201x版中考数学三模试题
2021年上海市宝山区中考数学三模试卷(解析版)
2021年上海市宝山区中考数学三模试卷一、选择题(共6小题).1.下列计算正确的是()A.(2a)2=2a2B.a6÷a3=a3C.a3•a2=a6D.3a2+2a3=5a52.下列方程有实数根的是()A.B.C.x2﹣x+1=0D.2x2+x﹣1=0 3.如果函数y=3x+m的图象一定经过第二象限,那么m的取值范围是()A.m>0B.m≥0C.m<0D.m≤04.如图,反映的是某中学九(1)班学生外出乘车、步行、骑车人数的扇形分布图,其中乘车的学生有20人,骑车的学生有12人,那么下列说法正确的是()A.九(1)班外出的学生共有42人B.九(1)班外出步行的学生有8人C.在扇形图中,步行学生人数所占的圆心角的度数为82°D.如果该中学九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人5.一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重合,那么这个正多边形()A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形6.下列命题中正确的是()A.对角线相等的梯形是等腰梯形B.有两个角相等的梯形是等腰梯形C.一组对边平行的四边形一定是梯形D.一组对边平行,另一组对边相等的四边形一定是等腰梯形二、填空题:(本大题共12题,每题4分,满分48分)7.计算:=.8.在实数范围内分解因式:a3﹣9a2=.9.化简:﹣=.10.函数的定义域是.11.已知:反比例函数的图象经过点A(2,﹣3),那么k=.12.将一次函数y=x+3的图象沿着y轴向下平移5个单位,那么平移后所得图象的函数解析式为.13.一布袋里装有4个红球、5个黄球、6个黑球,这些球除颜色外其余都相同,那么从这个布袋里摸出一个黄球的概率为.14.如果一组数a,2,4,0,5的中位数是4,那么a可以是(只需写出一个满足要求的数).15.已知:在平行四边形ABCD中,设=,=,那么=(用向量、的式子表示).16.在四边形ABCD中,BD是对角线,∠ABD=∠CDB,要使四边形ABCD是平行四边形只须添加一个条件,这个条件可以是(只需写出一种情况).17.某中学组织九年级学生春游,有m名师生租用45座的大客车若干辆,共有2个空座位,那么租用大客车的辆数是(用m的代数式表示).18.在Rt△ABC中,∠C=90°,AC=3,以点A为圆心,1为半径作⊙A,将⊙A绕着点C 顺时针旋转,设旋转角为α(0<α<90°),若⊙A与直线BC相切,则∠α的余弦值为.三、解答题:(本大题共7题,满分78分)19.先化简,再求值:,其中.20.解方程组:.21.如图,在梯形ABCD中,AD∥BC,AB=CD=5,对角线BD平分∠ABC,cos C=.(1)求边BC的长;(2)过点A作AE⊥BD,垂足为点E,求cot∠DAE的值.22.某宾馆有客房200间供游客居住,当每间客房的定价为每天180元时,客房恰好全部住满;如果每间客房每天的定价每增加10元,就会减少4间客房出租.设每间客房每天的定价增加x元,宾馆出租的客房为y间.求:(1)y关于x的函数关系式;(2)如果某天宾馆客房收入38400元,那么这天每间客房的价格是多少元?23.如图,已知在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,以AD为边作正方形ADEF,联结CF,CE.(1)求证:FC⊥BC;(2)如果BD=AC,求证:CD=CE.24.如图,在直角坐标平面xOy内,点A在x轴的正半轴上,点B在第一象限内,且∠OAB =90°,∠BOA=30°,OB=4.二次函数y=﹣x2+bx的图象经过点A,顶点为点C.(1)求这个二次函数的解析式,并写出顶点C的坐标;(2)设这个二次函数图象的对称轴l与OB相交于点D,与x轴相交于点E,求的值;(3)设P是这个二次函数图象的对称轴l上一点,如果△POA的面积与△OCE的面积相等,求点P的坐标.25.已知:如图,△ABC为等边三角形,AB=,AH⊥BC,垂足为点H,点D在线段HC上,且HD=2,点P为射线AH上任意一点,以点P为圆心,线段PD的长为半径作⊙P,设AP=x.