第二章静电场题解

合集下载

电磁学第三版思考题与习题解答

电磁学第三版思考题与习题解答

电磁学第三版(梁灿彬)思考题与习题解答第一章 静电场的基本规律思考题1.1答案: (1) ×,正的试探电荷; (2) √ ;(3)× 在无外场是,球面上E⃗ 大小相等。

1.2 答案: 利用对称性分析,垂直轴的分量相互抵消。

1.3答案:(1)× 没有净电荷 ;(2)×; (3)×;(4)√;(5)×;(6)×;(7)×。

1.4答案:无外场时,对球外而言是正确的。

1.5答案:(1)无关 (2) 有关 (3)不能(导体球)、可以(介质球)。

场强叠加原理应用到有导体的问题时,要注意,带电导体单独存在时,有一种电荷分布,它们会产生一种电场;n 个带电导体放在一起时,由于静电感应,导体上的电荷分布发生变化,这时,应用叠加原理应将各个导体发生变化的电荷分布“冻结”起来,然后以“冻结”的电荷分布单独存在时产生的电场进行叠加。

1.6答案:(a 图) 能 ,叠加法(补偿法); (b 图) 不能 。

1.7答案:222121q q φφφφεε-==+,;113131+ -q q φφφφεε==,;134410+0 -q φφφφε==,。

1.8答案:(1)× ;(2)×; (3)×;(4)×;(5)√;(6)×。

1.9答案:n VE en∂=-∂ ,例如匀强电场;E 大,电势的变化率就大,并非一定121122010101.+.=4424R q E dl E dl rR R R πεπεπεπε∞⎝⎰⎰.0E dl =,0n VE e n∂=-=∂。

1.14证明:设s 面上有场强平行于分量,补上另一半球后球内各点的总场强应为零,可见s 面上不能有场强的平行分量,s 面上只有场强垂直分量,故s 面上应为等势面。

习题1.2.1解:(1)设一个电量为q 1,则q 2=4q 1,由公式12204q q F r πε=可以得到: ()2122041.64 5.010q πε-=⨯解之得: q 1=±3.3×10−7(C), q 2=1.33× 10−6(C) (2)当r=0.1时,所受排斥力为:12204q q F r πε==0.4(N ) 1.2.2解:设其中一个电荷电量为q ,则另一个电荷电量为Q -q ,由库仑力 ()2q Q q F k r -= 可知,当()220dF k Q q dq r =-=,即:2Qq = 时两电荷间的斥力最大,所以两者电量均为2Q。

第二章作业题解答

第二章作业题解答

第二章静电场习题解答2-1.已知半径为F = Cl的导体球面上分布着面电荷密度为A = p s0 cos的电荷,式中的炖0为常数,试计算球面上的总电荷量。

解取球坐标系,球心位于原点中心,如图所示。

由球面积分,得到2用打Q =护= J j p50cos OrsmOd Od(p(S) 0 0In x=j j psQSefsinGded00 0In n=PsF j J cos ageded(p0 0丸=sin20d0 = 0o2-2.两个无限人平面相距为d,分别均匀分布着等面电荷密度的异性电荷,求两平面外及两平面间的电场强度。

解对于单一均匀带电无限人平面,根据对称性分析,计算可得上半空间和卞半空间的电场为常矢量,且大小相等方向相反。

由高斯定理,可得电场大小为E = ^-2e0对于两个相距为的d无限大均匀带电平面,同样可以得到E] = E“耳=E3题2-2图因此,有2-3.两点电荷q、= 8C和q2 = -4C ,分别位于z = 4和),=4处,求点P(4,0,0)处的电场强度。

解根据点电荷电场强度叠加原理,P点的电场强度矢量为点Si和Si处点电荷在P处产生的电场强度的矢量和,即E r = Qi 弘 | ① R?4T V£0/?/ 4TT£0R] = r — r L = 4e v — 4e., R 、= J 4-0 " + 0-4 ~ = 4>/2 R 2 =r —r 2 =4e v -4e v , R 2 = J 4-0 ' + 0-4 ' = 4>/22-7. 一个点电荷+q 位于(-a, 0,0)处,另一点电荷-2q 位于(a,0,0)处,求电位等于零的 面;空间有电场强度等于零的点吗?解根据点电荷电位叠加原理,有々)=丄]鱼+鱼4矶丄忌」式中Rj =r-r L = x-\-a e v + ye v +e. R i = yl x + a 2 + r+^2 R 2 =r-r 2 = x ~a e v + ),e y+e r R? — yj x — ci + )r +代入得到式中代入得到心孟 _______ 1^x + a)2+ y 2+ z 22JaS+b+z 2(3x+d )(x+3a ) + 3),+3z ,=0根据电位与电场强度的关系,有电位为零,即令简化可得零电位面方程为要是电场强度为零,必有E x = 0, E y = 0, E : = 0一 (x+ d)[(x + d)2 + y 2 + ^2p + 2(—d)[(—d)2+ y 2 + 疋 -)^(x+n)2 + y 2 + z 2 2 +2y^(x-a)2 + y 2+ z 2丄-z[(x + d)2 + + 疋 2+2z[(x-d)2 +)*此方程组无解,因此,空间没有电场强度为零的点。

第二章静电场恒定电场和恒定磁场

第二章静电场恒定电场和恒定磁场
图2.1电介质的极化
介质中的高斯定理表示为 式中电位移矢量为
在线性的各向同性的电介质中
例2.1在空气中放入一个带电量为Q、半径为a的球体,该球体的 相对介电常数为εr。求该球体内、外任意一点的电场强度。
解(1) 球内任意一点,设到球心距离为r,做高斯面为以r为半径的球面, 如图2.2所示。
由电场的对称性可知,E和D的方向为er,所以
大小、它们之间的距离和周围的电介质,即可以不用电容器。
例2.10同心金属球与球壳系统如图2.12所示,内导体球半径为a,外导体 球壳的内外半径分别为b和c,导体球与导体球壳带有等量异号电荷,它
们之间充满相对介电常数为 r 的电介质,球外为空气。求该导体系统
的电容。
解:根据高斯定理不难求出空间各点的电场强度,设导体球和导体球壳的 带电量分别是q和-q,则导体和导体球壳之间的电场强度的大小为
电场能为
WeΒιβλιοθήκη 1 2dVv
(2) 对于多导体系统
We

