算方法。

1.将一个数乘以10:将这个数的末尾加上一个0。

例如:45×10=450。

2.将一个数的倍数乘法:在两个数中选择一个数做乘法,然后将得到的结果乘以另一个数。

例如:23×6=(23×3)×2=69×2=1383.将两个数相乘后再除以10:先将两个数相乘,然后将得到的结果除以10。

例如:25×35÷10=875÷10=87.54.以9为基准进行乘法:当一个数乘以9时,将这个数的每一位数字都减去1,然后用9减去这个数的每一位数字所得到的差再从9中减去。

例如:9×4=36,其中3=9-4,6=9-35.快速分解乘法:将一个数按照方便的方式进行分解,然后进行乘法计算。

例如:36×10=(30+6)×10=300+60=360。

6.整数和小数乘法:将小数乘以整数,然后将结果小数点右移相应的位数。

例如:3.5×20=70(小数点右移一位)。

7.两个数相乘,其中一个数接近10的整数倍:将这个数乘以10,再除以接近的整数倍的数,得到的商再与另一个数相乘。

例如:24×8=(24×10)÷5=240÷5=488.两个数相乘,其中一个数是10的倍数:将这个数直接乘以另一个数,然后将得到的结果直接加上相应的零。

例如:30×6=180。

这些都是常用的乘法速算方法,通过熟练掌握和大量的练习,可以在没有计算器的情况下快速准确地进行乘法运算。

高效学习:数学速算十大方法

高效学习:数学速算十大方法

高效学习:数学速算十大方法
概述
数学速算是一种提高计算效率和准确性的技巧,对于数学学习和解决实际问题都非常有帮助。

本文将介绍数学速算的十种高效方法,帮助你在学习数学过程中更加迅速和准确地进行计算。

1. 快速乘法法则
通过利用数字的特性,如交换律和分配律,可以在乘法计算中更快地得出结果。

2. 快速除法法则
使用除法法则可以在除法计算中更迅速地得到商和余数。

3. 快速加法法则
通过将数字按位数进行分组,可以更快地进行加法计算。

4. 快速减法法则
利用数字的特性,如借位和减法的逆运算,可以更快地进行减法计算。

5. 平方近似法
利用数字的平方近似值,可以更快地估算平方根和乘法结果。

6. 百分比转换法
利用分数和小数的关系,可以更快地进行百分比转换和计算。

7. 数据整合法
将大量数据进行整合和简化,可以更快地进行统计和分析。

8. 单位换算法
利用单位之间的换算关系,可以更快地进行长度、面积、体积等单位之间的转换和计算。

9. 快速排列组合法
利用排列组合的性质,可以更快地计算不同元素的排列组合情况。

10. 快速逻辑推理法
通过分析逻辑关系和条件,可以更快地得出结论和解决问题。

总结
数学速算是提高计算效率和准确性的重要技巧。

通过掌握以上十种高效方法,你可以更迅速和准确地进行数学计算,提高数学学习和解决实际问题的能力。

数学快速计算方法:乘法速算

数学快速计算方法:乘法速算

一.两个20以内数的乘法两个20以内数相乘,将一数的个位数与另一个数相加乘以10,然后再加两个尾数的积,就是应求的得数.如12×13=156,计算程序是将12的尾数2,加至13里,13加2等于15,15×10=150,然后加各个尾数的积得156,就是应求的积数。

二.首同尾互补的乘法两个十位数相乘,首尾数相同,而尾十互补,其计算方法是:头加1,然后头乘为前积,尾乘尾为后积,两积连接起来,就是应求的得数。

如26×24=624.计算程序是:被乘数26的头加1等于3,然后头乘头,就是3×2=6,尾乘尾6×4=24,相连为624.三。

乘数加倍,加半或减半的乘法在首同尾互补的计算上,可以引深一步就是乘数可加倍,加半倍,也可减半计算,但是:加倍、加半或减半都不能有进位数或出现小数,如48×42是规定的算法,然而,可以将乘数42加倍位84,也可以减半位21,也可加半倍位63,都可以按规定方法计算。

48×21=1008,48×63=3024,48×84=4032.有进位数的不能算。

如87×83=7221,将83加倍166,或减半41.5,这都不能按规定的方法计算。

四.首尾互补与首尾相同的乘法一个数首尾互补,而另一个数首尾相同,其计算方法是:头加1,然后头乘头为前积,尾乘尾为后积,两积相连为乘积。

如37×33=1221,计算程序是(3+1)×3×100+7×3=1221。

五.两个头互补尾相同的乘法两个十位数互补,两个尾数相同,其计算方法是:头乘头后加尾数为前积,尾自乘为后积.如48×68=3264.计算程序是4×6=24 24+8=32 32为前积,8×8=64为后积,两积相连就得3264.六。

