分式知识点回顾及考点总结

合集下载

分式数学知识点归纳总结

分式数学知识点归纳总结

分式数学知识点归纳总结一、分式的定义和基本性质1. 分式是由分子和分母组成的数,分子和分母都是整数,并且分母不为零。

2. 分式可以表示有理数,有理数包括整数和分数。

3. 分式可以看作是代数式的特殊形式,其中分母不为零。

4. 分式的分子和分母可以约分,即分子和分母同时除以一个相同的非零数。

5. 分式可以相加、相减、相乘和相除,也可以化简和合并。

6. 分式的大小比较可以用分式的加减乘除性质进行比较。

二、分式的化简和合并1. 化简分式:化简分式是指对分式的分子和分母进行约分,使分数的值保持不变的基础上,得到最简分数。

2. 合并分式:合并分式是指将两个分式相加或者相减,得到一个最简分式。

三、分式的加减乘除性质1. 分式的加法性质:分式相加时,首先要找到它们的公分母,然后将分子相加,分母保持不变。

2. 分式的减法性质:分式相减时,首先要找到它们的公分母,然后将分子相减,分母保持不变。

3. 分式的乘法性质:分式相乘时,分子相乘,分母相乘。

4. 分式的除法性质:分式相除时,将除数分子分母互换,再将所得的分式作为乘数分式进行运算。

四、分式的大小比较1. 分式的大小比较:分式大小的比较可以用分式的加减乘除性质进行比较。

对于两个分式a/b和c/d来说,若a/b<c/d,则ad<bc;若a/b>c/d,则ad>bc。

2. 分式的大小比较练习:比较分式大小时,可以将分式通分进行比较,也可以将分式转化为小数进行比较。

五、分式方程的解法1. 分式方程的定义:分式方程是含有分式的代数方程。

2. 分式方程的解法:对于分式方程的解法,首先要通过分式的化简和合并,将分式方程化为最简分式方程,然后可以通过分式方程的乘法性质和除法性质进行求解。

六、分式在实际应用中的问题求解1. 分式在应用问题中的运用:分式在实际生活中有着广泛的应用,包括比例、百分数、利率、比率、工程问题等。

2. 分式应用问题求解:在实际应用问题中,我们可以将问题中的条件转化为分式形式,然后通过分式的运算法则进行求解。

分式整章知识点总结

分式整章知识点总结

分式整章知识点总结一、基本概念1.分式的定义分式是指两个整数或者两个多项式的比值构成的数。

通常表示为a/b,其中a和b为整数,b不等于0。

a称为分子,b称为分母。

2.分式的分类根据分子和分母的关系,分式可以分为真分式、假分式和带分式。

- 真分式:分子的绝对值小于分母的绝对值。

- 假分式:分子的绝对值大于分母的绝对值。

- 带分式:分子的绝对值大于等于分母的绝对值,可以表示为整数部分和真分式部分的和,形如a+b/c的形式。

3.分式的简化分式的简化是指将分子和分母约去它们的公因数,使得分子和分母互质的过程。

简化后的分式要比原式更加简洁,更利于运算。

二、分式的性质1.分式的相等性分式a/b和c/d相等的条件是ad=bc。

即分子的积等于分母的积。

2.分式的倒数分式a/b的倒数是b/a。

3.分式的相反数分式a/b的相反数是-a/b。

4.分式的整除性分式a/b可以整除c/d的条件是ad可以整除bc。

5.分式的乘法分式a/b和c/d的乘积是ac/bd。

6.分式的除法分式a/b除以c/d等于a/b乘以d/c。

7.分式的加法分式a/b和c/d的加法是(ad+bc)/bd。

8.分式的减法分式a/b减去c/d等于(ad-bc)/bd。

三、分式的运算规则1.分式的乘法和除法分式的乘法和除法遵循乘法交换律和结合律的原则。

在计算分式的乘法和除法时,我们需要将分子和分母分别进行运算。

2.分式的加法和减法分式的加法和减法同样满足交换律和结合律。

在计算分式的加法和减法时,需要先通分,然后对分子进行加减运算。

3.分式的混合运算分式的混合运算是指在同一个表达式中包含加、减、乘、除等多种运算符号的运算过程。

在进行分式的混合运算时,我们需要遵循运算法则,先乘除后加减,按照顺序逐步进行计算。

四、分式的应用1.分式在方程中的应用在代数方程中,分式经常会出现在方程的解中。

例如在二次方程、分式方程等中,分式的运算和化简是解题的关键。

2.分式在比例和百分数中的应用比例和百分数是数学中常见的应用题型,其中分式经常会被用到。

分式知识点归纳总结

分式知识点归纳总结

《分式》知识点回顾及考点透视一、知识总览本章主要学习分式的概念,分式的基本性质,分式的约分、通分,分式的运算(包括乘除、乘方、加减运算),分式方程等内容,分式是两个整式相除的结果,且除式中含有字母,它类似于小学学过的分数,分式的内容在初中数学中占有重要地位,特别是利用分式方程解决实际问题,是重要的应用数学模型,在中考中,有关分式的内容所占比例较大,应重视本章知识的学习.二、考点解读考点1:分式的意义例1.(1)(2006年南平市)当x 时,分式11+x 有意义. 分析:要使分式有意义,只要分母不为0即可当x ≠-1时,分式11+x 有意义. (2)(2006年浙江省义乌市)已知分式11+-x x 的值是零,那么x 的值是( ) A .-1 B .0 C .1 D . 1±分析:讨论分式的值为零需要同时考虑两点:(1)分子为零;(2)分母不为零,当x=1时,分子等于零,分母不为0,所以,当x=1时,原分式的值等于零,故应选C . 评注:在分式的定义中,各地中考主要考查分式A B在什么情况下有意义、无意义和值为0的问题。

