2017中考数学模拟试题附答案
最新2017年中考数学模拟试卷(含答案)
最新2017年中考数学模拟试卷(含答案)时间120分钟满分150分 2017.2.20 一、选择题(每小题3分,共21分)1.的倒数是()A.﹣2 B.2 C.D.2.下列运算正确的是()A.B. C.D.3.一元一次不等式x+1≥2的解在数轴上表示为()A.B.C.D.4.由4个相同小立方体搭成的几何体如图所示,则它的俯视图是()A.B.C. D.5.某大学生对新一代无人机的续航时间进行7次测试,一次性飞行时间(单位:分钟)分别为20、22、21、26、25、22、25.则这7次测试续航时间的中位数是()A.22或25 B.25 C.22 D.216.顺次连结菱形四边中点所得的四边形一定是()A.正方形B.矩形C.菱形D.等腰梯形7.反比例函数图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1二、填空题(每小题3分,共30分)8.计算:a2•a4= .9.分解因式:x2﹣9= .10.计算: = .11.经济日报5月8日讯,4月份我国外贸出口延续正增长态势,进出口总值195 000 000万元.请将“195 000 000”这个数据用科学记数法表示:.12.如图,将三角尺的直角顶点放在矩形的一边上,∠1=130°,则∠2= °.13.一个正多边形的每个外角都是36°,这个正多边形的边数是.14.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则cos∠A= .15.如图,在⊙O中,点C是AB的中点,AB=4cm,OC=1cm,则OB的长是cm.16.在平面直角坐标系中,将抛物线y=x2先向右平移4个单位,再向上平移3个单位,得到抛物线L,则抛物线L的解析式为.17.如图,在△ABC中,AB=AC,∠BAC=50 .分别以B、C为圆心,BC长为半径画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD.则①∠DAE= 度;②若BC=9,与的长度之和为.三、解答题(共89分)18.计算:.19.先化简,再求值:(x+2)2﹣x(x+3),其中x=﹣2.20.如图,AF与BE相交于点C,AB∥EF,AB=EF.求证:AC=CF.21.一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.22.如图,二次函数y=x2﹣4x+3+的图象的对称轴交x轴于A点.(1)请写出OA的长度;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否在该函数的图象上?23.随着科技的发展,电动汽车的性能得到显著提高.某市对市场上电动汽车的性能进行随机抽样调查,抽取部分电动汽车,记录其一次充电后行驶的里程数,并将抽查数据,绘制成如下两幅表和图. 组别行驶的里程x (千米) 频数(台) 频率Ax <20018 0.15 B200≤x <210 36 a C210≤x <220 30 D220≤x <230 b E x ≥23012 0.10 合计 c 1.00 根据以上信息回答下列问题:(1)a= ,b= ,c= ;(2)请将条形统计图补充完整;(3)若该市市场上的电动汽车有2000台,请你估计电动汽车一次充电后行驶的里程数在220千米及以上的台数.24.屈原食品公司接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只5元.为按时完成任务,该企业招收了新工人,设新工人小明第x天生产的粽子数量为n只,n与x满足如下关系式:.(1)小明第几天生产的粽子数量为390只?(2)设第x天每只粽子的成本是y元,y与x之间的关系的函数图象如图所示.若小明第x天的净利润为w元,试求w与x之间的函数表达式,并求出第几天的净利润最大?最大值是多少元?(提示:净利润=出厂价﹣成本)25.阅读理解:如图1,点P ,Q 是双曲线上不同的两点,过点P ,Q 分别作PB ⊥y 轴于B 点、QA ⊥x 轴于A 点,两垂线的交点为E 点,则有=,请利用这一性质解决问题.问题解决:(1)如图1,如果QE=6,AQ=3,BP=4.填空:PE= ;(2)如图2,点A ,B 是双曲线y=上不同的两点,直线AB 与x 轴、y 轴相交于点C ,D :①求证:AC=BD .②已知:直线AB 的关系为y=﹣x+2,CD=4AB .试求出k 的值.26.如图,在平面直角坐标系中,以OC为直径的圆交y轴于点D,∠DOC=30°,OC=2.延长DC至点B,使得CB=4DC,过B点作BA∥OC交x轴于A点.(1)请求出BC的长度;(2)若P点与B点是关于直线AC的对称点,试求出点P的坐标;(3)若点M、N分别为CB、AB上的动点,P点与B点是关于直线MN的对称点,过点P作x轴的平行线,与AC、OC分别交于点E、F.若PE﹕PF=1:3,点P的横坐标为m.请求出点P的纵坐标,并直接写出m的取值范围.参考答案与试题解析一、选择题1.故选:A.2故选:B.3.故选A.4.故选:D.5.故选:C.6.故选B.7.故选C.二、填空题8.a6.9.(x+3)(x﹣3).10. 1 .11. 1.95×108.12.50 °.13.10 .14..15.cm.16.y=(x﹣4)2+3 .17.故答案为:25;故答案为:π.三、解答题(共89分)18.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别进行绝对值的化简、零指数幂、二次根式的除法、负整数指数幂的运算,然后合并求解.【解答】解:原式=2﹣+1+﹣2=1.【点评】本题考查了实数的运算,涉及了绝对值的化简、零指数幂、二次根式的除法、负整数指数幂等知识,解答本题的关键是掌握各知识点的运算法则.19.先化简,再求值:(x+2)2﹣x(x+3),其中x=﹣2.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2+4x+4﹣x2﹣3x=x+4,当x=﹣2时,原式=﹣2+4=2.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.如图,AF与BE相交于点C,AB∥EF,AB=EF.求证:AC=CF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由AB∥EF,得到∠A=∠F,∠B=∠E,通过证明三角形全等得到对应边相等.【解答】证明:∵AB∥EF,∴∠A=∠F,∠B=∠E,在△ABC和△FEC中,,∴△ABC≌△FEC(ASA),∴AC=CF.【点评】本题考查了全等三角形的判定与性质,平行线的性质,找准对应边和对应角是解题的关键.21.一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)根据4个小球中红球的个数,即可确定出从中任意摸出1个球,恰好摸到红球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.【解答】解:(1)4个小球中有2个红球,则任意摸出1个球,恰好摸到红球的概率是;故答案为:;(2)列表如下:红红白黑红﹣﹣﹣(红,红)(白,红)(黑,红)红(红,红)﹣﹣﹣(白,红)(黑,红)白(红,白)(红,白)﹣﹣﹣(黑,白)黑(红,黑)(红,黑)(白,黑)﹣﹣﹣所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.如图,二次函数y=x2﹣4x+3+的图象的对称轴交x轴于A点.(1)请写出OA的长度;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否在该函数的图象上?【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)先依据抛物线的对称轴方程求得抛物线的对称轴,从而可得到点A的坐标,从而可求得OA的长;(2)依据旋转的性质和特殊锐角三角函数值可求得点A′的坐标,然后将点A′的坐标代入抛物线的解析式进行判断即可.【解答】解:(1)∵x=﹣=﹣=2,∴A(2,0).∴OA=2.(2)如图所示:过A′作A′B⊥OA,垂足为B.由旋转的性质可知:OA′=OA=2.∵∠A′OA=60°,A′B⊥OA,∴OB=1,A′B=∴A′(1,).∵将x=1时,y=12﹣4+3+=,∴A′在该函数的图象上.【点评】本题主要考查的是二次函数的图象与几何变形,解答本题主要应用了二次函数的对称轴方程、旋转的性质,求得点A′的坐标是解题的关键.23.随着科技的发展,电动汽车的性能得到显著提高.某市对市场上电动汽车的性能进行随机抽样调查,抽取部分电动汽车,记录其一次充电后行驶的里程数,并将抽查数据,绘制成如下两幅表和图.组别行驶的里程x(千米)频数(台)频率A x<200 18 0.15B 200≤x<210 36 aC 210≤x<220 30D 220≤x<230 bE x≥230 12 0.10合计 c 1.00根据以上信息回答下列问题:(1)a= 0.3 ,b= 24 ,c= 120 ;(2)请将条形统计图补充完整;(3)若该市市场上的电动汽车有2000台,请你估计电动汽车一次充电后行驶的里程数在220千米及以上的台数.【考点】条形统计图;用样本估计总体;频数(率)分布表.【分析】(1)由A组的频数、频率可得总数c,再依据频率=可求得a,根据频数之和等于总数可求得b;(2)由(1)知D组数量,补全图形即可;(3)用样本中行驶的里程数在220千米及以上的台数(即D、E两组频数之和)所占比例乘以总数2000可得.【解答】解:(1)本次调查的总台数c=18÷0.15=120,a=36÷120=0.3,b=120﹣18﹣36﹣30﹣12=24,故答案为:0.3,24,120.(2)由(1)知,D组的人数为24人,补全条形图如图:(3)×2000=600(台),答:估计电动汽车一次充电后行驶的里程数在220千米及以上的约有600台.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.屈原食品公司接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只5元.为按时完成任务,该企业招收了新工人,设新工人小明第x天生产的粽子数量为n只,n与x满足如下关系式:.(1)小明第几天生产的粽子数量为390只?(2)设第x天每只粽子的成本是y元,y与x之间的关系的函数图象如图所示.若小明第x天的净利润为w元,试求w与x之间的函数表达式,并求出第几天的净利润最大?最大值是多少元?(提示:净利润=出厂价﹣成本)【考点】二次函数的应用.【分析】(1)把n=390代入n=30x+90,解方程即可求得;(2)根据图象求得成本y与x之间的关系,然后根据:净利润=(出厂价﹣成本价)×销售量,结合x的范围整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答.【解答】解:(1)∵45×5=225<390,∴30x+90=390,解得:x=6,答:小明第6天生产的粽子数量为390只;(2)由图象可知,当0≤x≤9时,y=3.4;当9<x≤15时,设y=kx+b,将(9,3.4)、(15,4)代入,得:,解得:,∴y=0.1x+2.5;①当0≤x≤5时,w=(5﹣3.4)×45x=72x,∵w随x的增大而增大,∴当x=5时,w取得最大值,w最大=360元;②当5<x≤9时,w=(5﹣3.4)(30x+90)=48x+144,∵w随x的增大而增大,∴当x=9时,w取得最大值,w最大=576元;③当9<x≤15时,w=[5﹣(0.1x+2.5)](30x+90)=﹣3x2+66x﹣225=﹣3(x﹣11)2+138,∴当x=11时,w取得最大值,w最大=138元;综上,当x=9时,w取得最大值,w最大=576元,答:第9天的净利润最大,最大值是576元.【点评】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.25.阅读理解:如图1,点P ,Q 是双曲线上不同的两点,过点P ,Q 分别作PB ⊥y 轴于B 点、QA ⊥x 轴于A 点,两垂线的交点为E 点,则有=,请利用这一性质解决问题.问题解决:(1)如图1,如果QE=6,AQ=3,BP=4.填空:PE= 8 ;(2)如图2,点A ,B 是双曲线y=上不同的两点,直线AB 与x 轴、y 轴相交于点C ,D :①求证:AC=BD .②已知:直线AB 的关系为y=﹣x+2,CD=4AB .试求出k 的值.【考点】反比例函数综合题.【分析】(1)根据给定比例=,将QE=6、AQ=3、BP=4代入其中即可求出PE 的值;(2)①过点A 作y 轴的垂线交y 轴于点E ,过点B 作x 轴的垂线交x 轴于点F,延长EA、FB交于点M,由ME⊥y轴、MF⊥x轴,即可得出△CAE∽△BAM∽△BDF,根据相似三角形的性质即可得出、,再结合即可得出,由此即可证出AC=BD;②分别将x=0、y=0代入一次函数解析式中即可求出点C、D的坐标,由AE ⊥y轴可得出△ACE∽△DCO,再根据相似三角形的性质结合CD=4AB,即可求出点A的坐标,利用反比例函数图象上点的坐标特征即可求出k值.【解答】(1)解:∵ =,QE=6,AQ=3,BP=4,∴PE===8.故答案为:8.(2)①证明:过点A作y轴的垂线交y轴于点E,过点B作x轴的垂线交x轴于点F,延长EA、FB交于点M,如图3所示.∵ME⊥y轴,MF⊥x轴,∴△CAE∽△BAM∽△BDF,∴,,∵,∴,∴AC=BD.证毕.②当x=0时,y=2,∴点C(0,2);当y=0时,有﹣x+2=0,解得:x=2,∴点D(2,0).∵CD=4AB,AC=BD,∴==.∵AE⊥y轴,∴AE∥DO,∴△ACE∽△DCO,∴=,∵CO=2,OD=2,∴CE=EA=,∴点A的坐标为(,).∵点A在双曲线y=上,∴×=k=.【点评】本题考查了相似三角形的判定与性质以及反比例函数图象上点的坐标特征,根据相似三角形的性质找出线段与线段之间的关系是解题的关键.26.如图,在平面直角坐标系中,以OC为直径的圆交y轴于点D,∠DOC=30°,OC=2.延长DC至点B,使得CB=4DC,过B点作BA∥OC交x轴于A点.(1)请求出BC的长度;(2)若P点与B点是关于直线AC的对称点,试求出点P的坐标;(3)若点M、N分别为CB、AB上的动点,P点与B点是关于直线MN的对称点,过点P作x轴的平行线,与AC、OC分别交于点E、F.若PE﹕PF=1:3,点P的横坐标为m.请求出点P的纵坐标,并直接写出m的取值范围.【考点】圆的综合题.【分析】(1)根据圆周角定理可知∠ODC是直角,所以可求得CD的长为1,利用CB=4DC可知,CB的长度为4;(2)根据(1)可知OA=4,OC,∠COA=60°,所以易证△OCA∽△CDO,可知∠OCA=90°,又易知四边形AOCB是平行四边形,所以∠CAB=90°,所以点P一定在BA的延长线上;(3)由题意知:P与B关于MN,所以m的范围是2≤m≤5,求出直线AC和OC的解析式后,设P的纵坐标为a,然后将y=a分别代入直线AC和OC解析式中,求出E、F的横坐标,然后利用PF=3PE,列出关于a的方程,然后解出a即可得出M的纵坐标.【解答】(1)由题意知:OC是直径,∴∠ODC=90°,∵∠DOC=30°,∴DC=OC=1,∴BC=4DC=4;(2)连接AC,由(1)可知:∠ODC=90°∴CD∥OA,∵BA∥OC,∴四边形AOCB是平行四边形,∴OA=BC=4,∵∠COD=30°,∴∠COA=∠OCD=60°,∵,∴△OCA∽△CDO,∴∠OCA=90°,在BA的延长线上截取AP=AB,过点P作PG⊥x轴于点G,∴AP=2,∠OAP=60°,∴AG=1,PG=,∴OG=OA﹣AG=3,∴P(3,﹣);(3)由题意知:当M与C重合,N在AB上移动时,m的范围是3≤m≤5,当N与A重合,M在CB上移动时,m的范围是2≤m≤5,∴点P与B关于MN对称时,2≤m≤5,由(1)可知,点C的坐标为(1,),点A的坐标为(4,0),设直线AC的解析式为:y=kx+b,把A(4,0)和C(1,)代入y=kx+b,得:,∴,∴直线AC的解析式为:y=﹣x+,设直线OC的解析式为:y=mx,把C(1,)代入y=mx,∴m=,∴直线OC的解析式为:y=x,设P的纵坐标为a,∴P的坐标为(m,a)∵PF∥x轴,∴E、F的纵坐标为a,令y=a代入y=﹣x+,∴x=4﹣a,∴E(4﹣a,a),令y=a代入y=x,∴x=a,∴F(a,a),如图1,当点P在AC的右侧时,∴PE=m﹣(4﹣a)=m﹣4+a,PF=m﹣a,∵PF=3PE,∴m﹣a=3(m﹣4+a),∴a=,如图2,当点P在EF之间时,此时,PE=4﹣a﹣m,PF=m﹣a,∵PF=3PE,∴m﹣a=3(4﹣a﹣m),∴a=(3﹣m),综上所述,P的纵坐标为或(3﹣m),m的范围是:2≤m≤5.【点评】本题考查圆的综合题目,涉及圆周角定理,轴对称的性质,相似三角形的性质和判定,题目较为综合,需要学生灵活运用所学知识进行解答.。
