初二数学知识点:函数的图象知识点

合集下载

初二数学知识点:函数的图象知识点

初二数学知识点:函数的图象知识点

初二数学知识点:函数的图象知识点一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特殊地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b 取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的'交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满意等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k0时,直线必通过一、三象限,y随x的增大而增大;当k0时,直线必通过二、四象限,y随x的增大而减小。

当b0时,直线必通过一、二象限;当b=0时,直线通过原点当b0时,直线必通过三、四象限。

特殊地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)由于在一次函数上的任意一点P(x,y),都满意等式y=kx+b。

所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②(3)解这个二元一次方程,得到k,b的值。

(4)最终得到一次函数的表达式。

五、一次函数在生活中的应用:1.当时间t肯定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f肯定,水池中水量g是抽水时间t的一次函数。

初二函数的图像知识点总结

初二函数的图像知识点总结

初二函数的图像知识点总结一、坐标系和直角坐标系在学习函数图像之前,我们需要先了解坐标系和直角坐标系的概念。

坐标系是用来描述平面上点的工具,它由水平方向和垂直方向的两条线组成。

而直角坐标系是将坐标系中的每一个点都表示为一个有序对(x, y),其中x表示点在横坐标轴上的位置,y表示点在纵坐标轴上的位置。

二、函数的概念函数是数学中的重要概念,它描述了一个变量如何依赖于另一个变量。

通俗地讲,函数就是一种关系,它将一个自变量的取值映射到一个因变量的取值。

函数通常用f(x)表示,其中x是自变量,f(x)是对应的因变量。

在学习函数图像时,我们需要了解一些常见的函数类型,比如线性函数、二次函数、指数函数和对数函数等。

三、函数图像的基本性质在绘制函数图像时,我们需要掌握一些基本的性质。

比如,线性函数的图像是一条直线,它可以通过两个点来确定;二次函数的图像是一条抛物线,它的开口方向取决于二次项系数的正负;指数函数和对数函数的图像分别是指数曲线和对数曲线,它们有一些特定的性质和规律。