当B ≠0时,分式A B 有意义;当B=0时,分式A B无意义;当A=0且B ≠0时,分式A B 的值为0 考点2:分式的变形例2.(2006年山西省)下列各式与x y x y-+相等的是( ) (A )()5()5x y x y -+++(B )22x y x y -+(C )222()()x y x y x y -≠-(D )2222x y x y-+ 解析:正确理解分式的基本性质是分式变形的前提,本例选项(C )为原分式的分子、分母都乘以同一个不等于0的整式(x-y )所得,故分式的值不变.考点3:分式的化简分式的约分与通分是进行分式化简的基础,特别是在化简过程中的运算顺序、符号、运算律的应用等也必须注意的一个重要方面例2.(2006年临安市)化简:x -1x ÷(x -1x). 分析:本题要先解决括号里面的,然后再进行计算解:原式x x x x 112-÷-=)1)(1(1-+⨯-=x x x x x 11+=x 评注:分式的乘除法运算,就是将除法转化为乘法再进行约分即可.考点4:分式的求值例4.(2006年常德市)先化简代数式:22121111x x x x x -⎛⎫+÷ ⎪+--⎝⎭,然后选取一个使原式有意义的x 的值代入求值.分析:本题先要将复杂的分式进行化简,然后再取一个你喜欢的值代入(但你取的值必须使分式有意义).解:化简得:21x +,取x=0时,原式=1;评注:本题化简的结果是一个整式,如果不注意的话,学生很容易选1或-1代入,这是不行的,因为它们不能使分式有意义.考点5:解分式方程例5.(2006年陕西省)解分式方程:22322=--+x x x 分析:解分式方程的关键是去分母转化为整式方程解:)4(2)2(3)2(22-=+--x x x x ,82634222-=---x x x x , 27-=-x 72=x ,经检验:72=x 是原方程的解,∴原方程的解为72=x 点评:解分式方程能考查学生的运算能力、合情推理等综合能力,解分式方程要注意检验,否则容易产生增根而致误!考点6:分式方程的应用例6.(2006年长春市)A 城市每立方米水的水费是B 城市的1.25倍,同样交水费20元,在B 城市比在A 城市可多用2立方米水,那么A 、B 两城市每立方米水的水费各是多少元?分析:本题只要抓住两城市的水相差2立方米的等量关系列方程即可解:设B 城市每立方米水的水费为x 元,则A 城市为1.25x 元,25.120220xx =- 解得x = 2经检验x = 2是原方程的解。

分式的相关知识点总结

分式的相关知识点总结

分式的相关知识点总结一、分式的定义和性质1. 分式的定义分式是指两个整数或者两个代数式的比值的表示形式.一般为 a/b 的形式,其中 a 和 b 都是整数,b 不等于 0。

2. 分式的性质(1) 分式的分子和分母互质:如果分数 a/b 已经约分为最简分数,那么 a 和 b 一定是互质的,即它们的最大公因数是 1。

(2) 分母为 1 的分数:如果分数的分母为 1,那就是一个整数,可以简单地把它看作一个整数。

(3) 分式的相等:分数 a/b 和 c/d 相等,当且仅当 ad = bc。

两个分式相等时,它们表示的比值是相等的。

二、分式的运算1. 分式的加法和减法(1) 加法和减法的分母变换:对于不同分母的分数,需要将它们的分母变为相同的数,然后再进行加法或减法运算。

(2) 加法和减法的运算规则:对于相同的分母,直接将分子相加或相减,分母保持不变。

2. 分式的乘法和除法(1) 乘法法则:两个分式相乘时,分子与分子相乘,分母与分母相乘,即 (a/b) * (c/d) = (a*c)/(b*d)。

(2) 除法法则:两个分式相除时,分子与分母相乘,分母与分子相乘,即 (a/b) / (c/d) = (a*d)/(b*c)。

三、分式的化简1. 分式的约分分式约分是指将分子与分母的公因数约掉,使其成为最简分式.一般采用求最大公因数的方法进行约分。

2. 分式的通分不同分母的分数,通分是指将它们的分母都变为相同的数,通常采用最小公倍数的方法进行通分。

3. 分式的化简原则(1) 分式中的公因式可以约掉;(2) 同等分母的分式相加或相减时,只需对各分子分别进行加减。

四、分式的应用1. 代数方程中的应用在解代数方程时,常常会遇到分式方程,需要对其进行分式的加减乘除,并化简以便求解。

2. 几何问题中的应用在几何中,常常会涉及到对分式的加减乘除和化简操作,特别是在比例、相似三角形、面积等方面的计算中。

3. 物理问题中的应用在物理中,分式广泛应用于密度、速度、功率等问题的计算中,需要进行分式的加减乘除以及化简操作。

分式知识点总结及复习汇总

分式知识点总结及复习汇总

分式知识点总结及复习汇总一、分式的定义和性质:分式是形如$\frac{a}{b}$的数,其中$a$为分子,$b$为分母,$a$和$b$都为整数且$b \neq 0$。

分式可以表示一个数,也可以表示一个运算过程。

分式可以进行四则运算,包括加减乘除。

分式的相反数:$\frac{a}{b}$的相反数为$-\frac{a}{b}$。

分式的倒数:$\frac{a}{b}$的倒数为$\frac{b}{a}$,其中$a、b$不为零。

分式的化简:将分式化简为最简分式,即分子和分母的最大公约数为1的形式。

二、分式的运算法则:1.加法:两个分式相加,分母相同,分子相加。

2.减法:两个分式相减,分母相同,分子相减。

3.乘法:两个分式相乘,分子相乘,分母相乘。

4.除法:一个分式除以另一个分式,被除数乘以除数的倒数。

三、分式的化简方法:1.求最大公约数:分式的分子和分母同时除以它们的最大公约数。

2.因式分解:将分式的分子和分母进行因式分解,然后约去相同的因式。

四、分式与整式的相互转化:1.分式转化为整式:将分式中的分子除以分母,得到的结果为整数。

2.整式转化为分式:将一个整数写成分子,分母为1的形式。

五、分式的应用:1.比例问题:可以利用分式来表示两个比例的关系。

2.部分与整体的关系:可以用分式表示部分与整体的关系。

3.商业问题:例如打折、利润等问题,可以用分式来表示计算。

4.几何问题:例如面积、体积等问题,可以用分式来表示计算。

六、分式的简化步骤:1.因式分解。

2.分子、分母约去最大公约数。

3.整理化简结果。

七、分式的应用举例:1.甲乙两人分别在一段时间内完成一件工作,甲用时5小时完成,乙用时8小时完成,那么甲乙两人一起完成这件工作需要多少小时?解:甲和乙一起完成工作的效率是每小时$\frac{1}{5}$和$\frac{1}{8}$,所以他们一起完成工作的效率是$\frac{1}{5}+\frac{1}{8}=\frac{13}{40}$。

分式及分式方程知识点总结

分式及分式方程知识点总结

分式及分式方程 聚焦考点☆温习理解一、分式1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子B A 就叫做分式。

其中,A 叫做分式的分子,B 叫做分式的分母。

分式和整式通称为有理式。

2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算法则;;bcad c d b a d c b a bd ac d c b a =⨯=÷=⨯ );()(为整数n ba b a n n n = ;cb ac b c a ±=± bdbc ad d c b a ±=± 二、分式方程1、分式方程分母里含有未知数的方程叫做分式方程。

