工程问题应用题与答案

合集下载

小学工程问题精选题(含答案)

小学工程问题精选题(含答案)

工程问题知识要点:1、分数工程应用题,一般没有具体的工作总量,工作总量常用单位“1”表示,用1/工作时间 表示各单位的工作效率。

工作效率与完成工作总量所需时间互为倒数。

2、解工程问题的应用题,一般都是围绕寻找工作效率的问题进行。

3、工作效率、工作时间、工作总量是工程问题的三个基本量,解题时要注意对应关系。

例题:例1.一项工程,甲队单独干20天可以完成,甲队做了8天后,由于另有任务,剩下的工作由乙队单独做15天完成。

问乙队单独完成这项工作需多少天?例2:一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的730,乙队单独完成全部工程需要几天? 【思路导航】此题已知甲、乙两队的工作效率和是115,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730 -115 ×3=130,从而求出甲队的工作效率。

所以1÷【115 -(730 -115×3)÷(5-3)】=20(天)答:乙队单独完成全部工程需要20天。

例3:移栽西红柿苗若干棵,如果哥、弟二人合栽8小时完成,先由哥哥栽了3小时后,又由弟弟栽了1小时,还剩总棵数的1116 没有栽,已知哥哥每小时比弟弟每小时多栽7棵。

共要移栽西红柿苗多少棵?【思路导航】把“哥哥先栽了3小时,弟弟又栽了1小时”组合成“哥、的合栽了1小时后,哥哥又独做了2小时”,就可以求出哥哥每小时栽总数的几分之几。

哥哥每小时栽总数的几分之几 (1-1116 -18 ×1)÷(3-1)=332一共要移栽的西红柿苗多少棵 7÷【332 -(18 -332 )】=112(棵)答:共要移栽西红柿苗112棵。

例4:一项工作,甲、乙、丙3人合做6小时可以完成。

如果甲工作6小时后,乙、丙合做2小时,可以完成这项工作的23 ;如果甲、乙合做3小时后,丙做6小时,也可以完成这项工作的23。

一元一次方程应用——工程问题含答案

一元一次方程应用——工程问题含答案

一元一次方程应用——工程问题含答案1.两人共同完成一份文件,小李独立完成需要6小时,小王独立完成需要8小时。

求他们两人一起完成需要多长时间。

2.甲单独完成一项工程需要10天,乙单独完成需要15天。

两人合作4天后,剩下的部分由乙单独完成,问还需要几天才能完成整个工程。

3.加工一批机器零件,甲单独完成需要4天,乙单独完成需要6天。

现在乙先做1天,然后两人合作完成,共付给报酬600元。

如果按个人完成的工作量付给报酬,应该如何分配?4.机械厂加工车间有27名工人,平均每人每天可以加工12个小齿轮或10个大齿轮。

2个大齿轮和3个小齿轮配成一套,问需要分别安排多少名工人加工大齿轮和小齿轮,才能使每天加工的大小齿轮刚好配套?5.整理一批图书,一个人单独完成需要60小时。

现在先由一部分人用1小时整理,随后增加15人和他们一起又做了2小时,恰好完成整理工作。

假设每个人的工作效率相同,那么先安排整理的人员有多少人?6.某工厂原计划用26小时生产一批零件,结果每小时多生产5件,用24小时就完成了任务,而且还比原计划多生产了60件。

问原计划生产多少零件?7.某地为了打造风光带,将一段长为360米的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天。

已知甲工程队每天整治24米,乙工程队每天整治16米。

求甲、乙两个工程队分别整治了多长的河道。

8.政府准备修建一条公路,如果由甲工程队单独修建需要3个月完成,每月耗资12万元;如果由乙工程队单独修建需要6个月完成,每月耗资5万元。

现在甲工程队先做一段时间,剩下的由乙工程队单独完成,一共用了4个月完成修建任务。

这样安排一共耗资多少万元?(时间按整月计算)9.某蔬菜公司收购某种蔬菜116吨,准备加工后上市销售。

该公司加工该种蔬菜的能力是:每天可以精加工4吨或粗加工8吨。

1)问能否在14天以内完成加工任务?说明理由。

2)现计划用20天正好完成加工任务,则该公司应该安排多少天进行精加工,多少天进行粗加工?10.某工程交由甲、乙两个工程队来完成。

人教版六年级下册数学工程问题经典应用题!(附答案)考前必练

人教版六年级下册数学工程问题经典应用题!(附答案)考前必练

2020—2021学年度第二学期人教版六年级数学工程问题的特点:一般工程问题都是,已知独做的工作时间(或合作的工作时间),求合作的时间(或独做的工作时间)。

六年级工程问题的分析方法:从问题入手,确定是求谁来完成哪一部分工作量所需要的时间,就用要完成的那部分工作量除以谁的工作效率。

六年级工程问题的基本数量关系式:工作效率×工作时间=工作总量工作总量÷工作时间=工作效率工作总量÷工作效率=工作时间经典工程问题应用题及答案(1-3题)1、话说孙悟空看管蟠桃园,他摘了一推蟠桃,打算4天吃完。

第一天吃了全部蟠桃的4分之1多3个,第二天吃了剩下蟠桃的3分之1多2个,第三天吃了此时蟠桃的2分之1多1个,第4天只有1个了。

问孙悟空共摘了多少个蟠桃?第三天吃之前有:(1+1)÷[1-(1/4)]=4个第二天吃之前有:(4+2)÷[1-(1/3)]=9个孙悟空共摘了:(9+3)÷[1-(1/4)]=16个答:孙悟空一共摘了16个桃子。

其实这是一个还原问题。

用倒推法。

话说孙悟空看管蟠桃园,他摘了一推蟠桃,打算4天吃完。

第一天吃了全部蟠桃的4分之1多3个,第二天吃了剩下蟠桃的3分之1多2个,第三天吃了此时蟠桃的2分之1多1个,第4天只有1个了。

问孙悟空共摘了多少个蟠桃?第三次2分之1多1个,还剩一个。

那么就可以看出剩下1个的加上多的1个,就是(1-2分之1),1指的是单位“1”2分之1是2个,那么第三次之前就有2+2=4个同样,第二次吃了3分之1多2个,还剩4个,就说明多的2个加上4个就是第二次的3分之2.如此类推。

2、商店有一批布,第一天卖出2/9,第二天卖出余下的1/7,第三天补进了第二天剩下的1/2,这时还有存布698米。

问原来有布多少米?答:第一天后剩下:1-2/9=7/9第二天卖出的:7/9×1/7=1/9两天后剩下:7/9-1/9=6/9第三天补进的:6/9×1/2=1/3与698对应的分率是:6/9+1/3=1所以原有布应该是:698米。

工程问题

工程问题

一、相遇问题应用题1.、从甲地到乙地,客车行驶需10小时,货车需12小时,如果两列火车同时从甲地开往乙地,客车到达乙地后立即返回,经过几小时与货车相遇?这道题并没有告诉总路程是多少,可以按“工程问题”方法求解。

将总路程看作1 ,客车速度是1/10,货车速度是1/12。

客车行驶到乙地,需要10小时,此时货车行驶了总路程的10/12,还剩2/12客车和货车的相遇时间:2/12÷(1/10+1/12)=10/11小时。

总时间:10+10/11=120/11小时。

2.、甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒跑3米,乙的速度是每秒跑2米。

如果他们同时分别从直路两端出发,10分钟内共相遇几次?甲跑一个来回要60秒,乙跑一个来回要90秒,经过180秒他们又都回到出发点,取180秒为一周期分析:一共相交5次。