1 2
dV
v
例2.12半径分别为a和b的同轴线,外加电压为U,内圆柱体电荷量为正,外圆柱 面单位长度上的电荷量与内圆柱体等值异号。如图2.16(a)所示,两电极间在θ1的 角度内填充介电常数为ε的电介质,其余部分为空气,求同轴线单位长度上储存 的电场能量。
示,求在l长度上的外电感。
图2.25例2.20用图
例2.21一个半径为a的无限长直导线,在导线均匀流过的电流为I,求这个导线
在单位长度上的内电感,如图2.26所示(设导体内部的磁导率近似为μ0)。 解:截面上的磁通并没有与全部电流I交链,而只是与一部分电流交链,交链的总 磁链为
图2.26
2. 互 有两感个回路l1和l2,如图2.27所示。

第二章 静电场 分离变量法

第二章 静电场   分离变量法

选择导体表面作为区域V的边 界,V内部自由电荷密度ρ=0 ,泊松方程化为比较简单的拉 普拉斯方程。
0
2
它的通解可以用分离变量法求出。 剩下的问题归结为:怎样利用边界 条件及边值关系确定常数,得到满 足边界条件的特解。
一、拉普拉斯方程的适用条件
1、空间 0 ,自由电荷只分布在某些介质(或导 体)表面上,将这些表面视为区域边界,可用 拉普拉斯方程。 2、在所求区域的介质中若有自由电荷分布,则要求 自由电荷分布在真空中产生的势为已知。 一般所求区域为分区均匀介质,则不同介质分界 面上有束缚面电荷。区域V中电势可表示为两部分 的和,即 0 0 为已知自由电荷产生 , 的电势, 不满足 2 0 , 为束缚电荷产生 的电势,满足拉普拉斯方程 2 0
Ca 1 r a
r a

C 0 a
C
a
0
(r )
a
0
ln
r a
在导体面上
E (a) er
r
d E e dr
r
a e
0
0
r
[例3]一个内径和外径分别为R2和R3的导体球壳,带
电荷为Q 。同心地包围着一个半径为R1的导体球
1 n
S
1
S
2
S
1
2
2 n
S
一般讨论分 界面无自由 电荷的情况
四.应用举例
1、两无限大平行导体板,相距为
差为V ,一板接地,求两板间的电势 和 。
E
l
,两板间电势
解:(1)边界为平面,故应 选直角坐标系 下板 S 0 ,设为参考点
1
Z

电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案

第二章静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分 形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方 程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特 性。

利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。

通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三 种方法。

至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、 各向同性与各向异性等概念。

讲解介质中静电场方程时,应强调电通密 度仅与自由电荷有关。

介绍边界条件时,应说明仅可依据积分形式的静 电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。

关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量 不符合迭加原理。

介绍利用虚位移的概念计算电场力,常电荷系统和常 电位系统,以及广义力和广义坐标等概念。

至于电容和部分电容一节可 以从简。

重要公式真空中静电场方程:qE d SE d l 0积分形式: SlEE 0微分形式:已知电荷分布求解电场强度:1(r )1,E (r )(r );(r )d V4|rr|V 02, E (r ) V 4 (r 0 )( | r r r r ) 3 |dV qE d S 3,高斯定律S1介质中静电场方程:E d l0积分形式:D d S qS l 微分形式:DE0线性均匀各向同性介质中静电场方程:qE d SE d l0积分形式:S l微分形式:EE0静电场边界条件:1,E1t E2t。

对于两种各向同性的线性介质,则D 1tD t2122,D2n D1ns。

在两种介质形成的边界上,则D 12nnD对于两种各向同性的线性介质,则E2n1 12nE3,介质与导体的边界条件:e n E0;e n DS若导体周围是各向同性的线性介质,则SSE;n n静电场的能量:221Q1 孤立带电体的能量:WQe2C2离散带电体的能量:n1W e Qi12ii111分布电荷的能量:WVSledddSlVSl2221静电场的能量密度:DEwe2对于各向同性的线性介质,则we 12E2电场力:库仑定律:Fqq4r2 e rd We常电荷系统:Fq常数d ldWeF常电位系统:常数d l题解2-1若真空中相距为d的两个电荷q1及q2的电量分别为q及4q,当点电荷q位于q1及q2的连线上时,系统处于平衡状态,试求q的大小及位置。

第二章 静电场中的导体和电介质:电容器的电容

第二章 静电场中的导体和电介质:电容器的电容
D 0 E P 0 r E E
P e 0 E
§2.8 电容器的电容
一.孤立导体的电容
q C V
单位:F(法拉)
C是与导体的尺寸和形状以及周围的电介质有 关,与q,V无关的常数。
1F 10 F 10 PF
6 12
例1 .求半径为R的孤立导体球的电容。
q1:q2: · :qn = C1:C2: · :Cn · · · ·
q qi (V A VB ) C i ,
i 1 i 1
n
n
n q C Ci VA VB i 1
并联电容器的总电容等 于各电容器的电容之和 2. 串联
C Ci
i 1
n
A +
VA +q –q +q –q 。
q dA udq dq C
从开始极板上无电荷直到极板上电量为Q的过 程中,电源作的功为
2 q 1 Q 1Q dq 0 qdq C C 2 C
A dA 0
Q
Q CU
U为极板上电量为Q时两板间的电势差
1 Q2 1 1 2 A CU QU 2 C 2 2
E
0
( r R1 , r R2 )
λ er 2πεr
B A
( R1 r R2 )
2
VA VB
R E dl R Edr
1
λdr R1 2πεr
R2
R2 q R2 λ ln ln 2πε R1 2πεL R1
q 2πεL C V A VB ln( R2 / R1 )
②所求的C = q/VA–VB一定与q和VA–VB无关,仅 由电容器本身的性质决定。

