城市桥梁健康监测系统技术规程
7.桥梁结构健康监测技术-发展与挑战——江苏省交通科学研究院股份有限公司 副总工程师 张宇峰
苏通大桥
崇启大桥
南京四桥
2. 健康监测技术及其发展
技术政策
交通运输部对桥梁健康监测已有制度要求 •《公路桥梁养护管理工作制度》:对特别重要的特大桥,应建立符合自 身特点的养护管理系统和健康监测系统 •《十二五公路养护管理发展纲要》:重点加强桥隧养护管理工作,强化 健康监测和实施监控系统建设……
400
500
600
更准确进行苏通大桥等大桥在强/台风作用下的影响分析与可能损伤分析; 对今后类似大桥的抗风设计具有指导意义
3. 应用案例
案例3:崇启大桥TMD设计与抑振作用分析——指导与验证设计
六跨钢连续梁桥
102m+4*185m+102m=944m
主跨
安装TMD前后(2012年5月 VS 2013年8月)
3. 应用案例
案例4:伸缩缝监测——找出常规检测无法发现的病因
钢梁被拉开
不锈钢滑板 伸缩梁与承载箱相碰
滑动支座
•江阴大桥主桥伸缩缝病害
1999年建成,2003年出现伸缩缝病害,2006年更换
设计寿命40年
3. 应用案例
案例4:伸缩缝监测——找出常规检测无法发现的病因
装置下部
装置上部
磨损情况
磨损情况
支座病害
突 发 事 件
船只碰撞
列车冲击
地震破坏
货车超载
1. 健康监测系统应用的必要性
疾病
检查
诊断
治疗
监测
检查
诊断
维修
1. 健康监测系统应用的必要性
健康监测——为桥梁构建神经系统
大脑 神经中 枢
状态评估
传输网 神经末 梢 传感器
人体神经系统
桥梁健康监测系统方案
桥梁健康监测系统方案1. 介绍本文档旨在提出一种桥梁健康监测系统方案,通过利用现代科技手段,实时监测和评估桥梁的结构健康状况,从而提早发现潜在的问题并及时采取措施进行维修和保养,确保桥梁的安全运行。
该方案利用传感器技术、数据采集与处理技术、远程监测与管理平台等关键技术,为桥梁管理部门提供全面的健康监测服务。
2. 方案设计2.1 传感器技术在桥梁健康监测系统中,将采用多种传感器来监测桥梁的各项关键指标。
例如,加速度传感器可以用于监测桥梁的振动情况,倾斜传感器可以用于监测桥梁的倾斜角度,温度传感器可以用于监测桥梁的温度变化等。
这些传感器将被安装在桥梁的关键位置,通过无线通信技术将采集到的数据传输到数据采集与处理系统。
2.2 数据采集与处理技术数据采集与处理技术是桥梁健康监测系统中的核心技术之一。
采集到的传感器数据将通过数据采集设备进行实时采集,并传输到数据处理系统。
在数据处理系统中,利用数据挖掘、机器学习等技术对采集到的数据进行分析和处理,从而得出桥梁健康状况的评估结果。
同时,数据处理系统还可以根据预设的规则进行异常检测,并及时发出报警。
2.3 远程监测与管理平台为了方便桥梁管理部门实时监测、管理和维护桥梁,本方案还将建立一个远程监测与管理平台。
该平台通过互联网连接数据处理系统和桥梁管理部门,实时接收和显示桥梁的健康状况数据,并提供数据可视化界面,方便管理人员进行数据分析和决策。
此外,远程监测与管理平台还可以通过短信、邮件等方式向管理人员发送桥梁健康状况的报告和警报。
3. 方案特点3.1 实时监测本方案利用传感器技术和数据采集与处理技术,实现对桥梁健康状况的实时监测。
监测到的数据可以立即传输到数据处理系统,并通过远程监测与管理平台进行实时显示和分析,从而及时发现潜在的问题并采取措施。
3.2 自动报警数据处理系统可以根据预设的规则进行异常检测,一旦发现桥梁健康状况异常,将自动发出报警。
报警信息可以通过远程监测与管理平台向管理人员发送,以便及时采取措施进行维修和保养,确保桥梁的安全运行。
桥梁维修的新技术与创新方法
桥梁维修的新技术与创新方法随着城市化进程的加速和交通运输的快速发展,桥梁作为其中重要的基础设施之一,承担着连接城市的重要角色。
然而,桥梁在长期使用过程中,会面临一系列的老化和损坏问题,需要进行维修和保养。
为了更有效地进行桥梁维修,近年来出现了一些新技术和创新方法,本文将为您介绍其中的几种。
1. 桥梁健康监测系统桥梁健康监测系统是基于传感器、数据采集和分析技术的新一代桥梁维修工具。
通过在桥梁的不同部位布置传感器,可以实时监测桥梁的结构健康状况,包括桥梁的振动、应力和变形等。
监测系统会将采集到的数据传输到中央控制中心,工程师可以通过分析数据来判断桥梁是否需要维修,并及时采取措施。
这种技术能够提前预警桥梁潜在的问题,减少事故的发生,同时也能够优化维修方案,降低成本和维修时间。
2. 高性能材料的应用传统的桥梁维修通常采用石材、钢材等材料进行修补。