180秒=3分钟。

10÷3=3……1(分)所以:5×3+2=17(次) 3.、甲、乙两车同时从A、B两地相对开出,4小时后相遇,甲车再行3小时到达B地。

已知甲车每小时比乙车每小时快20千米,A、B两地相距多少千米?答案:从题目中可以看出甲车总共行驶了7个小时,而乙车在4个小时内行驶的路程和甲车在3个小时内行驶的路程一样多(相遇前乙车行驶4小时,相遇后甲车行驶3小时),故甲车的速度是乙车的4/3倍,即比乙车速度多1/3,而甲车速度比乙车多20千米,故乙车速度的1/3即是20千米每小时,所以乙车的速度是60千米每小时。

从而甲车的速度是60×4/3=80千米每小时。

这样A、B两地的距离就是甲车7个小时的路程即为80×7=560千米。

以上为分析,列式如下20÷[(4—3)÷3]=60(千米/小时)60×4÷3=80(千米/小时)80×7=5604、.甲乙两地相距1890米,小张和小李分别以每分75米和60米的速度同时从甲地向乙地出发,同时小王以每分90米的速度从乙地向甲地出发,小王出发多少分钟后,恰好位于小张和小李两人中间?首先可以设一个叫小明的人,他行走的速度是小张和小李的平均速度。

工程问题应用题专项练习A(含解析)

工程问题应用题专项练习A(含解析)

六年级上册工程问题专项练习A一、选择题1.一项工程,甲单独做20天完成,甲乙两队合做12天完成,乙队单独做( )天完成.A .5B .8C .62.一项工程,甲独做12天完成,乙独做4天完成。

若甲先做若干天后,由乙接着做余下的工程,直至完成全部任务,这样前后共用了6天,甲先做了( )天.A .3B .4C .53.一件工程,甲单独做需8天完成,甲乙合作需6天完成.现由甲先做3天后,余下的工作由乙单独完成,还需( )天.A .15B .9C .124.甲乙两人合作打一份材料.开始甲每分钟打100个字,乙每分钟打200个字.合作到完成总量的一半时,甲速度变为原来的3倍,而乙休息了5分钟后继续按原速度打字.最后当材料完成时,甲、乙打字数相等.那么,这份材料共( )个字.A .3000B .6000C .12000D .18000二、填空题5.某种速印机每小时可以印3600张纸,那么印240张纸需要__________分钟。

6.一种产品是由一个大零件和两个小零件组成,已知师傅每小时可生产9个大零件或者14个小零件,徒弟每小时可生产3个大零件或者10个小零件.如果要生产27套这种产品,那么师、徒两人至少需要合作__________小时。

7.某水池可以用甲、乙两个水管注水,单开甲管需12小时注满,单开乙管需24小时注满,若要求10小时注满水池,且甲、乙两管同时打开的时间尽量少,那么甲、乙最少要同时开放__________小时.8.一项工程,甲乙两人合作需36天完成;乙丙两人合作需要45天完成;甲丙两人合作要60天完成。

那么,只要一人独做,最少需要__________天完成。

9.某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程,则完成这项工程共用__________天。

10.某项工程需要100天完成,开始由10个人用30天完成了全部工程的,随后再增加10个人来完成这项工程,那么能提前__________天完成任务。

七年级一元一次方程:工程问题应用题(答案)

七年级一元一次方程:工程问题应用题(答案)

《一元一次方程:工程问题》【基本知识】工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=1解工程问题时,常将工作总量当作整体“1”.基本关系为:工作效率×工作时间=1(工作总量)等量关系:(图示法)工作总量=工作效率×工作时间全部工作量之和=各队工作量之和,各队合作工作效率=各队工作效率之和工作总量不清楚时看成“1”1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间=工作总量工作效率工作时间=工作总量工作时间工作效率2.经常在题目中未给出工作总量时,设工作总量为单位1。

即完成某项任务的各工作量的和=总工作量=1.一、【求时间】1、一项工程甲做40天完成,乙做50天完成,现在先由甲做,中途甲有事离去,由乙接着做,共用46天完成.问甲、乙各工作了多少天?【分析】由题意知,甲每天完成全部工作量的140,乙每天完成150,【解】设工程总量为1,设甲工作了x天,则乙工作了(46x-)天,根据题意,得4614050x x-+=.解得16x=,则461630-=(天).故甲工作了16天,乙工作了30天.答:甲工作16天,乙工作30天.2、一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?【分析】设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。

【解】设乙还需x 天完成全部工程,设工作总量为单位1,由题意得,5365331123)121151(===+⨯+x x 解之得 答:乙还需536天才能完成全部工程。

29、一项工程甲单独做需要10天,乙需要12天,丙单独做需要15天,甲、丙先做3天后,甲因事离去,乙参与工作,问还需几天完成?【解】设还需x 天。

3101)3(151121310111511213151101==+++⨯=⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛+x x x x 解得或11、一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?【解】设还需要x 天完成,依题意,得111()41101515x +⨯+= 解得x =5 答:还需要5天完成12、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?【解】设再用x 小时可全部完成任务1)121151(124151=+++x 解答:x = 4 答:再用4小时可全部完成任务18、某项工作甲单独做4天可完成,乙单独做8天可完成。