2017年中考数学一模试卷及答案
2017年中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x 2﹣2x+4具有相同对称轴的是( ) A .y=4x 2+2x+1B .y=2x 2﹣4x+1C .y=2x 2﹣x+4D .y=x 2﹣4x+22.如图,点D 、E 位于△ABC 的两边上,下列条件能判定DE ∥BC 的是( )A .AD •DB=AE •ECB .AD •AE=BD •EC C .AD •CE=AE •BD D .AD •BC=AB •DE 3.已知一个坡的坡比为i ,坡角为α,则下列等式成立的是( ) A .i=sinα B .i=cosα C .i=tanα D .i=cotα4.已知向量和都是单位向量,则下列等式成立的是( ) A .B .C .D .||﹣||=05.已知二次函数y=x 2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为( )A .y=(x+2)2+3 B .y=(x+2)2﹣3 C .y=(x ﹣2)2+3 D .y=(x ﹣2)2﹣36.Word 文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC ,已知AB=AC ,当它以底边BC 水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC 以腰AB 水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是( )图形图①图②图③图④图⑤绝对高度1.52.01.22.4?0 0 0 绝对宽度2.001.502.503.60?A .3.60和2.40B .2.56和3.00C .2.56和2.88D .2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a 是线段b 、c 的比例中项,如果a=3,b=2,那么c= . 8.化简:= .9.已知点P 是线段AB 的黄金分割点(AP >BP ),若AB=2,则AP ﹣BP= .10.已知二次函数y=f (x )的图象开口向上,对称轴为直线x=4,则f (1) f (5)(填“>”或“<”)11.求值:sin60°•tan30°= .12.已知G 是等腰直角△ABC 的重心,若AC=BC=2,则线段CG 的长为 . 13.两个相似三角形的相似比为2:3,则它们的面积之比为 .14.等边三角形的周长为C ,面积为S ,则面积S 关于周长C 的函数解析式为 .15.如图,正方形ABCD 的边EF在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知BC=6,△ABC 的面积为9,则正方形DEFG 的面积为 .16.如图,小明家所在小区的前后两栋楼AB 、CD ,小明在自己所住楼AB 的底部A 处,利用对面楼CD 墙上玻璃(与地面垂直)的反光,测得楼AB 顶部B 处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB 的高度是 米.17.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B 重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A.B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度2.01.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时, =,即=,解得AP=4;当△ADP∽△ACB时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .【考点】菱形的性质;解直角三角形.【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD 的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD面积的,所以S△AMB=S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM ∥CD 交AD 、EF 于M 、N 两点,将问题转化到△ABM 中,利用相似三角形的判定与性质求EN ,由EF=EN+NF=EN+AD 进行求解;(2)由=、=得BC=AD ,EB=AB ,根据=可得答案.【解答】解:(1)作BM ∥CD 交AD 、EF 于M 、N 两点,又AD ∥BC ,EF ∥AD ,∴四边形BCFN 与MNFD 均为平行四边形.∴BC=NF=MD=2,∴AM=AD ﹣MD=1.又=2,∴=,∵EF ∥AD ,∴△BEN ∽△BAM ,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD ,EB=AB ,∴==, ==,则==+. 【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC 中,∠ACB=90°,AB=5,tanA=,将△ABC 沿直线l 翻折,恰好使点A 与点B 重合,直线l 分别交边AB 、AC 于点D 、E ;(1)求△ABC 的面积;(2)求sin ∠CBE 的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A 的正切用BC 表示出AC ,再利用勾股定理列方程求出BC ,再求出AC ,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x ,表示出AE ,再根据翻折变换的性质可得BE=AE ,然后列方程求出x ,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC ,在Rt △ABC 中,BC 2+AC 2=AB 2,即BC 2+4BC 2=25,解得BC=,所以,AC=2,△ABC 的面积=AC •BC=××2=5;(2)设CE=x ,则AE=AC ﹣CE=2﹣x ,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=xsin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。
海南省临高县2017年中考数学模拟试卷附答案
2017年九年级数学中考模拟试卷一、选择题:1.如果|a|=-a,下列成立的是()A.a>0B.a<0C.a≥0D.a≤02.下列变形正确的是()A.变形得B.变形得C.变形得D.变形得3.如图是由相同小正方体组成的立体图形,它的左视图为( )4.某小组7位学生的中考体育测试成绩(满分60分)依次为57,60,59,57,60,58,60,则这组数据的众数与中位数分别是()A.60,59 B.60,57 C.59,60 D.60,585.下列计算正确的是( )A.(-5b)3=-15b3B.(2x)3(-5xy2)=-40x4y2C.28x6y2+7x3y=4x2yD.(12a3﹣6a2+3a)÷3a=4a2﹣2a6.用四舍五入法对2.06032分别取近似值,其中错误的是()A.2.1(精确到0.1)B.2.06(精确到千分位)C.2.06(精确到百分位)D.2.0603(精确到0.0001)7.下列各式中,分式的个数为()A.5B.4C.3D.18.下列运算中,错误的个数为 ( )A.1B.2C.3D.49.下列函数表达式中,y不是x的反比例函数的是( )10.如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点 A逆时针旋转75°,得到△AB′C′,过点B′作B′D ⊥CA,交CA的延长线于点D,若AC=6,则AD的长为()A.2B.3C.2D.311.下列说法错误的是()A.必然事件的概率为1B.数据1、2、2、3的平均数是2C.数据5、2、﹣3、0的极差是8D.如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖12.如图,P是⊙O直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A的度数为()A.40°B.35°C.30°D.25°13.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是()A.55°B.65°C.75°D.85°14.如图,已知□ABCD中,AE⊥BC于定E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA/E/,连接DA/.若∠ADC=600,∠ADA/=500,则∠DA/E/的大小为()A.1300B.1500C.1600D.1700二、填空题:15.解因式:2x2+4x+2= .16.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x的方程为.17.在平面直角坐标系中,过格点A、B、C作一圆弧.(1)弧AC的长为(结果保留x);(2)点B与图中格点的连线中,能够与该圆弧相切的连线所对应的格点的坐标为;18.矩形ABCD中,AB=10,BC=4,Q为AB边的中点,P为CD边上的动点,且△AQP是腰长为5的等腰三角形,则CP 的长为.三、计算题:19.计算:20.解不等式组:,并写出它的所有非负整数解。
2017年中考数学模拟试卷 (含答案解析) (36)
初三数学期中试卷答案一、选择题:(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案DCBACDAABD二、填空题:(每空2分,共22分)11. )2)(2(-+x x 12.___5=x ___ 13. 45 14._____49________15.__15000)1(80002=+x ___ 16. 5<x 17. 2 18.___2___三、解答题(共9大题,78分)19.(1)解:原式=14+22-14……………(3分) =22…………… (4分)(2)解:原式=xx -1×(x +1)(x -1)x ……………………(3分) =x +1…………… (4分)20.(1)35x =± (4分)(2) 3x < (1分) -1x ³ (2分) -13x \? (4分)21.(1)证明:∵四边形ABCD 是平行四边形,∴∠A=∠C ,AD=BC ,AB=CD .∵点E 、F 分别是AD 、BC 的中点,∴AE=12AD ,FC=12BC .∴AE=CF .(1分) 在△AEB 与△CFD 中,,∴△AEB ≌△CFD (SAS ).(4分) (2)解:∵四边形EBFD 是菱形, ∴BE=DE .∴∠EBD=∠EDB . ∵AE=DE ,∴BE=AE .∴∠A=∠ABE .∵∠EBD+∠EDB+∠A+∠ABE=180°, ∴∠ABD=∠ABE+∠EBD=×180°=90°.(4分)22.(1)61;(4分)(2)241(2分)23.(1)10%;(2)72°(3)略;(4)330(每问各2分) 24.(1) 连接OM ,则OM =OB ∴∠OBM=∠OMB ∵BM 平分∠ABC ∴∠OBM=∴∠OMB=∠EBM ∴OM ∥BE∴∠AMO=∠AEB而在⊿ABC 中,AB=AC,AE 是角平分线 ∴AE ⊥BC∴∠AMO=∠AEB=90°∴AE 与⊙O 相切. ------------ 3分(2) 在⊿ABC 中,AB=AC,AE 是角平分线∴BE=12BC=2,∠ABC=∠ACB∴在Rt ⊿ABC 中cos ∠ABC=cos ∠ACB=2AB =13∴AB=6 --------------6分设⊙O 的半径为r,则AO=6-r ∵OM ∥BC∴△AOM ∽△ABE∴OM BE =AOAB即 r 2 =6-r 6 ∴r=32--------------8分25.(第(1)3分,第(2)5分)26.(1)把B 、C 两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x 2﹣2x ﹣3;(3分)(2)827)23(232+--=x S ,当P 点坐标为(,﹣)时,△BCP 的面积最大,最大面积为827;(4分)(面积表达式对2分,坐标对1分,面积对1分)(3))4263,2233();4263,2233(--++(各2分,共4分) 27.解:(1)①∵纸箱的高为0.5米,底面是黄金矩形(宽与长的比是黄金比,取黄金比为0.6),体积为0.3立方米,∴假设底面长为x ,宽就为0.6x , ∴体积为:0.6x •x •0.5=0.3,解得:x=1,∴AD=1,CD=0.6,DW=KA=DT=JC=0.5,FT=JH=CD=0.3,WQ=MK=AD=,∴QM=+0.5+1+0.5+=3, FH=0.3+0.5+0.6+0.5+0.3=2.2,∴矩形硬纸板A 1B 1C 1D 1的面积是3×2.2=6.6平方米;(3分)28.②从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板A 2B 2C 2D 2做一个纸箱比方案1更优, ∵如图可知△MAE ,△NBG ,△HCF ,△FDQ 面积相等,且和为2个矩形FDQD 1, 又∵菱形的性质得出,对角线乘积的一半绝对小于矩形边长乘积;∴从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板A 2B 2C 2D 2做一个纸箱比方案1更优,(4分) (2)∵将纸箱的底面周长、底面面积和高都设计为原来的一半时,∴边长为:0.5,0.3,底面积将变为:0.3×0.5=0.15,将变为原来的,高再变为原来的一半时,体积将变为原来的,∴水果商的要求不能办到.(2分)28、(1)C(6,3 3 )………1分, D(3,0) ………1分 作图………1分(2)①94 ,78,,2.726………4分 ②63152………2分,(3)105π-36 3 16………2分,。
2017年中考数学模拟试题及答案
2017年中考模拟试题数学试题卷本卷共六大题,24小题,共120分。
考试时间120分钟一、选择题(本大题共6小题,每小题3分,共18分)1、比-2013小1的数是()A、-2012B、2012C、-2014 D、20142、如图,直线l1∥l2,∠1=40°,∠2=75°,则∠3=()A、70°B、65°C、60°D、55°3、从棱长为a的正方体零件的一角,挖去一个棱长为0.5a的小正方体,得到一个如图所示的零件,则这个零件的左视图是()A、 B、 C、 D、4、某红外线遥控器发出的红外线波长为0.000 00094m,用科学计数法表示这个数是()A、9.4×10-7mB、9.4×107mC、9.4×10-8mD、9.4×108m5、下列计算正确的是()A、(2a-1)2=4a2-1B、3a6÷3a3=a2C、(-2)4=-a4b6D、-2a+(2a-1)=-16、某县盛产枇杷,四星级枇杷的批发价比五星级枇杷的批发价每千克低4元。
某天,一位零售商分别用去240元,160元来购进四星级与五星级这两种枇杷,其中,四星级枇杷比五星级枇杷多购进10千克。
假设零售商当天购进四星级枇杷x千克,则列出关于x的方程为()A、+4=B、-4=C、+4=D、-4=二、填空题(本大题共8小题,每小题3分,共24分)7、因式分解:2-x=。
8、已知x=1是关于x的方程x2+x+2k=0的一个根,则它的312l1l2FCBGDE正面另一个根是 。
9、已知=,则分式的值为 。
10、如图,正五边形,∥交的延长线于点F ,则∠= 度。
11、已知x =-1,2) ,y =+1,2) ,则x 2++y 2的值为 。
12、分式方程+=1的解为。
13、现有一张圆心角为108°,半径为作成一个底面半径为10的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为 。
2017年中考数学模拟试卷 (含答案解析) (16)