而现在,随着科技的进步,高性能材料的应用在桥梁维修中变得越来越普遍。
比如,聚合物修复材料可以用于填补裂缝、加固受损部位,具有良好的抗震和耐久性能。
此外,碳纤维加固技术也是一种强化桥梁结构的创新方法,通过将碳纤维片粘贴在受损部位,可以提高桥梁的荷载承载能力和抗震性能。
这些高性能材料的应用可以延长桥梁的使用寿命,提高其整体性能。
3. 无人机巡检传统的桥梁巡检通常需要人工登桥进行目视检查,工作量大且效率低下。
而现在,无人机技术的应用改变了这一情况。
通过搭载摄像头和传感器的无人机,可以对桥梁进行高清影像采集和数据测量。
无人机可以快速、准确地获取桥梁的各项信息,并生成全景图及三维模型。
通过对无人机采集到的数据进行分析,可以及时发现桥梁的问题,为维修工作提供参考。
无人机巡检不仅提高了巡检效率,还降低了维修过程中的人员风险。
4. 全封闭浇注技术在桥梁维修中,常常需要对桥墩或桥面进行混凝土修补。
传统的修补方法会造成一定的交通阻塞和施工困难。
而全封闭浇注技术则能够解决这一问题。
这种技术利用特制的薄膜材料将受损部位进行封闭,并通过碳纤维维片夹持,再进行混凝土浇筑。
结构健康监测系统运行维护与管理标准
结构健康监测系统运行维护与管理标准随着城市化进程的不断加快,高层建筑、桥梁、水利工程等基础设施的建设日益增多,结构健康监测系统的运行维护与管理变得尤为重要。
该系统的目的是通过实时监测和评估结构的安全状况,及时发现和处理潜在的结构问题,确保结构的可靠性和稳定性。
结构健康监测系统的运行维护与管理需要遵循一定的标准,以确保系统的有效运行和数据的准确性。
以下是一些常见的标准和要求:1. 设备和传感器的选择与安装:结构健康监测系统需要选择合适的设备和传感器,并确保其能够满足监测要求。
设备和传感器的安装位置和方式应根据结构特点和监测目的进行合理选择,以确保数据的准确性和完整性。
2. 数据采集与处理:结构健康监测系统需要对传感器采集到的数据进行实时监测和处理。
数据采集过程中需要注意传感器的采样频率和采样精度,以确保数据的准确性。
在数据处理过程中,需要采用合适的算法和模型进行数据分析和评估,以提取结构的健康信息和识别潜在问题。
3. 数据传输与存储:结构健康监测系统需要确保数据的安全传输和存储。
数据传输过程中需要采用加密技术和安全协议,以防止数据被篡改或泄露。
数据存储过程中需要采用可靠的存储介质和备份策略,以确保数据的可靠性和完整性。
4. 报警与维护:结构健康监测系统需要及时发出报警信号,并采取相应的维护措施。
当监测数据超过预设的阈值或发生异常情况时,系统应能够发出警报并通知相关人员。
同时,系统需要定期进行维护和校准,以确保设备和传感器的正常运行。
5. 数据分析与评估:结构健康监测系统需要对监测数据进行综合分析和评估。
通过对数据的统计和分析,可以提取结构的健康信息和性能指标,评估结构的安全状况和剩余寿命,并制定相应的维护和修复策略。
6. 标准和规范:结构健康监测系统的运行维护与管理需要依据相关的标准和规范进行。
例如,国际上常用的标准包括ISO 13822和ISO 13374等,它们规定了结构健康监测系统的基本要求和测试方法。
桥梁结构监测与评估的规范要求
桥梁结构监测与评估的规范要求桥梁作为重要的基础设施之一,在城市化进程中扮演着至关重要的角色。
然而,随着桥梁的使用时间增长,其结构健康问题逐渐凸显。
因此,为了确保桥梁的安全可靠运行,桥梁结构的监测与评估变得尤为重要。
本文将介绍桥梁结构监测与评估的一些规范要求,以帮助相关从业人员更好地了解和应用。
1. 监测要求桥梁结构监测旨在实时获取桥梁的工作状态和结构健康状况。
以下是一些常见的监测要求:a. 结构变形监测:监测桥梁各个构件的垂直、水平位移以及变形情况,包括桥墩、桥面、伸缩缝等。
b. 荷载监测:监测桥梁受到的荷载大小、作用位置以及变化规律,以便对桥梁的承载能力进行评估。
c. 动力响应监测:监测桥梁在荷载作用下的振动特性,包括自然频率、振型等,以评估其结构的稳定性和安全性。
d. 环境监测:监测桥梁周围环境因素对桥梁结构的影响,如温度、湿度、风速等。
2. 监测方法为了满足监测要求,桥梁结构监测通常需要采用多种方法和技术手段,以下是一些常见的监测方法:a. 化学分析:通过取样分析桥梁材料的化学成分和强度,以评估其使用寿命和耐久性。
b. 非破坏检测:利用无损检测技术,如超声波、雷达等,对桥梁构件进行检测,以发现潜在的缺陷和损伤。
c. 结构监测系统:利用传感器和数据采集系统,实时监测桥梁的变形、振动等参数,并将数据进行存储和分析。