四、函数图像的绘制方法在学习函数图像时,我们也需要了解一些绘制方法,比如利用表格法来绘制函数图像。

表格法是通过选取一些自变量的值,计算对应的因变量的值,然后将这些点连接起来来近似函数的图像。

此外,我们还可以利用函数的性质和变化规律来绘制函数图像,比如线性函数的斜率和截距可以帮助我们绘制出函数的大致形状。

五、函数图像与实际问题的应用函数图像不仅仅是数学中的一个概念,它还可以帮助我们解决一些实际问题。

比如,我们可以利用函数图像来描述日常生活中的变化规律,比如温度随时间的变化、物体的运动轨迹等。

此外,在学习物理和工程学科时,我们也经常会遇到一些与函数图像相关的问题,因此掌握函数图像的知识对于解决实际问题是非常有帮助的。

总之,函数图像是数学中的一个重要概念,它能够帮助我们直观地理解函数的性质和特点。

在初中阶段,学生需要掌握关于函数图像的基本知识,包括坐标系和直角坐标系、函数的概念、函数图像的基本性质、函数图像的绘制方法以及函数图像与实际问题的应用。

初二数学一次函数知识点总结

初二数学一次函数知识点总结

初二数学一次函数知识点总结一次函数是指形如f(x) = ax + b的函数,其中a和b是常数,a被称为一次函数的斜率,b被称为一次函数的截距。

一次函数的图像是一条直线,具有如下特点:1. 斜率:斜率a表示了直线的倾斜程度。

当a>0时,直线向右上方倾斜;当a<0时,直线向右下方倾斜;当a=0时,直线是水平的。

2. 截距:截距b表示了直线与y轴的交点,也就是直线在y 轴上的纵坐标。

3. 解析式:一次函数的解析式可以用来计算给定x值对应的y值,也可以用来计算给定y值对应的x值。

4. 增减性:当a>0时,一次函数是递增函数,即随着x的增大,y的值也增大;当a<0时,一次函数是递减函数,即随着x的增大,y的值减小。

5. 零点:一次函数的零点是指使得f(x) = ax + b等于零的x值,即当f(x) = 0时,x的值称为一次函数的零点。

6. 平行线:两个一次函数的斜率相等时,它们的图像是平行的。

7. 垂直线:当a = 0时,直线是水平的,它与x轴垂直。

8. 点斜式:一次函数的点斜式是指通过给定点(x1, y1)且斜率为a的直线的解析式,可以表示为y - y1 = a(x - x1)。

9. 截距式:一次函数的截距式是指通过给定点(x1, y1)且直线与y轴的交点为b的直线的解析式,可以表示为y = ax + b。

10. 一次函数的表示形式:一次函数可以通过解析式,点斜式或截距式来表示,它们之间可以相互转化。

11. 应用:一次函数在实际生活中具有广泛的应用,例如用来描述线性关系、计算直线的斜率和截距、求解实际问题等等。

以上是一次函数的主要知识点总结,希望对你的学习有所帮助。

如需更详细的解释或其他数学知识点的总结,请告诉我。

初二函数总结知识点归纳

初二函数总结知识点归纳

初二函数总结知识点归纳在初中数学教学中,函数是一个重要的概念。

学习和掌握函数的知识对于提高数学水平和解决实际问题具有重要意义。

本文将对初二阶段学习的函数知识点进行总结和归纳。

一、函数的定义和表示方法函数是一种特殊的数学关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

通常用f(x)表示函数,其中x为自变量,f(x)为因变量。

例如,y = f(x)表示因变量y是自变量x的函数。

二、函数的图象和性质1. 函数的图象是在直角坐标系中的表示形式。

对于定义域中的每个x值,都有对应的y值与之对应。

函数的图象可以用来观察函数的性质和变化规律。

2. 函数的单调性:函数的单调性表示函数在定义域上的增减规律。

如果对于任意的x1和x2(x1 < x2),有f(x1) < f(x2),则称函数在该区间上为递增函数;如果对于任意的x1和x2有f(x1) > f(x2),则称函数在该区间上为递减函数。

3. 函数的奇偶性:函数的奇偶性用来描述函数图象关于y轴对称性的特点。

如果对于定义域中的任何x值,有f(-x) = f(x),则函数为偶函数;如果对于定义域中的任何x值,有f(-x) = -f(x),则函数为奇函数。

三、常见的基本函数1. 常数函数:常数函数是指定义域上恒定输出的函数,可以表示为f(x) = a的形式,其中a为常数。

常数函数的图象是一条与x轴平行的直线。

2. 一次函数:一次函数是指其定义域上的每个x值与y值之间均满足y = ax + b的函数,其中a和b为常数,且a不为0。

一次函数的图象是一条斜率为a的直线。

3. 二次函数:二次函数是指其定义域上的每个x值与y值之间均满足y = ax^2 + bx + c的函数,其中a、b和c为常数,且a不为0。

二次函数的图象是抛物线。

四、函数的运算1. 函数的加法、减法和乘法:对于两个函数f(x)和g(x),它们的加法表示为(f + g)(x) = f(x) + g(x),减法表示为(f - g)(x) = f(x) - g(x),乘法表示为(f * g)(x) = f(x) * g(x)。

八年级上册数学函数知识点_初中数学函数知识必看

八年级上册数学函数知识点_初中数学函数知识必看

八年级上册数学函数知识点_初中数学函数知识必看八年级上册数学函数知识点一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

三、函数的三种表示法及其优缺点(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法用图象表示函数关系的方法叫做图象法。

四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

五、正比例函数和一次函数1、正比例函数和一次函数的概念一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。

2、一次函数的图像:所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。

八年级上册数学函数知识考点归纳大全我们称数值变化的量为变量(variable)。

有些量的数值是始终不变的,我们称它们为常量(constant)。

在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们说x是自变量(independentvariable),y是x的函数(function)。

函数初二知识点总结

函数初二知识点总结

函数初二知识点总结一、函数的概念。

1. 变量与常量。

- 在一个变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量。

例如,在行程问题中,速度不变时,路程s = vt,v是常量,s和t是变量。

2. 函数的定义。

- 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。

例如,y = 2x+1,对于x的每一个值,都能通过这个式子算出唯一的y值。

3. 函数的表示方法。

- 解析法:用数学式子表示两个变量之间的函数关系,如y = 3x - 2。

- 列表法:通过列出自变量与函数的对应值来表示函数关系。

例如,某商店销售一种商品,记录不同销售量x(件)时的销售额y(元),如下表:x1 2 3 4.y5 10 15 20.- 图象法:用图象表示两个变量之间的函数关系。