中考应用题之工程问题

中考应用题之工程问题

中考应用题之工程问题一.解答题(共10小题)1.新型冠状病毒疫情发生后,全社会积极参入疫情防拉工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成,已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.(1)求甲、乙两个工厂每天各生产多少万只口罩?(2)在生产过程中甲、乙合作生产5天后,甲厂因设备故障暂停生产,问乙厂至少还需要工作多少天才能完成任务?2.佛顶山大道改造,工程招标时,工程指挥部收到甲、乙两个工程队的投标书,根据甲、乙两队的投标书测算:若让甲队单独完成这项工程需要40天;若由乙队先做10天,剩下的工程由甲、乙两队合作20天才可完成.(1)若安排乙队单独完成这项工程需要多少天?(2)为了缩短工期,若安排两队共同完成这项工程需要多少天?3.某工厂准备今年春季开工前美化厂区,计划对面积为2000m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为480m2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若工厂每天需付给甲队的绿化费用为0.4万元,乙队为0.5万元,要使这次的绿化总费用不超过10万元,至少应安排甲队工作多少天?4.深圳市某中学为了更好地改善教学和生活环境,该学校计划在2020年暑假对两栋主教学楼重新进行装修.(1)由于时间紧迫,需要雇佣建筑工程队完成这次装修任务.现在有甲,乙两个工程队,从这两个工程队资质材料可知:如果甲工程队单独施工,则刚好如期完成,如果乙工程队单独施工则要超过期限6天才能完成,若两队合做4天,剩下的由乙队单独施工,则刚好也能如期完工,那么,甲工程队单独完成此工程需要多少天?(2)装修后,需要对教学楼进行清洁打扫,学校准备选购A、B两种清洁剂共100瓶,其中A种清洁剂6元/瓶,B种清洁剂9元/瓶.要使购买总费用不多于780元,则A种清洁剂最少应购买多少瓶?5.某段公路施工,甲工程队单独施工完成的天数是乙工程队单独施工完天数的2倍,由甲、乙两工程队合作20天可完成.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若此项过程由甲工程队单独施工,再由甲、乙两工程队合作施工完成剩下的工程,已知甲工程队每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,要使施工费用不超过64万元,则甲工程队至少要单独施工多少天?6.在我市雨污分流工程中,甲、乙两个工程队共同承担茅洲河某段720米河道的清淤任务,已知甲队每天能完成的长度是乙队每天能完成长度的2倍,且甲工程队清理300米河道所用的时间比乙工程队清理200米河道所用的时间少5天.(1)甲、乙两工程队每天各能完成多少米的清淤任务;(2)若甲队每天清淤费用为2万元,乙队每天清淤费用为0.8万元,要使这次清淤的总费用不超过60万元,则至少应安排乙工程队清淤多少天?7.某公司有960件新产品需经加工后才能投放市场,现有甲、乙两家工厂都想加工加工这批产品.已知甲工厂单独完成这批产品比乙工厂单独完成这批产品多用20天,而甲工厂每天加工数量是乙工厂每天加工的数量的,公司需付甲工厂加工费每天80元,需付乙工厂加工费每天120元.(1)甲、乙两工厂每天能加工多少件新产品?(2)公司制定的方案如下,可以由每个厂家单独完成,也可以有两个厂家合作完成.在加工过程中,公司派一名工程师每天到工厂进行技术指导,并担负每天5元的午餐补助,请帮公司需出一种既省时又省钱的加工方案.8.宝安区某街道对长为20千米的路段进行排水管道改造后,需对该段路面全部重新进行修整,甲、乙两个工程队将参与施工,已知甲队每天的工作效率是乙队的2倍,若由甲、乙两队分别单独修整长为800米的路面,甲队比乙队少用5天.(1)求甲队每天可以修整路面多少米?(2)若街道每天需支付给甲队的施工费用为0.4万元,乙队为0.25万元,如果本次路面修整预算55万元,为了不超出预算,至少应该安排甲队参与工程多少天?9.南山区某道路供水、排水管网改造工程,甲工程队单独完成任务需40天,若乙队先做30天后,甲乙两队一起合作20天就恰好完成任务.请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队用了x天做完其中一部分,乙队用了y天做完另一部分,若x、y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么,两队实际各做了多少天?10.为迎接全国文明城市的评选,市政府决定对春风路进行市政化改造,经过市场招标,决定聘请甲、乙两个工程队合作施工,已知春风路全长24千米,甲工程队每天施工的长度比乙工程队每天施工长度的多施工0.4千米,由甲工程队单独施工完成任务所需要的天数是乙工程队单独完成任务所需天数的.(1)求甲、乙两个工程队每天各施工多少千米?(2)若甲工程队每天的施工费用为0.8万元,乙工程队每天的施工费用为0.5万元,要使两个工程队施工的总费用不超过7万元,则甲工程队至多施工多少天?中考应用题之工程问题参考答案与试题解析一.解答题(共10小题)1.新型冠状病毒疫情发生后,全社会积极参入疫情防拉工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成,已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.(1)求甲、乙两个工厂每天各生产多少万只口罩?(2)在生产过程中甲、乙合作生产5天后,甲厂因设备故障暂停生产,问乙厂至少还需要工作多少天才能完成任务?【解答】解:(1)设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,所以1.5x=6,答:甲厂每天能生产口罩6万只,乙厂每天能生产口罩4万只;(2)设乙厂还需要工作y天才能完成任务,由题意得:(6+4)×5+4y≥100,解得:y≥12.5,答:乙厂至少还需要工作12.5天才能完成任务.2.佛顶山大道改造,工程招标时,工程指挥部收到甲、乙两个工程队的投标书,根据甲、乙两队的投标书测算:若让甲队单独完成这项工程需要40天;若由乙队先做10天,剩下的工程由甲、乙两队合作20天才可完成.(1)若安排乙队单独完成这项工程需要多少天?(2)为了缩短工期,若安排两队共同完成这项工程需要多少天?【解答】解:(1)设安排乙队单独完成这项工程需要x天,依题意得:+=1,解得:x=60,经检验,x=60是原方程的解,且符合题意.答:安排乙队单独完成这项工程需要60天.(2)设安排两队共同完成这项工程需要y天,依题意得:+=1,解得:y=24.答:安排两队共同完成这项工程需要24天.3.某工厂准备今年春季开工前美化厂区,计划对面积为2000m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为480m2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若工厂每天需付给甲队的绿化费用为0.4万元,乙队为0.5万元,要使这次的绿化总费用不超过10万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积为xm2,则甲工程队每天能完成绿化的面积为2xm2,根据题意得:﹣=6,解得:x=40.经检验,x=40是原方程的解,∴2x=80.答:甲工程队每天能完成绿化的面积为80m2,乙工程队每天能完成绿化的面积为40m2.(2)设安排甲工程队工作y天,则乙工程队工作=(50﹣2y)天,根据题意得:0.4y+0.5(50﹣2y)≤10,解得:y≥25.答:至少应安排甲队工作25天.4.深圳市某中学为了更好地改善教学和生活环境,该学校计划在2020年暑假对两栋主教学楼重新进行装修.(1)由于时间紧迫,需要雇佣建筑工程队完成这次装修任务.现在有甲,乙两个工程队,从这两个工程队资质材料可知:如果甲工程队单独施工,则刚好如期完成,如果乙工程队单独施工则要超过期限6天才能完成,若两队合做4天,剩下的由乙队单独施工,则刚好也能如期完工,那么,甲工程队单独完成此工程需要多少天?(2)装修后,需要对教学楼进行清洁打扫,学校准备选购A、B两种清洁剂共100瓶,其中A种清洁剂6元/瓶,B种清洁剂9元/瓶.要使购买总费用不多于780元,则A种清洁剂最少应购买多少瓶?【解答】解:(1)设甲工程队单独完成此工程需要x天,则乙工程队单独完成此工程需要(x+6)天,依题意有+=1,解得x=12,经检验,x=12是原方程的解.故甲工程队单独完成此工程需要12天;(2)设A种清洁剂应购买a瓶,则B种清洁剂应购买(100﹣a)瓶,依题意有6a+9(100﹣a)≤780,解得a≥40.故A种清洁剂最少应购买40瓶.5.某段公路施工,甲工程队单独施工完成的天数是乙工程队单独施工完天数的2倍,由甲、乙两工程队合作20天可完成.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若此项过程由甲工程队单独施工,再由甲、乙两工程队合作施工完成剩下的工程,已知甲工程队每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,要使施工费用不超过64万元,则甲工程队至少要单独施工多少天?【解答】解:(1)设乙单独完成此项工程需要x天,则甲单独完成需要2x天,根据题意可得:+=1,解得:x=30,经检验x=30是原方程的解.故x+30=60,答:甲、乙两工程队单独完成此项工程各需要60天,30天;(2)设甲工程队要单独施工m天,则甲、乙两工程队要合作施工=天,由题意得:m+×3.5≤64,解得:m≥36,答:甲工程队至少要单独施工36天.6.在我市雨污分流工程中,甲、乙两个工程队共同承担茅洲河某段720米河道的清淤任务,已知甲队每天能完成的长度是乙队每天能完成长度的2倍,且甲工程队清理300米河道所用的时间比乙工程队清理200米河道所用的时间少5天.(1)甲、乙两工程队每天各能完成多少米的清淤任务;(2)若甲队每天清淤费用为2万元,乙队每天清淤费用为0.8万元,要使这次清淤的总费用不超过60万元,则至少应安排乙工程队清淤多少天?【解答】解:(1)设乙工程队每天能完成x米的清淤任务,则甲工程队每天能完成2x米的清淤任务,依题意,得:﹣=5,解得:x=10,经检验,x=10是原方程的解,且符合题意,∴2x=20.答:甲工程队每天能完成20米的清淤任务,乙工程队每天能完成10米的清淤任务.(2)设应安排乙工程队清淤m天,则安排甲工程队清淤天,依题意,得:0.8m+2×≤60,解得:m≥60.答:至少应安排乙工程队清淤60天.7.某公司有960件新产品需经加工后才能投放市场,现有甲、乙两家工厂都想加工加工这批产品.已知甲工厂单独完成这批产品比乙工厂单独完成这批产品多用20天,而甲工厂每天加工数量是乙工厂每天加工的数量的,公司需付甲工厂加工费每天80元,需付乙工厂加工费每天120元.(1)甲、乙两工厂每天能加工多少件新产品?(2)公司制定的方案如下,可以由每个厂家单独完成,也可以有两个厂家合作完成.在加工过程中,公司派一名工程师每天到工厂进行技术指导,并担负每天5元的午餐补助,请帮公司需出一种既省时又省钱的加工方案.【解答】解:(1)设乙工厂每天能加工x件新产品,则甲工厂每天能加工x件新产品,根据题意得:﹣=20,解得:x=24,经检验,x=24是原方程的解,∴x=×24=16.答:乙工厂每天能加工24件新产品,甲工厂每天能加工16件新产品.(2)甲工厂独立完成需要的费用为×(80+5)=5100(元);乙工厂独立完成需要的费用为×(120+5)=5000(元);甲、乙合作完成需要的费用为×(80+120+5)=4920(元).∵5100>5000>4920,∴甲、乙两个厂家合作完成省时省钱.8.宝安区某街道对长为20千米的路段进行排水管道改造后,需对该段路面全部重新进行修整,甲、乙两个工程队将参与施工,已知甲队每天的工作效率是乙队的2倍,若由甲、乙两队分别单独修整长为800米的路面,甲队比乙队少用5天.(1)求甲队每天可以修整路面多少米?(2)若街道每天需支付给甲队的施工费用为0.4万元,乙队为0.25万元,如果本次路面修整预算55万元,为了不超出预算,至少应该安排甲队参与工程多少天?【解答】解:(1)设甲队每天可以修整路面x米,则乙队每天可以修整路面x米,根据题意,得+5=解得x=160.经检验,x=160是原方程的根,且符合题意.答:甲队每天可以修整路面160米;(2)设应该安排甲队参与工程y天,根据题意,得0.4y+×0.25≤55解得y≥75.故至少应该安排甲队参与工程75天.9.南山区某道路供水、排水管网改造工程,甲工程队单独完成任务需40天,若乙队先做30天后,甲乙两队一起合作20天就恰好完成任务.请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队用了x天做完其中一部分,乙队用了y天做完另一部分,若x、y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么,两队实际各做了多少天?【解答】解:(1)设乙工程队单独做需要x天完成任务,由题意,得+×20=1,解得:x=100,经检验,x=100是原方程的根.答:乙工程队单独做需要100天才能完成任务;(2)根据题意得+=1.整理得y=100﹣x.∵y<70,∴100﹣x<70.解得x>12.又∵x<15且为整数,∴x=13或14.当x=13时,y不是整数,所以x=13不符合题意,舍去.当x=14时,y=100﹣35=65.答:甲队实际做了14天,乙队实际做了65天.10.为迎接全国文明城市的评选,市政府决定对春风路进行市政化改造,经过市场招标,决定聘请甲、乙两个工程队合作施工,已知春风路全长24千米,甲工程队每天施工的长度比乙工程队每天施工长度的多施工0.4千米,由甲工程队单独施工完成任务所需要的天数是乙工程队单独完成任务所需天数的.(1)求甲、乙两个工程队每天各施工多少千米?(2)若甲工程队每天的施工费用为0.8万元,乙工程队每天的施工费用为0.5万元,要使两个工程队施工的总费用不超过7万元,则甲工程队至多施工多少天?【解答】解:(1)设甲队每天完成x千米,则乙队每天完成(x﹣0.4)千米.根据题意得:=×,解得:x=2.4.经检验,x=2.4是原方程的解.2.4﹣0.4=2.答:甲队每天修2.4千米,乙队每天修2千米.(2)设甲队改造a千米,则乙队改造(24﹣a)千米.根据题意得×0.8+×0.5≤7,解得:a≤12.=5,答:甲工程队至多施工5天.第11页(共11页)。