2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。

它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

名师点睛☆典例分类考点典例一、分式的值【例1】(2015·黑龙江绥化)若代数式6265x 2-+-x x 的值等于0 ,则x=_________.【点睛】分式6265x 2-+-x x 的值为零则有x 2-5x+6为0分母2x-6不为0,从而即可求出x 的值. 【举一反三】1.要使分式x 1x 2+-有意义,则x 的取值应满足( ) A. x 2≠ B. x 1≠- C. x 2= D. x 1=-2.(2015·湖南常德)若分式211x x -+的值为0,则x = 考点典例二、分式的化简【例2】化简:2x x x 1x 1---=( ) A 、0 B 、1 C 、x D 、1x x -【点睛】观察所给式子,能够发现是同分母的分式减法。

分式知识点总结

分式知识点总结

分 式一、知识总结(一)分式及其性质1、分式(1)定义:一般的,如果a ,b 表示两个整式,并且b 中含有字母,那么式子ba 叫做分式;其中a 叫做分式的分子,b 叫做分式的分母。

(2)有理式:整式和分式统称为有理式。

(3)分式=0⇔分子=0,且分母≠0 (分式有意义,则分母≠0)(4)最简分式:分子和分母没有公因式的分式。

2、分式的性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变即:mb m a m b m a b ÷÷=⋅⋅=a (a ,b ,m 都是整式,且0m ≠) 分式的性质是分式化简和运算的依据。

3、约分:把一个式子的分子分母的公因式约去叫做约分。

注:约分的结果应为最简分式或整式。

约分的方法:1)若分子、分母均为单项式:先找分子、分母系数的最大公约数, 再找相同字母最低次幂;2)若分子、分母有多项式:先把多项式因式分解,再找分子、分母的公因式。

(二)分式运算1、分式的乘除1)分式乘法法则:两分式相乘,用分子的积做分子,分母的积做分母;即:bdac d c b =⨯a 2)分式除法法则:两分式相除,将除式的分子、分母颠倒位置后,与被除式相乘;即:bcad c d b a d c b =⨯=÷a3)分式乘方法则:分式的乘方就是分子分母分别乘方。

即:n n n b a b =⎪⎭⎫ ⎝⎛a ,()n n ab b 1a -=⎪⎭⎫ ⎝⎛ 2、分式的加减1)同分母分式加减:分母不变分子相加减;即:bc a b c b ±=±a ()0b ≠ 2)异分母分式加减:先通分,变为同分母的分式相加减,即:bdbc ad bd bc bd ad d c b ±=±=±a ()0b ≠d(三)分式方程1、定义:分母中含有未知数的方程叫做分式方程。