d. 定期巡检:定期对桥梁进行目视检查和测量,以检测桥梁的明显损伤和变形情况。
3. 评估要求除了监测桥梁结构的状态,评估桥梁的承载能力和安全性也是一个重要的环节。
以下是一些常见的评估要求:a. 荷载能力评估:通过定量分析桥梁受到的荷载和桥梁结构的强度,评估桥梁承载能力是否满足设计要求。
b. 抗震性评估:通过分析桥梁在地震作用下的结构响应,评估桥梁的抗震性能是否符合规范要求。
c. 损伤评估:通过对桥梁构件的损伤进行定量分析,评估桥梁结构的完整性和耐久性。
d. 结构可靠性评估:通过概率统计方法,评估桥梁在使用寿命内的可靠性和安全性。
桥梁工程中的结构健康监测技术
桥梁工程中的结构健康监测技术桥梁工程在城市的建设中起着重要的作用,它们连接了不同的地区,便利了人们的出行。
然而,随着桥梁的使用时间的增长,结构健康问题逐渐浮现。
为了确保桥梁的安全使用,结构健康监测技术成为了必不可少的工具。
桥梁结构健康监测技术的发展与进步,使我们能够更好地识别和解决桥梁结构健康问题。
这项技术主要包括传感器技术、数据采集与传输技术、数据处理与分析技术等多个方面。
通过这些技术的应用,我们能够实时监测桥梁的结构变化,及时发现并解决各种结构健康问题,保障桥梁的安全运行。
传感器技术是桥梁结构健康监测技术中的重要组成部分。
传感器可以安装在桥梁结构的不同位置,用于监测结构的变形变化、振动响应等信息,并将这些信息传输给数据采集与传输设备。
传感器的种类多样,例如应变传感器、加速度传感器、位移传感器等。
这些传感器能够实时监测桥梁结构的健康状态,为后续数据处理与分析提供基础数据。
数据采集与传输技术是桥梁结构健康监测技术中的关键环节。
通过合理布置数据采集设备,将传感器采集到的数据进行实时采集,并将其传输到数据处理与分析设备。
这一过程的可靠性和实时性对于桥梁结构健康监测至关重要。
随着数字化技术的进步,数据采集与传输技术也在不断完善,能够更好地满足实际应用需求。
数据处理与分析技术是桥梁结构健康监测技术的核心内容。
通过对采集到的原始数据进行处理与分析,我们可以获得桥梁结构的健康状态,判断是否存在结构问题。
数据处理与分析技术主要包括信号处理、模型建立、参数识别等各个方面。
这些技术能够将庞大的数据转化为可观察的信息,为桥梁结构的健康管理提供依据。
桥梁工程中的结构健康监测技术对于保障桥梁的安全运行具有重要意义。
它可以及时发现结构问题,及时采取修复措施,防止桥梁发生严重事故。
另外,结构健康监测技术还可以为桥梁的维护管理提供决策支持,延长其使用寿命,降低运营成本。
同时,随着城市发展的需求,桥梁的设计和建造也越来越复杂。
桥梁结构健康监测系统设计与实施策略
桥梁结构健康监测系统设计与实施策略在现代交通体系中,桥梁作为关键的基础设施,承载着巨大的交通流量和重要的经济使命。
为了确保桥梁的安全运行,延长其使用寿命,桥梁结构健康监测系统应运而生。
这一系统能够实时、准确地获取桥梁结构的状态信息,为桥梁的维护管理提供科学依据。
一、桥梁结构健康监测系统的组成与功能桥梁结构健康监测系统通常由传感器子系统、数据采集与传输子系统、数据处理与分析子系统以及评估与预警子系统等部分组成。
传感器子系统是整个监测系统的基础,负责感知桥梁结构的各种物理参数,如应变、位移、加速度、温度等。
常见的传感器包括应变计、位移传感器、加速度传感器和温度传感器等。
这些传感器需要具备高精度、高稳定性和耐久性,以适应桥梁复杂的环境条件。
数据采集与传输子系统负责将传感器采集到的数据进行收集、整理和传输。
为了保证数据的实时性和准确性,通常采用高性能的数据采集设备和可靠的通信方式,如有线通信、无线通信或两者结合的方式。
数据处理与分析子系统是对采集到的数据进行处理和分析的关键环节。
通过运用各种数据分析方法和算法,如滤波、去噪、特征提取等,从海量的数据中提取出有用的信息,以评估桥梁结构的健康状况。
评估与预警子系统则根据数据分析的结果,对桥梁结构的安全性进行评估,并在发现异常情况时及时发出预警信号,以便采取相应的措施。
二、桥梁结构健康监测系统的设计要点1、传感器的选择与布置传感器的选择应根据桥梁的结构特点、监测目标和环境条件等因素综合考虑。
在布置传感器时,需要遵循重点部位优先、均匀分布和便于安装维护的原则。
对于大跨度桥梁,通常需要在主跨、桥墩、桥台等关键部位布置较多的传感器;而对于中小跨度桥梁,则可以根据实际情况适当减少传感器的数量。
2、数据采集频率的确定数据采集频率的确定需要考虑桥梁的动态特性、监测目标和数据处理能力等因素。
对于动态响应较为敏感的桥梁结构,如悬索桥、斜拉桥等,需要采用较高的采集频率;而对于静态结构为主的桥梁,可以适当降低采集频率。