如在平面直角坐标系中画出y = x^2的图象。

二、函数自变量的取值范围。

1. 整式型函数。

- 对于y = 2x+3这样的整式函数,自变量x的取值范围是全体实数。

2. 分式型函数。

- 对于y=(1)/(x),因为分母不能为0,所以x≠0。

3. 二次根式型函数。

- 对于y = √(x),被开方数x≥slant0。

如果是y=√(2x - 1),则2x - 1≥slant0,解得x≥slant(1)/(2)。

三、函数图象的画法。

1. 列表。

- 对于y = 2x+1,可以选取一些x的值,如x=-2,-1,0,1,2,然后分别计算出对应的y值:- 当x = - 2时,y=2×(-2)+1=-3;- 当x=-1时,y = 2×(-1)+1=-1;- 当x = 0时,y=2×0 + 1=1;- 当x = 1时,y=2×1+1 = 3;- 当x = 2时,y=2×2+1=5。

列出表格如下:x-2 -1 0 1 2.y-3 -1 1 3 5.2. 描点。

初二函数知识点

初二函数知识点

初二函数知识点一、函数基础知识1. 函数定义函数是指一个从集合A(称为定义域)到集合B(称为值域)的映射,记作f: A → B。

在初中数学中,函数通常指的是一种特殊的对应关系,即对于定义域内的每一个x值,都有唯一确定的y值与之对应。

2. 函数的表示方法- 表格法:通过表格列出几组对应值。

- 公式法:用数学公式表达,如y = f(x)。

- 图像法:在坐标系中画出函数的图像。

3. 函数的性质- 单值性:一个x值对应一个y值。

- 定义域和值域:定义域是函数中所有可能的x值的集合,值域是函数中所有可能的y值的集合。

- 函数图像:函数的图像是坐标系中所有满足函数关系的点的集合。

二、线性函数1. 线性函数定义线性函数是指函数关系式为y = kx + b的形式,其中k为斜率,b为截距。

2. 线性函数的性质- 斜率k表示函数的增减性,k > 0时,y随x的增大而增大;k < 0时,y随x的增大而减小。

- 截距b表示当x=0时,y的取值。

- 线性函数图像是一条直线。

3. 线性函数图像的绘制- 利用斜率和截距确定直线的位置和倾斜程度。

- 通常选择两个点(x, y),利用公式计算出y值,然后在坐标系中绘制这两个点,并通过这两个点画一条直线。

三、二次函数1. 二次函数定义二次函数是指函数关系式为y = ax^2 + bx + c的形式,其中a、b、c 为常数,且a ≠ 0。

2. 二次函数的性质- a的符号决定了抛物线的开口方向,a > 0时开口向上,a < 0时开口向下。

- b和c的值影响抛物线的位置和对称轴。

- 二次函数图像是一条抛物线。

3. 二次函数图像的绘制- 确定顶点、对称轴和与x轴的交点(根)。

- 利用顶点式或交点式绘制抛物线。

四、函数的应用1. 实际问题建模将实际问题转化为函数关系式,通过分析函数的性质来解决问题。

2. 函数的最值问题通过求导数或配方法来求解函数的最大值和最小值。

3. 函数的图像变换通过平移、伸缩等变换来研究函数图像的变化规律。

初二函数知识点总结归纳

初二函数知识点总结归纳

初二函数知识点总结归纳函数是数学中的重要概念,也是初中数学课程中的重点内容之一。

在初二阶段,学生需要学习并掌握一些基本的函数知识点,本文将对这些知识点进行总结和归纳。

一、函数的定义和表示方法函数是一种特殊的关系,它将一个集合中的元素(称为自变量)映射到另一个集合中的元素(称为因变量)。

函数的定义可以表达为:对于集合A中的每一个元素x,都存在集合B中唯一的元素y与之对应。

函数可以用多种方式表示,常见的表示方法包括:1.集合表示法:用集合A和集合B表示函数f,可以写作f: A → B。

2.映射表示法:用箭头表示自变量与因变量的对应关系,例如f(x) = y。

3.表格表示法:将自变量和因变量对应关系列成表格。

4.图像表示法:通过绘制自变量和因变量的关系图形来表示函数。

二、函数的性质函数具有一些基本的性质,这些性质对于理解和运用函数知识非常重要。

1.定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。

2.奇偶性:如果对任意x,都有f(-x) = f(x),则函数是偶函数;如果对任意x,都有f(-x) = -f(x),则函数是奇函数。

3.单调性:函数的单调性可以分为增函数和减函数两种。

如果对于任意两个自变量x1<x2,都有f(x1)<f(x2),则函数是增函数;如果对于任意两个自变量x1<x2,都有f(x1)>f(x2),则函数是减函数。

4.零点:函数的零点即为使函数取值为0的自变量的值。

三、常见函数类型及其性质在初二数学中,学生主要学习并运用以下几种常见的函数类型。