2、解法:1)基本思路:分式方程−−→−转化整式方程 2)转化方法:方程两边都乘以各个分式最简公分母,约去分母。

分式主要知识点总结

分式主要知识点总结

分式主要知识点总结一、分式的定义分式是指一个整体被分成若干个相等的部分,其中的一部分就是分式。

分式通常写成a/b的形式,其中a为分子,b 为分母,b≠0,a和b都是整数。

例如,1/2 就是一个分式,表示整体被分成两个相等的部分,其中一个部分为1。

分式中的a和b都是有一定的含义,a表示被分的份数,b表示整体被分成的份数。

二、分式的化简对于分式a/b,如果a和b有公因数,那么可以对分式进行约分。

化简分式的目的是为了使得分式变得更简单,更易于处理。

例如,对于分式6/8,可以约分得到3/4。

当然,有时候还需要对分式进行扩分。

化简分式的过程就是一个约分和扩分的过程。

三、分式的加减乘除1. 分式的加减:对于分式a/b和c/d,要将它们相加或相减,需要找到它们的公共分母,并且将它们的分子进行操作。

具体来说,如果a/b和c/d的分母不同,就需要找到它们的最小公倍数,然后将分子分别乘以对方的分母,再进行操作。

例如,对于分式1/2 + 1/3,找到它们的最小公倍数为6,然后乘上对方的分母,得到3/6 + 2/6 = 5/6。

2. 分式的乘法:对于分式a/b和c/d,它们的乘积可以直接相乘得到ac/bd。

3. 分式的除法:对于分式a/b和c/d,它们的除法可以变成乘法,即a/b ÷ c/d = a/b × d/c。

四、分式方程的求解分式方程是指方程中含有分式的方程。

它的解法与一般方程类似,但是需要更多的化简和约分操作。

对于一些特殊的分式方程,有时候需要进行分式更相等的变形,或者加减乘除操作。

例如,对于分式方程1/(x+1) = 1/(x-1),可以将等式两边同时乘以(x+1)(x-1),并观察出一元二次方程的形式,再进行解方程的操作。

五、分式在实际问题中的应用分式在实际问题中有着广泛的应用。

它可以用来表示比率关系、部分到整体的比例关系,例如表示打折时的折扣率、比赛中的获胜概率等。

分式也可以用来表示关系式、方程式,例如用来表示质量分数、比热容、密度等。

分式知识点总结及复习

分式知识点总结及复习

分式知识点总结及复习一、基本概念分式是指两个整数之间用分数线表示的表达式,其中分数线上方的整数称为分子,下方的整数称为分母。

分子和分母可以是正整数、负整数或零。

二、分数的分类1. 真分数:分子小于分母的分数,如1/2、3/4。

2. 假分数:分子大于等于分母的分数,如7/4、11/3。

3. 带分数:由整数部分和真分数部分组成的复合分数,如2 1/2、33/4。

三、分数的基本运算1. 分数的加法:分母相同时,分子相加;分母不同时,通分后分子相加。

2. 分数的减法:分母相同时,分子相减;分母不同时,通分后分子相减。

3. 分数的乘法:分子相乘,分母相乘。

4. 分数的除法:将除法转化为乘法,即将除数取倒数后与被除数相乘。

5. 分数的约分:将分子和分母的公约数除去,使分数达到最简形式。

6. 分数的比较:分数大小的比较依据是分子和分母的大小关系。

四、分式的应用1. 长度比较:如果表示相同长度的量,分母较大的分数表示的长度较小。

2. 面积比较:如果表示相同形状的图形面积,分母较大的分数表示的面积较小。

3. 比例求解:对于一个比例关系,可以使用分数来表示两个量之间的关系。

4. 混合运算:在实际的数学题中,分式常常与整数、小数一起进行混合运算。

五、常用的分数的表示法1. 百分数:百分数是分数的一种表示形式,以分母为100。

2. 小数:小数是另一种分数的表示形式,可以将分数化为小数进行计算。

六、常见的分数问题1. 分数的相加减问题:根据题意确定分数的运算方式,并进行对应的计算。

2. 分数的乘法除法问题:将乘法转化为分数的相乘运算,将除法转化为分数的相除运算。

3. 分数的约分问题:找到分子与分母的公约数,并进行约分化简。

4. 比较分数大小问题:比较分子与分母的大小关系来确定分数的大小。

七、常见的解分数问题的方法解决分数问题可以通过下面的方法来进行:1. 手算:将分数转化为小数进行计算,或者使用分数与整数的运算规则进行计算。

分式知识点总结及复习

分式知识点总结及复习

分式知识点总结及复习分式是数学中一个重要的概念,也是许多人在学习数学时感到困惑的内容之一。

本文将对分式的基本概念、运算法则以及应用进行总结与复习,帮助读者更好地理解和掌握分式知识。

一、基本概念分式由分子和分母两部分组成,分子表示分数的被除数,分母表示分数的除数。

分数的值可以是整数、小数或者其他分数。

下面是分式的基本概念:1. 真分数:分子小于分母的分数称为真分数,例如1/2、3/4等。

2. 假分数:分子大于或等于分母的分数称为假分数,例如5/2、7/3等。

3. 常分数:分子为0的分数称为常分数,其值为0。

二、分式的四则运算分式的四则运算包括加法、减法、乘法和除法。

下面是各种运算的规则和注意事项:1. 加法与减法:- 分式加减法的前提是分母相同,如果分母不同,则需要找到它们的最小公倍数来进行通分。

- 计算分子时,加法取分子相加,减法取分子相减。

- 结果的分子不一定能被整除,可能需要进行约分。

2. 乘法:- 分式乘法直接将分子相乘,分母相乘。

- 结果的分子和分母都需要化简,即约分。

3. 除法:- 分式除法可以转化为乘法求逆的问题,即将被除数的分子和除数的分母互换位置,然后进行乘法运算。

- 运算结束后需化简结果。

三、分式的应用分式在实际问题中有广泛的应用,以下是几个常见的应用场景:1. 比例问题:当我们需要比较两个量的大小、计算比例或者解决比例问题时,常常会使用到分式。

2. 混合运算:在一些复杂的算术题中,可能会出现含有分式的运算,我们需要根据题目要求进行正确的计算和化简。

3. 高等数学中的应用:在微积分、线性代数等高等数学中,分式经常用于表示函数、方程组等,是一种重要的数学工具。

四、分式知识点的复习为了更好地巩固分式的知识,建议读者可以通过以下方法进行复习:1. 多做练习题:选择一些分数相关的练习题,分情况进行分类练习,逐步提高解题能力。

2. 总结归纳:将每个知识点进行总结和分类,形成自己的知识框架,并根据实际问题进行思考和应用。

分式知识点总结(详细)初中数学

分式知识点总结(详细)初中数学

分式的概念和性质要点一、分式的概念一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式.其中A 叫做分子,B 叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的.分数是整式,不是分式, 分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如πa 是整式而不能当作分式. (4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如xy x 2是分式,与xy 有区别,xy 是整式,即只看形式,不能看化简的结果. 要点二、分式有意义,无意义或等于零的条件1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就 必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的 值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:MB M A B A M B M A B A ÷÷=⨯⨯=,(其中M 是不等于零的整式). 要点诠释:在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:xx x x x 1122-=+-,在变形后,字母x 的取值范围变大了.要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数.要点诠释:根据分式的基本性质有ab a b a b a b -=-=--,. 根据有理数除法的符号法则有ab a b a b -=-=-. 分式a b 与a b -互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用. 要点五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式.要点诠释:(1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分 母再没有公因式.(2)约分的关键是确定分式的分子与分母的公因式.分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子与分母是不能再分解的因式积的形式,然后再进行约分.要点六、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高 次幂的积作为公分母.(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的 最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.要点一、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:bdac d c b a =⋅,其中a,b,c,d 是整式,bd ≠0. 2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:bcad c d b a d c b a =⋅=÷,其中a,b,c,d 是整式,bcd ≠0. 要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘.(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式. 要点二、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:n n nb a b a =⎪⎭⎫ ⎝⎛(n 为正整数). 要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把n n n b a b a =⎪⎭⎫ ⎝⎛写成b a b a n n =⎪⎭⎫ ⎝⎛; (2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分.(4)分式乘方时,应把分子、分母分别看作一个整体.如222222)(b b a b b a b b a -≠-=⎪⎭⎫ ⎝⎛-.要点一、同分母分式的加减同分母分式相加减,分母不变,把分子相加减;上述法则可用式子表为:cb ac b c a ±=±. 要点诠释:(1)“把分子相加减”是把各分式的分子的整体相加减,即各个分子都应用 括号,当分子是单项式时,括号可以省略;当分子是多项式时,特别是分子相减时,括 号不能省,不然,容易导致符号上的错误.(2)分式的加减法运算的结果必须化成最简分式或整式.要点二、异分母分式的加减异分母分式相加减,先通分,变为同分母的分式,再加减.上述法则可用式子表为:bdbc ad bd bc bd ad d c b a ±=±=±. 要点诠释:(1)异分母的分式相加减,先通分是关键.通分后,异分母的分式加减法变 成同分母分式的加减法.(2)异分母分式加减法的一般步骤:①通分,②进行同分母分式的加减运算,③把结果化成最简分式.分式的混合运算,整数指数幂要点一、分式的混合运算与分数的加、减、乘、除混合运算一样,分式的加、减、乘、除混合运算,也是先算乘、除,后算加、减;遇到括号,先算括号内的,按先小括号,再中括号,最后大括号的顺序计算. 分式运算结果必须达到最简,能约分的要约分,保证结果是最简分式或整式.要点诠释:(1)正确运用运算法则:分式的乘除(包括乘方)、加减、符号变化法则是 正确进行分式运算的基础,要牢牢掌握..(2)运算顺序:先算乘方,再算乘、除,最后算加、减,遇有括号,先算括号内的.(3)运算律:运算律包括加法和乘法的交换律、结合律,乘法对加法的分配律.能灵活运用运算律,将大大提高运算速度.要点二、零指数幂、同底数幂的除法任何不等于零的数的零次幂都等于1,即()010≠=a a . 同底数幂的除法法则可以推广到整数指数幂.即n m n m a a a -=÷(a≠0,m 、n 为整数)要点三、负整数指数幂任何不等于零的数的-n (n 为正整数)次幂,等于这个数的n 次幂的倒数, 即n n aa 1=-(a≠0,n 是正整数). 引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算性质仍然成立.要点四、科学记数法的一般形式(1)把一个绝对值大于10的数表示成na 10⨯的形式,其中n 是正整数,101≤≤a .(2)利用10的负整数次幂表示一些绝对值较小的数,即n a 10⨯的形式,其中n 是正整数,101≤≤a .用以上两种形式表示数的方法,叫做科学记数法.分式方程的解法及应用要点一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未 知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.要点二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.要点三、解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的. 要点四、分式方程的应用分式方程的应用主要就是列方程解应用题.列分式方程解应用题按下列步骤进行:(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根;(6)写出答案.。