(1)当x=3时,求⊙P的半径长;(2)如图1,如果⊙P与线段AB相交于E、F两点,且EF=y,求y关于x的函数解析式,并写出它的定义域;(3)如果△PHD与△ABH相似,求x的值(直接写出答案即可).参考答案一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上]1.下列计算正确的是()A.(2a)2=2a2B.a6÷a3=a3C.a3•a2=a6D.3a2+2a3=5a5【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解:A、(2a)2=4a2,故本选项错误.B、a6÷a3=a3,故本选项正确.C、a3•a2=a5,故本选项错误.D、3a2与2a3,不能合并同类项故本选项错误.故选:B.2.下列方程有实数根的是()A.B.C.x2﹣x+1=0D.2x2+x﹣1=0【分析】根据分式方程和无理方程的解法如果能求得方程的解说明方程有实数解,一元二次方程有实数根只需得到其根的判别式为非负数.解:A、分式方程=0,去分母得:x2+2=0∵x2≥0,∴原方程无解;B、∵≥0∴无理方程无解;C、∵x2﹣x+1=0中b2﹣4ac=1﹣4=﹣3<0∴x2﹣x+1=0无实数根;D、∵2x2+x﹣1=0中b2﹣4ac=1+8=9>0,∴此方程有实数根,故选:D.3.如果函数y=3x+m的图象一定经过第二象限,那么m的取值范围是()A.m>0B.m≥0C.m<0D.m≤0【分析】图象一定经过第二象限,则函数一定与y轴的正半轴相交,因而m>0.解:根据题意得:m>0,故选:A.4.如图,反映的是某中学九(1)班学生外出乘车、步行、骑车人数的扇形分布图,其中乘车的学生有20人,骑车的学生有12人,那么下列说法正确的是()A.九(1)班外出的学生共有42人B.九(1)班外出步行的学生有8人C.在扇形图中,步行学生人数所占的圆心角的度数为82°D.如果该中学九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人【分析】先求出九(1)班的总人数,再求出步行的人数,进而求出步行人数所占的圆心角度数,最后即可作出判断.解:由扇形图知乘车的人数是20人,占总人数的50%,所以九(1)班有20÷50%=40人,所以骑车的占12÷40=30%,步行人数=40﹣12﹣20=8人,所占的圆心角度数为360°×20%=72°,如果该中学九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有150人.故选:B.5.一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重合,那么这个正多边形()A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形【分析】先根据旋转对称图形的定义得出这个正多边形是正八边形、再根据轴对称图形和中心对称图形的定义即可解答.解:∵一个正多边形绕着它的中心旋转45°后,能与原正多边形重合,360°÷45°=8,∴这个正多边形是正八边形.正八边形既是轴对称图形,又是中心对称图形.故选:C.6.下列命题中正确的是()A.对角线相等的梯形是等腰梯形B.有两个角相等的梯形是等腰梯形C.一组对边平行的四边形一定是梯形D.一组对边平行,另一组对边相等的四边形一定是等腰梯形【分析】根据等腰梯形的判定定理对各个选项逐一分析即可.解:A、对角线相等的梯形是等腰梯形,由全等三角形的判定与性质可证明出是等腰梯形,故本选项正确;B、有两个角相等的梯形是等腰梯形,根据等腰梯形的性质和判定可判断:直角梯形中有两个角相等为90度,但不是等腰梯形,故本选项错误;C、一组对边平行的四边形一定是梯形,错误,因为没说明另一组对边的关系,有可能也平行,那么就有可能是平行四边形,故本选项错误;D、一组对边平行,另一组对边相等则有两种情况,即平行四边形或等腰梯形,所以不能说一定是等腰梯形.故本选项错误;故选:A.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:=3.【分析】=,即是求9的算术平方根.解:根据题意:==3.