2017年中考数学模拟试卷一、选择题:1.下列说法中错误的是()2.分式有意义的条件是()A.x≠0 B.y≠0 C.x≠0或y≠0 D.x≠0且y≠03.下列计算结果正确的是()A.a4•a2=a8B.(a4)2=a6C.(ab)2=a2b2D.(a﹣b)2=a2﹣b24.一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是()5.一元二次方程x2+px-6=0的一个根为2,则p的值为()A.-1B.-2C.1D.26.已知点P(2a+1,1﹣a)在第一象限,则a的取值范围在数轴上表示正确的是()A. B. C. D.7.下图是一个由相同小正方体搭成的几何体的俯视图,若小正方形中的数字表示该位置上的小正方体的个数,则这个几何体的主视图是()8.我区某一周的最高气温统计如下表:最高气温(℃)13 15 17 18天数 1 1 2 3A.17,17B.17,18C.18,17D.18,189.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧AMB上一点,则∠APB的度数为()A.45°B.30° C.75° D.60°10.附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?()A.3:2 B.5:3 C.8:5 D.13:8二、填空题:11.比较大小:12-____5-;2_____(2)----.12.科学记数法—表示较大的数.据统计,全球每分钟约有8500000吨污水排入江河湖海,将8500000用科学记数法表示为吨.13.如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为.14.如图,□ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB 的周长是18厘米,则EF= 厘米.15.已知一个一次函数,当x>0时,函数值y随着x的增大而减小,请任意写出一个符合以上条件的函数关系式.16.如图.在正方形ABCD中.对角线AC与BD相交于点O.E为BC上一点.CE=5.F为DE的中点/若△CEF的周长为18.则OF的长为.三、解答题:17.解方程: (x﹣4)2=(5﹣2x)2.18.如图,E、A、C三点共线,AB∥CD,∠B=∠E,,AC=CD。
2017年吉林省长春市中考数学模拟试题含答案
2017年吉林省长春市中考数学模拟试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)的相反数是()A.B.C.﹣4D.42.(3分)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.3.(3分)下列运算正确的是()A.a•a2=a2B.(a2)3=a6C.a2+a3=a6D.a6÷a2=a34.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.5.(3分)如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD 的面积是()A.6B.8C.10D.126.(3分)如图,在Rt△ABC中,∠C=90°,AC<BC.斜边AB的垂直平分线交边BC于点D.若BD=5,CD=3,则△ACD的周长是()A.7B.8C.12D.137.(3分)如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°8.(3分)如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)化简:﹣=.10.(3分)某种商品n千克的售价是m元,则这种商品8千克的售价是元.11.(3分)不解方程,判断方程2x2+3x﹣2=0的根的情况是.12.(3分)如图,在平面直角坐标系中,直线y=﹣x+2分别交x轴、y轴于A、B两点,点P (1,m)在△AOB的形内(不包含边界),则m的值可能是.(填一个即可)13.(3分)如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC 的延长线上,则∠BB1C1的大小是度.14.(3分)如图,在平面直角坐标系中,抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的一个交点为A.已知点A的横坐标为1,过点A作x轴的平行线,分别交两条抛物线于点B、C (点B在点A左侧,点C在点A右侧),则的值为.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:2b2+(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣3,b=.16.(6分)如图是一副扑克牌的四张牌,将它们正面向下洗均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.17.(6分)为了解九年级课业负担情况,某校随机抽取80名九年级学生进行问卷调查,在整理并汇总这80张有效问卷的数据时发现,每天完成课外作业时间,最长不超过180分钟,最短不少于60分钟,并将调查结果绘制成如图所示的频数分布直方图.(1)被调查的80名学生每天完成课外作业时间的中位数在组(填时间范围).(2)该校九年级共有800名学生,估计大约有名学生每天完成课外作业时间在120分钟以上(包括120分钟)18.(7分)如图,在▱ABCD中,O为AC的中点,过点O作EF⊥AC与边AD、BC分别相交于点E、F,求证:四边形AECF是菱形.19.(7分)某环卫清洁队承担着9600米长的街道清雪任务,在清雪1600米后,为了减少对交通的影响,决定租用清雪机清雪,结果共用了4小时就完成了清雪任务.已知使用清雪机后的工作效率是原来的5倍,求原来每小时清雪多少米?20.(7分)如图,小区内斜向马路的大树与地面的夹角∠ABC为55°,高为3.2米的大型客车靠近此树的一侧至少要离此树的根部B点多少米才能安全通过?(结果精确到0.1米)【参考数据:sin55°=0.82,cos55°=0.57,tan55°=1.42】21.(8分)【发现问题】如图①,在△ABC中,分别以AB、AC为斜边,向△ABC的形外作等腰直角三角形,直角的顶点分别为D、E,点F、M、G分别为AB、BC、AC边的中点,求证:△DFM≌△MGE.【拓展探究】如图②,在△ABC中,分别以AB、AC为底边,向△ABC的形外作等腰三角形,顶角的顶点分别为D、E,且∠BAD+∠CAE=90°.点F、M、G分别为AB、BC、AC边的中点,若AD=5,AB=6,△DFM的面积为a,直接写出△MGE的面积.22.(9分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.(1)直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.(2)求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.(3)求机场大巴与货车相遇地到机场C的路程.23.(10分)如图,在△ABC中,AD⊥BC于点D,BD=3cm,DC=8cm,AD=4cm,动点P从点B 出发,沿折线BA﹣AC向终点C做匀速运动,点P在线段BA上的运动速度是5cm/s;在线段AC上的运动速度是cm/s,当点P不与点B、C重合时,过点P作PQ⊥BC于点Q,将△PBQ 绕PQ的中点旋转180°得到△QB′P,设四边形PBQB′与△ABD重叠部分图形的面积为y(cm2),点P的运动时间为x(s).(1)用含x的代数式表示线段AP的长.(2)当点P在线段BA上运动时,求y与x之间的函数关系式.(3)当经过点B′和△ADC一个顶点的直线平分△ADC的面积时,直接写出x的值.24.(12分)如图①,在平面直角坐标系中,抛物线C1:y=(x+k)(x﹣3)交x轴于点A、B (A在B的右侧),交y轴于点C,横坐标为2k的点P在抛物线C1上,连结PA、PC、AC,设△ACP的面积为S.(1)求直线AC对应的函数表达式(用含k的式子表示).(2)当点P在直线AC的下方时,求S取得最大值时抛物线C1所对应的函数表达式.(3)当k取不同的值时,直线AC、抛物线C1和点P、点B都随k的变化而变化,但点P始终在不变的抛物线(虚线)C2:y=ax2+bx上,求抛物线C2所对应的函数表达式.(4)如图②,当点P在直线AC的下方时,过点P作x轴的平行线交C2于点F,过点F作y轴的平行线交C1于点E,当△PEF与△ACO的相似比为时,直接写出k的值.2017年吉林省长春市中考数学模拟试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)的相反数是()A.B.C.﹣4D.4【解答】解:的相反数是,故选:B.2.(3分)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,故选:C.3.(3分)下列运算正确的是()A.a•a2=a2B.(a2)3=a6C.a2+a3=a6D.a6÷a2=a3【解答】解:A、原式=a3,错误;B、原式=a6,正确;C、原式不能合并,错误;D、原式=a4,错误,故选:B.4.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:,由①得,x>﹣1;由②得,x≤2,故此不等式组的解集为:﹣1<x≤2.在数轴上表示为:故选:A.5.(3分)如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD 的面积是()A.6B.8C.10D.12【解答】解:如图,过点D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分线,∠C=90°,∴DE=CD=2,∴△ABD的面积=AB•DE=×8×2=8.故选:B.6.(3分)如图,在Rt△ABC中,∠C=90°,AC<BC.斜边AB的垂直平分线交边BC于点D.若BD=5,CD=3,则△ACD的周长是()A.7B.8C.12D.13【解答】解:∵DE是AB的垂直平分线,∴AD=BD=5,又CD=3,由勾股定理得,AC==4,∴△ACD的周长=AC+CD+AD=12,故选:C.7.(3分)如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°【解答】解:∵∠B+∠D=180°,∴∠D=180°﹣130°=50°,∴∠AOC=2∠D=100°.故选:D.8.(3分)如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A.B.C.D.【解答】解:∵OB=1,AB⊥OB,点A在函数y=﹣(x<0)的图象上,∴当x=﹣1时,y=2,∴A(﹣1,2).∵此矩形向右平移3个单位长度到A1B1O1C1的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数y=(x>0)的图象上,∴k=4,∴反比例函数的解析式为y=,O1(3,0),∵C1O1⊥x轴,∴当x=3时,y=,∴P(3,).故选:C.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)化简:﹣=.【解答】解:原式=2﹣=.故答案为:.10.(3分)某种商品n千克的售价是m元,则这种商品8千克的售价是元.【解答】解:根据题意,得:,故答案为:.11.(3分)不解方程,判断方程2x2+3x﹣2=0的根的情况是有两个不相等的实数根.【解答】解:∵a=2,b=3,c=﹣2,∴△=b2﹣4ac=9+16=25>0,∴一元二次方程有两个不相等的实数根.故答案为:有两个不相等的实数根.12.(3分)如图,在平面直角坐标系中,直线y=﹣x+2分别交x轴、y轴于A、B两点,点P (1,m)在△AOB的形内(不包含边界),则m的值可能是1.(填一个即可)【解答】解:∵直线y=﹣x+2分别交x轴、y轴于A、B两点,∴A(4,0),B(0,2),∴当点P在直线y=﹣x+2上时,﹣+2=m,解得m=,∵点P(1,m)在△AOB的形内,∴0<m<,∴m的值可以是1.故答案为:1.13.(3分)如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC 的延长线上,则∠BB1C1的大小是80度.【解答】解:由旋转的性质可知:∠B=∠AB1C1,AB=AB1,∠BAB1=100°.∵AB=AB1,∠BAB1=100°,∴∠B=∠BB1A=40°.∴∠AB1C1=40°.∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.故答案为:80.14.(3分)如图,在平面直角坐标系中,抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的一个交点为A.已知点A的横坐标为1,过点A作x轴的平行线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则的值为.【解答】解:抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的对称轴分别为直线x=3与直线x=﹣2,∵点A的横坐标为1,∴点C的横坐标为5,点B横坐标为﹣5,∴AC=4,AB=6,则==,故答案为:三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:2b2+(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣3,b=.【解答】解:原式=2b2+a2﹣b2﹣(a2+b2﹣2ab)=2b2+a2﹣b2﹣a2﹣b2+2ab=2ab,当a=﹣3,b=时,原式=2×(﹣3)×=﹣3.16.(6分)如图是一副扑克牌的四张牌,将它们正面向下洗均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.【解答】解:画树状图得:∵共有12种等可能的结果,牌面上的数字都是偶数的有2种情况,∴P(牌面上数字都是偶数)==.17.(6分)为了解九年级课业负担情况,某校随机抽取80名九年级学生进行问卷调查,在整理并汇总这80张有效问卷的数据时发现,每天完成课外作业时间,最长不超过180分钟,最短不少于60分钟,并将调查结果绘制成如图所示的频数分布直方图.(1)被调查的80名学生每天完成课外作业时间的中位数在120~150组(填时间范围).(2)该校九年级共有800名学生,估计大约有600名学生每天完成课外作业时间在120分钟以上(包括120分钟)【解答】解:(1)被调查的80名学生每天完成课外作业时间的中位数在120~150.故答案为120~150.(2)校九年级共有800名学生,每天完成课外作业时间在120分钟以上的学生有800×=600,故答案为600.18.(7分)如图,在▱ABCD中,O为AC的中点,过点O作EF⊥AC与边AD、BC分别相交于点E、F,求证:四边形AECF是菱形.【解答】证明:∵四边形ABCD是平行四边形,∴BC∥AD,∴AE∥CF,∴∠OAE=∠OCF,∵点O是AC的中点,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵EF与AC垂直,∴四边形AECF是菱形.19.(7分)某环卫清洁队承担着9600米长的街道清雪任务,在清雪1600米后,为了减少对交通的影响,决定租用清雪机清雪,结果共用了4小时就完成了清雪任务.已知使用清雪机后的工作效率是原来的5倍,求原来每小时清雪多少米?【解答】解:设原来每小时清雪x米,根据题意得:+=4,解得:x=800,经检验:x=800是分式方程的解.答:原来每小时清雪800米.20.(7分)如图,小区内斜向马路的大树与地面的夹角∠ABC为55°,高为3.2米的大型客车靠近此树的一侧至少要离此树的根部B点多少米才能安全通过?(结果精确到0.1米)【参考数据:sin55°=0.82,cos55°=0.57,tan55°=1.42】【解答】解:如图:在AB上取点D,过点D作DE⊥BC于点E,则DE=3.5,∵tan55°==1.42,∴BE==≈2.3(米),答:至少要离此树的根部B点2.3米才能安全通过.21.(8分)【发现问题】如图①,在△ABC中,分别以AB、AC为斜边,向△ABC的形外作等腰直角三角形,直角的顶点分别为D、E,点F、M、G分别为AB、BC、AC边的中点,求证:△DFM≌△MGE.【拓展探究】如图②,在△ABC中,分别以AB、AC为底边,向△ABC的形外作等腰三角形,顶角的顶点分别为D、E,且∠BAD+∠CAE=90°.点F、M、G分别为AB、BC、AC边的中点,若AD=5,AB=6,△DFM的面积为a,直接写出△MGE的面积.【解答】【发现问题】证明:∵△ADB是等腰直角三角形,F为斜边AB的中点,∴∠DFB=90°,DF=FA;∵△ACE是等腰直角三角形,G为斜边AC的中点,∴∠EGC=90°,AG=GE,∵点F、M、G分别为AB、BC、AC边的中点,∴FM∥AC,MG∥AB,∴四边形AFMG是平行四边形,∴FM=AG,MG=FA,∠BFM=∠BAC,∠BAC=∠MGC,∴DF=MG,∠DFM=∠MGE,FM=GE,在△DFM与△MGE中,,∴△DFM≌△MGE.【拓展探究】∵点F、M、G分别为AB、BC、AC边的中点,∴FM∥AC,MG∥AB,FM=AC=AG,MG=AB=AF,∠MGC=∠BAC=∠BFM,∴∠DFM=∠MGE,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,∴tan∠1=tan∠3,即=,∴=,∵∠DFM=∠MGE,∴△DFM∽△MGE,∴=()2,在Rt△ADF中,DF===4,∴=()2=,∵△DFM的面积为a,=a.