六年级(上)数学应用题及解析 工程问题10页

六年级(上)数学应用题及解析  工程问题10页

一、填空题。

1.一项工程,李叔叔做需要15天完成,王叔叔做需要20天完成,李叔叔与王叔叔的工作效率比是.2.植树造林,绿化家园.现有一批树苗,如果一队单独种,需要6天,如果二队单独种,需要8天.现在两队合种,天能种完。

3.一条长1200米的小路。

甲队单独修6小时修完,乙队单独修8小时修完,两队合作3小时后,还剩米没修完。

4.一项工程,甲队单独做需要10天完成,乙队单独做需要18天,丙队单独做需要15天。

如果只安排两个队完成工程,最少需要天。

5.甲18天或乙15天可以完成一项工程.如果两人合作,中途甲休息4天,自开始到完工共需天。

二、解答题。

1.挖通一条隧道,甲队单独挖需10天完成,乙队单独挖需15天完成,如果甲队和乙队合作同时进行,需要多少天可以挖通这条隧道?2.一件工作,甲独做要6天完成,乙的工效是甲的2倍,两人同时合作,几天能完成?3.一项工程,甲独做要18天完成,乙独做要15天,二人合作6天,其余的由乙单独做,还要几天做完?4.一项工程,由甲单独做30天完成,这项工程先由甲乙两队合做8天,余下的甲队10天完成,那么乙单独做这项工程需要多少天完成?5.一件工程,甲,乙合作需6天完成,乙,丙合作需9天完成,甲,丙合作需15天完成,现在甲,乙,丙三人合作需要多少天完成?6. 有一项任务,a 队单独做10小时完成,b 队单独做15小时完成,两队合做多少小时能完成这个任务的21?7. 一项工作,甲乙合作要12天完成,若甲先做3天后,再由乙工作8天,共完成这件工作的125。

如果这件工作由甲乙单独做完,甲需要多少天?乙需要多少天?8.一份稿件,甲单独打字需6小时完成,乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时,那么甲打字用了多少小时?9.一项工程,甲队单独做需7天完成,乙队单独做需5天完成,现由甲队单独做1天后,乙队加入,则乙队做了几天后完成了这项工程?10.一项工程,甲队单独做8天完成,乙队单独做2天可以完成全工程的16,如果两队先合作若干天后,甲队再单独做3天完成了剩余的任务.甲队一共工作了多少天?11.一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。

工程问题应用题集锦

工程问题应用题集锦

工程问题汇编一、基本工程问题例1:甲、乙两队开挖一条水渠.甲队单独挖要8天完成,乙队单独挖要12天完成.现在两队同时挖了几天后,乙队调走,余下的甲队在3天内完成。