故答案为:3.8.在实数范围内分解因式:a3﹣9a2=a2(a﹣9).【分析】按照因式分解的定义,提取公因式即可求解.解:a3﹣9a2=a2(a﹣9).故答案为:a2(a﹣9).9.化简:﹣=.【分析】根据分式加减的运算法则,将分式通分、化简即可.解:原式=﹣===.10.函数的定义域是x≤2.【分析】根据二次根式的意义,被开方数是非负数可:4﹣2x≥0,求解即可.解:根据题意得:4﹣2x≥0,解得x≤2.故答案为x≤2.11.已知:反比例函数的图象经过点A(2,﹣3),那么k=﹣6.【分析】根据反比例函数图象上点的坐标特征,将点A(2,﹣3)代入反比例函数,然后解关于k的方程即可.解:根据题意,得﹣3=,解得,k=﹣6.故答案是:﹣6.12.将一次函数y=x+3的图象沿着y轴向下平移5个单位,那么平移后所得图象的函数解析式为y=x﹣2.【分析】根据“上加下减,左加右减”的原则进行解答即可.解:将一次函数y=x+3的图象沿着y轴向下平移5个单位所得函数解析式为:y=x+3﹣5,即y=x﹣2.故答案为:y=x﹣2.13.一布袋里装有4个红球、5个黄球、6个黑球,这些球除颜色外其余都相同,那么从这个布袋里摸出一个黄球的概率为.【分析】由于每个球被摸到的机会是均等的,故可用概率公式解答.解:∵布袋里装有4个红球、5个黄球、6个黑球,∴P(摸到黄球)==.故答案为:.14.如果一组数a,2,4,0,5的中位数是4,那么a可以是4(所填答案满足a≥4即可)(只需写出一个满足要求的数).【分析】由于一共5个数,4一定排在第3个才能是中位数,所以a可以在第4个或第5个,从而确定a的取值即可.解:∵这组数据有5个数,且中位数是4,∴4必须在5个数从小到大排列的正中间,即这组数据的重新排列是0,2,4,a,5或0,2,4,5,a,∴a≥4或a≥5,故答案是4(答案不唯一).15.已知:在平行四边形ABCD中,设=,=,那么=﹣﹣(用向量、的式子表示).【分析】由在平行四边形ABCD中,可得==,即可得=﹣,=﹣,又由=+,即可求得答案.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴==,∵=,∴=﹣,=﹣,∴=+=﹣﹣.故答案为:﹣﹣.16.在四边形ABCD中,BD是对角线,∠ABD=∠CDB,要使四边形ABCD是平行四边形只须添加一个条件,这个条件可以是AB=CD或AD∥BC(只需写出一种情况).【分析】用反推法,如果四边形ABCD是平行四边形,会推出什么结论,那么这些结论就是我们要添加的条件.解:∵∠ABD=∠CDB,∴AB∥CD,要使四边形ABCD是平行四边形,可添AB=CD,根据一组对边平行且相等的四边形是平行四边形,可使四边形ABCD是平行四边形;或添AD∥BC,根据由两组对边分别平行的四边形是平行四边形,可使四边形ABCD是平行四边形.17.某中学组织九年级学生春游,有m名师生租用45座的大客车若干辆,共有2个空座位,那么租用大客车的辆数是(用m的代数式表示).【分析】让汽车上一共可坐的人数除以每辆汽车可坐的人数即为租用大客车的辆数.解:共有2个空座位,那么一共可以坐(m+2)人,∴租用大客车的辆数是,故答案为:.18.在Rt△ABC中,∠C=90°,AC=3,以点A为圆心,1为半径作⊙A,将⊙A绕着点C 顺时针旋转,设旋转角为α(0<α<90°),若⊙A与直线BC相切,则∠α的余弦值为.【分析】根据切线的性质得到∠A′DC=90°,根据旋转变换的性质得到CA′=CA=3,根据余弦的定义计算,得到答案.解:设将⊙A绕着点C顺时针旋转,点A至点A′时,⊙A′与直线BC相切相切于点D,连接A′D,则∠A′DC=90°,A′D=1,由旋转的性质可知,CA′=CA=3,∴cos∠CA′D==,∵AC∥A′D,∴α=∠CA′D,∴∠α的余弦值为,故答案为:.三、解答题:(本大题共7题,满分78分)19.先化简,再求值:,其中.【分析】首先对括号内的分式进行通分,计算分式的加减,然后把除法转化成乘法,然后计算分式的乘法即可化简,然后代入数值进行计算即可求解.解:原式=•=.当x=2+时,原式===.20.解方程组:.【分析】先由②得到关于y,并代入①,从而求得.解:由②得y=2x﹣1.③(1分)把③代入①,得3x2﹣(2x﹣1)2﹣(2x﹣1)+3=0.