首同尾非互补的乘法两个十位数相乘,首位数相同,而两个尾数非互补,计算方法:头加1,头乘头,尾乘尾,把两个积连接起来.再看尾和尾的和比10大几还是小几,大几就加几个首位数,小几就减掉几个首位数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两个20以内数相乘,将一数的个位数与另一个数相加乘以10,然后再加两个尾数的积,就是应求的得数。

如12×13=156,计算程序是将12的尾数2,加至13里,13加2等于15,15×10=150,然后加各个尾数的积得156,就是应求的积数。

两个十位数相乘,首尾数相同,而尾十互补,其计算方法是:头加1,然后头乘为前积,尾乘尾为后积,两积连接起来,就是应求的得数。

如26×24=624。

计算程序是:被乘数26的头加1等于3,然后头乘头,就是3×2=6,尾乘尾6×4=24,相连为624。

三.乘数加倍,加半或减半的乘法在首同尾互补的计算上,可以引深一步就是乘数可加倍,加半倍,也可减半计算,但是:加倍、加半或减半都不能有进位数或出现小数,如48×42是规定的算法,然而,可以将乘数42加倍位84,也可以减半位21,也可加半倍位63,都可以按规定方法计算。

48×21=1008,48×63=3024,48×84=4032。

有进位数的不能算。

如87×83=7221,将83加倍166,或减半41.5,这都不能按规定的方法计算。

一个数首尾互补,而另一个数首尾相同,其计算方法是:头加1,然后头乘头为前积,尾乘尾为后积,两积相连为乘积。

如37×33=1221,计算程序是(3+1)×3×100+7×3=1221。

两个十位数互补,两个尾数相同,其计算方法是:头乘头后加尾数为前积,尾自乘为后积。

如48×68=3264。

计算程序是4×6=24 24+8=32 32为前积,8×8=64为后积,两积相连就得3264。

两个十位数相乘,首位数相同,而两个尾数非互补,计算方法:头加1,头乘头,尾乘尾,把两个积连接起来。

再看尾和尾的和比10大几还是小几,大几就加几个首位数,小几就减掉几个首位数。

加减的位置是:一位在十位加减,两位在百位加减。

如36×35=1260,计算时(3+1)×3=12 6×5=30 相连为1230 6+5=11,比10大1,就加一个首位3,一位在十位加,1230+30=1260 36×35就得1260。

再如36×32=1152,程序是(3+1)×3=12,6×2=12,12与12相连为1212,6+2=8,比10小2减两个3,3×2=6,一位在十位减,1212-60就得1152。

两位数相乘,一数的和非互补,另一数相同,方法是:头加1,头乘头,尾乘尾,将两积连接起来后,再看被乘数横加之和比10大几就加几个乘数首。

比10小几就减几个乘数首,加减位置:一位数十位加减,两位数百位加减,如65×77=5005,计算程序是(6+1)×7=49,5×7=35,相连为4935,6+5=11,比10大1,加一个7,一位数十位加。

4935+70=5005两个头非互补,两个尾相同,其计算方法是:头乘头加尾数,尾自乘。

两积连接起来后,再看两个头的和比10大几或小几,比10大几就加几个尾数,小几就减几个尾数,加减位置:一位数十位加减,两位数百位加减。

如67×87=5829,计算程序是:6×8+7=55,7×7=49,相连为5549,6+8=14,比10大4,就加四个7,4×7=28,两位数百位加,5549+280=5829任意两个十位数相乘,都可按头加1方法计算:头加1后,头乘头,尾乘尾,将两个积连接起来后,有两比,这两比是非常关键的,必须牢记。

第一是比首,就是被乘数首比乘数首小几或大几,大几就加几个乘数尾,小几就减几个乘数尾。

第二是比两个尾数的和比10大几或小几,大几就加几个乘数首,小几就减几个乘数首。

加减位置是:一位数十位加减,两位数百位加减。

如:35×28=980,计算程序是:(3+1)×2=8,5×8=40,相连为840,这不是应求的积数,还有两比,一是比首,3比2大1,就要加一个乘数尾,加8,二是比尾,5+8=13,13比10大3,就加3个乘数首,3×2=6,8+6=14,两位数百位加,840+140=980。

再如:28×35=980, 计算程序是:(2+1)×3=9,8×5=40,相连位940,一是比首,2比3小1,减一个乘数尾,减5,二是比尾,8+5=13,比10大3,加三个3,3×3=9,9-5=4,一位数十位加,940+40=980。