第二章-静电场与导体

第二章-静电场与导体

第二章静电场与导体教学目的要求:1、深入理解并掌握导体的静电平衡条件及静电平衡时导体的基本性质,加深对高斯定理和环路定理的理解,结合应用电场线这一工具,会讨论静电平衡的若干现象,会结合静电平衡条件去理解静电感应、静电屏蔽等现象,并会利用前章的知识求解电场中有导体存在时的场强和电势分布。

2、确理解电容的概念,并能计算几种特殊形式的电容器的电容值。

3、进一步领会静电能的概念、会计算一些特殊带电导体的静电能。

4、深刻理解电场能量的概念,会计算电场能。

教学重点:1、静电场中的导体2、电容和电容器教学难点:1、静电场的唯一定理§2.1 静电场中的导体§2.2 电容和电容器§2.3 静电场的能量§2.1 静电场中的导体1、导体的特征功函数(1)金属导体的特征金属可以看作固定在晶格点阵上的正离子(实际上在作微小振动)和不规则运动的自由电子的集合。

①大量自由电子的运动与理想气体中分子的运动相同,服从经典的统计规律。

②自由电子在电场作用下将作定向运动,从而形成金属中的电流。

③自由电子的平均速率远大与定向运动速率。

(2)功函数金属表面存在一种阻止自由电子从金属逸出的作用,电子欲从金属内部逸出到外部,就要克服阻力作功。

一个电子从金属内部跑到金属外部必须作的最小功称为逸出功,亦称功函数。

2、导体的静电平衡条件(1)什么是静电感应?当某种原因(带电或置于电场中)使导体内部存在电场时,自由电子受到电场力的作用而作定向运动,使导体一侧因电子的聚集而出现负电荷布另一侧因缺少电子而有正电荷分布,这就是静电感应,分布在导体上的电荷便是感应电荷。

(2)静电平衡状态当感应电荷在导体内产生的场与外场完全抵消时,电子的定向运动终止,导体处于静电平衡状态。

(3)静电平衡条件所有场源包括导体上的电荷共同产生的电场的合场强在导体内部处处为零。

静电平衡时:①导体是等势体。

②导体外表面附近的电场强度与导体表面垂直。

10 静电场2高考真题分项详解(解析板)

10 静电场2高考真题分项详解(解析板)

十年高考分类汇编专题10静电场2(2011—2020)目录题型一、带电粒子在复合场中的运动 ................................................................................................ 1 题型二、带电粒子在纯电场、复合场中运动的综合类问题 (5)题型一、带电粒子在复合场中的运动1.(2019天津)如图所示,在水平向右的匀强电场中,质量为m 的带电小球,以初速度v 从M 点竖直向上运动,通过N 点时,速度大小为2v ,方向与电场方向相反,则小球从M 运动到N 的过程( )A .动能增加212mvB .机械能增加22mv C .重力势能增加232mv D .电势能增加22mv【考点】:功能关系、动能定理、运动的独立性、电场力做功【答案】:C【解析】:小球的动能增加量为2222321)2(21mv mv v m E E KM KN =-=-;故A 错误;除重力外其它力对小球做功的大小为小球机械能的增加量,在本题中电场力对小球做功的大小为小球机械能的增加量,在水平方向上研究小球可知电场力对其做正功,电势能减小,可求得电场力对小球做功大小为小球水平方向动能的增量2221)(v m ;即小球的机械能增加了22mv ;电势能减小了22mv ;故B 对,D 错;从M 点到N 点对小球应用动能定理得:2221)2(21mv v m W W G D -=-;又22mv W D =;可求得221mv W G =故C 错;2.(2016江苏)如图所示,水平金属板A 、B 分别与电源两极相连,带电油滴处于静止状态.现将B 板右端向下移动一小段距离,两金属板表面仍均为等势面,则该油滴( )A. 仍然保持静止B. 竖直向下运动C. 向左下方运动D. 向右下方运动【考点】带电粒子在复合场中的运动、受力分析【答案】D【解析】两极板平行时带电粒子处于平衡状态,则重力等于电场力,当下极板旋转时,板间距离增大场强减小,电场力小于重力;由于电场线垂直于金属板表面,所以电荷处的电场线如图所示,所以重力与电场力的合力偏向右下方,故粒子向右下方运动,选项D正确.3.(2013广东)喷墨打印机的简化模型如图所示.重力可忽略的墨汁微滴,经带电室带负电后,以速度v垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中( )A.向负极板偏转B.电势能逐渐增大C.运动轨迹是抛物线D.运动轨迹与带电量无关【考点】带电粒子在复合场中的运动、受力分析、类平抛运动【答案:C】【解析】选C.带电微滴垂直进入电场后,在电场中做类平抛运动,根据平抛运动的分解——水平方向做匀速直线运动和竖直方向做匀加速直线运动.带负电的微滴进入电场后受到向上的静电力,故带电微滴向正极板偏转,选项A错误;带电微滴垂直进入电场受竖直方向的静电力作用,静电力做正功,故墨汁微滴的电势能减小,选项B错误;根据x=v0t,y =12at 2及a =qE m ,得带电微滴的轨迹方程为y =qEx22mv 20,即运动轨迹是抛物线,与带电量有关,选项C 正确,D 错误.4.(2016全国1) 如图,一带负电荷的油滴在匀强电场中运动,其轨迹在竖直面(纸面)内,且相对于过轨迹最低点P 的竖直线对称。

电磁学第二章习题答案

电磁学第二章习题答案

习题五(第二章 静电场中的导体和电介质)1、在带电量为Q 的金属球壳内部,放入一个带电量为q 的带电体,则金属球壳内表面所带的电量为q ,外表面所带电量为 q +Q 。