桥梁结构健康监测系统设计规范 DB32_T 3562—2019 江苏地方标准
ICS91.08.040P 25备案号:*** DB32 江苏省地方标准DB32/T 3562—2019桥梁结构健康监测系统设计规范Design Code for Bridge Structural Health Monitoring System2019-04-08发布2019-04- 30实施目录前言 (II)1 范围 (1)2 术语和定义 (1)3 总体要求 (2)4 传感器子系统设计 (3)5 数据采集与传输子系统设计 (5)6 数据存储与处理子系统设计 (8)7 数据预警与结构评估子系统设计 (9)条文说明 (11)1 范围 (11)2 术语和定义 (11)3 总体要求 (11)4 传感器子系统设计 (11)5. 数据通信与传输子系统设计 (12)6. 数据存储与处理子系统设计 (13)7. 数据预警与结构评估子系统 (13)前言本标准按GB/T 1.1—2009给出的规则起草。
本标准由江苏省交通运输厅提出并归口。
本标准起草单位:江苏交通控股有限公司、苏交科集团股份有限公司、东南大学、江苏省长大桥梁健康监测数据中心。
本标准主要起草人:吴智深、张宇峰、吴赞平、孙震、彭家意、杨超、王浩、假冬冬、张建、王友高、徐一超、赵亮、王路、欧阳歆泓、郭俊、徐嵩。
桥梁结构健康监测系统设计规范1 范围1.0.1本规范规定了桥梁结构健康监测系统的设计要求,以提高设计质量,保障桥梁服役期的健康与安全,有效指导桥梁养护管理。
1.0.2 本标准适用于新建或在役的大跨径斜拉桥、悬索桥、拱桥、以及梁桥。
1.0.3 引用标准名录GB 50139-2014 《内河通航标准》GB/T 5083 《公路工程结构可靠度设计统一标准》GB/T17955 《桥梁球形支座》GB/T 21296 《动态公路车辆自动衡器》CJJ 11 《城市桥梁设计规范》JT/T 1037-2016 《公路桥梁结构安全监测系统技术规程》JT/T 391 《公路桥梁盆式支座》JT/T 4 《公路桥梁板式橡胶支座》JTGD60 《公路桥涵设计通用规范》JTG D60-01 《公路桥梁抗风设计规范》JTG/T D65-01 《公路斜拉桥设计细则》EIA/TIA-568A 《商用建筑线缆标准》DB32/T 2880-2016《基于分布式长标距光纤传感的桥梁结构健康监测系统设计与施工规范》T/CECS 505-2018 《光纤光栅结构振动检测与监测标准》2 术语和定义以下术语和定义适用于本文件。
桥梁监控方案
六、法律法规与标准
1.严格遵守国家相关法律法规,如《中华人民共和国安全生产法》、《中华人民共和国道路交通安全法》等;
2.参照行业标准,如《公路桥梁养护技术规范》、《城市桥梁检测与评估技术规范》等;
3.遵循企业内部管理制度,确保项目合规、安全、高效运行。
七、保障措施
1.组织保障:成立项目组,明确职责,加强协作;
2.人员保障:配备专业技术人员,进行系统培训;
3.技术保障:采用先进、成熟的技术,确保系统稳定可靠;
4.资金保障:合理预算,确保项目资金充足;
5.安全保障:制定应急预案,加强安全防护。
本方案旨在为桥梁监控提供一套合法合规、科学有效的监测体系,为桥梁安全运行提供有力保障。希望相关部门认真组织实施,确保项目顺利推进。
4.数据存储与分析
数据存储采用分布式数据库,实现海量数据的存储与管理。数据处理与分析模块采用大数据分析技术,对桥梁结构健康状态进行实时评估。
5.预警与报警
当监测数据超过预设阈值时,系统自动发出预警信号,并通过短信、电话等方式通知相关人员。
五、实施步骤
1.调研与评估:对桥梁进行现场调研,评估监测需求,确定监测方案;
2.设备选型与采购:根据监测方案,选型采购相关传感器、数据采集设备等;
3.系统集成与调试:将传感器、数据采集设备等集成到监测系统中,进行系统调试;
4.数据采集与分析:启动监测系统,实时采集数据,进行数据分析;
5.预警与报警:根据数据分析结果,实施预警与报警;
6.养护与管理:根据监测数据,制定桥梁养护计划,指导养护工作;
5.数据采集与处理:启动监测系统,实时采集数据,进行数据处理与分析;
桥梁健康监测系统
桥梁健康监测系统一、前言桥梁是通往城市的重要交通设施,其安全性可以影响到公民的出行安全。
因此桥梁健康监测系统的研发和应用具有重要意义。
本文将介绍桥梁健康监测系统的工作原理、技术特征和应用效果等方面的内容。
二、桥梁健康监测系统的工作原理桥梁健康监测系统是利用传感器等监测设备对桥梁进行实时监测。