整理后,得x2﹣2x﹣3=0.解得x1=﹣1,x2=3.把x1=﹣1代入③,得y1=﹣3.把x2=3代入③,得y2=5.所以,原方程组的解是(1分)21.如图,在梯形ABCD中,AD∥BC,AB=CD=5,对角线BD平分∠ABC,cos C=.(1)求边BC的长;(2)过点A作AE⊥BD,垂足为点E,求cot∠DAE的值.【分析】(1)过点D作DH⊥BC,垂足为点H.在Rt△CDH中,由,可求得CH,再根据角平分线的定义以及平行线的性质,得∠ABD=∠ADB.则AD=AB=5.即可求出BC;(2)在Rt△CDH中,可求得DH,进而得出BH,将角∠DAE转化成∠BDH,即可得出答案.解:(1)过点D作DH⊥BC,垂足为点H.在Rt△CDH中,由∠CHD=90°,CD=5,,得.(1分)∵对角线BD平分∠ABC,∴∠ABD=∠CBD.(1分)∵AD∥BC,∴∠ADB=∠DBC.∴∠ABD=∠ADB.即得AD=AB=5.于是,由等腰梯形ABCD,可知BC=AD+2CH=13.(1分)(2)∵AE⊥BD,DH⊥BC,∴∠BHD=∠AED=90°.∵∠ADB=∠DBC,∴∠DAE=∠BDH.(1分)在Rt△CDH中,.(1分)在Rt△BDH中,BH=BC﹣CH=13﹣4=9.(1分)∴.(1分)∴cot∠DAE=cot∠BDH=.(1分)22.某宾馆有客房200间供游客居住,当每间客房的定价为每天180元时,客房恰好全部住满;如果每间客房每天的定价每增加10元,就会减少4间客房出租.设每间客房每天的定价增加x元,宾馆出租的客房为y间.求:(1)y关于x的函数关系式;(2)如果某天宾馆客房收入38400元,那么这天每间客房的价格是多少元?【分析】(1)设每间客房每天的定价增加x元,宾馆出租的客房为y间,根据某宾馆有客房200间供游客居住,当每间客房的定价为每天180元时,客房恰好全部住满;如果每间客房每天的定价每增加10元,就会减少4间客房出租可列出函数式.(2)38400是利润,根据价格和住房的关系可列方程求出解解:(1)设每间客房每天的定价增加x元,宾馆出租的客房为y间,根据题意,得:y=200﹣4×,∴.(2)设每间客房每天的定价增加x元根据题意,得.整理后,得x2﹣320x+6000=0.解得x1=20,x2=300.当x=20时,x+180=200(元).当x=300时,x+180=480(元).答:这天的每间客房的价格是200元或480元.23.如图,已知在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,以AD为边作正方形ADEF,联结CF,CE.(1)求证:FC⊥BC;(2)如果BD=AC,求证:CD=CE.【分析】(1)根据正方形的性质得出AD=AF,∠FAD=90°=∠BAC,求出∠FAC=∠BAD,证出△ABD≌△ACF,推出∠B=∠FCA即可;(2)根据△ABD≌△ACF,推出BD=CF=AC,求出∠DAC=∠EFC,根据SAS推出△DAC≌△EFC即可.【解答】证明:(1)∵四边形ADEF是正方形,∴AD=AF,∠FAD=90°=∠BAC,∴∠FAD﹣∠DAC=∠BAC﹣∠DAC,∴∠FAC=∠BAD,在△ABD和△ACF中,∴△ABD≌△ACF(SAS),∴∠B=∠FCA,∵∠BAC=90°,∴∠B+∠ACB=90°,∴∠ACB+∠ACF=90°,∴FC⊥BC.(2)∵△ABD≌△ACF,∴BD=CF,∵BD=AC,∴AC=CF,∴∠CAF=∠CFA,∵四边形ADEF是正方形,∴AD=EF,∠DAF=∠EFA=90°,∴∠DAF﹣∠CAF=∠EFA﹣∠CFA,∴∠DAC=∠EFC,在△DAC和△EFC中,∴△DAC≌△EFC(SAS),∴CD=CE.24.如图,在直角坐标平面xOy内,点A在x轴的正半轴上,点B在第一象限内,且∠OAB =90°,∠BOA=30°,OB=4.二次函数y=﹣x2+bx的图象经过点A,顶点为点C.(1)求这个二次函数的解析式,并写出顶点C的坐标;(2)设这个二次函数图象的对称轴l与OB相交于点D,与x轴相交于点E,求的值;(3)设P是这个二次函数图象的对称轴l上一点,如果△POA的面积与△OCE的面积相等,求点P的坐标.