∴S△MGE22.(9分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.(1)直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.(2)求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.(3)求机场大巴与货车相遇地到机场C的路程.【解答】解:(1)60+20=80(km),80÷20×=(h).∴连接A、B两市公路的路程为80km,货车由B市到达A市所需时间为h.(2)设所求函数表达式为y=kx+b(k≠0),将点(0,60)、(,0)代入y=kx+b,得:,解得:,∴机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式为y=﹣80x+60(0≤x≤).(3)设线段ED对应的函数表达式为y=mx+n(m≠0),将点(,0)、(,60)代入y=mx+n,得:,解得:,∴线段ED对应的函数表达式为y=60x﹣20(≤x≤).解方程组,得,∴机场大巴与货车相遇地到机场C的路程为km.23.(10分)如图,在△ABC中,AD⊥BC于点D,BD=3cm,DC=8cm,AD=4cm,动点P从点B 出发,沿折线BA﹣AC向终点C做匀速运动,点P在线段BA上的运动速度是5cm/s;在线段AC上的运动速度是cm/s,当点P不与点B、C重合时,过点P作PQ⊥BC于点Q,将△PBQ 绕PQ的中点旋转180°得到△QB′P,设四边形PBQB′与△ABD重叠部分图形的面积为y(cm2),点P的运动时间为x(s).(1)用含x的代数式表示线段AP的长.(2)当点P在线段BA上运动时,求y与x之间的函数关系式.(3)当经过点B′和△ADC一个顶点的直线平分△ADC的面积时,直接写出x的值.【解答】解:(1)当0<x≤1时,PA=5x,当1<x<5时,PA=5(x﹣1)=5x﹣5.(2)如图1中,当0<x≤时,重叠部分是四边形PBQB′.∵PQ⊥BC,AD⊥BC,∴PQ∥AD,∴==,∴==,∴PQ=4x,BQ=3x,由题意四边形PBQB′是平行四边形,∴y=BQ•PQ=12x2,如图2中,当<x≤1,重叠部分是五边形PBQMN.∵PN∥BD,∴=,∴PN=3(1﹣x),B′N=3x﹣3(1﹣x)=6x﹣3,易知MN=4(2x﹣1),∴y=12x2﹣•(6x﹣3)•4(2x﹣1)=﹣12x2+24x﹣6.综上所述,y=.(3)如图3中,当PA=B时,PB′是△ABD是中位线.∴AB′=DB′,此时CB′平分△ADC的面积,此时x=.如图4中,设AB′的延长线交BC于G.当DG=GC=4时,AB′平分△ADC的面积,∵PB′∥BG,∴=,∴=,∴x=.如图5中,连接DB′交AC于N,延长B′P交AD于T,作NM⊥PB′于M,NH⊥AD于H.由题意PA=(x﹣1),AT=x﹣1,TP=2(x﹣1),PB′=BQ=3+2(x﹣1)=2x+1,当AN=CN时,DB′平分△ADC的面积,∴可得AH=HD=2,HN=TM=2,∴B′M=TB′﹣MT=2(x﹣1)+2x+1﹣4=4x﹣5,MN=2﹣(x﹣1)=3﹣x,TD=4﹣(x﹣1)=5﹣x,∵MN∥TD,∴=,∴=,∴x=,综上所述,x=s或s或s时,经过点B′和△ADC一个顶点的直线平分△ADC的面积.24.(12分)如图①,在平面直角坐标系中,抛物线C1:y=(x+k)(x﹣3)交x轴于点A、B (A在B的右侧),交y轴于点C,横坐标为2k的点P在抛物线C1上,连结PA、PC、AC,设△ACP的面积为S.(1)求直线AC对应的函数表达式(用含k的式子表示).(2)当点P在直线AC的下方时,求S取得最大值时抛物线C1所对应的函数表达式.(3)当k取不同的值时,直线AC、抛物线C1和点P、点B都随k的变化而变化,但点P始终在不变的抛物线(虚线)C2:y=ax2+bx上,求抛物线C2所对应的函数表达式.(4)如图②,当点P在直线AC的下方时,过点P作x轴的平行线交C2于点F,过点F作y轴的平行线交C1于点E,当△PEF与△ACO的相似比为时,直接写出k的值.【解答】解:(1)在y=(x+k)(x﹣3)中,令y=0,可得A(3,0),B(﹣k,0),令x=0,可得C(0,﹣3k),设直线AC对应的函数表达式为:y=mx+n,将A(3,0),C(0,﹣3k)代入得:,解得:,∴直线AC对应的函数表达式为:y=kx﹣3k;(2)如图①,过点P作y轴的平行线交AC于点Q,交x轴于点M,过C作CN⊥PM于N,当x=2k时,y=(2k+k)(2k﹣3)=6k2﹣9k,∵点P、Q分别在抛物线C1、直线AC上,∴P(2k,6k2﹣9k)、Q(2k,2k2﹣3k),∴PQ=9k﹣6k2﹣(3k﹣2k2)=﹣4k2+6k,=S△PQC+S△PQA=PQ•CN+PQ•AM=PQ•(CN+AM),∴S△PAC=PQ,=(﹣4k2+6k),=﹣6(k﹣)2+,∴当k=时,△PAC面积的最大值是,此时,C1:y=(x+)(x﹣3)=x2﹣﹣;(3)∵点P在抛物线C1上,∴P(2k,6k2﹣9k),当k=1时,此时P(2,﹣3),当k=2时,P(4,6),把(2,﹣3)和(4,6)代入抛物线(虚线)C2:y=ax2+bx上得:,解得:,∴抛物线C2所对应的函数表达式为:y=x2﹣x;(4)如图②,由题意得:△ACO和△PEF都是直角三角形,且∠A OC=∠PFE=90°,∵点P在直线AC的下方,横坐标为2k的点P在抛物线C1上,∴P(2k,6k2﹣9k),且0<k<,∵A(3,0),C(0,﹣3k),∴OA=3,OC=3K,∴当△PEF与△ACO的相似比为时,存在两种情况:①当△PEF∽△CAO时,,∴=,∴PF=k,EF=1,∴E(3k,12k2﹣12k),∵EF=1,∴9k﹣6k2=12k﹣12k2+1,6k2﹣3k﹣1=0,k1=,k2=<0(舍),②当△PEF∽△ACO时,,∴,∴PF=1,EF=k,∴E(2k+1,6k2﹣4k﹣2),∴4k+2﹣6k2+k=9k﹣6k2,k=,综上所述,k的值为或.。
2017数学中考模拟考试试题及答案
2017数学中考模拟考试试题A级基础题1.计算6x3•x2的结果是( )A.6xB.6x5C.6x6D.6x92.(2013年湖南湘西州)下列运算正确的是( )A.a2-a4=a8B.(x-2)(x-3)=x2-6C.(x-2)2=x2-4D.2a+3a=5a3.下列运算正确的是( )A.a+a=a2B.(-a3)2=a5C.3a•a2=a3D.(2a)2=2a24.(2013年山东济宁)如果整式xn-2-5x+2是关于x的三次三项式,那么n=( )A.3B.4C.5D.65.下列计算正确的是( )A.(-p2q)3=-p5q3B.(12a2b3c)÷(6ab2)=2abC.3m2÷(3m-1)=m-3m2D.(x2-4x)x-1=x-46.如果单项式-xa+1y3与12ybx2是同类项,那么a,b的值分别为( )A.a=2,b=3B.a=1,b=2C.a=1,b=3D.a=2,b=27.计算(-5a3)2的结果是( )A.-10a5B.10a6C.-25a5D.25a68.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是( )A.-5x-1B.5x+1C.13x-1D.13x+19.化简:(a+b)2+a(a-2b)2017数学中考模拟考试试题B级中等题10.若一多项式除以2x2-3,得到的商式为7x-4,余式为-5x+2,则此多项式为( )A.14x3-8x2-26x+14B.14x3-8x2-26x-10C.-10x3+4x2-8x-10D.-10x3+4x2+22x-1011.(2011年安徽芜湖)如图132,从边长为(a+4) cm的正方形纸片中剪去一个边长为(a+1) cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A.(2a2+5a) cm2B.(3a+15) cm2C.(6a+9) cm2D.(6a+15) cm212.若关于x的多项式-5x3-(2m-1)x2+(2-3n)x-1不含二次项和一次项,求m,n的值.13.(2012年山西)先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-3.2017数学中考模拟考试试题C级拔尖题14.利民商店出售一种原价为a的商品,有如下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问用这三种方案调价的结果是否一样?最后是不是都恢复了原价?2017数学中考模拟考试试题答案1.B2.D3.D4.C5.D6.C7.D8.A9.解:原式=a2+2ab+b2+a2-2ab=2a2+b2.10.A 11.D12.解:2m-1=0,2-3n=0.解得m=12,n=23.13.解:原式=4x2-9-4x2+4x+x2-4x+4=x2-5.当x=-3时,原式=(-3)2-5=3-5=-2.14.解:方案(1)的调价结果为:(1+10%)(1-10%)a=0.99a;方案(2)的调价结果为:(1-10%)(1+10%)a=0.99a;方案(3)的调价结果为:(1+20%)(1-20%)a=0.96a.由此可以得到这三种方案的调价结果是不一样的.最后都没有恢复原价.。
山东省潍坊市昌乐县中考数学模拟试卷(含解析)
2017年山东省潍坊市昌乐县中考数学模拟试卷一.选择题(本题共有12小题,每小题3分,共36分)1.计算﹣12的相反数是()A.2 B.﹣2 C.1 D.﹣12.国家文物局2012年6月5日在北京居庸关长城宣布:中国历代长城总长度为21196.18千米.这是中国首次科学、系统地测量历代长城的总长度.数21196.18保留3个有效数字,用科学记数法表示正确的是()A.2.11×104B.2.12×104C.0.212×105D.0.21×1053.下列水平放置的几何体中,俯视图是三角形的是()A.圆柱B.长方体C.圆锥D.直三棱柱4.若二次根式有意义,则x的取值范围是()A.x≥B.x≤C.x≥D.x≤5.已知力F所作的功是15焦,则力F与物体在力的方向上通过的距离S的图象大致是如图中的()A.B.C.D.6.如图,平行线a、b被直线c所截,若∠1=50°,则∠2的度数是()A.150°B.130°C.110°D.100°7.如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A.4cm B.3cm C.2cm D.1cm8.在平面直角坐标系内,把抛物线y=(x﹣1)2+3向下平移2个单位,那么所得抛物线的解析式是()A.y=(x﹣3)2B.y=(x+1)2C.y=(x﹣1)2+5 D.y=(x﹣1)2+19.α为锐角,且关于x的一元二次方程有两个相等的实数根,则α=()A.30° B.45° C.30°或150°D.60°10.如图,AB是⊙O的直径,弦CD⊥AB于H,若BH=2,CD=8,则⊙O的半径长为()A.2 B.3 C.4 D.511.在正方形网格中,网格线的交点称为格点.如图是3×3的正方形网格,已知A,B是两格点,在网格中找一点C,使得△ABC为等腰直角三角形,则这样的点C有()A.6个B.7个C.8个D.9个12.如图,矩形纸片ABCD中,AB=3cm,现将纸片折叠压平,使点A与点C重合,折痕为EF,如果sin∠BAE=,那么重叠部分△AEF的面积为()A.B.C.D.二.填空题(本题共有6小题,每小题4分,共24分)13.分解因式:9﹣a2= .14.如图,在△ABC中,P是AB边上的点,请补充一个条件,使△ACP∽△ABC,这个条件可以是:(写出一个即可).15.如图,在⊙O中,若∠BAC=43°,则∠BOC= °.16.如图,△ABC中,AB=AC=5,BC=6,AE平分∠BAC交BC于点E,点D为AB的中点,连结DE,则△BDE的周长是.17.如图,在▱ABCD中,DB=DC,∠C的度数比∠ABD的度数大54°,AE⊥BD于点E,则∠DAE 的度数等于.18.如图,点A1,A2在射线OA上,B1在射线OB上,依次作A2B2∥A1B1,A3B2∥A2B1,A3B3∥A2B2,A4B3∥A3B2,….若△A2B1B2和△A3B2B3的面积分别为1、9,则△A1007B1007A1008的面积是.三.解答题(本大题共有7小题,第19小题6分,第20-23小题每小题8分,第24题10分,第25题12分,共60分.解答需要写出必要的文字说明、演算步骤或证明过程)19.化简求值:,其中x=.20.某市公租房倍受社会关注,2012年竣工的公租房有A,B,C,D 四种型号共500套,B 型号公租房的入住率为40%.A,B,C,D 四种型号竣工的套数及入住的情况绘制了图1和图2两幅尚不完整的统计图.(1)请你将图1和图2的统计图补充完整;(2)在安置中,由于D型号公租房很受欢迎,入住率很高,2012年竣工的D型公租房中,仅有5套没有入住,其中有两套在同一单元同一楼层,其余3套在不同的单元不同的楼层.老王和老张分别从5套中各任抽1套,用树状图或列表法求出老王和老张住在同一单元同一楼层的概率.21.如图,四边形ABCD的对角线AC、BD相交于点O,分别作BE⊥AC于E,DF⊥AC于F,已知OE=OF,CE=AF.(1)求证:△BOE≌△DOF;(2)若OA=BD,则四边形ABCD是什么特殊四边形?请说明理由.22.如图,PA为⊙O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交⊙O于点B,延长BO与⊙O交于点D,与PA的延长线交于点E.(1)求证:PB为⊙O的切线;(2)若tan∠ABE=,求sin∠E.23.甜甜水果批发商销售每箱进价为30元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若以每箱40元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;(3)如果批发商平均每天获得的销售利润为1008元,那么每箱苹果的销售价是多少元?24.如图,已知二次函数y=ax2+bx+c的象经过A(﹣1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C.(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.2017年山东省潍坊市昌乐县中考数学模拟试卷参考答案与试题解析一.选择题(本题共有12小题,每小题3分,共36分)1.计算﹣12的相反数是()A.2 B.﹣2 C.1 D.﹣1【考点】1E:有理数的乘方;14:相反数.【分析】利用乘方的意义计算即可得到结果.【解答】解:﹣12=﹣1,﹣1的相反数是1,故选C2.国家文物局2012年6月5日在北京居庸关长城宣布:中国历代长城总长度为21196.18千米.这是中国首次科学、系统地测量历代长城的总长度.数21196.18保留3个有效数字,用科学记数法表示正确的是()A.2.11×104B.2.12×104C.0.212×105D.0.21×105【考点】1L:科学记数法与有效数字.【分析】根据科学记数法的形式a×10n,再选择即可.【解答】解:21196.18≈2.12×104,保留3个有效数字,故选B.3.下列水平放置的几何体中,俯视图是三角形的是()A.圆柱B.长方体C.圆锥D.直三棱柱【考点】U1:简单几何体的三视图.【分析】分别列出每个几何体的俯视图可得答案.【解答】解:A、此几何体的俯视图是圆,不符合题意;B、此几何体的俯视图是长方形,不符合题意;C、此几何体的俯视图是圆,不符合题意;D、此几何体的俯视图是三角形,符合题意,故选:D.4.若二次根式有意义,则x的取值范围是()A.x≥B.x≤C.x≥D.x≤【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义,被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,3x﹣2≥0,解得x≥.故选:A.5.已知力F所作的功是15焦,则力F与物体在力的方向上通过的距离S的图象大致是如图中的()A.B.C.D.【考点】GA:反比例函数的应用;G2:反比例函数的图象.【分析】先根据题意列出函数关系式,再根据s的取值范围确定其函数图象所在的象限即可.【解答】解:已知力F所作的功是15焦,则力F与物体在力的方向上通过的距离S的关系为:F=;且根据实际意义有,s>0;故其图象只在第一象限.故选B.6.如图,平行线a、b被直线c所截,若∠1=50°,则∠2的度数是()A.150°B.130°C.110°D.100°【考点】JA:平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再根据平角的定义即可求出∠2的度数.【解答】解:∵直线a∥b,∠1=50°,∴∠3=∠1=50°,∴∠2=180°﹣∠3=180°﹣50°=130°.故选B.7.