通过采集各种信息,通过计算机系统进行分类、筛选、分析和处理,得出极其详尽的桥梁状况分析报告。
桥梁健康监测系统是一种数据采集、传输、存储、处理和可视化的一体化系统,它覆盖了桥梁管理的各个环节,包括设计、建造、运行、维护和修缮等。
桥梁健康监测系统首先将网络传感器分布在桥梁的关键位置上,实时采集不同类型的数据。
传感器包括振动传感器、应变计和温度传感器等,它们可以测量桥梁荷载、变形、应力和温度等信息。
这些数据被实时收集、处理和传输到数据中心,并通过分析软件进行分析、处理和建模,最终生成用于桥梁健康管理的决策支持。
三、桥梁健康监测系统的技术特征1.传感器技术传感器技术是桥梁健康监测系统的核心技术,传感器的选择和布局是系统的关键点。
在传感器的选择上,应根据桥梁的特点、结构和施工规范,合理地选择传感器类型和数量。
在传感器的布局上,应根据桥梁的大小、形状、荷载类型、流动状态和工作环境等条件,确定传感器的位置和数量。
2. 数据源数据源包括传感器、控制器、通信设备和计算机等。
其中传感器是数据源的重要部分,其作用是将实时数据采集并传输到数据中心,控制器用于控制传感器和通信设备的工作,通信设备用于数据传输,计算机用于数据计算和分析处理。
3. 数据管理数据管理包括数据采集、传输、存储、计算、分析和展示等,其目的是将数据转化为信息,为决策提供支持。
数据管理应建立完整的数据库系统,掌握各个时期桥梁的状态,提供全面的桥梁健康状况的评估,同时能够实现数据实时控制、数据存储、提取和分析。
4. 分析算法桥梁数据的分析算法是整个系统的重要部分,其目的是根据监测数据的权值,来反映桥梁当前的健康程度。
城市桥梁的健康监测与维护
城市桥梁的健康监测与维护在现代城市的交通体系中,桥梁扮演着至关重要的角色。
它们不仅是连接城市各个区域的重要通道,更是城市基础设施的关键组成部分。
然而,随着时间的推移、交通流量的增加以及环境因素的影响,城市桥梁面临着各种各样的挑战,其健康状况逐渐成为人们关注的焦点。
因此,对城市桥梁进行有效的健康监测与维护,是确保城市交通顺畅、保障人民生命财产安全的重要任务。
城市桥梁在长期使用过程中,会受到多种因素的损害。
车辆的频繁通行会带来反复的荷载作用,导致桥梁结构出现疲劳损伤。
环境中的腐蚀因素,如雨水、空气中的化学物质等,会侵蚀桥梁的钢材和混凝土,降低其强度和耐久性。
此外,自然灾害如地震、洪水等,也可能对桥梁造成严重破坏。
如果不能及时发现并处理这些问题,桥梁的健康状况可能会急剧恶化,甚至出现坍塌等严重事故。
为了保障城市桥梁的安全运行,健康监测技术应运而生。
这是一种通过安装各种传感器和监测设备,实时获取桥梁结构的各种数据,并对这些数据进行分析处理,以评估桥梁健康状况的技术手段。
常见的监测参数包括桥梁的变形、应力、振动、温度等。
例如,通过在桥梁关键部位安装应变传感器,可以实时监测桥梁结构在车辆荷载作用下的应力变化情况;利用位移传感器,可以测量桥梁的变形情况,及时发现可能存在的不均匀沉降等问题;而振动传感器则能够监测桥梁的振动特性,帮助判断桥梁结构是否存在损伤。
在健康监测系统中,数据采集是第一步。
传感器将监测到的物理量转换为电信号,然后通过数据采集设备进行采集和传输。
这些数据被传输到数据处理中心,进行存储、分析和处理。
数据分析是健康监测的核心环节,需要运用各种数学和力学方法,对采集到的数据进行处理和分析。
例如,可以通过对比不同时间段的数据,发现桥梁结构性能的变化趋势;利用有限元分析等方法,对桥梁结构进行模拟和计算,评估其剩余寿命和安全性。
除了先进的监测技术,定期的维护也是保持城市桥梁健康的重要措施。
维护工作包括日常的巡查、清洁、防腐处理,以及定期的检测和维修。
海沧大桥运营期健康监测系统技术方案
海沧大桥运营期健康监测系统之GNSS 位移监测子系统技术方案目录一、概况 (3)1、项目概况 (3)2、GNSS 实时变形监测系统的优点 (4)3、GNSS 实时监测设计原则 (8)二、海沧大桥GNSS 监测项目总体设计 (9)1、系统设计依据 (9)2、监测方法 (9)3、系统工作的原理 (10)4、各子系统功能介绍 (11)5、传感器子系统设计安装 (11)5、辅助支持系统 (22)防雷 (22)外场机柜 (25)三、技术服务与系统维护 (26)1、系统的安装、调试 (26)2、免费保修承诺 (27)3、专业软件免费升级承诺 (27)4、技术培训承诺 (27)5、技术服务承诺 (28)6、超过保修期的维修承诺 (28)四、本项目拟定的工作内容及成果提交 (29)一、概况1、项目概况海沧大桥坐落在厦门西港中部,是从厦门岛通往海沧半岛的一座内海湾公路大桥,同时也是亚洲第一、世界第二(在当时仅次于丹麦)的三跨连续全漂浮钢箱梁悬索桥,代表着20 世纪中国建桥水平最高成就。