1.一次函数:一次函数的一般形式为f(x) = kx + b。

其中k称为斜率,决定了函数的斜率大小和方向;b称为截距,表示函数与y轴的交点。

2.二次函数:二次函数的一般形式为f(x) = ax² + bx + c。

其中a决定了函数的开口方向和开口程度,a>0表示开口向上,a<0表示开口向下。

初二数学函数知识点归纳

初二数学函数知识点归纳

初二数学函数知识点归纳一、函数的概念函数是数学中一个非常重要的概念,它描述了两个变量之间的一种对应关系。

简单来说,如果对于一个变量x的每一个确定的值,另一个变量y都有唯一确定的值与之对应,那么我们就说y是x的函数,x是自变量。

比如说,我们常见的一次函数y = kx + b(k、b为常数,k≠0),当我们给定一个x的值时,就可以通过这个式子计算出唯一的y值。

二、函数的表示方法1. 解析式法这是我们最常用的一种方法,就是用数学式子来表示两个变量之间的函数关系,比如刚才提到的一次函数y = kx + b,还有二次函数y = ax²+ bx + c(a≠0)等。

2. 列表法通过列出表格来表示两个变量之间的对应关系。

例如,我们要研究一个物体在不同时间t下的速度v,我们可以列出一个表格,第一行是时间t的值,第二行是对应的速度v的值。

3. 图象法把函数关系用图象来表示。

比如一次函数的图象是一条直线,二次函数的图象是一条抛物线。

图象法可以很直观地看出函数的一些性质,比如单调性、最值等。

三、一次函数1. 一次函数的定义前面已经提到过,形如y = kx + b(k、b为常数,k≠0)的函数叫做一次函数。

当 b = 0时,y = kx,这个函数叫做正比例函数,它是一次函数的特殊情况。

2. 一次函数的性质当k>0时,y随x的增大而增大,函数图象从左到右上升;当k<0时,y随x的增大而减小,函数图象从左到右下降。

一次函数y = kx + b的图象与y轴的交点坐标是(0,b),与x 轴的交点坐标是(-b/k,0)(当k≠0时)。

四、二次函数1. 二次函数的定义形如y = ax²+ bx + c(a≠0)的函数叫做二次函数。

2. 二次函数的性质当a>0时,抛物线开口向上,函数有最小值;当a<0时,抛物线开口向下,函数有最大值。

二次函数y = ax²+ bx + c的对称轴是直线x = -b/2a,顶点坐标是(-b/2a,(4ac - b²)/4a)。

初二数学一次函数知识点归纳

初二数学一次函数知识点归纳

初二数学一次函数知识点归纳初二数学一次函数知识点归纳知识点1一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.知识点2函数的图象由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。

.不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.知识点3一次函数y=kx+b(k,b为常数,k≠0)的性质(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;②k﹤O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图所示,当k>0,b③如图所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点4正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点5点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的`图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点6确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.知识点7待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点8用待定系数法确定一次函数表达式一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.思想方法小结(1)函数方法.(2)数形结合法.知识规律小结(1)常数k,b对直线y=kx+b(k≠0)位置的影响.①当b>0时,直线与y轴的正半轴相交;当b=0时,直线经过原点;当b﹤0时,直线与y轴的负半轴相交.②当k,b异号时,直线与x轴正半轴相交;当b=0时,直线经过原点;当k,b同号时,直线与x轴负半轴相交.③当k>O,b>O时,图象经过第一、二、三象限;当k>0,b=0时,图象经过第一、三象限。