乙队挖了多少天?例2:加工一批零件,甲单独做20天可以完工,乙单独做30天可以完工。

现两队合作来完成这个任务,合作中甲休息了2 。

5天,乙休息了若干天,这样共14天完工。

乙休息了几天?例3:一池水,甲、乙两管同时开,5小时灌满,乙、丙两管同时开,4小时灌满。

现在先开乙管6小时,还需甲、丙两管同时开2小时才能灌满。

乙单独开几小时可以灌满?例4:某工程,甲、乙合作1天可以完成全工程的245。

如果这项工程由甲队单独做2天,再由乙队单独做3天,能完成全工程的2413.甲、乙两队单独完成这项工程各需要几天? 例5:一项工程,甲先单独做2天,然后与乙合做7天,这样才能完成全工程的一半。

已知甲、乙工效的比是2:3.如果这项工程由乙单独做,需要多少天才能完成?例题详解:例1解:可以理解为甲队先做3天后两队合挖的。

⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛⨯-121813811=3(天) 例2解:分析:共14天完工,说明甲做(14-2。

5)天,其余是乙做的,用14天减去乙做的天数就是乙休息的天数。

14-301205.2141÷⎪⎭⎫ ⎝⎛--=141(天) 例3解:分析:把乙先开做6小时看作与甲做2小时,与丙做2小时,还有2小时,现在可理解为甲乙同开2小时,乙丙同开2小时,剩下的是乙2小时放的。

1÷⎭⎬⎫⎩⎨⎧÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛+-2241511=20(小时)例4解:分析:可以理解为两队合作2天,余下的是乙1天做的,乙的工效8122452413=⨯-, 甲:⎪⎭⎫ ⎝⎛-÷812451=12(天)例5解:分析:乙的工效是甲工效的3÷2=1。

5倍,设甲的工效为x ,乙的工效为1。

5x ,(2+7)x+1.5x ×7=21,解之得:x=391,乙工效1÷1.5x =26(天)基本练习(附参考答案):1、修一条公路,甲队独修15天完工,乙队独修12天完工.两队合修4天后,乙队调走,剩下的路由甲队继续修完.甲队一共修了多少天?2、一项工程,甲单独做20天完成,乙单独做30天完成。

工程问题应用题典型题

工程问题应用题典型题

工程问题典型题库姓名:1.一件工程,甲独做10天完工,乙独做15天完工,二人合做几天完工2.一批零件,王师傅单独做要15小时完成,李师傅单独做要20小时完成,两人合做,几小时能加工完这批零件的错误!3.一项工作,甲单独做要10天完成,乙单独做要15天完成.甲、乙合做几天可以完成这项工作的80%浙江温岭市4.一项工程,甲独做要12天完成,乙独做要18天完成,二人合做多少天可以完成这件工程的2/35.一项工程,甲独做要18天,乙独做要15天,二人合做6天后,其余的由乙独做,还要几天做完6. 修一条路,甲单独修需16天,乙单独修需24天,如果乙先修了9天,然后甲、乙二人合修,还要几天7. 一项工程,甲单独做16天可以完成,乙单独做12天可以完成.现在由乙先做3天,剩下的由甲来做,还需要多少天能完成这项工程石家庄市长安区8. 一项工程,甲独做要12天,乙独做要16天,丙独做要20天,如果甲先做了3天,丙又做了5天,其余的由乙去做,还要几天9. 一批货物,由大、小卡车同时运送,6小时可运完,如果用大卡车单独运,10小时可运完.用小卡车单独运,要几小时运完浙江常山县10. 小王和小张同时打一份稿件,5小时打了这份这稿件的65.如果由小王单独打,10小时可以打完.求如果由小张单独打,几小时可以打完.湖北当阳市11. 一项工程,甲队独做15天完成,乙队独做12天完成.现在甲、乙合作4天后,剩下的工程由丙队8天完成.如果这项工程由丙队独做,需几天完成浙江德清县12. 甲和乙两队合修一条公路,完成任务时,甲队修了这条公路的158.如果乙队单独完成要24天,甲队单独做几天完成武汉市青山区13. 一项工程,甲独做要10天,乙独做要15天,丙独做要20天.三人合做期间,甲因病请假,工程6天完工,问甲请了几天病假14.15.16. 一袋米,甲、乙、丙三人一起吃,8天吃完,甲一人24天吃完,乙一人36天吃完,问丙一人几天吃完17. 一条公路长1500米,单独修好甲要15天,乙要10天,两队合修需几天才能完成浙江江山市18. 师徒共同完成一件工作,徒弟独做20天完成,比师傅多用4天完成,如果师徒合作需几天完成银川市实验小学19. 一项工程,由甲工程队修建,需要20天完成;由乙工程队修建,需要的天数是甲工程队的倍才能完成.两队合修共需要多少天完成20. 一件工作,甲单独完成需要8天,乙的工作效率是甲的2倍,两人同时合作,几天能完成这件工作天津市红桥区21. 一项工程,甲队独做要20天完成,乙队独做要5天能完成全工程的61.现由两队合做,多少天可以完成湖北阳新县22. 修一条水渠,甲队3天可以修全长的101,乙队单独修20天可以修完,如果两队合修,多少天可以修完浙江象山县23. 一件工作,甲队独做每天能完成这件工作的201,乙队单独完成这件工作需要12天,如果两面三刀队合作完成这件工作的201,需要多少天 24. 一件工作,甲单独做需要12天,乙的工作效率是甲的43,两个合做,几天能完成这件工作的5425. 一套家具,由一个老工人做40天完成,由一个徒工做80天完成.现由2个老工人和4个徒工同时合做,几天可以完成26. 一个水池上有两个进水管,单开甲管,10小时可把空池注满,单开乙管,15小时可把空池注满.现先开甲管,2小时后把乙管也打开,再过几小时池内蓄有3/4的水原是空池27.三相遇及追及问题1.一辆汽车与一辆轿车同时从相距698千米的两地相向而行.汽车每小时行40千米,轿车每小时行50千米.几小时后两车相距248千米 答案:698-248÷40+50=5小时2 .一辆货车以每小时60千米的速度前进,一辆客车在它后面1500米,以每小时75千米的速度前进.问客车超过货车前1分钟,两车相距多少米 答案:1小时客车比货车多行75—60=15千米,1分钟多行 ,即客车超过货车前1分钟,两车相距250米.3.当甲在60米赛跑中冲过终点线时,比乙领先10米,.比丙领先20米,如果乙和丙按原来的速度继续冲向终点,那么,当乙到终点时比丙领先多少米答案:由于在同样的时间内,甲跑了60米,乙跑了50米,丙跑了40米,所以乙再跑10米时,丙跑乙比丙领先 60—40—8=12米4.甲、乙两站相距980千米.两列火车由两站相对开出.快车每小时行60千米,经10小时后两车相遇,慢车每小时行多少千米答案:980÷10-60=38千米/小时.5.甲车每小时行60千米,1小时后,乙车从同一地点出发追赶甲车.如果乙车速度为每小时80千米,几小时后可以追上甲车答案:60×1÷80-60=3小时.6、兄弟俩骑车郊游,弟弟先出发,速度是每分钟行200米.5分钟后,哥哥带着一条狗出发,以每分钟250米的速度去追低低.而狗则以每分钟300米的速度向弟弟跑去,追上弟弟后又立即返回,遇到哥哥后又立即向弟弟追去,直到哥哥追上弟弟时狗跑了多少米答案:200×5÷250-200=20分钟300×20=6000米7、东、西两镇相距240千米.一辆客车从上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12点,两车恰好在两镇间的中点相遇.如果两车都从上午8时由两地相向开始,速度不变,到上午10时,两车还相距多少千米答案:120÷4=30千米/小时…客车速度 120÷3=40千米/小时…货车速度240-30+40×2=100千米8、骑自行车从甲地到乙地,以每小时10千米的速度行进,下午1点到;以每小时15千米速度行进,上午11点到.如果希望中午12点到,那么应该以怎样的速度行进答案:每小时多15—10千米,11点到乙地时,已多行10×2=20千米,共行10×2÷15-10=4小时 15×4=60千米…甲、乙两地路程,出发时间是上午11-4=7点,60÷12-7=12千米/小时9、兄妹二人同时离家去900米的学校上学.哥哥每分钟走90米,妹妹每分钟走60米.哥哥到校门时,发现忘记带课本,立即沿原路回家去取.问哥哥与妹妹相遇时离学校多远答案:哥哥和妹妹从出发到再次相遇,共行了家到学校的两个全程.900×2÷90+60=12分钟 900-60×12=180米10、两列火车同时从甲、乙两站相向而行.第一次相遇在离甲站40千米的地方.两车到站后立即返回,又在离乙站20千米的地方相遇,问甲、乙两地相距多少千米答案:本题的两次相遇实际上是两车合行了3个全程.在第一个全程中甲车行了40千米,所以三个全程应该行40×3=120千米超过全程20千米,所以全程为:40×3-20=100千米.11、甲、乙两人在400米的环形跑道上跑步.两人在同一地点朝相反方向跑.从第一次到第二次相遇间隔40秒钟.甲每秒跑6米,乙每秒跑几米答案:第一次相遇到第二次相遇,刚好行了一圈,所以400÷40=10米/秒,10-6=4米/秒.12、甲、乙、丙三人进行100米赛跑.当甲到达终点时,乙离终点还有20米,丙离终点还有40米.如果甲、乙、丙赛跑时的速度都不变,那么,当乙到达终点时,丙离终点还有多远答案:100-80×60÷80=15米,100-60-15=25米.13、甲、乙两人分别从A、B两地同时相向而行,4小时相遇.如果每人每小时少走1千米,5小时相遇.A、B两地相距多少千米答案:两人一小时少走2千米,4小时少走2×4=8千米,即后来两人1小时走8千米.8×5=40千米.14、兄妹二人在周长300米的圆形水池边玩.从同一地点同时背向绕水池而行,哥哥每分钟走13米,妹妹每分钟走12米.他们第5次相遇时,离出发点有多少远答案:一次相遇需300÷13+12=12分钟12×5=60分钟,13×60÷300=2圈……180米,300-180=120米15、A、B两地间有条公路.甲从A地出发步行到B地.乙骑摩托车从B地不停地往返于A、B两地之间.若他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次超过甲.问当甲到达B地时,乙追上甲几次答案:乙20分钟的路程是甲80+100=180分钟的路程,所以乙的速度是甲的9倍.甲从A到B时,乙走了9倍的距离,其中有5次从B到A,4次从A 到B.即乙追上甲4次.。