分式知识点总结及例题

分式知识点总结及例题

分式知识点总结及例题一、分式的概念分式是指以分数的形式表示的数,通常由分子和分母两部分组成,分子表示分数的一部分,分母表示分数的总份额。

分式通常用来表示比例、部分和整体的关系。

二、分式的基本性质1. 分式的分子和分母可以分别约分。

2. 分式的值与分子和分母的乘除有关。

3. 分式的运算可以转化为通分和通分的计算问题。

三、分式的化简分式的化简是指将分式表示的数化为最简形式的操作,主要包括分子分母约分、常数和分式的转化等。

四、分式的加减法分式的加减法是指对分式的分子和分母进行通分后,进行加减运算的操作。

五、分式的乘法和除法分式的乘法是指对分式的分子和分母分别进行乘法运算后,化简为最简形式的操作。

分式的除法是指对分式进行倒数运算,然后化简为最简形式的操作。

六、分式的应用分式在实际问题中有着广泛的应用,如物体的比例尺、物体的比重、长方形的面积和周长等问题都可以用分式进行表示和计算。

七、例题1. 化简分式$\frac{6}{8}$解:分子和分母可以同时除以2,得到$\frac{6}{8}=\frac{3}{4}$,所以$\frac{6}{8}$的最简形式为$\frac{3}{4}$。

2. 计算$\frac{3}{5}+\frac{2}{3}$解:先将两个分式通分,得到$\frac{3}{5}+\frac{2}{3}=\frac{9}{15}+\frac{10}{15}=\frac{19}{15}$,再化简得$\frac{19}{15}=1 \frac{4}{15}$。

3. 计算$\frac{5}{6} \times \frac{2}{3}$解:将两个分式分别相乘得到$\frac{5}{6} \times \frac{2}{3}=\frac{10}{18}$,再将$\frac{10}{18}$化简为最简形式,得$\frac{10}{18}=\frac{5}{9}$。

4. 计算$\frac{4}{5} \div \frac{2}{3}$解:将两个分式进行倒数运算,得到$\frac{4}{5} \div \frac{2}{3}=\frac{4}{5} \times\frac{3}{2}=\frac{12}{10}=1 \frac{2}{10}=1 \frac{1}{5}$。

分式知识点归纳总结

分式知识点归纳总结

分式知识点归纳总结一、基本概念1. 分式的定义分式是由分子和分母组成的表达式,分子和分母都是整式。

通常写作a/b的形式,其中a为分子,b为分母,b不为0。

例如:3/4,7x/5y等都是分式。

2. 分式的分类根据分子和分母的形式,分式可以分为以下几类:a) 真分式:分子的次数小于分母的次数,例如:2/3。

b) 假分式:分子的次数大于或等于分母的次数,例如:x^2+1/x。

c) 反比例函数:分子和分母中都含有变量,例如:x/y。

3. 分式的性质a) 若分子和分母互换位置,分式的值不变,这就是分式的对称性质。

b) 分式的值只有在分母不为0时才有定义,即分式的定义域是除了分母为0的所有实数。

二、分式的化简1. 分子分母的最小公因式分式的化简首先要找出分子分母的最小公因式,然后进行约分。

例如:将分式6x^2y/9xy化简为2x/3。

2. 分式的通分当分母不同时,可以通过通分将分母变为相同的多项式,从而进行比较、运算。

例如:将1/2+2/3进行通分,得到3/6+4/6=7/6。

3. 整式转化为分式可以将整式转化为分式,只需将分子为整式,分母为1的形式即可。

例如:将5x^2+3x+1转化为分式为(5x^2+3x+1)/1。

三、分式的运算1. 分式的加减法分式的加减法需要先进行通分,然后对分子进行加减,最后合并分子。

例如:(2/3)+(3/4),首先通分为8/12+9/12=17/12。

2. 分式的乘法分式的乘法是将分子乘以分子,分母乘以分母,然后进行约分。

例如:(2/3)*(3/4)=6/12=1/2。

3. 分式的除法分式的除法需要将除号改为乘以被除数的倒数,然后进行乘法运算。

例如:(3/4)÷(2/3)=(3/4)*(3/2)=9/8。

四、分式的应用1. 分式的实际问题在实际问题中,分式常用于解决各种比例、速度、浓度等问题,可以帮助我们解决生活中的实际问题。

2. 分式与方程分式的化简与运算经常用于解决各种方程,需要将方程中的分式进行合并、化简、求值等操作。

期末分式部分知识点总结

期末分式部分知识点总结

期末分式部分知识点总结一、分式的基本概念1. 分式的定义分式是指由分子(分子)和分母(分母)组成的代数式,用a/b或$\frac{a}{b}$表示,其中a和b为整数,b≠0。

分子表示被分为若干个相等的部分中的几个,分母表示整体被分为几部分,即分数的含义。

2. 分式的种类分式可以分为真分式、假分式和整式三种类型。

真分式是指分子次数小于分母次数的分式,假分式是指分母次数小于或等于分子次数的分式,而整式是指分子次数大于或等于分母次数的分式。

3. 分式的化简分式的化简就是将分式进行因式分解,使分子和分母的公因式都能约去,使分式呈最简形式。

分式的化简过程通常包括分解因式和约去公因式两个步骤。

二、分式的性质1. 分式的乘法性质分式的乘法性质是指两个分式相乘时,分子与分子相乘,分母与分母相乘,即(a/b)×(c/d)=(ac)/(bd)。

2. 分式的除法性质分式的除法性质是指一个分式除以另一个分式时,将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘,即(a/b)÷(c/d)=(ad)/(bc)。