【分析】(1)由∠OAB=90°,在直角三角形OAB中求得点A,代入函数式解得.(2)直角三角形OAB中求得AB的长度,由抛物线的对称轴可知DE∥AB,OE=AE.求得DE,进而求得CD,从而求得.(3)利用三角形OCE和三角形POA的面积相等即求得.解:(1)∵∠OAB=90°,∠BOA=30°,OB=4,∴.∴A(,0).(1分)∵二次函数y=﹣x2+bx的图象经过点A,∴.解得.∴二次函数的解析式为.顶点C的坐标是(,3).(1分)(2)∵∠OAB=90°,∠BOA=30°,OB=4,∴AB=2.(1分)由DE是二次函数的图象的对称轴,可知DE∥AB,OE=AE.∴.即得DE=1.(1分)又∵C(,3),∴CE=3.即得CD=2.(1分)∴.(1分)(3)根据题意,可设P(,n).∵,CE=3,∴.(1分)∴.解得.(1分)∴点P的坐标为P1(,)、P2(,).25.已知:如图,△ABC为等边三角形,AB=,AH⊥BC,垂足为点H,点D在线段HC上,且HD=2,点P为射线AH上任意一点,以点P为圆心,线段PD的长为半径作⊙P,设AP=x.(1)当x=3时,求⊙P的半径长;(2)如图1,如果⊙P与线段AB相交于E、F两点,且EF=y,求y关于x的函数解析式,并写出它的定义域;(3)如果△PHD与△ABH相似,求x的值(直接写出答案即可).【分析】(1)∵△ABC为等边三角形,∴,∠B=60°.又∵,AH⊥BC,∴.即得PH=AH﹣AP=6﹣x=3.利用勾股定理即可证明;(2)过点P作PM⊥EF,垂足为点M,连接PE.在Rt△PHD中,HD=2,PH=6﹣x.利用勾股定理求出PD,然后在Rt△PEM中,由勾股定理得PM2+EM2=PE2.从而可求出答案;(3)△PHD与△ABH相似,则有,代入各线段的长短即可求出x的值.解:(1)∵△ABC为等边三角形,∴,∠B=60°.又∵,AH⊥BC,∴.即得PH=AH﹣AP=6﹣x=3.在Rt△PHD中,HD=2,利用勾股定理,得.∴当x=3时,⊙P的半径长为.(2)过点P作PM⊥EF,垂足为点M,连接PE.在Rt△PHD中,HD=2,PH=6﹣x.利用勾股定理,得.∵△ABC为等边三角形,AH⊥BC,∴∠BAH=30°.即得.在⊙P中,PE=PD.∵PM⊥EF,P为圆心,∴.于是,在Rt△PEM中,由勾股定理得PM2+EM2=PE2.即得.∴所求函数的解析式为,定义域为.(3)∵①△PHD∽△ABH,则有,,解得:PH=,∴x=AP=6﹣,当P在AH的延长线上时,x=6+;②当△PHD∽△AHB时,,即,解得:PH=2,∴x=AP=6﹣2,当P在AH的延长线上时,x=6+2;,,,.。
三模中考数学试卷及答案
考试时间:120分钟满分:150分一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √-1B. πC. 0.1010010001…D. √42. 若方程2x - 3 = 5的解为x,则x + 2的值为()A. 5B. 6C. 7D. 83. 在等腰三角形ABC中,若AB = AC,且∠BAC = 40°,则∠ABC的度数为()A. 40°B. 50°C. 70°D. 80°4. 已知函数y = 2x + 1,当x = 3时,y的值为()A. 7B. 8C. 9D. 105. 若平行四边形ABCD的对角线AC和BD相交于点O,则OA与OB的长度关系是()A. OA = OBB. OA ≠ OBC. 无法确定D. 无法计算6. 在直角坐标系中,点P(2, -3)关于x轴的对称点坐标为()A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)7. 若等差数列{an}的前n项和为Sn,且S5 = 50,S10 = 150,则第15项a15的值为()A. 25B. 30C. 35D. 408. 下列命题中,正确的是()A. 任何等差数列都是等比数列B. 任何等比数列都是等差数列C. 等差数列的公差一定是常数D. 等比数列的公比一定是常数9. 若a、b、c是等差数列,且a + b + c = 15,则b的值为()A. 5B. 10C. 15D. 2010. 在△ABC中,若∠A = 90°,∠B = 30°,则BC的长度是AB的()A. √3倍B. 2倍C. 3倍D. 4倍二、填空题(每题3分,共30分)11. 若方程2(x - 1) = 3的解为x,则x的值为______。