2、带电量Q 的导体A 置于外半径为R 的导体 球壳B 内,则球壳外离球心r 处的电场强度大小204/r Q E πε=,球壳的电势R Q V 04/πε=。

3、导体静电平衡的必要条件是导体内部场强为零。

4、两个带电不等的金属球,直径相等,但一个是空心,一个是实心的。

现使它们互相接触,则这两个金属球上的电荷( B )。

(A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多5、半径分别R 和r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U 0,则两球表面的电荷面密度之比σR /σr 为 ( B )(A) R/r (B) r/R (C) R 2/r 2 (D) 16、有一电荷q 及金属导体A ,且A 处在静电平衡状态,则( C )(A)导体内E=0,q 不在导体内产生场强;、(B)导体内E ≠0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E ≠0,q 不在导体内产生场强。

7、如图所示,一内半径为a ,外半径为b 的金属球壳,带有电量Q , 在球壳空腔内距离球心为r 处有一点电荷q ,设无限远 处为电势零点。

试求:、(1)球壳外表面上的电荷;(2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。

解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a <R <b )的rARQ)O· Q ·b·Oarq B高斯球面S,由高斯定理01εqq dS E S +=⋅⎰⎰ ,根据导体静电平衡条件,当a <R <b 时,0=E。

则0=⋅⎰⎰SdS E ,即01=+q q ,得q q -=1根据电荷守恒定律,金属球壳上的电量为21q q Q +=(qQ q Q q +=-=∴12(2)在内表面上任取一面元,其电量为dq ,在O 点产生的电势adq dV o πε411=q 1在O 点产生的电势aq aq adq dV V o o o πεπεπε4441111-====⎰⎰内内(3) 同理,外球面上的电荷q 2在O 点产生的电势bqQ bq V o o πεπε4422+== 点电荷q 在O 点产生的电势rq V o q πε4=∴ O 点的总点势o q V V V V πε41210=++=(bq Q a q r q ++-) 8、点电荷Q 放在导体球壳的中心,球的内、外半径分别为a 和b ,求场强和电势分布。

电磁学第四版赵凯华习题答案解析

电磁学第四版赵凯华习题答案解析

电磁学第四版赵凯华习题答案解析第一章:电磁现象和电磁场基本定律
1. 问题:什么是电磁学?
答案:电磁学是研究电荷和电流相互作用所产生的现象和规律的科学。

2. 问题:什么是电磁场?
答案:电磁场是指由电荷和电流引起的空间中存在的物理场。

3. 问题:什么是电场?
答案:电场是指电荷在周围空间中所产生的物理场。

4. 问题:什么是磁场?
答案:磁场是指电流或磁体在周围空间中所产生的物理场。

5. 问题:电磁场有哪些基本定律?
答案:电磁场的基本定律有高斯定律、安培定律、法拉第定律和麦克斯韦方程组。

第二章:静电场
1. 问题:什么是静电场?
答案:静电场是指电荷分布不随时间变化的电场。

2. 问题:什么是电势?
答案:电势是指单位正电荷在电场中所具有的能量。

3. 问题:什么是电势差?
答案:电势差是指在电场中从一个点到另一个点所需做的功。

4. 问题:什么是电势能?
答案:电势能是指带电粒子在电场中由于位置改变而具有的能量。

5. 问题:什么是电容?
答案:电容是指导体上带电量与导体电势差之间的比值。

以上是电磁学第四版赵凯华习题的部分答案解析。

详细的解析请参考教材。

电动力学习题解答2

电动力学习题解答2

第二章 静电场1. 一个半径为R 的电介质球,极化强度为2/r K r P =,电容率为ε。

(1)计算束缚电荷的体密度和面密度: (2)计算自由电荷体密度; (3)计算球外和球内的电势;(4)求该带电介质球产生的静电场总能量。

解:(1)P ⋅-∇=p ρ2222/)]/1()/1[()/(r K r r K r K -=∇⋅+⋅∇-=⋅∇-=r r r)(12P P n -⋅-=p σR K R r r /=⋅==P e (2))/(00εεεε-=+=P P E D 内200)/()/(r K f εεεεεερ-=-⋅∇=⋅∇=P D 内(3))/(/0εεε-==P D E 内内rr frKRr Ve e D E 200200)(4d εεεεπερε-===⎰外外 rKRr)(d 00εεεεϕ-=⋅=⎰∞r E 外外)(ln d d 00εεεεϕ+-=⋅+⋅=⎰⎰∞r R K RR rr E r E 外内内(4)⎰⎰⎰∞-+-=⋅=R R rrr R K r r r K V W 42200222022202d 4)(21d 4)(21d 21πεεεεπεεεE D 20))(1(2εεεεπε-+=K R2. 在均匀外电场中置入半径为0R 的导体球,试用分离变量法求下列两种情况的电势:(1)导体球上接有电池,使球与地保持电势差0Φ; (2)导体球上带总电荷Q 解:(1)该问题具有轴对称性,对称轴为通过球心沿外电场0E 方向的轴线,取该轴线为极轴,球心为原点建立球坐标系。

当0R R >时,电势ϕ满足拉普拉斯方程,通解为∑++=nn n nn n P R b R a )(cos )(1θϕ 因为无穷远处 0E E →,)(cos cos 10000θϕθϕϕRP E R E -=-→ 所以 00ϕ=a ,01E a -=,)2(,0≥=n a n当 0R R →时,0Φ→ϕ所以 0101000)(cos )(cos Φ=+-∑+n nn nP R b P R E θθϕ 即: 002010000/,/R E R b R b =Φ=+ϕ所以 )2(,0,),(3010000≥==-Φ=n b R E b R b n ϕ⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ(2)设球体待定电势为0Φ,同理可得⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ当 0R R →时,由题意,金属球带电量Qφθθθϕθεϕεd d sin )cos 2cos (d 200000000R E R E S nQ R R ⎰⎰+-Φ+=∂∂-== )(40000ϕπε-Φ=R所以 00004/)(R Q πεϕ=-Φ⎩⎨⎧≤+>++-=)(4/)(cos )/(4/cos 00002300000R R RQ R R R R E R Q R E πεϕθπεθϕϕ3. 均匀介质球的中心置一点电荷f Q ,球的电容率为ε,球外为真空,试用分离变量法求空间电势,把结果与使用高斯定理所得结果比较。