两个十位数相乘,首位都是5时,先求出5的平方,再求出尾数和的一半,加平方数里,为前积,然后求两个尾数的积,为后积,连接起来就应求的得数。

如58×54=3132,其计算程序是:5×5=25,8+4=12,12的半数6,25+6=31,再加8×4=32。

两积相连为3132。

58×54就得3132。

两个十位数相乘,尾数都是5的乘法,先求出首位数的积,再加上首和的一半为前积,再加尾5的平方,就是应求的数。

如:65×85=5525,计算程序是:6×8=48,6+8=14,半数为7,48+7=55,5×5=25,连接起来,就得5525。

两个首位数差1,尾为互补的乘法,其计算方法是:大1的首位数平方减去尾数的平方,就是得数。

如:42×38=1596。

其计算程序是:首先4比3大1,尾数又是互补,那就减平方差,40的平方减2的平方,1600-4=1596。

根据减平方差的计算原理,可以引深一步,但凡首位大1,后边的数字为互补的数码,都可以按减平方差公式计算。

如:406×394=159964。

计算程序是:400的平方减6的平方,160000-36=159964。

十四.一数和为9,另一数为连接数的乘法但凡一个两位数的和为9,另一数为连接数,其计算方法是,头加1后,头乘头为前积,尾补乘尾补为后积,中间不管有多少位数,不用计算,都是头加1那个数。

比方:72×4567=328824,计算程序是:7加1为8,8乘4等于32,为前积,两个尾补的积是:8×3=24,为后积,中间两位数是56,不用计算,这两位都是头加1的数,都是8,72×4567就得328824。

两个十位数相乘,首位都是9时,其计算方法是:将一数的补数从另一数中减掉,为前积,然后加上两个尾补的积为后积,连接起来,就为得数。

如:97×94=9118,计算程序是:97-6等于91,为前积,两个尾补的积是3×6=18,91和18相连就得9118。

9的倍数是指18 27 36 45 54 63 72 81 198 297等等,都是9的倍数,都可以用一位数计算。

如18=20-2,297=300-3,3996=4000-4等等,用一位去乘任何数,得出积来错位相减即可得到乘积。

如:27×35=945,(27=30-3) 30×35=1050,1050-105=945。

以11为标准的速算,已经形成规律,这里要解决的是小数码的计算,要以11为标准见数排积,如:11×32=352,计算方法是:见3读3,为第一位数,第二位数是3与2相加等于5,尾数2是第三位数。

实际是:乘数32横加等于5,排在2与3中间,11×32就得352。

再如:11×23125=254375。

看数就能直接报数,23125,第一位数是2,第二位数是2+3的和5,第三位是3+1的和4,第四位是1+2的和3,第五位是2+5的和7,第六位是尾数5。

利用以11为标准的排积法,可以对12,22等都能直接报数。

如:12×321=3852。

在排321时,首位3不动,还首3,第二位是首位加倍加下位,首位3加倍为6,再加下位2,3+3+2=8第二位我8、第三位是本位加倍加下位2+2+1=5 ,第四位是尾数加倍落下来。

十八.稍大于100-500的乘法两个乘数都稍大于100,可以采纳一百零几的规律计算,如:106×107=11342。

计算方法是:首位不动,尾相加,尾相乘,把得数连接起来,就是得数。

计算程序是:先排首位1,次排尾数和,再排尾数积。

106×107是:排首位1,排尾数和,6+7=13,排尾数积6×7=42,把1、13、42连接起来,就得11342。

以一百零几为标准,可对稍大于一百几的任何数码进行计算。

如:112×113=12656,计算程序是:〔112+13〕×100+12×13,12500+156=12656。

以一百零几为标准,可对稍大于200-500的数进行计算:要扩大倍数,几百就扩大几百倍,如205×208=42640,计算程序是:〔205+8〕×200+5×8,213×200+40=42640十九.稍小于100-500的乘法稍小于100-500的数码,要利用补数计算,计算方法是:从一个乘数中减去另一个乘数的补数,为前积,再加两个补数的积为后积。

如:86×96=8256,计算程序是:(86-4)×100+14×4,8200+56=8256。

(86的补数14,96的补数4)一个数稍大于100-500,另一个数稍小于100-500的计算方法是:小数加大数零头,扩大接近数的倍数,再减去大数零头与小数补数的积,就是应求的得数。

如:104×98=10192。

计算程序是:〔98+4〕×100-4×2,10200-8=10192。

一个数是十几,另一个数是20以上的数相乘,其计算方法是:大数头与小数尾的积加在大数上乘10,再加两个尾数的积,就数应求的得数。

.如:26×13=338。

计算程序是:大数头2乘小数尾3得6,加在大数26上得32,乘10得320,再加上两个尾数的积即6×3=18,320+18=338。

相关文档
最新文档