3. 分式的加减性质分式的加减性质是指两个分式相加减时,首先要找出它们的公分母,然后进行运算。

如果两个分式的分母相同,则直接进行分子的加减运算,如果分母不同,则需要化为通分分式后再进行运算。

4. 分式的分解性质分式的分解性质是指将一个分式分解为若干个分式的和或积的性质。

分式可以通过公因式分解、平方差公式、完全平方公式等进行分解。

5. 分式的推导性质分式的推导性质是指能够利用已知条件进行变形,并导出新的等价分式的性质。

在解分式方程和不等式时,常常需要通过推导性质进行变形。

三、分式的运算规律1. 分式的乘法运算两个分式相乘时,先约去公因式,然后将分子与分子相乘,分母与分母相乘,最后化简得到最简分式。

若分母含有二元或多元字母的幂指数时,也可以将幂指数约去,得到最简分式。

2. 分式的除法运算一个分式除以另一个分式时,先约去除数与被除数的公因式,然后将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘,最后化简得到最简分式。

分式知识点归纳与总结

分式知识点归纳与总结

分式知识点归纳与总结一、分式的定义如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 A/B 就叫做分式。

其中 A 叫做分子,B 叫做分母。

需要注意的是:(1)分式的分母中必须含有字母;(2)分母的值不能为零,如果分母的值为零,那么分式无意义。

例如:1/x 是分式,因为分母 x 中含有字母;而 2/5 不是分式,因为分母 5 是常数。

二、分式有意义的条件分式有意义的条件是分母不为零。

即对于分式 A/B,B≠0 时,分式有意义。

例如:对于分式 3/(x 1),要使其有意义,则x 1≠0,即x≠1。

三、分式的值为零的条件分式的值为零需要同时满足两个条件:(1)分子为零;(2)分母不为零。

即当 A = 0 且B≠0 时,分式 A/B 的值为零。

例如:若分式(x 2)/(x + 2)的值为零,则 x 2 = 0 且 x +2≠0,解得 x = 2。

四、分式的基本性质分式的分子与分母同乘(或除以)一个不等于 0 的整式,分式的值不变。

用式子表示为:A/B = A×C/B×C,A/B = A÷C/B÷C(C≠0)例如:将分式 2x/(3y)的分子分母同时乘以 2,得到 4x/(6y),分式的值不变。

五、约分把一个分式的分子与分母的公因式约去,叫做分式的约分。

约分的关键是确定分式中分子与分母的公因式。

确定公因式的方法:(1)系数:取分子、分母系数的最大公约数;(2)字母:取分子、分母相同的字母因式;(3)相同字母的指数:取相同字母因式中指数最低的。

例如:对分式(4x²y)/(6xy²)进行约分,分子分母的系数 4 和 6的最大公约数是 2,相同字母 x 的最低指数是 1,y 的最低指数是 1,所以约分后为 2x/(3y)。

六、通分把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

通分的关键是确定几个分式的最简公分母。

最简公分母的确定方法:(1)系数:取各分母系数的最小公倍数;(2)字母:凡各分母中出现的字母(或含字母的式子)都要选取;(3)相同字母的指数:取相同字母(或含字母的式子)的最高次幂。