电磁学答案第2章

电磁学答案第2章

第二章 导体周围的静电场2.1.1 证明: 对于两个无限大带电平板导体来说:(1)相向的两面(附图中2和3)上,电荷的面密度总是大小相等而符号相反;(2)相背的两面(附图中1和4)上,电荷的面密度总是大小相等而符号相同;证:(1) 选一个侧面垂直于带电板,端面分别在A,B 板内的封闭圆柱形高斯面,由高斯定理得:S S E S E S d E S d E B A ∆+=∆+∆+•=•⎰⎰⎰⎰⎰⎰⎰⎰032εσσ)(内内侧侧ϖϖϖϖ 侧侧S d E ϖϖΘ⊥ 0==内内R A E E⎰⎰=•∴0S d E ϖϖ 023=+σσ23σσ-=即:(2)在导体内任取一点P ,0=p E ϖΘ0ˆ2ˆ2ˆ2ˆ2040302034321=-++=+++=∴n n n n E E E E E p εσεσεσεσϖϖϖϖϖ 41σσ=∴其中nˆ是垂直导体板向右的单位矢。

2.1.2两平行金属板分别带有等量的正负电荷,若两板的电位差为160伏特,两板的面积都是平方厘米,两板相距毫米,略去边缘效应,求两板间的电场强度和各板上所带的电量(设其中一板接地).解:设A 板带负电,其电量是-q ,B 板带正电,其电量是+q ,且A 板接地。

两板间的电场强度: 米)伏/(10106.116053=⨯==-d V E 又因为εσ=E )米库2751203/(1085.8101085.8--⨯=⨯⨯==∴E εσ根据上题结论:3241σσσσ-==; 又由于A 板接地,041==∴σσ)米(库2732/1085.8-⨯-=-=∴σσ库)板所带电量(102.3106.31085.8:10472---⨯-=⨯⨯⨯-==-∴S q A σB 板所带电量: 库)(102.3106.3.1085.810473---⨯=⨯⨯⨯==S q σ 2.1.3三块平行放置的金属板A,B,C 其面积均为S,AB 间距离为x,BC 间距离为d,设d 极小,金属板可视为无限大平面,忽略边缘效应与A 板的厚度,当B,C 接地(如图),且A 导体所带电荷为Q 时,试求: (1)B,C 板上的感应电荷; (2)空间的场强及电位分布. 解:(1)根据静电平衡时,导体中的场强为零,又由B,C 接地: ))((()(050243615432板的电位得由板的总电量得)由A x d x A Q S -==+==-=-=∴εσεσσσσσσσσσ 解以上方程组得出:Sd x d Q )(2--=σ Sd x d Q )(3-=σ Sd Qx =4σ SdQx-=5σ B 板上感应电荷:dx d Q S Q B )(2--==σ C 板上的感应电荷:dQx S Q c -==5σ (2)场强分布:0=ⅠE ϖ AB Ⅱr Sd x d Q E ˆ)(0ε-=ϖ AC Ⅲr Sd QxE ˆ0ε=ϖ 0=ⅣE ϖ 电位分布:;01=U 0=ⅣU )()(0r x Sd x d Q U Ⅱ--=ε)(r x d Sd Q U X--=︒εⅢ 其中r 是场点到板A 的距离。

第二章 有导体时的静电场习题及解答

第二章  有导体时的静电场习题及解答
7、若电荷间的相互作用不满足平方反比律,导体的屏蔽效应仍然存在。()×
8、用一个带电的导体小球于一个不带电的绝缘大导体球相接触,小球上的电荷会全部传到大球上去。()×
9、带电体的固有能在数值上等于该带电体从不带电到带电过程中外力反抗电力作的功。()√
10、静电平衡时,某导体表面的电荷在该导体内部产生的场强处处必为零。()×
3、一封闭的带电金属盒中,内表面有许多针尖,如图所示,根据静电平衡时电荷面密度按曲率分布的规律,针尖附近的场强一定很大。()×
4、孤立带电导体圆盘上的电荷应均匀分布在圆盘的两个圆面上。()√
5、对于一个孤立带电导体,当达到静电平衡时,面电荷的相对分布与导体表面的曲率成正比。()√
6、一个接地的导体空腔,使外界电荷产生的场强不能进入腔内,也使内部电荷产生的场不进入腔外。()×
第二章有导体时的静电场
一、判断题(正确划“ ”错误码划“ ”)
1、由公式 知,导体表面任一点的场强正比于导体表面处的面电荷密度,因此该
点场强仅由该点附近的导体上的面上的面电荷产生的。()×
2、一导体处静电场中,静电平衡后导体上的感应电荷分布如图,根据电场线的性质,必有一部分电场线从导体上的正电荷发出,并终止在导体的负电荷上。()×
11、两个带有同种电荷的金属球,一定相斥。()×
12、真空中有一中性的导体球壳,在球中心处置一点电荷q,则壳外距球心为r处的场强为 ,当点电荷q偏离中心时,则r处的场强仍为 。()√
13、接地的导体腔,腔内、外导体的电荷分布,场强分布和电势分布都不影响。()√
14两个导体A、B构成的带电系的静电能为 ,则式中的 及 分别表示A和B的自能。()×
(A)该处无穷小面元上的电荷产生的。(B)该面元以外的电荷产生的。

电磁场原理习题与解答(第2章)

电磁场原理习题与解答(第2章)
因为,所以静电力沿z负方向,有将液体吸向空气的趋势。升 高液体的重力为

所以: 第二步 单独作用产生的电场强度为,如图(c)所示。
第三步 将和在空洞中产生的场进行叠加,即 注: 2-7半径为 a介电常数为ε的介质球内,已知极化强度 (k为常数)。 试求:(1)极化电荷体密度和面密度 ;
(2)自由电荷体密度 ; (3)介质球内、外的电场强度。 解:(1) ,
(2) 因为是均匀介质,有
的电场与方位角无关,这样处取的元电荷,它产生的电场与点电荷产生
的场相同,为:
z
y
l/2
图2-2长直线电荷周围的电场
l/2
P
其两个分量:
(1)
(2)