初二函数所有的知识点总结

初二函数所有的知识点总结

初二函数所有的知识点总结一、函数的概念函数是一种特殊的关系,它表示一种从一个集合到另一个集合的对应关系。

在数学上,函数通常用 f(x) 或 y = f(x) 的形式表示,其中 x 是自变量,y 是因变量。

函数的定义域是指函数的自变量可以取的值的集合,值域是函数的因变量所能取得的值的集合。

函数的图像是函数在坐标系上的呈现形式,它能够直观地表示函数的性质。

函数的性质包括奇偶性、单调性、周期性等。

二、函数的表示方法1. 公式表示法:函数可以用数学公式的方式进行表示,比如 f(x) = 2x + 3。

2. 表格表示法:可以通过制作函数的输入和输出值的对应表格来表示函数。

3. 图形表示法:函数的图像可以用坐标系上的点来表示。

三、函数的运算1. 函数的加法和减法:当两个函数相加或相减时,可将它们的对应值相加或相减。

2. 函数的乘法和除法:当两个函数相乘或相除时,可将它们的对应值相乘或相除。

3. 复合函数:当一个函数中出现另一个函数时,称为复合函数。

四、基本函数1. 线性函数:线性函数是一种特殊的一次函数,它的图像是一条直线,表示为 f(x) = kx + b。

2. 平方函数:平方函数的一般形式是 f(x) = ax^2 + bx + c,它的图像是一条抛物线。

3. 绝对值函数:绝对值函数的一般形式是 f(x) = |x - a| + b,它的图像以直线为轴对称。

4. 一次函数:一次函数的一般形式是 f(x) = ax + b,它的图像是一条直线。

5. 反比例函数:反比例函数的一般形式是 f(x) = k/x,它的图像是两个坐标轴的倒数。

五、函数的性质1. 奇函数和偶函数:奇函数满足 f(-x) = -f(x),而偶函数满足 f(-x) = f(x)。

2. 单调函数:如果函数 f(x) 的导数在定义域上恒大于 0 或恒小于 0,那么 f(x) 就是单调函数。

3. 周期函数:如果存在一个正数 T,使得对于定义域上的任意 x 都有 f(x+T) = f(x),那么f(x) 就是周期函数。

初二函数知识点

初二函数知识点

初二函数知识点初二函数知识点是中学高数教育中很重要的一部分,许多初中学生在接触该知识点时会遇到困难。

以下就对初二函数知识点进行深入的讲解,以便任何初中学生都能掌握函数的概念和技能。

一、函数概念函数是由一组输入和一组输出之间的关系决定的。

简单来说,函数就是给定一个输入,得到一个输出。

例如,用$f(x)=x+2$表示,当x=3时,输出$f(3)=3+2=5$;当x=4时,输出$f(4)=4+2=6$。

二、函数的表示方式函数可以用符号来表示,也可以用图形图象的方式表示。

1、函数方程函数的一种简单有效的表示方式是函数方程,如$y=f(x)$。

在这里,y是函数的输出,x是函数的输入,f是函数本身。

例如,$f(x)=x+2$就是一个用函数方程表示的函数。

2、函数图像函数图像是把函数函数方程用图表表示出来的。

例如,用$f(x)=x+2$表示,可以用下图表示:图1:f(x)=x+2的函数图像三、函数的基本概念1、定义域定义域是指函数的输入变量x可以取得的值所组成的集合,称为函数的定义域。

例如,对于$f(x)=x+2$来说,它的定义域是所有实数集合。

2、值域值域是指函数的输出y可以取得的值所组成的集合,称为函数的值域。

例如,对于$f(x)=x+2$来说,它的值域是所有大于等于2的实数集合。

3、增减性函数的增减性指的是当输入变量的值变化时,函数的输出值的变化规律。

如果当输入变量x的值增加时,函数的输出值也增加,则称函数f(x)为增函数;如果当输入变量x的值减小时,函数的输出值也减小,则称函数f(x)为减函数。

4、凹凸性函数的凹凸性指的是函数曲线的凹凸性,也就是当输入变量的值变化时,函数的输出值的变化规律。

如果当输入变量x的值增加时,函数的输出值先增加后减小,称函数为凹函数;如果当输入变量x的值增加时,函数的输出值先减小后增加,称函数为凸函数。

四、函数的应用1、函数在学术计算中的应用函数在学术计算中起着重要作用,可以将复杂的数学运算转变为简单的函数运算,大大减少了计算的工作量,同时也提高了计算的效率,为学术研究和计算准确性提供了巨大的帮助。