12. 在等腰三角形ABC中,若AB = AC,且∠BAC = 45°,则∠ABC的度数为______。
13. 已知函数y = 3x - 2,当x = -1时,y的值为______。
2021年江苏省无锡市中考数学三模试卷附解析
2021年江苏省无锡市中考数学三模试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.等边三角形的外接圆的面积是内切圆面积的( )A .2倍B .3倍C .4倍D .5倍2.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是( )A .3个或4个B .4个或5个C .5个或6个D .6个或7个 3.如图,将△ABC 绕顶点A 顺时针旋转60°后,得到△AB ′C ′,且C ′为BC 的中点,则C ′D :DB ′=( )A .1:2B .1:C .1D .1:3 4.如图,一次函数y1=x-1与反比例函数y2=x2的图像交于点A (2,1),B (-1,-2),则使y1>y2的x的取值范围是( ) A .x>2 B .x>2 或-1<x<0 C .-1<x<2 D .x>2 或x<-15.如图,点A ,D ,G ,M 在半圆O 上,四边形ABOC ,OFDE ,HMNO•都是矩形,•设BC=a ,EF=b ,NH=c ,则下列各式正确的是( ).A .a>b>cB .a=b=cC .c>a>bD .b>c>a6.抛物线222y x x =-+的顶点坐标是( ) A .(1,1)B .R (一1,1)C .(一 1,一1)D .(1,一1) 7. 下列关于二次函数2132y x =-+与213()2y x =-- 的图象关系说法错误的是( ) A . 开口方向、大小相同 B .顶点相同C . 可以相互平移得到D . 对称轴不同8.下列语句中,属于命题的是 ( )A .直线AB 与CD 垂直吗B 过线段AB 的中点C 画AB 的垂线C .同旁内角不互补,两直线不平行D .连结A ,B 两点9.下面的计算中错误..的是( )A 0.03±B .0.07=±C 015=⋅D .0.13=-10.已知坐标平面上的机器人接受指令“[a ,A]”(a ≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A 后,再向面对方向沿直线行走a. 若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( )A . (-1,B . (-1C -1)D .(-1) 11.用放大镜将图形放大,应该属于( ) )A .相似变换B .平移变换C .对称变换D .旋转变换 二、填空题12.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于 .13.在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为 米.14.如图,汽车在向右行驶的过程中,对于楼B ,司机看到的部分如何变化 .15.计算45tan 30cos 60sin -的值是 .16.说明是菱形的条件:(1)一组 相等的 ;(2)四边相等的 .;(3)对角线 的平行四边形.17.角的对称轴是这个角的____________所在的直线.18.已知22753y x x y -=+且y ≠0,则x y= . 19.一个三角形最多有 个钝角,最多有 个直角.20.一个多项式因式分解的结果为(3)(3)a a a -+-,则这个多项式是 .21.不改变分式的值. 使分子、分母都不含不含负号: (1)23x -= ;(2)x yz -- = ;(3)2ab ---;(4)5y x--- = . 22.在数轴上,与表示-1 的点相距2008个单位长度的点所表示的数是 .23.当x ________时,分式xx 2121-+有意义. 三、解答题24.如图,直线L 与两坐标轴的交点坐标分别是A (-3,0),B (0,4),O 是坐标系原点.