如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A.4cm B.3cm C.2cm D.1cm【考点】MN:弧长的计算.【分析】本题考查了圆锥的有关计算,圆锥的表面是由一个曲面和一个圆面围成的,圆锥的侧面展开在平面上,是一个扇形,计算圆锥侧面积时,通过求侧面展开图面积求得,侧面积公式是底面周长与母线乘积的一半,先求扇形的弧长,再求圆锥底面圆的半径,弧长:=4π,圆锥底面圆的半径:r==2(cm ).【解答】解:弧长:=4π,圆锥底面圆的半径:r==2(cm ). 故选:C .8.在平面直角坐标系内,把抛物线y=(x ﹣1)2+3向下平移2个单位,那么所得抛物线的解析式是( )A .y=(x ﹣3)2B .y=(x+1)2C .y=(x ﹣1)2+5D .y=(x ﹣1)2+1 【考点】H6:二次函数图象与几何变换.【分析】根据图象的平移规律,可得答案.【解答】解:抛物线y=(x ﹣1)2+3向下平移2个单位,那么所得抛物线的解析式是y=(x ﹣1)2+1,故选:D .9.α为锐角,且关于x 的一元二次方程有两个相等的实数根,则α=( )A .30°B .45°C .30°或150°D .60°【考点】AA :根的判别式;T5:特殊角的三角函数值.【分析】因为方程有两个相等的实数根,则△=22﹣4(﹣m )=0,解关于sin α的方程,求出sin α的值,再据此求出α的值即可.【解答】解:方程化为一般形式为:x 2﹣2sin α•x +1=0,∵关于x 的一元二次方程x 2﹣2sin α•x +1=0有两个相等的实数根,∴△=(2sin α)2﹣4=0,即sin 2α=,解得,sin α=,sin α=﹣(舍去). ∴α=45°.故选B .10.如图,AB是⊙O的直径,弦CD⊥AB于H,若BH=2,CD=8,则⊙O的半径长为()A.2 B.3 C.4 D.5【考点】M2:垂径定理;KQ:勾股定理.【分析】先根据垂径定理求出CH的长,设⊙O的半径为r,再连接OC,在Rt△OCH中利用勾股定理求出r的值即可.【解答】解:连接OC,∵⊙O的弦CD=8,半径CD⊥AB,∴CH=CD=×8=4,设⊙O的半径为r,则OH=r﹣BH=r﹣2,在Rt△OCH中,OC2=OH2+CH2,即r2=(r﹣2)2+42,解得r=5.故选D.11.在正方形网格中,网格线的交点称为格点.如图是3×3的正方形网格,已知A,B是两格点,在网格中找一点C,使得△ABC为等腰直角三角形,则这样的点C有()A.6个B.7个C.8个D.9个【考点】KW:等腰直角三角形.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【解答】解:如图,AB是腰长时,红色的4个点可以作为点C,AB是底边时,黑色的4个点都可以作为点C,所以,满足条件的点C的个数是4+4=8.故选C.12.如图,矩形纸片ABCD中,AB=3cm,现将纸片折叠压平,使点A与点C重合,折痕为EF,如果sin∠BAE=,那么重叠部分△AEF的面积为()A.B.C.D.【考点】PB:翻折变换(折叠问题);T7:解直角三角形.【分析】要求重叠部分△AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代换后,可知AE=AF,问题转化为在Rt△ABE中求AE,即可得出答案.【解答】解:设AE=13x,则BE=5x,由折叠可知,EC=13x,在Rt△ABE中,AB2+BE2=AE2,即32+(5x)2=(13x)2,解得:x=,由折叠可知∠AEF=∠CEF,∵AD∥BC,∴∠CEF=∠AFE,∴∠AEF=∠AFE,即AE=AF=,∴S△AEF=×AF×AB=××3=;故选:B.二.填空题(本题共有6小题,每小题4分,共24分)13.分解因式:9﹣a2= (3+a)(3﹣a).【考点】54:因式分解﹣运用公式法.【分析】有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.【解答】解:9﹣a2,=32﹣a2,=(3+a)(3﹣a).14.如图,在△ABC中,P是AB边上的点,请补充一个条件,使△ACP∽△ABC,这个条件可以是:∠ACP=∠B(或=)(写出一个即可).【考点】S8:相似三角形的判定.【分析】由于△ACP与△ABC有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【解答】解:∵∠PAC=∠CAB,∴当∠ACP=∠B时,△ACP∽△ABC;当=时,△ACP∽△ABC.故答案为∠ACP=∠B(或=).15.如图,在⊙O中,若∠BAC=43°,则∠BOC= 86 °.【考点】M5:圆周角定理.【分析】根据圆周角定理得出∠BOC=2∠BAC,代入求出即可.【解答】解:∵对的圆心角是∠BOC,对的圆周角是∠BAC,∴∠BOC=2∠BAC,∵∠BAC=43°,∴∠BOC=86°,故答案为:86.16.如图,△ABC中,AB=AC=5,BC=6,AE平分∠BAC交BC于点E,点D为AB的中点,连结DE,则△BDE的周长是8 .【考点】KQ:勾股定理;KH:等腰三角形的性质;KP:直角三角形斜边上的中线.【分析】由于AB=AC,AE平分∠BAC交BC于点E,根据等腰三角形三线合一定理可知BE=CE=3,而D是AB中点,那么可知DE是△BAC的中位线,于是DE=AB=2.5,进而易求△BDE的周长.【解答】解:∵AB=AC,AE平分∠BAC交BC于点E,∴BE=CE=BC=3,又∵D为AB的中点,∴DE是△BAC的中线,∴DE=AB=2.5,∴△BDE的周长=BD+DE+BE=2.5+2.5+3=8.故答案是8.17.如图,在▱ABCD中,DB=DC,∠C的度数比∠ABD的度数大54°,AE⊥BD于点E,则∠DAE 的度数等于12°.【考点】L5:平行四边形的性质.【分析】设∠C=x,则∠ABD=x﹣54°,求出∠C=∠DBC=x°,根据AB∥CD推出x+x+x﹣54°=180°,求出x,求出∠ADB,在△ADE中,根据三角形的内角和定理求出即可.【解答】解:设∠C=x,则∠ABD=x﹣54°,∵DB=CD,∴∠C=∠DBC=x°,∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠ABC+∠C=180°,∴x+x+x﹣54°=180°,∴x=78,即∠C=∠DBC=78°,∵AD∥BC,∴∠ADB=∠DBC=78°,∵AE⊥BD,∴∠AED=90°,∴∠DAE=180°﹣90°﹣78°=12°,故答案为:12°.18.如图,点A1,A2在射线OA上,B1在射线OB上,依次作A2B2∥A1B1,A3B2∥A2B1,A3B3∥A2B2,A4B3∥A3B2,….若△A2B1B2和△A3B2B3的面积分别为1、9,则△A1007B1007A1008的面积是32n﹣3.【考点】S9:相似三角形的判定与性质.【分析】根据面积比等于相似比的平方,从而可推出相邻两个三角形的相似比为1:3,面积比为1:9,先利用等底三角形的面积之比等于高之比可求出第一个及第二个三角形的面积,再根据规律即可解决问题.【解答】解:∵△A2B1B2和△A3B2B3的面积分别为1、9,A3B3∥A2B2,A3B2∥A2B1,∴∠B1B2A2=∠B2B3A3,∠A2B1B2=∠A3B2B3,∴△A2B1B2∽△A3B2B3,∴====,∵A3B2∥A2B1,∴△OA2B1∽△OA3B2,∴===,∴△OB1A2的面积为,△A1B1A2的面积为,△A2B2A3的面积为3,△A3B3A4的面积为27,…∴△A1007B1007A1008的面积为×32(n﹣1)=32n﹣3,故答案为32n﹣3.三.解答题(本大题共有7小题,第19小题6分,第20-23小题每小题8分,第24题10分,第25题12分,共60分.解答需要写出必要的文字说明、演算步骤或证明过程)19.化简求值:,其中x=.【考点】6D:分式的化简求值.【分析】将原式括号中第二项提取﹣1,利用同分母分式的减法法则计算,分子再利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x的值代入化简后的式子中计算,即可得到原式的值.【解答】解:原式=(﹣)÷=÷=•=x+1,当x=﹣1时,原式=﹣1+1=.20.某市公租房倍受社会关注,2012年竣工的公租房有A,B,C,D 四种型号共500套,B 型号公租房的入住率为40%.A,B,C,D 四种型号竣工的套数及入住的情况绘制了图1和图2两幅尚不完整的统计图.(1)请你将图1和图2的统计图补充完整;(2)在安置中,由于D型号公租房很受欢迎,入住率很高,2012年竣工的D型公租房中,仅有5套没有入住,其中有两套在同一单元同一楼层,其余3套在不同的单元不同的楼层.老王和老张分别从5套中各任抽1套,用树状图或列表法求出老王和老张住在同一单元同一楼层的概率.【考点】VC:条形统计图;VB:扇形统计图;X6:列表法与树状图法.【分析】(1)用1减去其余型号公租房所占的百分比,即可得到2012年竣工的公租房中D 种型号所占的百分比;首先根据扇形图计算出B型公租房的套数,再乘以入住率即可知道已入住的B型公租房的套数;再将图1和图2的统计图补充完整;(2)根据已知列出所有可能的图表即可得出答案.【解答】解:(1)1﹣40%﹣20%﹣35%=5%;500×20%=100套,100×40%=40,如图所示:(2)设5套房子分别编号为:1,2,3,4,5,只有1,2在同一楼层,则列表为:∴老王和老张住在同一单元同一层楼只有(1,2),(2,1),∴老王和老张住在同一单元同一层楼的概率是:2÷20=.21.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,分别作BE ⊥AC 于E ,DF ⊥AC 于F ,已知OE=OF ,CE=AF .(1)求证:△BOE ≌△DOF ;(2)若OA=BD ,则四边形ABCD 是什么特殊四边形?请说明理由.【考点】KD :全等三角形的判定与性质;LC :矩形的判定.【分析】(1)根据AAS或ASA即可证明;(2)结论:矩形.只要证明对角线AC=BD即可;【解答】(1)证明:∵BE⊥AC,DF⊥AC∴∠BEO=90°=∠DFO,在△BOE和△DOF中,∴△BOE≌△DOF(ASA).(2)解:四边形ABCD是矩形证明:∵△BOE≌△DOF,∴OB=OD,∵OE=OF,CE=AF,∴OC=OA,∴四边形ABCD是平行四边形,∴OA=AC,又∵OA=BD,∴AC=BD∴□ABCD是矩形.22.如图,PA为⊙O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交⊙O于点B,延长BO与⊙O交于点D,与PA的延长线交于点E.(1)求证:PB为⊙O的切线;(2)若tan∠ABE=,求sin∠E.【考点】MC:切线的性质;S9:相似三角形的判定与性质;T1:锐角三角函数的定义.【分析】(1)要证PB是⊙O的切线,只要连接OA,再证∠PBO=90°即可;(2)连接AD,证明△ADE∽△POE,得到=,设OC=t,则BC=2t,AD=2t,由△PBC∽△BOC,可求出sin∠E的值.【解答】(1)证明:连接OA,∵PA为⊙O的切线,∴OA⊥PA∴∠PAO=90°,∵OA=OB,OP⊥AB于C,∴BC=CA,PB=PA,∴△PAO≌△PBO,∴∠PBO=∠PAO=90°,∴PB为⊙O的切线;(2)解:连接AD,∵BD为直径,∠BAD=90°由(1)知∠BC O=90°∴AD∥OP,∴△ADE∽△POE,∴=,由AD∥OC得AD=2OC∵tan∠ABE=,∴=设OC=t,则BC=2t,AD=2t,由△PBC∽△BOC,得PC=2BC=4t,OP=5t,∴==.可设EA=2,EP=5,则PA=3,∵PA=PB,∴PB=3,∴sin∠E==.23.甜甜水果批发商销售每箱进价为30元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若以每箱40元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;(3)如果批发商平均每天获得的销售利润为1008元,那么每箱苹果的销售价是多少元?【考点】HE:二次函数的应用;AD:一元二次方程的应用.【分析】(1)依据题意易得出平均每天销售量(y)与销售价x(元/箱)之间的函数关系式;(2)根据销售利润=销售量×(售价﹣进价),列出平均每天的销售利润w(元)与销售价x (元/箱)之间的函数关系式即可;(3)把W=1008代入函数关系式,求出x的值即可.【解答】解:(1)根据题意得y=90﹣3(x﹣40)=﹣3x+210,∴y=﹣3x+210;(2)根据题意得,w=(x﹣30)(﹣3x+210)=﹣3x2+300x﹣6300,∴w=﹣3x2+300x﹣6300;(3)由(2)得:w=﹣3x2+300x﹣6300=﹣3(x﹣50)2+1200,∴令w=1008得:=﹣3(x﹣50)2+1200=1008,解得:x1=42,x2=58(不合题意,舍去),∴每箱苹果的销售价是42元.24.如图,已知二次函数y=ax2+bx+c的象经过A(﹣1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C.(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)根据题意将点A,B,N的坐标代入函数解析式,组成方程组即可求得;(2)求得点C,M的坐标,可得直线CM的解析式,可求得点D的坐标,即可得到CD=,AN=,AD=2,CN=2,根据平行四边形的判定定理可得四边形CDAN是平行四边形;(3)假设存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切,因为这个二次函数的对称轴是直线x=1,故可设P(1,y0),则PA是圆的半径且PA2=y02+22,过P做直线CD的垂线,垂足为Q,则PQ=PA时以P为圆心的圆与直线CD相切.由第(2)小题易得:△MDE为等腰直角三角形,故△PQM也是等腰直角三角形,继而求得满足题意的点P存在,其坐标为(1,)或(1,).【解答】解:(1)因为二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、B(3,0)、N(2,3)所以,可建立方程组:,解得:所以,所求二次函数的解析式为y=﹣x2+2x+3,所以,顶点M(1,4),点C(0,3).(2)直线y=kx+d经过C、M两点,所以,即k=1,d=3,直线解析式为y=x+3.令y=0,得x=﹣3,故D(﹣3,0)∴CD=,AN=,AD=2,CN=2∴CD=AN,AD=CN∴四边形CDAN是平行四边形.(3)假设存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切,因为这个二次函数的对称轴是直线x=1,故可设P(1,y0),则PA是圆的半径且PA2=y02+22,过P做直线CD的垂线,垂足为Q,则PQ=PA时以P为圆心的圆与直线CD相切.由第(2)小题易得:△MDE为等腰直角三角形,故△PQM也是等腰直角三角形,由P(1,y0)得PE=y0,PM=|4﹣y0|,,由PQ2=PA2得方程:,解得,符合题意,所以,满足题意的点P存在,其坐标为(1,)或(1,).。
2017中考数学模拟考试题含答案解析[精选5套]
2017年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( )A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2= 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2+ 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为()A. 3B. 23C.23D. 1圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第7题图)12. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)3121--+x x ≤1, ……① 解不等式组:3(x -1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°. 小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF = 1米,从E处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度. (参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(第21题图)(第23题图)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(第24题图)(第26题图)2017年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°,∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°,∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°,∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2017年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、 数1,5,0,2-中最大的数是( ) A 、1- B 、5 C 、0 D 、22、9的立方根是( )A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=( ) A 、4 B 、3 C 、-4 D 、-3 4、如图是某几何题的三视图,下列判断正确的是( ) A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( ) A 、0a b +> B 、0a b -> C 、0ab > D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( )A 、5B 、2.4C 、2.5D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2017中考数学模拟试卷及答案