初中函数关系知识点总结-初二数学函数关系知识点

初中函数关系知识点总结-初二数学函数关系知识点

初中函数关系知识点总结-初二数学函数关系知识点一、函数的定义与表示函数是数学中常见的一种表达关系的方式,通常用字母表示。

函数由输入和输出两个变量组成,可以表示为f(x) = y的形式。

二、函数的图像与性质1. 函数的图像是平面直角坐标系中的点的集合,其中横坐标为输入值,纵坐标为对应输出值。

2. 函数的性质包括定义域、值域、单调性、奇偶性等。

- 定义域:函数能够取值的范围。

- 值域:函数所有可能的输出值的范围。

- 单调性:函数在某个定义域内的取值随输入的增大或减小而增大或减小。

- 奇偶性:函数在定义域内的取值与输入的正负性质有关。

三、函数间的关系1. 函数之间存在四种基本的关系:- 相等关系:两个函数在相同的定义域内具有相同的输出值。

- 大于关系:一个函数在某个定义域内的值大于另一个函数在相同定义域内的值。

- 小于关系:一个函数在某个定义域内的值小于另一个函数在相同定义域内的值。

- 复合关系:一个函数的输入是另一个函数的输出。

四、常见函数类型1. 线性函数:表达式为f(x) = ax + b,其中a和b为常数。

2. 平方函数:表达式为f(x) = ax^2,其中a为常数。

3. 开方函数:表达式为f(x) = √(ax + b),其中a和b为常数。

4. 绝对值函数:表达式为f(x) = |ax + b|,其中a和b为常数。

五、函数的性质与应用1. 奇偶性对称性:若函数f(x)满足对任意x都有f(-x) = f(x),则函数f(x)为偶函数;若对任意x都有f(-x) = -f(x),则函数f(x)为奇函数。

2. 函数的应用:函数在数学和实际问题中有着广泛的应用,如描述变化规律、建立模型等。

初二数学一次函数知识点总结

初二数学一次函数知识点总结

初二数学一次函数知识点总结
一、一次函数的定义
一次函数是指形如y=kx+b的函数,其中x是自变量,y是函数值,k是斜率,b是y轴截距。

二、一次函数的图像
1.当k>0时,图像呈现右上方向,斜率越大,直线越陡峭。

2.当k<0时,图像呈现左下方向,斜率越小,直线越平缓。

3.当k=0时,图像呈现水平直线。

4.当x=0时,函数的值为y=b,即y轴截距。

三、一次函数的性质
1.一次函数经过两个不同点时,确定一条直线。

2.一次函数的斜率与函数的图像的倾斜度和正负有关。

3.当k>0时,函数单调递增;当k<0时,函数单调递减。

4.一条直线的斜率与与其垂直的直线的斜率的积为−1。

四、一次函数的应用
1.求解直线上的点坐标。

–已知直线上某一点的坐标以及斜率,可以求解该直线上的其他点的坐标。

2.用直线解决实际问题。

–通过实际问题,建立一元一次方程,求解方程,解得的变量即为实际问题的解决方案。

3.计算商业利润。

–利润y与销售额x之间的关系可以表示为一次函数,以此计算商业利润。

五、一次函数的常见误区
1.认为k和b的单位相同。

–k的单位是“单位y轴上升一单位x轴上升的单位数”,而b的单位是距离单位。

2.认为函数的x和y的值的单位相同。

–x和y的单位通常不相同,并且要根据所给问题具体确定。

3.直接根据图形判断斜率。

–斜率应根据公式进行计算,而不是根据图形直接判断。

以上是初二数学一次函数知识点的总结,希望能对大家的学习有所帮助。

初二函数知识点归纳

初二函数知识点归纳

初二函数知识点归纳一、函数的概念。

1. 定义。

- 在一个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了唯一的一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