(1)求直线L 所对应的函数的表达式;(2)若以O 为圆心,半径为R 的圆与直线L 相切,求R 的值.25.已知二次函数22y ax =-的图象经过点(1,一1),判断该函数图象与 x 轴的交点个数,若有交点,请求出交点坐标.26.如图①,点C 为线段AB 上一点,△ACM 、△CBN 都是等边三角形,直线AN 、MC 交于点E ,直线CN 、MB 交于点F .(1)求证:AN =BM ;(2)求证:△CEF 为等边三角形;(3)将△ACM 绕点C 按逆时针方向旋转90°,其他条件不变,在图②中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).27.已知直角梯形ABCD如图所示,AD∥BC,AD=4,BC=6,AB=3.(1)请建立恰当的直角坐标系,并写出四个顶点的坐标;(2)若要使点A坐标为(-3,3),该如何建立直角坐标系?28.在数学探究活动中,王老师为了加强直观教学,拿出若干个相同的小立方体骰子组合成不同的几何体,让同学们分别画出对应的三视图.如图所示的图形是小聪画的某个组合体的三视图. 从这组三视图推测,小聪说王老师摆放了 6个骰子. 你同意小聪的说法吗?请说明理由.29.在y kx b=+中,当 x=2 时,y=8;当 x=-1时,y=-7,求k,b 的值.30.书桌上放着 7 本教科书,其中语文、数学、英语课本上、下册各一册,政治课本一本,求下列各事件的概率:(1)从中任意抽取1本,是英语课本;(2)从中任意抽取2本,是教学课本上、下册各一册;(3)从中任意抽取2本,是数学、或语文、或英语课本上、下册各一册.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.D4.B5.B6.A7.B8.C9.A10.D11.A二、填空题12.2413.3014.变小15.16.(1)邻边,平行四边形;(2)四边形;(3)互相垂直17.角平分线18.174- 19.1,120.39a a -+21. (1)23x -;(2)x yz ;(3)2ab -;(4)5yx +22.-2009或 200723.21≠三、解答题24.解:(1)设所求为y =k x +b .将A (-3,0),B (0,4)的坐标代入,得⎩⎨⎧==+-.4,03b b k 解得b =4,k =34.所求为y =34x +4.(2)设切点为P ,连OP ,则OP ⊥AB ,OP=R .Rt ∆AOB 中,OA=3,OB=4,得AB=5,因为, ,5214321R ⨯⨯=⨯⨯得R=512. 25.∵当 x=1 时,y=-1,∴ -1=a-2 , 即a=1.∴22y x =-,∵80∆=>,∴函数图象与x 轴有两个交点.令y= 0,则220x -=,∴x =x 轴的两个交点的坐标分别是26.(1)△BCM ≌△NCA ,AN =BM ;(2)△BCF ≌△NCE ,∴CF=CE ,∵∠ECF=60°, ∴△CEF 为等边三角形;(3)图略,第(1)小题的结论仍然成立,第 (2)小题的结论不成立.27.略28.不同意小聪的说法.理由:结果有如下两种情况,答案一:有8个骰子;答案二:有9个骰子.29.5k =, b=-230. (1)27;(2)121;(3)17。
中考数学三模试题(有答案)
中考数学三模试题(有答案)中考数学三模试卷一、挑选题(本大题共8小题,每小题3分,共24分)1.(3分)若一个数的倒数是﹣2,则这个数是()A.B.﹣C.D.﹣【解答】解:若一个数的倒数是﹣2,即﹣,则这个数是﹣,故选:B.2.(3分)下列运算中,正确的是()A.a3?a6=a18B.6a6÷3a2=2a3C.(﹣)﹣1=﹣2 D.(﹣2ab2)2=2a2b4【解答】解:A、a3?a6=a9,故此选项错误;B、6a6÷3a2=2a4,故此选项错误;C、(﹣)﹣1=﹣2,故此选项正确;D、(﹣2ab2)2=4a2b4,故此选项错误.故选:C.3.(3分)下列方程中是关于x的一元二次方程的是()A.B.ax2+bx+c=0C.(x﹣1)(x+2)=1 D.3x2﹣2xy﹣5y2=0【解答】解:A、原方程为分式方程;故A选项错误;B、当a=0时,即ax2+bx+c=0的二次项系数是0时,该方程就不是一元二次方程;故B选项错误;C、由原方程,得x2+x﹣3=0,符合一元二次方程的要求;故C 选项正确;D、方程3x2﹣2xy﹣5y2=0中含有两个未知数;故D选项错误.