作为厦门出岛的第二条通道,海沧大桥连通厦门本岛与海沧半岛台商投资区。
在福建省厦门市内的厦门海沧大桥是我国第四座大跨径钢箱梁悬索桥,是我国第一座特大型三跨吊钢箱梁悬索桥,悬吊结构在国内首次采用不设竖向塔支座的全漂浮连续结构,为世界上第二座采用此种结构的大型悬索桥。
位于厦门市西港中部,西起海沧开发区马青公路,跨越厦门西海域并穿过火烧屿后接厦门本岛仙岳路,是厦门岛的第二条对外通道。
工程全长6419m,由石塘立交、西引道、西引桥、西航道桥、东航道桥、东引桥、东渡互通立交东引道及附属工程等组成,东航道桥为悬索主桥,长1108 米主跨648 米。
海沧大桥为双向六车道加紧急停车带的高等级公路特大桥梁,兼具城市桥梁功能。
海沧大桥设计通行能力为50000 辆/日,行车时速为80 公里/时。
大桥为三跨连续全飘浮钢箱梁悬索桥,全长约6000 米,主桥3140 米主跨648 米。
2023-桥梁结构健康监测系统技术设计及概算方案V3-1
桥梁结构健康监测系统技术设计及概算方案V3随着城市化进程的加快和交通需求的增大,大型桥梁的建设越来越多,桥梁的安全性和稳定性得到了广泛关注。
针对桥梁的健康状况监测变得越来越重要。
为此,“桥梁结构健康监测系统技术设计及概算方案V3”应运而生。
步骤一:方案概述“桥梁结构健康监测系统技术设计及概算方案V3”针对不同桥梁的不同结构特点,选择不同的监测方案,结合现代化的监测设备,可以实现桥梁结构的在线监测、状态诊断及预警。
同时,该方案还能为桥梁维护、改造和评估提供科学的数据和技术支持,确保桥梁安全、稳定和寿命的延长。
步骤二:监测设备“桥梁结构健康监测系统技术设计及概算方案V3”重点关注桥面荷载、温度、风速等影响桥梁安全稳定的因素进行监测。
相应的监测设备包括位移传感器、应变传感器、加速度传感器、倾角传感器等。
通过这些设备收集到的数据,可以实时地对桥梁的不同部位,如支座、桥墩、跨中等进行监测,掌握桥梁的实时工作状态。
步骤三:数据分析“桥梁结构健康监测系统技术设计及概算方案V3”可以通过采集到的监测数据进行数据分析。
对于采集到的位移、应变、加速度等数据可以通过数学模型和数据统计方法进行分析,通过图形化的展示,实现对桥梁结构健康状态的诊断和预警。
步骤四:远程监测与管理“桥梁结构健康监测系统技术设计及概算方案V3”可以实现远程监测和管理。
采用高智能化监测系统,传感器数据采集设备和管理系统可以通过网络实时传输数据,可实现对桥梁结构健康状况的在线监测、数据分析和远程管理。
此外,建立数据的存储和管理系统,而且根据管理人员的需要,在线传输数据和图像,分析和判断运行状态和安全,使得整个监测系统具有高度的可靠性和实用性。
总之,通过“桥梁结构健康监测系统技术设计及概算方案V3”的应用可以实现桥梁结构长期在线监测、状态诊断和预警,这一方法将为桥梁的科学评估、设计、维护和管理提供支撑,使得大型桥梁的运营更加安全、稳定和长久。
GNSS监测大桥技术方案
某大桥安全监测巡检管理系统之GNSS变形监测子系统上海司南导航技术有限公司2013年6月1目录1.GNSS工作原理和应用概况 (3)1.1GNSS工作原理 (3)1.2GNSS应用概况 (4)1.3GNSS实时变形监测系统的优点 (4)1.4实施GNSS监测的必要性 (7)1.5GNSS在国内外已建成桥梁健康监测系统中的应用 (7)1.6总结 (9)2.某大桥项目概况 (10)3.某大桥GNSS实时监测的目标 (10)4.某大桥GNSS变形监测系统总体设计 (10)4.1系统设计依据 (10)4.2系统设计原则 (11)4.3监测方法 (11)4.4系统工作的原理 (12)5.某大桥系统监测设计 (12)5.1系统设计与功能介绍 (15)5.1.1GNSS参考点及监测点布设 (15)5.1.2主要产品选择依据 (23)5.1.3辅助支持系统 (25)5.2主要设备选型 (28)5.2.1司南GNSS接收机 (28)5.2.2GNSS天线 (30)5.2.3GNSS天线罩 (32)5.2.4串口服务器 (33)5.2.5光电转换器 (36)5.2.6避雷设备 (37)5.3CDM ONITOR监测软件介绍 (40)5.3.1CDMonitor的系统结构 (41)5.3.2基本功能和指标 (43)5.3.3CDMonitor算法特点(与RTK比较) (47)6.设备清单 (51)231. GNSS 工作原理和应用概况1.1 G NSS 工作原理GNSS 即全球卫星导航定位系统(Global Navigation Satellite System ),目前GNSS 泛指美国的GPS 、俄罗斯的GLONASS 、欧盟的GALILEO 以及中国的COMPASS (北斗),目前使用范围较多的是美国的GPS 系统。