- 例如:汽车以60千米/小时的速度匀速行驶,行驶路程s(千米)与行驶时间t(小时)之间的关系为s = 60t,这里t是自变量,s是因变量,s是t的函数。

2. 函数的表示方法。

- 解析式法。

- 用数学式子表示两个变量之间的函数关系的方法叫做解析式法。

例如y=2x + 1,y=(1)/(x)等都是用解析式表示函数。

- 列表法。

- 通过列出自变量的值与对应的函数值的表格来表示函数关系的方法。

如某商店销售某种商品,统计不同价格x(元)下的销售量y(件),可以列出如下表格:| x | 10 | 15 | 20|.| | | | |.| y | 50 | 30 | 20|.- 图象法。

- 用图象表示两个变量之间的函数关系的方法。

例如,在平面直角坐标系中画出y = x^2的图象,通过图象可以直观地看出函数的一些性质。

二、一次函数。

1. 定义。

- 形如y=kx + b(k,b是常数,k≠0)的函数叫做一次函数。

当b = 0时,y=kx(k≠0)叫做正比例函数,正比例函数是特殊的一次函数。

2. 一次函数的图象和性质。

- 图象。

- 一次函数y = kx + b的图象是一条直线。

当k>0,b>0时,直线经过一、二、三象限;当k>0,b<0时,直线经过一、三、四象限;当k<0,b>0时,直线经过一、二、四象限;当k<0,b<0时,直线经过二、三、四象限。

- 例如,y = 2x+1,k = 2>0,b = 1>0,其图象经过一、二、三象限;y=-3x - 2,k=-3<0,b = - 2<0,其图象经过二、三、四象限。

- 性质。

- 当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

初二数学函数知识点

初二数学函数知识点

初二数学函数知识点在初中数学课程中,函数是一个重要的概念。

学习函数的知识点对于理解数学问题和解决实际问题非常重要。

本文将介绍初二数学中的函数知识点。

1. 函数的定义函数是一个将一个集合的元素映射到另一个集合的元素的规则。

在函数中,每个输入都有且只有一个对应的输出。

函数通常用 f(x)表示,其中 f 为函数名,x 为输入的自变量,而 f(x) 则为输出的因变量。

2. 函数的表示函数可以通过多种方式表示,包括表格、图表和公式。

在初二数学中,函数通常用表格和图表来表示。

表格中,自变量和因变量的对应关系可以清晰地展示出来。

图表中,自变量和因变量可以通过坐标系来表示,以直观地展示函数的变化趋势。

3. 定义域和值域在函数中,自变量的取值范围称为定义域,而因变量的取值范围称为值域。

定义域和值域决定了函数的输入和输出的范围。

对于一些函数来说,定义域和值域可能存在限制。

4. 常见的函数类型初二数学中,我们常见以下几种函数类型:- 线性函数:线性函数是最简单的函数类型之一,其表达式为f(x) = kx + b。

其中,k 和 b 为常数,k 表示斜率,b 表示截距。

线性函数的图像呈直线。

- 平方函数:平方函数是一种以自变量的平方作为因变量的函数。

其表达式为 f(x) = x²。

平方函数的图像呈抛物线的形状,开口方向由系数决定。

- 开平方函数:开平方函数是平方函数的逆函数,其表达式为f(x) = √x。

开平方函数的图像为一个向右开口的抛物线,其定义域为非负实数。

- 二次函数:二次函数是自变量的平方项和一次项的和。

其一般表达式为 f(x) = ax² + bx + c。

二次函数的图像呈抛物线的形状,开口方向由系数 a 的正负决定。

5. 函数的性质函数有许多重要的性质值得我们关注:- 奇偶性:函数的奇偶性指的是函数图像关于坐标原点的对称性。

奇函数满足 f(-x) = -f(x),图像关于原点对称;偶函数满足 f(-x) = f(x),图像关于 y 轴对称。

初二数学一次函数知识点总结

初二数学一次函数知识点总结

初二数学一次函数知识点总结若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k 0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.知识点2 函数的图象由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x 轴的交点。