第6题图九年级数学模拟试卷(含答案)(2017年5月5日)一、选择题:(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内)1.-2的相反数是( D )A.21- B.21C. -2D. 22.下列图形中,既是轴对称图形,又是中心对称图形的是(A)A. B. C. D.3. 2015年我国的GDP总量为629180亿元,用科学计数法表示为( C )A、6.2918×105元B、6.2918×1014元C、6.2918×1013元D、6.2918×1012元4. 下列运算正确的是(D)A.abba5=3+2 B.1=2-322yxyx C.()6326=2aa D.xxx5=÷5235. 一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为,则袋子里2号球有(B)A.1个 B.2个 C.3个 D.4个6. 如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为(D)A、50°B、80°C、100°D、130°7.如右图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数有可能..是( D )A.5或6 B.5或7C.4或5或6 D.5或6或78. 如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于( A )A、50°B、57.5°C、60°D、65°9. 若关于x的方程+=2的解为正数,则m的取值范围是(C)A.m<6B.m>6C.m<6且m≠0D.m>6且m≠810. 如图,已知A、B是反比例函数(0,0)ky k xx=>>上的两点,BC x轴,交y轴于C,动点P从坐标原点O 出发,沿O A B C→→→匀速运动,终点为C,过运动路线上任意一点P作PM x⊥轴于M,PN y⊥轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是( A )二、填空题(本题有6个小题,每小题3分,共18分)11. 分解因式:2x2-8x+8=第7题图俯视图左视图12.关于x 的方程m x 2-3x+1=0有两个实数根,则实数m 的取值范围是。
【中考模拟2017】安徽省合肥市 2017年九年级数学中考模拟试卷 三(含答案)
2017年九年级数学中考模拟试卷一、选择题:1.某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损)则这个周共盈利( )A.715元B.630元C.635元D.605元2.下列运算正确的是()A.3a2﹣a2=3B.(a2)3=a5C.a3•a6=a9D.(2a2)2=4a23.地球七大洲的总面积约是149 480 000km2,对这个数据保留3个有效数字可表示为( )A.149km2B.1.5×108km2C.1.49×108km2D.1.50×108km24.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是()A.文 B.明 C.城 D.市5.某种细菌直径约为0.00000067mm,若将0.000 000 67mm用科学记数法表示为6.7×10n mm(n为负整数),则n的值为()A.﹣5B.﹣6C.﹣7D.﹣86.下列各组单项式中,不是同类项的一组是()A.x2y和2xy2B.﹣32和3C.3xy和﹣D.5x2y和﹣2yx27.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查8.如图,D是△ABC一边BC上一点,连接AD,使△ABC∽△DBA的条件是( )A.AC:BC=AD:BDB.AC:BC=AB:ADC.AB2=CD·BCD.AB2=BD·BC9.如图,在Rt△AOB中,两直角边OA,OB分别为x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A/O/B,若反比例函数y=kx-1的图象恰好经过斜边A/B的中点,S△ABO=4,tan∠BAO=2.则k的值为 .A.3B.4C.6D.810.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A. B. C. D.二、填空题:11.若不等式(2k+1)x<2k+1的解集是x>1,则k的范围是.12.分解因式:mn2﹣6mn+9m= .13.如图,AB,AC,BD是☉O的切线,P,C,D为切点,如果AB=5,AC=3,则BD的长为 .14.如图,正五边形的边长为2,连对角线AD,BE,CE,线段AD分别与BE和CE相交于点M,N,则MN= ;三、计算题:15.计算:.16.解方程:(3-x)2+x2=5四、解答题:17.如图,阴影部分是由5个小正方形组成的一个直角图形,请用四种方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.18.已知抛物线y=x2﹣2x+1.(1)求它的对称轴和顶点坐标;(2)根据图象,确定当x>2时,y的取值范围.19.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).20.如图,Rt△ABO的顶点A是双曲线y=kx-1与直线y=-x-(k+1)在第二象限的交点.AB⊥x轴于B,且S=1.5.△ABO(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.21.在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?22.如图,直线y=-x+b与反比例函数y=-3x-1的图象相交于点A(a,3),且与x轴相交于点B.(1)求a、b的值;(2)若点P在x轴上,且△AOP的面积是△AOB的面积的一半,求点P的坐标.23.如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.参考答案1.D2.C3.C4.B.5.C6.A7.B8.D9.C10.B12.答案为:m(n﹣3)2.13.答案:214.答案为:3-;15.解:原式=2+3﹣﹣﹣3+1=1.16.解:9-6x+x2+x2=5 x2-3x+2=0 (x-1)(x-2)=0 x1=1 x2=217.【解答】解:如图所示:18.【解答】解:(1)y=x2﹣2x+1=(x﹣1)2,对称轴为直线x=1,顶点坐标为(1,0);(2)抛物线图象如下图所示:由图象可知当x>2时,y的取值范围是y>1.19.【解答】解:作AG⊥CD,垂足为G.易得AG=BD,在Rt△AGC中,CG=AG•tan30°=6×=2米,可得CD=CG+GD=(2+1.5)米,在Rt△CED中,CE===(4+)米.答:拉线CE的长为(4+)米.20.略21.解:(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=0.75;由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,∴P2=0.5,∵P1=0.75,P2=0.5,P1≠P2∴淇淇与嘉嘉抽到勾股数的可能性不一样.22.略23.解:(1)在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴BD=AC,(2)①如图,在Rt△AHC中,∵tanC=3,∴=3,设CH=x,∴BH=AH=3x,∵BC=4,∴3x+x=4,∴x=1,∴AH=3,CH=1,由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,∴∠EHA=∠FHC,,∴△EHA≌△FHC,∴∠EAH=∠C,∴tan∠EAH=tanC=3,过点H作HP⊥AE,∴HP=3AP,AE=2AP,在Rt△AHP中,AP2+HP2=AH2,∴AP2+(3AP)2=9,∴AP=,∴AE=;②由①有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=90°,∴△AGQ∽△CHQ,∴,∴,∵∠AQC=∠GQE,∴△AQC∽△GQH,∴=sin30°=.。
2017年中考数学模拟试卷 (含答案解析) (6)
中考模拟考试数学试题(时间:120分钟 满分:140分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项直接填写在答题卡相应位置上)1.下列各数中,最小的数是( ▲ ) A. -1 B. -2C. 0D. 12.纳米(nm ),又称毫微米,是长度的度量单位,1纳米910-=米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( ▲ ) A .625.110-⨯米B .40.25110-⨯米C .52.5110⨯米D .52.5110-⨯米3.直线y=x -1的图像经过象限是( ▲ )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限 4.如图,⊙O 是△A BC 的外接圆,∠OCB =40° ,则∠A 的度数等于( ▲ ) A . 60° B . 50° C . 40° D . 30° 5.下列说法中正确的是( ▲ )A .“打开电视,正在播放《新闻联播》”是必然事件B .想了解某种饮料中含添加剂的情况,宜采用抽样调查C .数据2,2,3,1,2,2,3的众数是3D .一组数据的波动越大,方差越小6.已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的面积是( ▲ )A .12cm 2B . 24cm 2C . 48cm 2D . 96cm 2 7.一次函数24y x =-的图像与x 轴相交成的锐角为β,则tan β的值为 ( ▲ ) A . 2 B . 12C . 25D 5应位置上)9.812∙的值是 ▲ .10.代数式2-x 在实数范围内有意义,则x 的取值范围是 ▲ .oyxβ24y x =-的距离是 ▲ .12.某班体育投篮测试中,第一小组六位同学定点投篮(每人投10个)的情况,投进篮框的个数为6,5,3,4,8,4,这组数据的中位数是 ▲ 个.13.若22=-b a ,则b a 486-+= ▲ .14.据统计,2015年末,我省民用轿车拥有量277.5万辆,比上年增长22.7%,其中私人轿车254.6万辆,比上年增长24.1%.设2014年末我省私人轿车拥有量为x 万辆,根据题意可列出的方程是 ▲ . 15.已知2是关于x 的一元二次方程x 2+4x -p =0的一个根,则该方程的另一个根是 ▲ . 16.一个圆锥的底面半径为6㎝,圆锥侧面展开图扇形的圆心角为240°,则圆锥的母线长为 一个圆锥的底面半径为6㎝,圆锥侧面展开图扇形的圆心角为240°,则圆锥的母线长为 ▲ .17.如图所示,小明把等腰直角三角尺放置在等宽且互相平行的格线上,恰好等腰直角三角尺的三个顶点都落在格线上,若相邻两条格线之间的宽度为1 cm ,则等腰直角三角尺的斜边长为______▲_______. 18.小明观看了阿尔法狗下围棋后,设计了一款电子跳蚤游戏,如图所示的正△ABC 边长为12cm ,如果电子跳蚤开始在BC 边的点P 0处,且BP 0=4cm .此时第一步从P 0跳到AC 边的P 1(第1次落点)处,且CP 1=CP 0;第二步从P 1跳到AB 边的P 2(第2次落点)处,且AP 2=AP 1;第三步P 2从跳到BC 边的P 3(第3次落点)处,且BP 3=BP 2;…:电子跳蚤按照上述规则已知跳下去,第n 次落点为P n (n 为正整数),则点P 2015与点P 2016之间的距离是 ▲ .三、解答题(本大题共有10小题,共86分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题10分,每小题5分)(1) 计算:()()2012321-+-+⎪⎭⎫⎝⎛--π; (2)分解因式:m mx mx2422+-.20.(本题10分,每小题5分)(1)解方程:01432=+-x x ; (2)解不等式组:⎩⎨⎧≤-<+5148x x xABC第17题 第18题第11题CB36.9°21.(本题7分)某校开展了以“人生观、价值观”为主题的班会活动,活动结束后,初三(1)班数学兴趣小组提出了5个主要观点并在本班50名学生中进行了调查(要求每位同学只选自己最认可的一项观点),并制成了如下扇形统计图.(1)该班学生选择“和谐”观点的有 人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是 °(2)如果该校有400名初三学生,利用样本估计选择“感恩”观点的初三学生约有 人.22.(本题7分)已知:如图,在 ABCD中,E 为AD 中点,连接CE 并延长交BA 的延长线于F .求证:CD=AF .23、(本题8分)一个不透明口袋中,放有4个完全相同的小球,它们的标号分别为l 、2、3、4. (1)小英随机摸出一个小球,则小英摸出的球是3号球的概率是 ;(2)小英和小华协商制定游戏规则为:小英先随机摸出一个小球,小华再随机摸出一个小球,谁摸出的球的标号大谁获胜.若小英摸出的球不放回,小华再随机摸出一个小球,这个游戏规则公平吗?请利用树状图或列表说明理由.24.(本题8分)如图某天上午9时,向阳号轮船位于A 处,观测到某港口城市P 位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B 处,这时观测到城市P 位于该船的南偏西36.9°方向,求此时轮船所处位置B 与城市P 的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)25.(本题8分)第22题小丽家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小丽对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y (单位:千克)与上市时间x (单位:天)的函数关系如图1所示,樱桃价格z (单位:元/千克)与上市时间x (单位:天)的函数关系如图2所示. (1)观察图象,直接写出日销售量的最大值;(2)求小丽家樱桃的日销售量y 与上市时间x 的函数解析式; (3)试比较第10天与第12天的销售金额哪天多?26.(本题8分)已知:点M N 、分别是矩形ABCD 的边AD BC 、上的点,将矩形ABCD 沿MN 翻折180︒以后得到图1,再将梯形CDEN 沿EP 翻折180︒,使点D 落在线段EN 或EN 的延长线上. (1)四边形MNPE 是怎样的特殊四边形?并说明理由;(2)如图2,若30EMN ∠=︒,并且4ME =cm ,求四边形MNPE 的面积.(3)若2AB =cm ,BC a =cm ,探究:当a 至少为多少时,四边形MNPE 的面积最小?最小是多少?A BCDA 'B 'MNE 图1ABC D A 'B 'D 'C 'M NPE 图2已知如图,在平面直角坐标系中,点P(-4,0)⊙P半径为2,将⊙P沿x轴向右平移3个单位长度得⊙P1,设⊙P1交y轴正半轴于点A、负半轴于点B,直线L经过点A,及点C(3,0)。
2017年中考数学模拟测试题及答案.doc