GPS 系统是美国国防部研制组建的新一代的军民两用的卫星导航定位系统。
该系统从本世纪七十年代初开始研制,美国政府于1995年4月宣布该系统已组建完毕并投入运行。
桥梁结构健康与安全监测系统建设方案精选全文完整版
处治效果
在各静载试验工况的试验荷载作用下,矮塔最大纵向偏位为-38.30mm,纵向偏位校验系数在1.246~1.640之间,实测值大于理论计算值。经现场查看及计算表明,导致矮塔纵向偏位及应变偏大的主要原因是高塔侧主梁支座沿桥纵向滑动受到限制。
运维数据流
财务管理
故障管理
监测数据
以工单为核心,在工单流转的过程中融合监控系统数据、日常巡视监测数据以及台账数据
特别维护
工单管理
事后维修(BM)
预防性维修(PM)
预测性维修(PdM)
状态监控
计划管理
维护手册
调度管理
缺陷
隐患
维护计划
维护计划
维护计划
设备状况
运行数据
人机料法环
维护记录
监控
直接派单
异常上报
桥台外道路
所有车道车流量
风速、风向
桥面风速、风向
风速风向仪
监测风荷载
主跨跨中桥面
塔顶风速、风向
塔顶
结构温度
混凝土或钢结构构件温度
光纤光栅温度传感器/分布式光纤温度应力监测主机
监测桥梁结构温度
主梁、桥塔
地震
承台顶或桥墩底部加速度
(抗震设防烈度为Ⅶ度及以上)
三向加速度传感器
监测地震
桥墩底物联架构体系
电缆通道B厂家
传感设备A
传感设备B
传感设备C
传感设备……
利用EAM中台、监控报警中台以及物联管理平台,将监控数据、设备信息以及业务工作流抽象化、标准化,消化各系统间差异,便于各类数据信息融合以及后续业务的纵向深入以及横向扩展
大跨桥梁结构健康监测系统预警阈值设置标准
大跨桥梁是现代城市交通建设的重要组成部分,其结构健康监测系统的预警阈值设置标准对于保障桥梁安全具有重要意义。
在此背景下,我们需要对大跨桥梁结构健康监测系统预警阈值设置标准进行深入探讨,以确保桥梁的安全运行。
一、大跨桥梁结构健康监测系统预警阈值概述大跨桥梁结构健康监测系统是利用现代信息技术手段,对桥梁结构进行实时监测和数据分析,以实现对桥梁结构健康状况的实时监测和预警。
预警阈值设置标准即是根据桥梁结构的特点和实际运行情况,依据相关标准和规范,制定出能够有效预警桥梁结构问题的参数阈值。
二、大跨桥梁结构健康监测系统预警阈值设置的标准制定1. 结合国家标准与规范在制定大跨桥梁结构健康监测系统预警阈值设置标准时,首先需要结合国家相关桥梁建设与运行的标准与规范,确保所制定的预警阈值能够符合国家标准要求。
2. 结合桥梁结构特点每座大跨桥梁的结构特点各异,例如桥梁的跨度、结构材料、荷载情况等,均会对预警阈值设置产生影响。
在制定预警阈值标准时,需要充分考虑桥梁的实际结构特点,以便更精准地监测桥梁结构健康状况。
3. 结合历史数据分析通过对历史桥梁结构健康监测数据进行分析,可以得出桥梁结构在不同情况下的数据变化规律,从而为预警阈值的设置提供参考依据。
4. 结合现代监测技术随着现代监测技术的不断进步,大跨桥梁结构健康监测系统也逐渐向智能化、自动化方向发展。
在制定预警阈值设置标准时,需要充分考虑并结合现代监测技术的应用,以提高监测系统的准确性和可靠性。
三、大跨桥梁结构健康监测系统预警阈值设置的目的1. 实现对桥梁结构健康状况的实时监测和预警预警阈值设置的目的在于通过监测系统对桥梁结构健康状况进行实时监测和预警,一旦发现异常情况能够及时做出预警响应。
2. 保障大跨桥梁的安全运行预警阈值设置的标准制定将有助于保障大跨桥梁的安全运行,一旦出现可能影响桥梁结构安全的情况,监测系统能够及时发出预警,为维护桥梁结构安全提供有力保障。
城市桥梁智慧健康监测标准
城市桥梁智慧健康监测标准
城市桥梁智慧健康监测标准主要包括以下几个方面:
1. 结构应力监测:通过使用高精度的应变计和压力传感器等设备,对桥梁的结构应力进行实时监测,以确保桥梁的承载能力。
2. 变形监测:通过使用全站仪、水准仪、激光位移传感器等设备,对桥梁的位移和变形进行实时监测,以确保桥梁的安全性。
3. 结构裂缝监测:通过使用裂缝计、声发射传感器等设备,对桥梁的结构裂缝进行实时监测,以确保桥梁的完整性。