所以:
(3)
式(3)分别代入式(1)(2)得:

(4)

(5)
式(5)代入式(4)得:
由于对称性,在z方向 分量互相抵消,故有
(2)建立如图所示的坐标系
应用叠加原理计算电场强度时,要注意是矢量的叠加。
2-4 真空中的两电荷的量值以及它们的位置是已知的,如题图2-4所示, 试写出电位和电场的表达式。 解:为子午面场,对称轴为极轴,因此选球坐标系,由点电荷产生的电 位公式得:
又,
题图2-4
2-5解, (1) 由静电感应的性质和电荷守恒原理,充电到U0后将ቤተ መጻሕፍቲ ባይዱ源拆去,各极 板带电情况如图(1)所示
解:设导电平板的面积为S。两平行板间的间隔为d=1cm。显然, 绝缘导电片的厚度。平板间的电压为。
(1) 忽略边缘效应,未插入绝缘导电片时
插入导电片后
所以,导电片中吸收的能量为
这部分能量使绝缘导电片中的正、负电荷分离,在导电片进入极板间 时,做机械工。

电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案

第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。

利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。

通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。

至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。

讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。

介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。

关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。

介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。

至于电容和部分电容一节可以从简。

重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。

对于两种各向同性的线性介质,则2211εεttD D =2,s n n D D ρ=-12。

在两种介质形成的边界上,则n n D D 21=对于两种各向同性的线性介质,则n n E E 2211εε=3,介质与导体的边界条件:0=⨯E e n ; S n D e ρ=⋅若导体周围是各向同性的线性介质,则ερS n E =;ερϕS n -=∂∂静电场的能量:孤立带电体的能量:Q C Q W e 21212Φ== 离散带电体的能量:∑==ni i i e Q W 121Φ分布电荷的能量:l S V W l l S S Ve d 21d 21d 21ρϕρϕρϕ⎰⎰⎰===静电场的能量密度:E D ⋅=21e w 对于各向同性的线性介质,则2 21E w e ε=电场力:库仑定律:rrq q e F 2 4πε'=常电荷系统:常数=-=q e lW F d d常电位系统:常数==ϕlW F e d d题 解2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。

电磁学第二章

电磁学第二章
2 3 法3,作如图高斯面有:
最后, qA 1 S 2 S
qB 3 S 4 S
q A qB q A qB 1 4 、 2 3 2S 2S
en
(1)此时,平行板表面可看成无限大平面。 结论:
(2)无论A或B是否接地,总是有,
2 3、 1 4
(3)接地时 1 4 0 。 (?) (4)(2)、(3)的结论在解复杂问题时可 直接引用
静电场中的导体
例2、在上例两板间插入长宽相 同的中性金属平板C,求六个壁 PA 的电荷面密度。 2 3、 4 5 解:利用例1的结论有: 对于 PA 点有:
封闭金属壳内外的静电场
2、壳外有带电体的情况
无论壳接地与否或外壁电荷密度不一定处处为 零;可以证明壳外电场不受壳内电荷(包括壳内壁 电荷)影响。
【思考】移动腔内带电体或改变腔内带电体电 量,是否影响内、外表面电荷分布?
【思考题解答】
+
+ +
+
+ + + + +
+ + + + +
S
+
+
带电体
移动金属腔内带电体,或改变腔内带电体 的电量,不影响外表面电荷分布,只影响内表 面电荷分布。
例4、半径为R、电荷为Q的金属球外有一与球 心距离为 l 的点电荷 q ,求金属球的电势 (参考点在无穷远)。若球接地,求球面上 的电荷 q 。
静电场中的导体
六、平行扳导体组例题
例1、长宽相等的金属平板A和B在真空 中平行放置,如图,板间距离比长宽小 的多。分别令每板带 q A 及 qB的电荷, 求每板表面的电荷密度。 解: 法1 ,在导体A、B内取两点 P1 、 P2 1 2 3 4 则: E e e e e 0 n P n

第二章 有导体时的静电场习题及解答

第二章  有导体时的静电场习题及解答
(A)升高(B)降低(C)不变(D)无法判断
7、一个电容量为C的平行板电容器,两极板的面积都是S,相距为d,当两极板加上电压U时,(略去边缘效应),则两极板间的作用力为:(C)
(A) 排斥力(B) 排斥力
(C) 吸引力(D) 吸引力
8、a、b、c为带电导体表面上的三点,如图所示,静电平衡时,比较三点的电荷密度,电势及面外附近的场强,下诉说法中错误的是:(B)
2、一封闭金属壳A内有一电量为q的导体B,求证,为使 ,唯一的方法是令q=0.此结论与A是否带电有无关系?
证:若 。金属壳的内表面带负电,有电场线从B出发,终止于A内表面上,因此有 ,由此可见,要使 ,其必要条件是B不带电,q=0。
若q=0,A壳内表面没有电荷,壳外部的场又不能影响它内部的场,A与B之间没有电场存在,它们之间没有电位差,因此,要使 的充要条件是q=0。
2、如图所示是一种用静电计测量电容器两极板间电压的装置。试问:电容器两极板上的电压越大,静电计的指针的偏转偏转是否也越大,为什么?
答:静电计可看作一个电容器,与平行板电容器
并联,二者极板上的电压相等,当电容一定时,电
量与电压成正比,当平行板电容器的电压增大时,
静电计构成的电容器上的电压也增大,从而指针和
定的点电荷q,q到球心的距离r比球的球的
半径大得多。
(1)q受到的静电力();
(2)q1受到的q的作用力();
(3)q受到q2的作用力();
(4)q1受到q2的作用力()。
、0、 、0
4、在一电中性的绝缘金属盒内悬挂一带正电的金属小球B如图所示。
(1)、带正电的试探电荷A位于金属荷附近,A受( ),
3、一封闭的带电金属盒中,内表面有许多针尖,如图所示,根据静电平衡时电荷面密度按曲率分布的规律,针尖附近的场强一定很大。()×