关于工程问题的应用题及答案

关于工程问题的应用题及答案

关于工程问题的应用题及答案?
答:以下为您提供几个关于工程问题的应用题,附上答案。

应用题1:
一个工程项目,甲单独做需要15天完成,乙单独做需要10天完成。

如果甲先做了3天,然后乙接手,那么乙还需要多少天完成?
答案:
根据题意,甲每天完成工程的1/15,乙每天完成工程的1/10。

甲做了3天,完成了3×(1/15)=1/5的工程。

剩下的工程是1-1/5=4/5。

乙接手后,每天完成1/10的工程,所以乙还需要(4/5) ÷ (1/10) = 8天来完成剩下的工程。

应用题2:
一项工程,甲单独做需要10天完成,乙单独做需要15天完成。

如果甲先做了工程的1/5,然后乙接手,问乙还需要多少天完成?
答案:
根据题意,甲每天完成工程的1/10,乙每天完成工程的1/15。

甲先做了工程的1/5,即(1/5) ÷ (1/10) = 2天。

剩下的工程是1-1/5=4/5。

乙接手后,每天完成1/15的工程,所以乙还需要(4/5) ÷ (1/15) = 12天来完成剩下的工程。

(小学数学)小升初复习《工程问题》30道专题应用题训练试题(附答案详解)

(小学数学)小升初复习《工程问题》30道专题应用题训练试题(附答案详解)

(小学数学)小升初复习《工程问题》30道专题应用题训练试题(附答案详解)(小学数学)小升初复习《工程问题》30道专题应用题训练试题(附答案详解)1.某修路队修好一条路,第一天修了全长的14;第二天修了余下的13,正好是150米。

这条路长多少米? 【答案】600米【解析】【详解】(1-14)×13=14150÷14=600(米) 答:这条路长600米。

2.一条公路,如果由甲队单独修,24天可以修完;如果由乙队单独修,36天可以修完,现在由乙队先修6天,剩下的由两队合修,还要多少天可以修完?【答案】12天【解析】【详解】÷=÷ =12(天)3.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时。

丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?【答案】35【解析】把一池水的水量看为单位 “1”,5小时甲乙两个水管共注水1195201616⎛⎫+⨯= ⎪⎝⎭,离注满还有716,这时打开丙管,则注满水池需要的时间为711116201610⎛⎫÷+- ⎪⎝⎭。

【详解】11111152016201610⎡⎤⎛⎫⎛⎫-+⨯÷+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ =716÷180=35(小时)答:水池注满还需要35小时。

【点睛】本题考查工程问题,此类问题需要掌握工作效率、工作时间和工作总量之间的基本关系:工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4.修一条路,甲工程队单独修需要20天,乙工程队单独修需30天,先由甲单独修5天,再由甲、乙两个工程队合修,还需多少天完成?【答案】9天【解析】【详解】1÷20=1 201÷30=1 30(1-120×5)÷(120+130)=9(天)答:由甲单独修5天,再由甲、乙两个工程队合修,还需9天完成.5.某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需要48天完成。

人教版六年级数学工程问题应用题

人教版六年级数学工程问题应用题

人教版六年级数学工程问题应用题一、工程问题应用题20题。

1. 一项工程,甲队单独做20天完成,乙队单独做30天完成。

两队合作多少天可以完成这项工程?- 解析:把这项工程的工作量看作单位“1”,甲队单独做20天完成,则甲队每天的工作效率是1÷20=(1)/(20);乙队单独做30天完成,则乙队每天的工作效率是1÷30=(1)/(30)。

两队合作每天的工作效率就是((1)/(20)+(1)/(30)),根据工作时间 = 工作量÷工作效率,可得两队合作完成这项工程需要的时间为1÷((1)/(20)+(1)/(30)) =1÷((3 + 2)/(60))=1÷(1)/(12)=12(天)。

2. 修一条路,甲单独修需16天,乙单独修需24天。

如果乙先修了9天,然后甲、乙二人合修,还要几天?- 解析:把这条路的工作量看作单位“1”,甲单独修需16天,甲每天的工作效率是1÷16=(1)/(16);乙单独修需24天,乙每天的工作效率是1÷24=(1)/(24)。

乙先修9天,完成的工作量是(1)/(24)×9=(3)/(8),剩下的工作量是1-(3)/(8)=(5)/(8)。

甲乙合作每天的工作效率是((1)/(16)+(1)/(24)),那么还需要的时间是(5)/(8)÷((1)/(16)+(1)/(24))=(5)/(8)÷((3 + 2)/(48))=(5)/(8)÷(5)/(48)=6(天)。