此外,对于纳入城市桥梁健康监测的城市桥梁,需要满足一定的条件,例如技术状况等级为D级、E级、不合格级,且需继续服役的城市桥梁;跨越铁路、轨道、城市主干道、江河以及互通立交等重要节点的城市桥梁;特大跨度城市桥梁(主跨跨度不小于150m,总长不小于1000m);城市快速路
和城市主干道上的大跨径桥梁(跨径大于40m),或具有特殊要求的桥梁;桥梁主要承重构件采用特殊结构、特殊材料、特殊施工工艺,或具有特殊要求的城市桥梁;依据《城市桥梁养护技术标准》(CJJ规定,属于I类养护
类别的桥梁。
如需更多关于“城市桥梁智慧健康监测标准”的信息,建议咨询专业工程师或查阅相关资料。
广西城市桥梁健康监测系统技术规程
广西城市桥梁健康监测系统技术规程
一、技术规程的适用范围
该技术规程适用于广西地区城市桥梁的健康监测系统建设与管理。
二、监测系统的基础架构
(一)监测设备:监测设备应当安装在桥梁重要部位,并具备实时数据采集功能,包括但不限于应变、加速度、位移等数据。
(二)监测软件:监测软件应当能够实时分析监测数据,生成数据报告,并提供预警功能。
(三)通信设备:应当具备可靠的网络通信设备,实现远程监测和数据传输。
三、监测系统的建设和管理
(一)监测设备的选择:选择一定品质和性能的监测设备,以保证监测数据的准确可靠。
(二)监测系统管理:监测系统应当建立完善的管理制度,包括设备维护、数据备份、定期校准等方面。
(三)数据分析和报告:监测系统应当定期对监测数据进行分析和报告,并向相关部门汇报监测数据。
四、监测系统的应用
(一)盲区监测:监测系统应当设置盲区监测点,对桥梁中可能的盲区进行有效监测。
(二)预警:监测系统应当能够实现预警功能,提供及时有效的预警信息。
(三)控制决策:监测系统应当为相关部门提供数据支撑,对桥梁的修复、加固等决策提供参考。
以上是广西城市桥梁健康监测系统技术规程的主要内容。
为保证广西城市桥梁的安全和稳定,相关部门应当密切关注该技术规程,进行合理应用和管理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
城市桥梁健康监测系统技术规程
城市桥梁健康监测系统技术规程
第一章总则
第一条目的和依据
为了保障城市桥梁安全、延长使用寿命,加强桥梁结构健康监测,本技术规程制定。
本技术规程依据《城市桥梁管理条例》等法律法规制定。
第二条适用范围
本技术规程适用于城市桥梁健康监测系统的技术规范。
第三条定义
城市桥梁健康监测系统:指用于实现对桥梁健康状态监测、数据采集、处理、分析、评估以及预测的一套设备和软件系统。
健康监测:指通过对桥梁结构的实时、连续监测,获取桥梁结构的健康状态信息。
桥梁结构:指桥梁构件在空间中的集合体。
第二章系统设计
第四条设计原则
城市桥梁健康监测系统的设计应满足功能齐全、数据准确、实时监测、易于管理等原则。
第五条系统构成
城市桥梁健康监测系统应包括传感器、监测主机、通讯网络、数据处理与分析系统、监测数据管理系统等组成部分。
第六条系统参数
1. 传感器参数:涵盖传感器种类、工作范围、采样周期、输出信号类型、最大采样频率等信息。
2. 监测主机参数:涵盖主机种类、CPU类型、存储容量、设备接口、适应环境温度等信息。
3. 通讯网络参数:涵盖通讯方式、传输速率、数据传输协议、
数据分包大小等信息。
4. 数据处理与分析系统参数:涵盖数据处理方式、分析方法、数据处理软件、分析算法等信息。
5. 监测数据管理系统参数:涵盖数据存储方式、数据查询方式、数据传输管理方式、权限控制等信息。
第三章系统实现
第七条系统实施
城市桥梁健康监测系统的实施应按照设计方案进行实现,包括传感器布设、设备安装、通讯设施建设等。
第八条数据采集
城市桥梁健康监测系统应能实现传感器的实时数据采集和存储,保证数据的完整性和准确性。
第九条数据处理与分析
城市桥梁健康监测系统应能实现数据的处理、分析和综合评估,提供完整的评估报告和预测。
第十条数据管理
城市桥梁健康监测系统应能记录、查询、传输和管理监测数据,保障数据的安全和可靠性。
第四章系统维护和管理
第十一条维护管理
城市桥梁健康监测系统应进行定期检查和维护,确保系统正常工作,及时处理故障。
第十二条安全管理
城市桥梁健康监测系统应保障系统的信息安全和系统的物理安全。
第十三条应急管理
城市桥梁健康监测系统应设立应急预案,针对系统可能发生的各种不利情况,预先制定应急措施,保证系统正常运作。
第五章附则
第十四条技术保密
城市桥梁健康监测系统设计、实施和维护过程中,应遵守国家有关技术保密的法律、法规和规章制度。
第十五条本规程解释权
本规程解释权归城市桥梁管理部门所有。
第十六条生效时间
本技术规程自发布之日起生效。