第二章 静电场 格林函数法

第二章 静电场  格林函数法
于是 故得到
( x) ( x ) G ( x, x) ( x)dV 0 G ( x, x ) dS V S n
1 S ( x)dS 0 S
此式称为外问题的Green函数解的形式。边值问题的解找到 了,其实并作为此,因为只有把问题的Green函数 找到了,才能对表达式(第一类边值问题的形式解 和第二类边值问题的形式解)作出具体的计算。实 际求Green函数本身并不是件容易的事,所以以上 解的形式只具有形式解的意义。当然,它把唯一性 定理更具体地表达出来了。 在这里介绍几种不同区域的Green函数的制作 方法。
因为Green公式中积分,微分都是对变量 x 进行的, 而Green函数关于源点和场点是对称的,即 G( x, x)
G( x, x ) ,为方便起见,把变量 x 换为 x ,故有 改为 ,即得
[G( x, x)
V
1
0
( x) ( x)
1
0
( x x )]dV
电势方程为
0 假设有一包含 x 点的某空间区域V,在V 的边界

2
1
( x x)
(3)
S上有如下边界条件
S
0 或者 n
S
1 0S
(4)
则把满足边界条件(4)式的(3)式的解称为 泊松方程在区域V的第一类或第二类边值问题 的Green函数。
Green函数一般用 G( x, x) 表示,x 表示单位电荷 所在的位置,x代表观察点,在(3)式和(4) 式中,把
故得到
1 4 ( x x) r
2
与微分方程比较,即有 1 1 2 2 1 G ( x, x) ( x x) 40 r 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 静电场(注意:以下各题中凡是未标明电介质和导体的空间,按真空考虑)2-1 在边长为a 的正方形四角顶点上放置电荷量为q 的点电荷,在正方形几何中心处放置电荷量为Q 的点电荷。

问Q 为何值时四个顶点上的电荷受力均为零。

解 如图建立坐标系,可得x x x x a Q a a q E e e e 2/122421221420220⨯⨯+⎪⎪⎭⎫ ⎝⎛⨯+=πεπε y y y y a Q a a q E e e e 2/122421221420220⨯⨯+⎪⎪⎭⎫ ⎝⎛⨯+=πεπε 据题设条件,令 022421=⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+Q q , 解得 ()2214+-=qQ2-2 有一长为2l ,电荷线密度为τ的直线电荷。

1)求直线延长线上到线电荷中心距离为2l 处的电场强度和电位; 2)求线电荷中垂线上到线电荷中心距离为2l 处的电场强度和电位。

解 1)如图(a )建立坐标系,题设线电荷位于x 轴上l ~l 3之间,则x 处的电荷微元在坐标原点产生的电场强度和电位分别为()x x xe E -=204d d πετ,x x 04d d πετϕ= 由此可得线电荷在坐标原点产生的电场强度和电位分别为()()()x l l xl l l x x e e E E -=-==⎰⎰0320364d d 0πετπετ ()3ln 44d d 00303l πετπετϕϕ===⎰⎰l l l x x2)如图(b )建立坐标系,题设线电荷位于y 轴上l -~l 之间,则y 处的电荷微元在点()l 2,0处产生的电场强度和电位分别为()r ry e E -=204d d πετ,r y04d d πετϕ= 式中,θθ2cos d 2d l y =,θcos 2l r =,514sin 22=+=l l l α,分别代入上两式,并考虑对称性,可知电场强度仅为x 方向,因此可得所求的电场强度和电位分别为()l l l r yl x x x x 0000020054sin 4d cos 4cos 4d 2d 20,2πεταπετθθπετθπεταααe e e e E E =====⎰⎰⎰()010024.0421tan 21tan ln 2cos d 4d 20,2πετππετθθπετϕϕαα=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+===-⎰⎰l2-3 半径为a 的圆盘,均匀带电,电荷面密度为σ。

求圆盘轴线上到圆心距离为b的场点的电位和电场强度。

解 根据电荷分布的对称性,采用圆柱坐标系。

坐标原点设在圆盘形面电荷的圆心,z 轴与面电荷轴线重合。

场点P 的坐标为()b ,,0α。

在带电圆盘上取一个电荷元σα'''r r d d ,源点坐标为()''r ,,α0。

由电荷元产生的电位d d d ϕσαπε='''r r R40计算P 点电位时,场点坐标()b ,,0α不变,源点坐标()''r ,,α0中'r 'α是变量。

22b r R +'=整个圆盘形面电荷产生的电位为()()bb ab b aa b r r r a b r r r -+-+=+'''=+''''=⎰⎰⎰222222200202202=22d 4d d εσεσεσπεασϕπ根据电荷分布的对称性,整个圆盘形面电荷产生的电场强度只有e z 方向的分量z z z b a bb b b a b z e e e E ⎪⎪⎭⎫⎝⎛+-=⎪⎪⎭⎫ ⎝⎛-+-=-=-∇=2202220122εσεσ∂∂ϕϕ2-4 在空间,下列矢量函数中哪些可能是电场强度,哪些不是?回答并说明理由。

1)34e e e y x z +- 2)x y z x z e e e y +-4 3) y z x x z e e e y +-4 4)r r e (球坐标系)5)r 2e α(圆柱坐标系) 解 对于给定各矢量表达式求旋度,可得1)()014343=-∂∂∂∂∂∂=-+⨯∇z y x x y x z x e e e e e e y 2)()044=-∂∂∂∂∂∂=-+⨯∇zy xz y x z y x x y xz x e e e e e e y3)()y x y x z x xz y z y x x z y e e e e e e e y 244=-∂∂∂∂∂∂=-+⨯∇ 4)()0=⨯∇r r e5)()()()z z z z r r r r r r r rA r r r e e e e e 3311122=⋅=⋅∂∂=⎥⎦⎤⎢⎣⎡∂∂=⨯∇αα据0=⨯∇E ,可知式3)和式5)不可能是电场强度表达式,而其余各式可能是电场强度表达式。