3. 一项工程,甲、乙两队合作需6天完成,现在乙队先做7天,然后甲队做4天,共完成这项工程的(13)/(15),如果把其余的工程交给乙队单独做,那么还要几天才能完成?- 解析:设甲队的工作效率为x,乙队的工作效率为y。

根据甲、乙两队合作需6天完成,可得6(x + y)=1,即x + y=(1)/(6)。

工程问题应用题带答案

工程问题应用题带答案

工程问题应用题带答案工程问题应用题问题一:一台电梯每天运行8个小时,每小时能排放出20立方米的废气。

计算这台电梯每天排放出的废气总量。

解答:根据题目所给信息,电梯每小时排放出20立方米的废气,每天运行8个小时,所以它每天排放出的废气总量为20立方米/小时 ×8小时 = 160立方米。

问题二:一栋高楼的地下室有8层,每层高度为3米;地上有20层,每层高度为4米。

问这栋高楼的总高度是多少米?解答:地下室的总高度为8层 × 3米/层 = 24米,地上的总高度为20层 × 4米/层 = 80米。

所以这栋高楼的总高度是24米 + 80米 = 104米。

问题三:一条高速公路全长300公里,其中1/4是山区路段,1/3是平原路段,其余的是丘陵路段。

求高速公路上的山区路段长度、平原路段长度和丘陵路段长度各是多少公里?解答:山区路段的长度为300公里 × 1/4 = 75公里,平原路段的长度为300公里 × 1/3 = 100公里。

由此可知,丘陵路段的长度为300公里 - 75公里 - 100公里 = 125公里。

问题四:一个正方形花坛的周长为32米,求它的边长。

解答:由于正方形的四边长度相等,所以每条边的长度为32米 ÷ 4 = 8米。

因此,这个正方形花坛的边长为8米。

问题五:一个矩形花坛的周长为24米,长比宽多2,求该花坛的长和宽各是多少米?解答:假设该矩形花坛的宽为x米,则其长为x + 2米。

根据周长公式,2 × (长 + 宽) = 周长,即 2 × (x + x + 2) = 24,化简得 4x + 4 = 24,解方程可得 x = 5。

所以这个矩形花坛的长为5 + 2 = 7米,宽为5米。

问题六:一条铁路全长400公里,两个城市相距200公里。

求这两个城市间还有多长的铁路?解答:这两个城市相距200公里,所以在这两个城市之间的铁路长度为400公里 - 200公里 = 200公里。

工程问题应用题及答案

工程问题应用题及答案

工程问题应用题及答案1. 问题:一座桥梁的总长度为1200米,如果每天可以建造桥梁的1/30,那么需要多少天才能完成桥梁的建造?答案:桥梁的总长度为1200米,每天可以建造桥梁的1/30,即每天可以建造1200米 / 30 = 40米。

因此,完成桥梁建造需要的天数为1200米 / 40米/天 = 30天。

2. 问题:一个工程项目需要在6个月内完成,如果第一个月完成了工程的1/4,第二个月完成了工程的1/6,那么剩余的工程需要在接下来的4个月内完成。

请问剩余工程的完成比例是多少?答案:第一个月完成了工程的1/4,第二个月完成了工程的1/6,所以前两个月完成的工程比例为1/4 + 1/6 = 3/12 + 2/12 = 5/12。

剩余工程的完成比例为1 - 5/12 = 7/12。

3. 问题:一个建筑工地需要在120天内完成一项工程,如果前30天完成了工程的1/3,那么剩余的工程需要在接下来的90天内完成。

请问剩余工程的完成比例是多少?答案:前30天完成了工程的1/3,那么剩余的工程比例为1 - 1/3 = 2/3。

剩余工程需要在接下来的90天内完成。

4. 问题:一个工程项目的总成本为1000万元,如果前4个月的成本为总成本的1/5,那么剩余的成本需要在接下来的8个月内完成。

请问剩余成本占总成本的比例是多少?答案:前4个月的成本为总成本的1/5,即1000万元 * 1/5 = 200万元。

剩余成本为1000万元 - 200万元 = 800万元。

剩余成本占总成本的比例为800万元 / 1000万元 = 4/5。

5. 问题:一个工程项目需要在90天内完成,如果前30天完成了工程的1/3,那么剩余的工程需要在接下来的60天内完成。

请问每天需要完成剩余工程的多少比例?答案:前30天完成了工程的1/3,剩余工程的比例为2/3。

剩余的工程需要在接下来的60天内完成,所以每天需要完成剩余工程的2/3 / 60 = 1/90。

工程问题应用题及答案

工程问题应用题及答案

数学应用题之工程问题1、一项工程甲工程队单独做需要15天,乙工程队单独做需要12天,甲乙工程队合作需要几天?2、一项工程甲工程队单独做需要15天,乙工程队单独做需要12天。