分式知识点总结归纳

分式知识点总结归纳

分式知识点总结归纳一、分式的定义和表示1. 分式的定义分式是指两个整数的比值,通常表示为a/b,其中a称为分子,b称为分母,b不等于0。

例如:2/3、7/5等都是分式。

2. 分式的表示分式在数学中通常以a/b的形式表示,其中a和b都是整数。

分式也可以表示为小数形式或百分数形式。

例如2/3可以表示为0.666...或者66.6%。

二、分式的性质1. 分式的大小比较分式a/b和c/d的大小比较可以通过交叉相乘的方法来确定。

如果ad=bc,则a/b=c/d;如果ad<bc,则a/b<c/d;如果ad>bc,则a/b>c/d。

2. 分式的约分和通分分式的约分是指将分子和分母的公约数约去,使得分子和分母互质。

分式的通分是指将两个分式的分母变为相同的数,以便进行加减运算。

3. 分式的乘法和除法分式的乘法是指将两个分式的分子相乘得到新的分子,分母相乘得到新的分母;分式的除法是指将一个分式乘以另一个分式的倒数。

例如:(a/b)×(c/d)=(ac)/(bd);(a/b)÷(c/d)=(ad)/(bc)。

4. 分式的加法和减法分式的加法是指将两个分式的分母通分后,将分子相加得到新的分子;分式的减法是指将两个分式的分母通分后,将分子相减得到新的分子。

例如:a/b+c/d=(ad+bc)/(bd);a/b-c/d=(ad-bc)/(bd)。

5. 分式的乘方分式的乘方是指将分式的分子和分母分别进行幂运算。

例如:(a/b)²=a²/b²。

三、分式的应用1. 分式的应用范围分式在数学中有着广泛的应用,涉及到比例关系、面积和体积的计算等等。

在现实生活中,分式也经常出现在日常计算中,例如物品打折、时间的分配等都涉及到分式的运算。

2. 分式的比较分式的大小比较常常用于比例关系的计算中。

例如,当我们需要比较两个物品的价格或者比较两种方案的优劣时,可以利用分式的大小关系进行判断。

分式和分式方程知识点总结大全

分式和分式方程知识点总结大全

分式和分式方程知识点总结大全分式:分式是指含有变量的有理数表达式,通常以a/b的形式表示,其中a和b是整数,而b不等于0。

基本概念:1.分子和分母:分数中的a称为分子,b称为分母。

2.真分数和假分数:如果分子小于分母,则分式称为真分数;如果分子大于或等于分母,则分式称为假分数。

3.约分:对于一个分式a/b,如果a和b有公约数,则可以将a和b同时除以它们的最大公约数,得到分式的最简形式。

4.相等分式:两个分子和分母比值相等的分式称为相等分式。

例如,2/3和4/6是相等的分式。

分式的运算:1.加法和减法:对于两个分式a/b和c/d来说,只有当b和d相等时,才能进行加法和减法运算。

运算结果的分母保持不变,并将分子相加或相减。

2.乘法:两个分式a/b和c/d相乘,将分子相乘得到新的分子,分母相乘得到新的分母。

结果要简化。

3.除法:两个分式a/b和c/d相除,将第一个分式的分子乘以第二个分式的分母,第一个分式的分母乘以第二个分式的分子。

结果要简化。

分式方程:分式方程是指含有分式的方程。

解分式方程的步骤:1.清除分母:将分式方程的两边同乘以分母的最小公倍数,从而消除分母。

2.化简方程:将方程中的分式进行化简,得到方程的最简形式。

3.解方程:根据方程的形式,进行求解。

常见的方法包括合并同类项、配方、移项等等。

常见的分式方程类型:1.一次分式方程:方程中只含有一次分式的方程。

例如,(x+1)/2=32.二次分式方程:方程中含有二次分式的方程。

例如,(x^2+1)/(x+2)=43.多次分式方程:方程中含有多次分式的方程。

例如,(x^3+1)/(x^2+2)=5应用场景:分式和分式方程在数学中的应用非常广泛,尤其在代数、几何、经济学等领域中有着重要的应用。

例如,在解决实际问题中,经常会用到比例关系,而分式可以很好地描述比例关系。

在几何学中,分式用于解决一些面积、体积等问题。

在经济学中,分式用于解决利润、成本等相关问题。

分式章节知识点总结

分式章节知识点总结

分式章节知识点总结一、分式的定义分式是指两个整数或者多项式,中间用横线隔开的表达形式,例如a/b(a、b为整数,b不等于0),a称为分子,b称为分母。

二、分式的类型1. 简单分式:分子、分母都是整数的分式。

例如3/4、5/6等。

2. 复合分式:分子或分母中包含有代数式的分式。

例如2/(x+1)、(x-1)/(x+2)等。

3. 多项式分式:分子或分母中包含有多项式的分式。

例如(x^2+3)/(x-4)、2x/(x^2+1)等。

三、分式的性质1. 分式的值:分式的值是指分子除以分母的结果,也可以看作带有未知数的一种式子。

2. 分式的约分:分式可以进行约分,即将分子和分母同时除以一个数,得到一个新的分式,值不变。

3. 分式的通分:分式可以进行通分,即寻找一个公共分母,使得分式的分母相同,然后进行运算。

四、分式的运算1. 分式的加减法:分式的加减法是将分式化成相同分母的形式,然后分别对分子进行加减运算,最后将结果化简。

2. 分式的乘法:分式的乘法是将分子分别相乘,分母分别相乘,然后化简得到最简分式。

3. 分式的除法:分式的除法是将除数的分子、分母对调位置,再乘上被除数的倒数,然后化简得到最简分式。

五、分式的应用1. 分式在方程中的应用:分式通常出现在方程的解中,需要对分式进行加减和乘除等运算,找到未知数的值。

2. 分式在不等式中的应用:分式在不等式的求解中应用广泛,通过对分式进行化简和变形,找到不等式的解集。

3. 分式在函数中的应用:分式常常用来表示函数的定义域、值域和零点等性质,在函数的运算和变形中起着重要作用。

分式作为代数中重要的一部分,需要掌握其定义、类型、性质和运算方法,灵活运用于方程、不等式和函数等各种问题的求解中。

同时,分式的深入研究还可以延伸到多项式、变量和函数的理论及实际应用中,是代数学习中的重要内容之一。

分式考点归纳总结

分式考点归纳总结

分式考点归纳总结分式是数学中一种重要的数书形式,广泛应用于各个领域,如代数、几何、物理等。

在解题过程中,掌握了分式的性质和运算法则,能够更加灵活地处理各种数学问题。

本文将对常见的分式考点进行归纳总结,以帮助读者更好地理解和掌握分式的相关知识。

一、分式的基本概念和性质在学习分式之前,我们首先需要了解分式的基本概念和性质。

分式的基本形式为a/b,其中a是分子,b是分母,a和b都是整数。

需要注意的是,分母b不能为零,否则分式无意义。

分式可以表示两个整数之间的比值,也可以表示一个数在另一个数中的比例关系。

分式的性质包括:1. 分式的大小比较:当分母相同时,分子越大,分式越大;当分母相同时,分母越大,分式越小。

2. 分式的约分与通分:可以将分子和分母的公约数约去,得到分式的最简形式;将分式的分母约分为相同的数,得到通分分式。

3. 分式的倒数:将分式的分子和分母交换位置,得到分式的倒数。

4. 分式的加减乘除:分式的加减可以通过通分转化为同一分母的分式进行运算;分式的乘除可以通过分子相乘、分母相乘的方式进行运算。

二、分式的运算法则在运算分式的过程中,需要严格遵守一定的运算法则,才能得到正确的结果。

下面我们将对分式的加减乘除四种运算法则进行详细介绍:1. 分式的加法对于两个分式a/b和c/d的加法运算,可以按照以下步骤进行:(1)将两个分式的分母进行通分,得到通分分母。

(2)将两个分式的分子相加,得到通分后的分子。

(3)将得到的通分分子和通分分母组合起来,得到最终的结果。

2. 分式的减法对于两个分式a/b和c/d的减法运算,可以按照以下步骤进行:(1)将两个分式的分母进行通分,得到通分分母。

(2)将两个分式的分子相减,得到通分后的分子。

(3)将得到的通分分子和通分分母组合起来,得到最终的结果。

3. 分式的乘法对于两个分式a/b和c/d的乘法运算,可以按照以下步骤进行:(1)将两个分式的分子相乘,得到乘积的分子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式
一、知识总览
本章主要学习分式的概念,分式的基本性质,分式的约分、通分,分式的运算(包括乘除、乘方、加减运算),分式方程等内容,分式是两个整式相除的结果,且除式中含有字母,它类似于小学学过的分数,分式的内容在初中数学中占有重要地位,特别是利用分式方程解决实际问题,是重要的应用数学模型,在中考中,有关分式的内容所占比例较大,应重视本章知识的学习.
二、考点解读
考点1:分式的意义
例1.(1)(2006年南平市)当x 时,分式
11+x 有意义. 分析:要使分式有意义,只要分母不为0即可
当x ≠-1时,分式1
1+x 有意义. (2)(2006年浙江省义乌市)已知分式1
1+-x x 的值是零,那么x 的值是( ) A .-1 B .0 C .1
D . 1± 分析:讨论分式的值为零需要同时考虑两点:(1)分子为零;(2)分母不为零,当x=1时,分子等于零,分母不为0,所以,当x=1时,原分式的值等于零,故应选C . 评注:在分式的定义中,各地中考主要考查分式
A B
在什么情况下有意义、无意义和值为0的问题。