.不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.知识点3一次函数y=kx+b(k,b为常数,k 0)的性质(1)k的正负决定直线的倾斜方向;①k 0时,y的值随x值的增大而增大;②k﹤O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大①当b 0时,直线与y轴交于正半轴上;②当b 0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图所示,当k 0,b 0时,直线经过第一、二、三象限(直线不经过第四象限);②如图所示,当k 0,b③如图所示,当k﹤O,b 0时,直线经过第一、二、四象限(直线不经过第三象限);④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点4 正比例函数y=kx(k 0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k 0时,图象经过第一、三象限,y随x的增大而增大;(3)当k 0时,图象经过第二、四象限,y随x的增大而减小.知识点5 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l 的图象上;点P (2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P (2,1)不在直线y=x+l的图象上.知识点6 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k 0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k 0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点7 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点8 用待定系数法确定一次函数表达式一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.思想方法小结 (1)函数方法.(2)数形结合法.知识规律小结 (1)常数k,b对直线y=kx+b(k 0)位置的影响.①当b 0时,直线与y轴的正半轴相交;当b=0时,直线经过原点;当b﹤0时,直线与y轴的负半轴相交.②当k,b异号时,直线与x轴正半轴相交;当b=0时,直线经过原点;当k,b同号时,直线与x轴负半轴相交.③当k O,b O时,图象经过第一、二、三象限; 当k 0,b=0时,图象经过第一、三象限;当b O,b。

函数知识点总结初二

函数知识点总结初二

函数知识点总结初二在初中数学中,函数是一个非常重要的概念。

函数是一个特殊的关系,它将一个或多个自变量映射到一个因变量上。

通过函数的定义和性质,我们可以在数学和现实生活中进行各种推断和计算。

在本文中,我们将回顾和总结初中数学中关于函数的一些重要知识点。

一、函数的定义在数学中,函数一般表示为f(x),其中x为自变量,f(x)为因变量。

函数的定义如下:如果对于集合D中的每一个x,都有唯一确定的y与之对应,那么我们称y是x的一个函数,写作y=f(x)。

其中,D称为函数的定义域,y称为函数的值域。

函数可分为显性函数和隐函数。

显性函数一般表示为y=f(x),隐函数一般表示为F(x,y)=0。

二、函数的图像函数的图像可以通过画出函数的几个特征点连接成曲线来表示。

曲线上的每一个点都和一个特定的x值对应,这个点的坐标就是x和f(x)。

这种表示方法可以直观地展示函数的性质,包括增减性、奇偶性、最值等。

函数的图像可以根据函数的性质来画出,比如增减性可以通过导数的正负来确定,奇偶性可以通过函数的对称性来确定,最值可以通过一阶导数和二阶导数来确定。

三、函数的性质1. 奇偶性:如果对于函数f(x),有f(-x)=f(x),那么称f(x)为偶函数;如果有f(-x)=-f(x),那么称f(x)为奇函数。

2. 增减性:如果对于函数f(x),有x1<x2,则f(x1)<f(x2)称f(x)为增函数;如果有f(x1)>f(x2)称f(x)为减函数。

3. 最值:如果对于函数f(x),当x∈D时,f(x)≤f(x0),那么称f(x)在x0处有最大值;当x∈D时,f(x)≥f(x0),那么称f(x)在x0处有最小值。

四、函数的运算函数的运算包括函数的四则运算和复合函数。

1. 四则运算:对于函数f(x)和g(x),它们的四则运算定义为:(a) f±g(x)=f(x)±g(x)(b) f×g(x)=f(x)×g(x)(c) f÷g(x)=f(x)÷g(x) (g(x)≠0)2. 复合函数:若h(x)=f[g(x)],则称h(x)为f(x)与g(x)的复合函数。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学知识点:函数的图象知识点
初二数学知识点:函数的图象知识点
初中阶段是我们一生中学习的“黄金时期”。

不光愉快的过新学期,也要面对一件重要的事情那就是学习。

下面小编为大家提供了函数的图象知识点,希望对大家有所帮助。

一、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)
2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的'交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②
(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

设水池中原有水量S。

g=S-ft。

六、常用公式:
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2(注:根号下(x1-x2)与(y1-y2)的平方和)。

相关文档
最新文档