2-5 有两相距为d 的平行无限大平面电荷,电荷面密度分别为σ和-σ。

求两无穷大平面分割出的三个空间区域的电场强度。

解 如图2-4所示的三个区域中,作高斯面1S ,据高斯通量定理,可得在区域(1)和(3)中,电场强度为零;再作高斯面2S ,据高斯通量定理,可得在区域(2),0εσ=E2-6 求厚度为d ,体电荷密度为ρ的均匀带电无限大平板在空间三个区域产生的电场强度。

解 如图2-5所示的三个区域中,作高斯面1S ,据高斯通量定理,电场强度在1S 上的通量为1112d 1ερdS S E s ==⋅⎰s E 可得在区域(1)和(3)中,电场强度 012ερdE =对于区域(2),如图建立坐标系,作高斯面2S ,据高斯通量定理,电场强度在2S 上的通量为 022221ερxS S E S E =+,得 ⎪⎭⎫⎝⎛-=-=-=22000102d x d x E x E ερερερερ2-7 有一半径为a 的均匀带电无穷长圆柱体,其单位长度上带电荷量为τ。

求空间的电场强度。

解 如图建立圆柱坐标系,设圆柱体的体电荷密度为ρ,则有 τπρ=⋅2a ,即 2aπτρ=作柱对称高斯面,可得当a r <,022ερππr r E =⋅,解得 20022a r r E πετερ== 当a r ≥,02ετπ=⋅r E ,解得 rE 02πετ=2-8 如图2-7所示,一半径为a 的均匀带电无穷长圆柱体电荷,电荷体密度为ρ,在其中挖出半径为b 的无穷长平行圆柱孔洞,两圆柱轴线距离为d 。

求孔洞内各处的电场强度。

解 设孔洞内任意场点至大、小两圆柱体轴心的矢径分别为1r 、2r ,则当孔洞内充满体密度为ρ的电荷时,场点处有 01112ερr E r =孔洞内充满充满体密度为ρ-的电荷时,由ρ-在场点处产生的场强为 02222ερr E r -=则所求场点的电场强度为 ()0022112122ερερabd r r r r r E E E =-=+= 式中ab r 为两圆柱轴线间距d 的单位矢量,方向为从大圆柱体的轴心指向小圆柱体的轴心。

2-9 求如图2-8所示电偶极子p 对实验电荷q t 的作用力。

解 据教材36页式(2-67),可得实验电荷q t 处的电场强度为()θθπεθθπεe e e E 30304sin cos 24R pr p r =+=则实验电荷q t 所受电场力为 θπεe F 304R pq t=2-10 如图2-9所示,平行平板电容器中,一半是介电常数为ε的电介质,另一半是真空。

电容器正负极之间距离为d ,加电压U 。

求电介质中的电场强度、电位移矢量、极化强度、极化电荷体密度以及电介质与真空分界面上的极化面电荷密度。

解 设介电常数为ε的电介质中的电场强度为1E ,真空中的电场强度为2E ,据边界条件可得 dUE E E ===21,据E D ε=,可得电位移矢量分别为 d UD ε=1,dU D 02ε=据E D P 0ε-=,可得介质中的极化强度为 ()dUE E P 00εεεε-=-=以上各矢量的方向均为从正极板指向负极板。

极化电荷体密度为 0=⋅∇'-=P P ρ分界面上的极化面电荷密度为 0=⋅=n P e P σ2-11 有一带电导体球,带电荷量为q ,周围空间为空气。

空气的介电常数为ε0,空气的击穿场强为E 0。

问导体球的半径大到什么程度就不会出现空气击穿?解 电场强度在导体球表面达到最大值,即 020max 4E R qE ==πε 则 004E q R πε=2-12 试证明在线性、各向同性、均匀电介质中若没有自由体电荷就不会有束缚体电荷。

证明 由于在线性、各向同性、均匀电介质中,D E P ∝∝,又0=ρ,则0=⋅∇D ,可得0=⋅∇P ,即0=P ρ。

2-13 已知某种球对称分布的电荷产生的电位在球坐标系中的表示式为ϕ()r arbr =e ,a 和b 均为常数。

求体电荷密度。

解()[]()[]br br br br br br br er ab be br be ra br ae r r e r ab e r a r r r e r a r r r r r r r r 22222222222111111=+-=-∂∂=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-∂∂=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂=∇ϕϕ 据ερϕ-=∇2,可得 br e rab 0ερ-=2-14 有一平行平板电容器,两极板距离AB =d ,之间平行地放置两块薄金属片C 和D ,忽略薄金属片的厚度,有AC =CD =DB =d3。

若将AB 两极板充电到电压U 0后,拆去电源,问:1)AC, CD, DB 之间的电压为多少?C 和D 两金属片上电荷分布如何?AC, CD, DB 之间的电场强度为多少?2)在1)的基础上,若将C 和D 两金属片用导线联接后再断开,重新回答1)中的三个问题。

3)若充电前先用导线联接C 和D 两金属片,充电完成后先断开电源,再断开C 和D 之间连线,重新回答1)中的三个问题。

4)在2)的基础上,若将A 和B 用导线联接再断开,重新回答1)中的三个问题。

解 极板间的电场强度为均匀的,各极板位于等位面上。

1)各极板间距相同,因此 3/U U U U D B CD AC ===,在C 、D 两金属片的两面均匀分布有电量相同的正、负面电荷,d U /0εσ= 各极板间的电场强度相同,d U E /=2)将C 和D 两金属片用导线联接,则0=CD U ,0=CD E ,由于A 、B 极板上的电荷不变,则A 、C 间和D 、B 间的电场强度不变,电压也不变,即3/U U U D B AC ==,d U E E D B AC /==;C 、D 相对的面上电荷中和后为零,另一面不变,量值d U /0εσ=。

相关文档
最新文档