当B ≠0时,分式A B 有意义;当B=0时,分式A B
无意义;当A=0且B ≠0时,分式A B 的值为0 考点2:分式的变形
例1.(2006年山西省)下列各式与x y x y
-+相等的是( ) (A )()5()5x y x y -+++(B )22x y x y
-+(C )222()()x y x y x y -≠-(D )2222x y x y -+ 解析:正确理解分式的基本性质是分式变形的前提,本例选项(C )为原分式的分子、分母都乘以同一个不等于0的整式(x-y )所得,故分式的值不变.
考点3:分式的化简
分式的约分与通分是进行分式化简的基础,特别是在化简过程中的运算顺序、符号、运
算律的应用等也必须注意的一个重要方面
例1.(2006年临安市)化简:11x x x x -⎛⎫÷- ⎪⎝
⎭ 分析:本题要先解决括号里面的,然后再进行计算 解:原式x x x x 112-÷-=)1)(1(1-+⨯-=x x x x x 1
1+=x 评注:分式的乘除法运算,就是将除法转化为乘法再进行约分即可.
考点4:分式的求值
例1.(2006年常德市)先化简代数式:22121111x x x x x -⎛⎫+÷
⎪+--⎝⎭,然后选取一个使原式有意义的x 的值代入求值.
分析:本题先要将复杂的分式进行化简,然后再取一个你喜欢的值代入(但你取的值必
须使分式有意义).
解:化简得:21x +,取x=0时,原式=1;
评注:本题化简的结果是一个整式,如果不注意的话,学生很容易选1或-1代入,这
是不行的,因为它们不能使分式有意义.
考点5:解分式方程
例1.(2006年陕西省)解分式方程:22
322=--+x x x 分析:解分式方程的关键是去分母转化为整式方程
解:)4(2)2(3)2(22
-=+--x x x x ,82634222-=---x x x x , 27-=-x 72=x ,经检验:72=x 是原方程的解,∴原方程的解为7
2=x 点评:解分式方程能考查学生的运算能力、合情推理等综合能力,解分式方程要注意检
验,否则容易产生增根而致误!
考点6:分式方程的应用
例1.(2006年长春市)A 城市每立方米水的水费是B 城市的1.25倍,同样交水费20元,在
B 城市比在A 城市可多用2立方米水,那么A 、B 两城市每立方米水的水费各是多少元?
分析:本题只要抓住两城市的水相差2立方米的等量关系列方程即可
解:设B 城市每立方米水的水费为x 元,则A 城市为1.25x 元
,25.120220x
x =- 解得x = 2经检验x = 2是原方程的解。

1.25x = 2.5(元) 答:B 城市每立方米水费2元,A 城市每立方米2.5元。

点评:收缴水、电费的问题是贴近生活的热点问题,是老百姓最关心的问题之一,体现
了数学的实用性的理念
考点7:综合决策
例1.(2006年日照市)在我市南沿海公路改建工程中,某段工程拟在30天内(含30天)
完成.现有甲、乙两个工程队,从这两个工程队资质材料可知:若两队合做24天恰好完成;若两队合做18天后,甲工程队再单独做10天,也恰好完成.请问:
(1)甲、乙两个工程队单独完成该工程各需多少天?
(2)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,
要使该工程的施工费用最低,甲、乙两队各做多少天(同时施工即为合做)?最低施工费用
解:(1)设:甲、乙两个工程队单独完成该工程各需x 天、y 天, 由题意得方程组:24241,1818101x y x y x
⎧+=⎪⎪⎨⎪++=⎪⎩, 解之得:x =40,y =60.
(2)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,
根据题意,要使工程在规定时间内完成且施工费用最低,只要使乙工程队施工30天,其余
工程由甲工程队完成. 由(1)知,乙工程队30天完成工程的
301602=, ∴甲工程队需施工12÷140
=20(天).最低施工费用为0.6×20+0.35×30=2.25(万元). 答:(1)甲、乙两个工程队单独完成该工程各需40天和60天;
(2)要使该工程的施工费最低,甲、乙两队各做20天和30天,最低施工费用是2.25
万元.
评析:这道考题把对二元一次方程组知识的考察放到贴近生活的热点话题的背景下,易
激活学生的数学思维.
三、易错点剖析
1.符号错误
例1.不改变分式的值,使分式
b a b a --+-的分子、分母第一项的符号为正. 错解:b
a b a b a b a -+=--+- 诊断:此题错误的原因是把分子、分母首项的符号当成了分子、分母的符号. 正解:b
a b a b a b a b a b a +-=+---=--+-)()(. 2.运算顺序错误
例1.计算:2242(3)433
a a a a a a --÷⋅++++ 错解:原式=3
42)2(34)2(222++=-÷++-a a a a a a . 诊断:分式的乘除混合运算是同一级运算,运算顺序应从左至右.
正解:原式=1)3(2)3(2
334422-+=+•-+•++-a a a a a a a a . 3.错用分式基本性质
例1.不改变分式的值,把分式b a b a +-3
2232的分子、分母各项系数都化为整数. 错解:原式=b a b a b a b a 32343)3
2(2)232(+-=⨯+⨯-. 诊断:应用分式的基本性质时,分式的分子、分母必须同乘以同一个不为0的整式,分式的值不变,而此题分子乘以2,分母乘以3,分式的值改变了.
正解:原式=b a b a b a b a 649126)3
2(6)232(+-=⨯+⨯-. 4.约分中的错误
例1.约分:2
222b ab a ab a +++. 错解:原式=22322111b
b +=+++. 诊断:约分的根据是分式的基本性质,将分子、分母的公因式约去,若分子、分母是多项式,须先分解因式,再约去公因式.
正解:原式=b a a b a b a a +=++2)
()(. 5.结果不是最简分式
例1.计算:2222223223y
x y x y x y x y x y x --+-+--+. 错解:原式=
222222)32()2()3(y x y x y x y x y x y x --=--++-+. 诊断:分式运算的结果必须化为最简分式,而上面所得结果中分子、分母还有公因式,必须进一步约分化简.
正解:原式=y x y x y x y x y
x y x y x y x y x y x +=-+-=--=--++-+2))(()(222)32()2()3(2222. 6.误用分配律
例1.计算:)2
22(422-+-+÷-+m m m m m . 错解:原式=
)2(2321)2(2122)2(22)2()2(22--=--=-+÷-+-+÷-+m m m m m m m m m m . 诊断:乘法对加法有分配律,而除法对加法没有分配律.
正解:原式=)
3(21)3)(2(2)2(2226)2(222-=-+-•-+=---÷-+m m m m m m m m m m m . 7.忽略分数线的括号作用
例1.计算:11
23
----x x x x . 错解:原式=1
121)1)(1(111122323--=------=----x x x x x x x x x x x x . 诊断:此题错误在于添加分数线时,忽略了分数线的括号作用.
正解:原式=1
11111)1)(1(1111332323-=----=-++---=++--x x x x x x x x x x x x x x x。

相关文档
最新文档