甲工程队先做2天,然后甲工程队与乙工程队合作完成,还需几天?3、一项工程甲工程队单独做需要15天,乙工程队单独做需要12天。

甲工程队先做2天,乙工程队再做2天,剩下工作甲乙工程队合作,还需几天能完成工作。

4、一项工程甲工程队单独做需要15天,乙工程队单独做需要12天。

合作2天后,乙工程队因另有安排额,剩余工作由甲工程队独立完成,问还需几天?5、一项工作甲单独做需要15天,乙单独做需要12天,丙单独做需要18天。

现在甲乙合作了四天,余下工作由丙单独完成,问还需要几天才能完成任务?6、一项工作甲单独做需要15天,乙单独做需要12天,丙单独做需要18天。

先由甲和乙合作3天,剩余工作由乙和丙合作完成,问还需要几天才能完成任务?7、王军和李红合作完成一项工作需要8天,王军单独完成这项工作需要15天,问李红单独完成这项工作需要几天?8、一项工作,甲组需8人9天完成,乙组需6人8天完成;另一项工作,甲组6人5天完成,乙组4人需要几天完成?9、某工厂计划20小时生产一批零件,后因每小时多生产6件,用16小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?10、某工厂计划在一定时间内生产620件零件,后因每天多生产20件,不但完成了任务,而且还比原计划多生产了60件,问原计划每天生产多少零件?11、某工程,甲单独完成续20天,乙单独完成续12天,甲乙合干6天后,再由乙继续完成,乙再做几天可以完成全部工程?12、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干2小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?13、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要几天?14、炎炎夏日,甲安装队为A小区安装80台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装4台.问乙队每天安装几台?15、张伟与李明共同清点一批图书,已知张伟清点完200本图书所用的时间与李明清点完300本图书所用的时间相同,且李明平均每分钟比张伟多清点10本,求张伟平均每分钟清点图书的数量.16、有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克.一元一次方程的应用(行程与工程问题)1.整理一批图书,由一个人做要40h完成,现计划有一部分人先做4h,然后增加2人与他们一起做8h,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?如果设安排x人先做4h,下列四个方程中正确的是()A.+=1B.+=1C.+=1D.+=12.某项工作,甲单独做要4天完成,乙单独做要6天完成,若甲先做1天后,然后甲、乙合作完成此项工作,若设甲一共做了x天,所列方程是( ).A.1=146x x++ B.1=146x x++ C.1=146x x-+ D.1=1446x x++3.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.4.某土建工程共需动用15台挖运机械,每台机械每分钟能挖土3m3或者运土2m3.为了使挖土和运土工作同时结束,安排了x 台机械运土,这里x 应满足的方程是( )A .2x=3(15﹣x )B .3x ﹣2x=15C .15﹣2x=3xD .3x=2(15﹣x )5.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是:A .32428-=x xB .32428+=x xC .3262262+-=+x x D .3262262-+=-x x 6.某工程甲单独完成要45天,乙单独完成要30天,若乙先单独干22天,剩下的由甲单独完成.问甲、乙一共用几天可以完成全部工作,若设甲、乙共用x 天完成,则符合题意的方程是( )A .=1 B .=1 C .=1 D .=17.某同学骑车从学校到家,每分钟行150米,某天回家时,速度提高到每分钟200米,结果提前5分钟到家,设原来从学校到家骑x 分钟,则列方程为( )A .150x =200(x+5)B .150x =200(x-5)C .150(x+5) =200xD .150(x-5)=200x8.某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合做,求完成这项工程共用的时间.若设完成此项工程共用x 天,则下列方程正确的是( )A .+=1B .+=1C .+=1D .+=19.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x 个零件,则所列方程为( )A .13x=12(x+10)+60B .12(x+10)=13x+60C .60101312x x +-= D .60101213x x +-=10.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是()A.2或2.5 B.2或10 C.10或12.5 D.2或12.511. A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t时后两车相距50千米,则t的值为.12.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距千米.13.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为.14.一项工程甲单独完成需要20小时,乙单独完成需要12小时,则甲乙合作完成这项工程共需要小时.15.兄弟二人今年分别为15岁和5岁,年后兄的年龄是弟的年龄的2倍.16.已知轮船在静水中的速度是每小时a千米,水流速度是每小时b千米,则轮船在顺水中航行的速度是每小时千米.17.某项工作甲单独做4天完成,乙单独做6天完成,若甲先干一天,然后,甲、乙合作完成此项工作,若设甲一共做了x天,乙工作的天数为,由此可列出方程.(写过程)18.一个自行车队进行训练,训练时所有队员都以35千米/时的速度前进,突然一号队员以45千米/时的速度独自行进10千米后掉转车头,仍以45千米/时的速度往回骑,直到与其他队员会合,一号队员从离队开始到与队员重新会合,经过了多长时间?19.某城市与省会城市相距390千米,客车与轿车分别从该城市和省会城市同时出发,相向而行.已知客车每小时行80千米,轿车每小时行100千米,问经过多少小时后,客车与轿车相距30千米.20.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的31,这时增加了乙队,两队共同工作了半个月,总工程全部完成.哪个队的施工速度快?21.甲、乙两个工程队准备铺设一条长650米的地下供热管道,由甲乙两个工程队从两端相向施工,甲队每天铺设48米,乙队比甲队每天多铺设22米,如果乙队比甲队晚开工1天,那么乙队开工多少天,两队能完成整个铺设任务的80%?。

工程问题应用题及答案

工程问题应用题及答案

工程问题应用题及答案题目描述一栋大楼的高度为h米,设计师想要在大楼上安装一个天线。

为了确保天线信号的良好传输,设计师决定在大楼顶部安装天线。

然而,由于大楼的高度较高,设计师需要确定天线的安装位置。

设计师已经测量了地面上离大楼底部的距离和大楼顶部与天线的距离。

假设大楼是垂直的,设计师想要知道天线的安装位置距离大楼底部的高度。

请你帮助设计师解决这个问题。

输入输入为两个整数,用空格分隔。

第一个整数为大楼的高度h(1 <= h <= 100),第二个整数为大楼顶部与天线的距离x (1 <= x <= 100)。

输出输出一个整数,表示天线的安装位置距离大楼底部的高度。

示例输入5 2输出3解释大楼的高度为5米,大楼顶部与天线的距离为2米。

因此,天线的安装位置距离大楼底部的高度为5 - 2 = 3米。

程序实现为了解决这个问题,我们可以使用基本的减法运算。

根据题目的描述,我们知道大楼的高度为h米,大楼顶部与天线的距离为x米。

因此,天线的安装位置距离大楼底部的高度为h - x米。

下面是使用Python编程语言实现解决该问题的代码:height, distance = map(int, input().split()) antenna_height = height - distanceprint(antenna_height)在上述代码中,我们首先使用map函数将输入的两个整数转换为变量height和distance。

然后,我们使用减法运算计算天线的安装位置距离大楼底部的高度,并将结果存储在变量antenna_height中。

最后,我们打印出antenna_height的值作为输出。

总结本文档介绍了一个工程问题应用题,描述了问题的背景和要求,并提供了题目的输入和输出示例。

此外,还展示了使用Python编程语言解决该问题的代码实现。

通过阅读本文档,读者可以了解如何通过减法运算计算天线的安装位置距离大楼底部的高度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程问题应用题及答案(1-3题)
1、话说孙悟空看管蟠桃园,他摘了一推蟠桃,打算4天吃完。

第一天吃了全部蟠桃的4分之1多3个,第二天吃了剩下蟠桃的3分之1多2个,第三天吃了此时蟠桃的2分之1多1 个,第4天只有1个了。

问孙悟空共摘了多少个蟠桃?
第三天吃之前有:
(1+1)÷[1-(1/4)]=4个
第二天吃之前有:
(4+2)÷[1-(1/3)]=9个
孙悟空共摘了:
(9+3)÷[1-(1/4)]=16个
答:孙悟空一共摘了16个桃子。

其实这是一个还原问题。

用倒推法。

话说孙悟空看管蟠桃园,他摘了一推蟠桃,打算4天吃完。

第一天吃了全部蟠桃的4分之1 多3个,第二天吃了剩下蟠桃的3分之1多2个,第三天吃了此时蟠桃的2分之1多1个,第4天只有1个了。

问孙悟空共摘了多少个蟠桃?
第三次2分之1多1个,还剩一个。

那么就可以看出剩下1个的加上多的1个,就是(1-2分之1),1指的是单位“1”
2分之1是2个,那么第三次之前就有2+2=4个
同样,第二次吃了3分之1多2个,还剩4个,就说明多的2个加上4个就是第二次的3 分之2.
如此类推。

2、商店有一批布,第一天卖出2/9,第二天卖出余下的1/7,第三天补进了第二天剩下的1/2,这时还有存布698米。

问原来有布多少米?
答:
第一天后剩下:1-2/9=7/9
第二天卖出的:7/9×1/7=1/9
两天后剩下:7/9-1/9=6/9
第三天补进的:6/9×1/2=1/3
与698对应的分率是:6/9+1/3=1
所以原有布应该是:698米。

3、甲、乙两地间的公路全长500千米,平路占1/5,从甲到乙上山路程是下山的2/3,一
汽车从甲到乙共用10小时,汽车上山速度比平路速度慢20%,下山速度比平路速度快20%,汽车从乙到甲要多少小时?
答:
据题意,平路长为100千米,所以上山长为:(500-100)*2/5=160千米,下山长为400-160=240 千米
设汽车在平路上的速度为x(千米/小时)
那么上山时的速度为:x-x*20%=0.8x
下山时的速度为:x+x*20%=1.2x
从甲到乙用时为:
100/x+160/0.8x+240/1.2x=10化简后:500/x=10
解出x=50千米/小时
所以上山速度为:0.8*50=40千米/小时
下山速度:1.2*50=60千米/小时
从乙到甲时上山为240千米,下山为160千米
所以此时用时为:
100/50+240/(0.8*50)+160/(1.2*50)=10又2/3小时
回答者:天灵楚-一级2008-2-2720:39
1.光明畜牧场养了900头肉牛。

奶牛比肉牛多25%,奶牛有多少头?900×(1+25%)
=900×125%
=900×125/100
=1125(头)。

相关文档
最新文档