2017年中考数学模拟测试题及答案中考数学要想取得好成绩就必须多做题,通过做题能够使大家检验自己的复习水平,还能帮助大家了解数学常考题型,为此下面为大家带来2017年中考数学模拟测试题及答案,希望大家能够认真利用这些模拟题。
A级基础题1.(2013年浙江丽水)在数0,2,-3,-1.2中,属于负整数的是()A.0B.2C.-3D.-1.22.(2013年四川内江)下列四个实数中,绝对值最小的数是()A.-5B.-2C.1D.43.(2013年四川凉山州)-2是2的()A.相反数B.倒数C.绝对值D.算术平方根4.(2012年广东深圳)-3的倒数是()A.3B.-3C.13D.-135.下列各式,运算结果为负数的是()A.-(-2)-(-3)B.(-2)(-3)C.(-2)2D.(-3)-36.(2013年江苏南京)计算:12-7(-4)+8(-2)的结果是()A.-24B.-20C.6D.367.如果+30 m表示向东走30 m,那么向西走40 m表示为______________.8.(2013年江苏常州)计算:-(-3)=______,|-3|=______,(-3)-1=______,(-3)2=______.9.(2013年云南曲靖)若a=1.9105,b=9.1104,则a______b(填或).10.(2012年河北)计算:|-5|-(2-3)0+613-12+(-1)2.B级中等题11.(2013年湖北宜昌)实数a,b在数轴上的位置如图1-1-4所示,以下说法正确的是()A.a+b=0B.b0 D.|b||a|12.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.000 001 6秒.这里的0.000 001 6秒用科学记数法表示__________秒.13.(2013年广东初中毕业生学业考试预测卷二)观察下列顺序排列的等式:a1=1-13,a2=12-14,a3=13-15,a4=14-16试猜想第n个等式(n为正整数):an=__________.14.(2013年广东深圳十校模拟)计算:|1-3|+-12-3-2cos30+(-3)0.C级拔尖题15.(2013年湖北咸宁)在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=2013,且AO=2BO,则a+b的值为________.16.(2012年广东)观察下列等式:第1个等式:a1=113=121-13;第2个等式:a2=135=1213-15;第3个等式:a3=157=1215-17;第4个等式:a4=179=1217-19;请解答下列问题:(1)按以上规律列出第5个等式:a5=__________________=__________________;(2)用含有n的代数式表示第n个等式:an=__________________=__________________(n为正整数);(3)求a1+a2+a3+a4++a100的值.实数1.C2.C3.A4.D5.D6.D7.-40 m8.33-1399.10.解:原式=5-1+(2-3)+1=4.11.D12.1.610-613.1n-1n+214.解:原式=3-1-8-232+1=-8.15.-67116.解:(1)19111219-111(2)1?2n-1??2n+1?1212n-1-12n+1(3)a1+a2+a3+a4++a100=121-13+1213-15+1215-17++121199-1201=12 1-13+13-15+15-17++1199-1201=121-1201=12200201=100201.为大家带来了2017年中考数学模拟测试题及答案,大家能够在做题中提高自己的数学解题水平,拥有众多的中考数学模拟题,欢迎大家查阅。
湖北省武汉市2017年中考数学模拟试卷附答案
湖北省武汉市2017年中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分) 1.8的立方根为( ) A .2B .±2C .-2D .42.要使分式15-x 有意义,则x 的取值范围是( ) A .x ≠1 B .x >1 C .x <1 D .x ≠-1 3.计算(a -2)2的结果是( )A .a 2-4B .a 2-2a +4C .a 2-4a +4D .a 2+44.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.下列各式计算正确的是( ) A .a 2+2a 3=3a 5B .(a 2)3=a 5C .a 6÷a 2=a 3D .a ·a 2=a 3 6.如图,A 、B 的坐标为(2,0)、(0,1).若将线段AB 平移至A 1B 1,则a +b 的值为( )A .2B .3C .4D .57.如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S 1、S 2、S 3,则S 1、S 2、S 3的大小关系是( ) A .S 1>S 2>S 3B .S 3>S 2>S 1C .S 2>S 3>S 1D .S 1>S 3>S 28.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )A .中位数是4,平均数是3.75B .众数是4,平均数是3.75C .中位数是4,平均数是3.8D .众数是4,平均数是3.89.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”.已知⊙O 是以原点为圆心,半径为22的圆,则⊙O 的“整点直线”共有( )条 A .7B .8C .9D .1010.Rt △ABC 中,∠ACB =90°,AC =20,BC =10,D 、E 分别为边AB 、CA 上两动点,则CD +DE 的最小值为( ) A .854+B .16C .58D .20二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:5-(-6)=___________ 12.计算:111+++a aa =___________13.如图,有五张背面完全相同的纸质卡片,其正面分别标有数:6、7、11、-2、5.将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数比3小的概率是___________14.如图,将三角板的直角顶点放在直尺的一边上.若∠1=65°,则∠2的度数为___________15.如图,△ABC 中,AB =AC ,∠A =30°,点D 在AB 上,∠ACD =15°,则ADBC的值是_______ 16.如图,△ABC 内接于⊙O ,BC =12,∠A =60°,点D 为弧BC 上一动点,BE ⊥直线OD 于点E .当点D 从点B 沿弧BC 运动到点C 时,点E 经过的路径长为___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:54212-=-x x18.(本题8分)如图,△ABC 的高AD 、BE 相交于点F ,且有BF =AC ,求证:△BDF ≌△ADC19.(本题8分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如图两幅尚不完整的统计图.请根据以上信息解答下列问题: (1) 课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为____________ (2) 请补全条形统计图(3) 该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数20.(本题8分)某中学开学初到商场购买A 、B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球25个,共花费4500元,已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元(1) 求购买一个A 种品牌、一个B 种品牌的足球各需多少元(2) 学校为了响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌足球共50个,正好赶上商场对商品价格进行调整,A 品牌足球售价比第一次购买时提高4元,B 品牌足球按第一次购买时售价的9折出售,如果学校此次购买A 、B 两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B 种品牌足球不少于23个,则这次学校有哪几种购买方案?(3) 请你求出学校在第二次购买活动中最多需要多少资金?21.(本题8分)如图,在正方形ABCD 中,以BC 为直径的正方形内,作半圆O ,AE 切半圆于点F 交CD 于E (1) 求证:AO ⊥EO(2) 连接DF ,求tan ∠FDE 的值22.(本题10分)如图,已知直线y =mx +n 与反比例函数xky =交于A 、B 两点,点A 在点B 的左边,与x 轴、y 轴分别交于点C 、点D ,AE ⊥x 轴于E ,BF ⊥y 轴于F (1) 若m =k ,n =0,求A 、B 两点的坐标(用m 表示)(2) 如图1,若A (x 1,y 1)、B (x 2,y 2),写出y 1+y 2与n 的大小关系,并证明 (3) 如图2,M 、N 分别为反比例函数x b y =图象上的点,AM ∥BN ∥x 轴.若3511=+BN AM ,且AM 、BN 之间的距离为5,则k -b =_____________23.(本题10分)已知点I 为△ABC 的内心(1) 如图1,AI 交BC 于点D ,若AB =AC =6,BC =4,求AI 的长 (2) 如图2,过点I 作直线交AB 于点M ,交AC 于点N ① 若MN ⊥AI ,求证:MI 2=BM ·CN② 如图3,AI 交BC 于点D .若∠BAC =60°,AI =4,请直接写出ANAM 11+的值24.(本题12分)如图1,在平面直角坐标系中,抛物线y=x2-4x-5与x轴分别交于A、B(A在B的左边),与y轴交于点C,直线AP与y轴正半轴交于点M,交抛物线于点P,直线AQ与y轴负半轴交于点N,交抛物线于点Q,且OM=ON,过P、Q作直线l(1) 探究与猜想:①取点M(0,1),直接写出直线l的解析式取点M(0,2),直接写出直线l的解析式②猜想:我们猜想直线l的解析式y=kx+b中,k总为定值,定值k为__________,请取M的纵坐标为n,验证你的猜想(2) 如图2,连接BP、BQ.若△ABP的面积等于△ABQ的面积的3倍,试求出直线l的解析式参考答案10.提示:当CG⊥AF时,CD+DE有最小值由角平分线定理,得AF ∶BF =AC ∶CB =2∶1 设BF =x ,则AF =2x在Rt △AFC 中,(10+x )2+202=(2x )2,解得x 1=350,x 2=-10(舍去) ∴sin ∠CAF =34210=+=x x AF CF ∵sin ∠CAF =ACCG∴CG =16二、填空题(共6小题,每小题3分,共18分) 11.11 12.113.5314.25°15.216.π338 15.提示:过点A 作AE ⊥BC 于F ,在AE 上截取EF =EC ,连接FC∴△CEF 为等腰直角三角形 ∵△ADC ≌△CFA (ASA ) ∴AD =CF =2CE =22BC ∴2=ADBC三、解答题(共8题,共72分) 17.解:23=x 18.解:略19.解:(1) 144°;(2) 如图;(3) 16020.解:(1) 设A 种品牌足球的单价为x 元,B 种品牌足球的单价为y 元⎩⎨⎧+==+3045002550x y y x ,解得⎩⎨⎧==8050y x(2) 设第二次购买A 种足球m 个,则购买B 种足球(50-m )个 ⎩⎨⎧≥-⨯≤-⨯++2350%704500)50(9.080)450(m m m ,解得25≤m ≤27∵m 为整数 ∴m =25、26、27(3) ∵第二次购买足球时,A 种足球单价为50+4=54(元),B 种足球单价为80×0.9=72 ∴当购买B 种足球越多时,费用越高 此时25×54+25×72=3150(元)21.证明:(1) ∵∠ABC =∠DCB =90°∴AD 、CD 均为半圆的切线 连接OF ∵AE 切半圆于E∴∠BAO =∠FAO ,∠CEO =∠FEO ∵∠BAE +∠CEA =180° ∴∠DAF +∠OEF =90° ∴∠AOE =90° ∴AO ⊥EO(2) 设OB =OC =2,则AB =4 ∵Rt △AOB ∽Rt △OEC ∴CE =EF =1,DE =3,AE =5 过点F 作FG ⊥DE 于G ∴FG ∥AD ∴EDEGAD FG EA EF == 即3451EGFG == ∴FG =54,EG =53,DG =512∴tan ∠FDE =31=DG FG 22.解:(1) A (-1,m )、B (1,m )(2) 联立⎪⎩⎪⎨⎧=+=x ky n mx y ,整理得mx 2+nx -k =0 ∴x 1+x 2=m n -,x 1x 2=mk - ∴y 1+y 2=m (x 1+x 2)+2n =-n +2n =n (3) 设N (m b ,m )、B (m k ,m ),则BN =mb k - 设A (n k ,n )、M (n b ,n ),则AM =nk b - ∵3511=+BN AM ∴35=-+--b k m b k n ∵AM 、BN 之间的距离为5 ∴m -n =5∴k -b =53(m -n )=323.解:(1) 23(2) ∵I 为△ABC 的内心 ∴MAINAI ∵AI ⊥MN∴△AMI ≌△ANI (ASA )∴∠AMN =∠ANM 连接BI 、CI ∴∠BMI =∠CNI设∠BAI =∠CAI =α,∠ACI =∠BCI =β ∴∠NIC =90°-α-β∵∠ABC =180°-2α-2β ∴∠MBI =90°-α-β ∴BMI ∽INC ∴NCNINI BM =∴NI 2=BM ·CN ∵NI =MI ∴MI 2=BM ·CN(3) 过点N 作NG ∥AD 交MA 的延长线于G ∴∠ANG =∠AGN =30° ∴AN =AG ,NG =AN 3 ∵AI ∥NG ∴NGAIMG AM =∴ANAN AM AM 34=+,得4311=+AN AM 24.解:(1) ① P (6,7)、Q (4,-5),PQ :y =6x -29P (7,16)、Q (3,-8),PQ :y =6x -26 ② 设M (0,n )AP 的解析式为y =nx +n AQ 的解析式为y =-nx -n联立⎪⎩⎪⎨⎧--=+=542x x y n nx y ,整理得x 2-(4+n )x -(5+n )=0 ∴x A +x P =-1+x P =4+n ,x P =5+n 同理:x Q =5-n设直线PQ 的解析式为y =kx +b联立⎪⎩⎪⎨⎧--=+=542x x y b kx y ,整理得x 2-(4+k )x -(5+b )=0 ∴x P +x Q =4+k∴5+n +5-n =4+k ,k =6 (3) ∵S △ABP =3S △ABQ ∴y P =-3y Q∴kx P +b =-3(kx Q +b ) ∵k =6∴6x P +18x Q =-b∴6(5+n )+18(5-n )=4b ,解得b =3n -30∵x P ·x Q =-(5+b )=-5-3n +30=(5+n )(5-n ),解得n =3 ∴P (8,27)∴直线PQ的解析式为y=6x-21。
湖北武汉市江岸区二七中学 2017年九年级数学中考模拟试卷(含答案)
2017年九年级数学中考模拟试卷一、选择题:1.若|m|=3,|n|=5,且m﹣n>0,则m+n的值是()A.﹣2B.﹣8或8C.﹣8或﹣2D.8或﹣22.下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个3.据统计,中国水资源总量约为27500亿立方米,居世界第六位,其中数据27500亿用科学记数法表示为()A.2.75×108B.2.75×1012C.27.5×1013D.0.275×10134.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12B.16C.20D.16或205.若(-5a m+1b2n-1)·(2a n b m)=-10a4b4,则m-n的值为( )A.-1B.1C.-3D.36.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A. B. C. D.7.如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为()A. B. C. D.8.如图,△ABC内接于⊙O,AB=8,BC=10,AC=6,D是弧AB中点,连接CD交AB于点E,则DE:CE等于()A.2:5B.1:3C.2:7D.1:49.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图所示,则下列结论:①A,B两城相距300 km;②乙车比甲车晚出发1 h,却早到1 h;③乙车出发后2.5 h追上甲车;④当甲、乙两车相距50 km时,t=1.25或3.75.其中正确的结论有( )A.1个 B.2个 C.3个 D.4个10.已知抛物线y=﹣与直线y=x交于点A,点B,则AB的长为()A.3B.6C.3D.2二、填空题:11.分解因式:m4n﹣4m2n=12.已知一元二次方程x2+mx+m﹣1=0有两个相等的实数根,则m= .13.如图,若△ACD的周长为7cm,DE为AB边的垂直平分线,则AC+BC= cm.14.现有四张分别标有数字﹣3,﹣2,1,2的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上所标的数字都是非负数的概率为.15.如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.将△ABC绕点C逆时针旋转角后得到△A′B′C,当点A的对应点A' 落在AB边上时,旋转角的度数是度,阴影部分的面积为.16.如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴是直线x=2,与x轴的一个交点是(-1,0),有下列结论:①abc<0,②4a+b=0,③抛物线与x轴的另一个交点是(5,0),④若点(﹣2,y1),(5,y2)都在抛物线上,则有y1<y2,请将正确选项的序号都填在横线上.三、计算题:17.计算:|1-|+3tan30°-()0-(-)﹣1.18.先化简再求值:,其中x满足.四、解答题:19.已知AB为⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图1,若∠CPA恰好等于30°,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由.20.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.21.如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C 在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22°)22.某公司经销一种商品,每件商品的成本为50元,经市场的调查,在一段时间内,销售量w(件)随销售单价x(元/件)的变化而变化,具体关系式为w=-2x+240.设这种商品在这段时间内的销售利润为y(元),解答如下问题:(1)求y与x的关系式;(2)当x取何值时,y的值最大?(3)如果物价部门规定这种商品的销售单价不得高于80元/件,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?五、综合题:23.一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB 的中点处,设AC=BC=a.(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为,周长为;(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为,周长为;(3)如果将△MNK绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.24.抛物线y=-x2+bx+c经过点A、B、C,已知A(-1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.参考答案1.C2.B3.B4.C.5.A6.C7.C8.B9.B10.A11.答案为:m2n(m+2)(m﹣2).12.答案为:2.13.答案为:7.14.答案为:1/6.15.答案为:60,.16.答案为:②③.17.原式=﹣1+3×﹣1﹣(﹣3)=﹣1++3=2;19.解:(1)连接OC,∵PC是⊙O的切线,∴OC⊥PC∴∠OCP=90°.∵∠CPA=30°,∴∠COP=60°∵OA=OC,∴∠A=∠ACO=30°∵PD平分∠APC,∴∠APD=15°,∴∠CDP=∠A+∠APD=45°.(2)∠CDP的大小不发生变化.∵PC是⊙O的切线,∴∠OCP=90°.∵PD是∠CPA的平分线,∴∠APC=2∠APD.∵OA=OC,∴∠A=∠ACO,∴∠COP=2∠A,在Rt△OCP中,∠OCP=90°,∴∠COP+∠OPC=90°,∴2(∠A+∠APD)=90°,∴∠CDP=∠A+∠APD=45°.即∠CDP的大小不发生变化.20.解:(1)∵A组占10%,有5人,∴这部分男生共有:5÷10%=50(人);∵只有A组男人成绩不合格,∴合格人数为:50﹣5=45(人);(2)∵C组占30%,共有人数:50×30%=15(人),B组有10人,D组有15人,∴这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,∴成绩的中位数落在C组;∵D组有15人,占15÷50=30%,∴对应的圆心角为:360°×30%=108°;(3)成绩优秀的男生在E组,含甲、乙两名男生,记其他三名男生为a,b,c,画树状图得:∵共有20种等可能的结果,他俩至少有1人被选中的有14种情况,∴他俩至少有1人被选中的概率为:0.7.21.解:(1)如图,过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=AM:ME,则5(x-2)=2(x+25),解得:x=20.即教学楼的高20m.(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=ME:AE.∴ME=AEcos22°,即A、E之间的距离约为48m23.解:(1)∵AM=MC=AC=a,则∴重叠部分的面积是△ACB的面积的一半为a2,周长为(1+)a.(2)∵重叠部分是正方形∴边长为a,面积为a2,周长为2a.(3)猜想:重叠部分的面积为.理由如下:过点M分别作AC、BC的垂线MH、MG,垂足为H、G设MN与AC的交点为E,MK与BC的交点为F∵M是△ABC斜边AB的中点,AC=BC=a∴MH=MG=又∵∠HME+∠HMF=∠GMF+∠HMF,∴∠HME=∠GMF,∴Rt△MHE≌Rt△MGF∴阴影部分的面积等于正方形CGMH的面积∵正方形CGMH的面积是MG•MH=×=∴阴影部分的面积是.24.解:(1)由题意得:,解得:,∴抛物线解析式为;(2)令,∴x1= -1,x2=3,即B(3,0),设直线BC的解析式为y=kx+b′,∴,解得:,∴直线BC的解析式为,设P(a,3-a),则D(a,-a2+2a+3),∴PD=(-a2+2a+3)-(3-a)=-a2+3a,∴S△BDC=S△PDC+S△PDB,∴当时,△BDC的面积最大,此时P(,);(3)由(1),y=-x2+2x+3=-(x-1)2+4,∴OF=1,EF=4,OC=3,过C作CH⊥EF于H点,则CH=EH=1,当M在EF左侧时,∵∠MNC=90°,则△MNF∽△NCH,∴,设FN=n,则NH=3-n,∴,即n2-3n-m+1=0,关于n的方程有解,△=(-3)2-4(-m+1)≥0,得m≥,当M在EF右侧时,Rt△CHE中,CH=EH=1,∠CEH=45°,即∠CEF=45°,作EM⊥CE交x轴于点M,则∠FEM=45°,∵FM=EF=4,∴OM=5,即N为点E时,OM=5,∴m≤5,综上,m的变化范围为:≤m≤5.。
河北石家庄市裕华区四十三中 2017年九年级数学中考模拟试卷(含答案)
2017年九年级数学中考模拟试卷一、选择题:1.-0.5的绝对值是()A.0.5B.-0.5C.2D.﹣22.下列计算中,正确的是()A.a+a11=a12B.5a﹣4a=aC.a6÷a5=1D.(a2)3=a53.下列图形中既是轴对称图形,又是中心对称图形的是()4.化简的结果是()A. B. C.x+1 D.x﹣15.某市乘出租车需付车费y(元)与行车里程x(千米)之间函数关系的图象如图所示,那么该市乘出租车超过3千米后,每千米的费用是()A.0.71元B.2.3元C.1.75元D.1.4元6.下列三个命题中,是真命题的有()①对角线相等的四边形是矩形;②三个角是直角的四边形是矩形;③有一个角是直角的平行四边形是矩形.A.3个 B.2个 C.1个 D.0个7.在函数y=中,自变量x的取值范围是()A.x≤1且x≠﹣2B.x≤1C.x<1且x≠﹣2D.x>1且x≠2.8.如图所示的几何体是由5个大小相同的小正方体紧密摆放而成的,其三视图中面积最小的是()A.主视图B.左视图C.俯视图D.左视图和俯视图9.如图,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F,下列关于高的说法中错误的是( )A.△AGC中,CF是AG边上的高B.△GBC中,CF是BG边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高10.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.211.已知a,b,c三个数在数轴上对应点的位置如图所示,下列几个判断:①a<c<b;②-a<b;③a+b>0; ④c-a<0中,错误的个数是()个.A.1B.2C.3D.412.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. +=2B.﹣=2C. +=D.﹣=13.在下列四组数中,不是勾股数的一组数是( )A.a=15,b=8,c=17B.a=9,b=12,c=15C.a=7,b=24,c=25D.a=3,b=5,c=714.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x=-2,x2=4,则m+n的值是( )1A.-10B.10C.-6D.215.如图,在平行四边形ABCD中,点E在边DC上,DE∶CE=3∶1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为( )A.3:4 B.9:16 C.9:1 D.3:116.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”,[a,b,c]称为“抛物线三角形系数”,若抛物线三角形系数为[﹣1,b,0]的“抛物线三角形”是等腰直角三角形,则b的值()A.±2B.±3C.2D.3二、填空题:17.一个数的立方根是4,那么这个数的平方根是.18.因式分解a2b﹣b的正确结果是19.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)三、计算题:20.计算:21.计算:四、解答题:22.已知:如图AC,BD相交于点O,∠A=∠D,AB=CD,求证:△AOB≌△DOC.23.已知,如图△ABC和△ADE均为等边三角形,BD、CE交于点F.(1)求证:BD=CE;(2)求锐角∠BFC的度数.24.可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.25.某移动通讯公司开设两种业务.“全球通”:先缴50元月租费,然后每通话1分钟,再付0.4元.“神州行”:不缴月租费,每通话1分钟,付费0.6元(通话均指市话)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017中考数学模拟试题附答案
2017中考数学模拟试题附答案
中考是九年义务教育的终端显示与成果展示,其竞争较为激烈。
为了更有效地帮助学生梳理学过的知识,提高复习质量和效率,在中考中取得理想的成绩,下文小编为大家准备了2017中考数学模拟试题附答案的内容。
2017中考数学模拟试题:A级基础题
1.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出1个小球,其标号大于2的概率为( )
A.15
B.25
C.35
D.45
2.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取1张,那么取到字母e 的概率为____________.
3.2012~2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是( )
A.科比罚球投篮2次,一定全部命中
B.科比罚球投篮2次,不一定全部命中
C.科比罚球投篮1次,命中的可能性较大
D.科比罚球投篮1次,不命中的可能性较小
4.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出1个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( )
A.3个
B.不足3个
C.4个
D.5个或5个以上
5.有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是________.
6.在一个不透明的盒子中,共有“一白三黑”四个围棋子,它们除了颜色之外没有其他区别.
(1)随机地从盒中提出一子,则提出白子的概率是多少?
(2)随机地从盒中提出一子,不放回再提第二子.请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.
2017中考数学模拟试题:B级中等题
7.从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.
8.襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是________.
9.在一个口袋中有4个完全相同的小球,把它们分别标上1,2,3,4.小明先随机地摸出1个小球,小强再随机的摸出1个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时,小明获胜,否则小强获胜.
(1)若小明摸出的球不放回,求小明获胜的概率;
(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.
10.如图7-2-3,大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A1,A2),(B1,B2)].
(1)若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;
(2)若从这四只拖鞋中随机地取出两
11.甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.
(1)下列事件是必然事件的是( )
A.乙抽到一件礼物
B.乙恰好抽到自己带来的礼物
C.乙没有抽到自己带来的礼物
D.只有乙抽到自己带来的礼物
2017中考数学模拟试题参考答案
1.C
2.27
3.A
4.D
5.23
6.解:(1)∵共有“一白三黑”四个围棋子,
∴P(白子)=14.
(2)画树状图如图73.
∵共有12种等可能的结果,恰好提出“一黑一白”子的有6种情况,
∴P(一黑一白)=612=12.
图73
7.25 8.19
9.解:(1)画树状图如图74.
∵共有12种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,
∴小明获胜的.概率为:12.
(2)画树状图如图75.
图75
∵共有16种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,
∴P(小明获胜)=38,P(小强获胜)=58,
∵P(小明获胜)≠P(小强获胜),
∴他们制定的游戏规则不公平.
10.解:(1)∵若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,有A1A2,A1B2,B1B2,B1A2四种情况,恰好匹配的有A1A2,B1B2两种情况,
∴P(恰好匹配)=24=12.
(2)方法一,画树状图如图76.
图76
∵所有可能的结果为A1A2,A1B1,A1B2,A2A1,A2B1,A2B2,B1A1,B1A2,B1B2,B2A1,B2A2,B2B1,
∴从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.
∴P(恰好匹配)=412=13.
方法二,列表格如下:
A1B2 A2B2 B1B2 -
A1B1 A2B1 - B2B1
A1A2 - B1A2 B2A2
- A2A1 B1A1 B2A1
可见,从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.
∴P(恰好匹配)=412=13.
11.解:(1)A
(2)设甲、乙、丙三人的礼物分别记为a,b,c,
根据题意画出树状图如图77.
一共有6种等可能的情况,三人抽到的礼物分别为abc,acb,bac,bca,cab,cba,
3人抽到的都不是自己带来的礼物的情况有bca,cab有2种,所以,P(A)=26=13.。