故选:C.4.(3分)若一个正多边形的XXX角等于其内角,则这个正多边形的边数为()A.3 B.4 C.5 D.6【解答】解:360°÷n=.故这个正多边形的边数为4.故选:B.5.(3分)把多项式ax3﹣2ax2+ax分解因式,结果正确的是()A.ax(x2﹣2x)B.ax2(x﹣2) C.ax(x+1)(x﹣1)D.ax (x﹣1)2【解答】解:原式=ax(x2﹣2x+1)=ax(x﹣1)2,故选:D.6.(3分)下列大事为必定大事的是()A.打开电视机,它正在播广告B.某彩票的中奖机会是1%,买1张一定不会中奖C.抛掷一枚硬币,一定正面朝上D.投掷一枚一般的正方体骰子,掷得的点数小于7【解答】解:打开电视机,它正在播广告是随机大事,A错误;某彩票的中奖机会是1%,买1张一定不会中奖是随机大事,B错误;抛掷一枚硬币,一定正面朝上是随机大事,C错误;投掷一枚一般的正方体骰子,掷得的点数小于7是必定大事,D 正确,故选:D.7.(3分)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC 的长为()A.2πB.4πC.5πD.6π【解答】解:衔接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,则劣弧AC的长为:=4π.故选:B.8.(3分)已知反比例函数的图象经过点(﹣2,4),当x>2时,所对应的函数值y的取值范围是()A.﹣2<y<0 B.﹣3<y<﹣1 C.﹣4<y<0 D.0<y<1【解答】解:设反比例函数的关系式为y=,∵图象经过点(﹣2,4),∴k=﹣8,∴y=﹣,∴x=﹣,当x=2时,y=﹣4,结合图象可得当x>2时,﹣4<y<0,故选:C.二、填空题(本大题共8小题,每小题3分,满分24分)9.(3分)已知|x|=3,y2=16,且x+y的值是负数,则x﹣y的值为1或7.【解答】解:∵|x|=3,y2=16,∴x=±3,y=±4.∵x+y<0,∴x=±3,y=﹣4.当x=﹣3,y=﹣4时,x﹣y=﹣3+4=1;当x=3,y=﹣4时,x﹣y=3+4=7.故答案为:1或710.(3分)若﹣0.5x a+b y a﹣b与x a﹣1y3是同类项,则a+b=1.【解答】解:∵代数式﹣0.5x a+b y a﹣b与x a﹣1y3是同类项,∴a+b=a﹣1,a﹣b=3,a=2,b=﹣1,∴a+b=1,故答案为:1.11.(3分)一个圆锥的侧面绽开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为2.【解答】解:设此圆锥的底面半径为r,按照圆锥的侧面绽开图扇形的弧长等于圆锥底面周长可得,2πr=,r=2.故答案为:2.12.(3分)化简(x﹣)÷(1﹣)的结果是x﹣1.【解答】解:原式=(﹣)÷=?=x﹣1.故答案是:x﹣1.13.(3分)在如图所示的象棋盘上,若“将”位于点(1,﹣2)上,“象”位于点(3,﹣2)上,则“炮”位于点(﹣2,1)上.【解答】解:如图所示:“炮”位于点:(﹣2,1).故答案为:(﹣2,1).14.(3分)一个暗箱里放有a个除XXX彩外彻低相同的球,这a 个球中红球惟独3个.若每次将球搅匀后,随意摸出1个球登记XXX 彩再放回暗箱.通过大量重复摸球实验后发觉,摸到红球的频率稳定在20%附近,那么可以推算出a的值大约是15.【解答】解:由题意可得,×100%=20%,解得,a=15个.故答案为15.15.(3分)化简﹣()2,结果是4.【解答】解:﹣()2=﹣()2=|3x﹣1|﹣(3x﹣5)=3x﹣1﹣3x+5=4.故答案为:4.16.(3分)计算下列各式的值:=10;=102;= 103;……观看所得结果,尝试发觉蕴含在其中的逻辑,由此可得=102023.【解答】解:=10;=100=102;=1000=103;……;=102023.故答案为:10;102;103;102023.三、解答题(本大题共2小题,每小题5分,满分10分)17.(5分)解方程组:.【解答】解:,①×8+②得:33x=33,即x=1,把x=1代入①得:y=1,则方程组的解为.18.(5分)解方程(1)﹣1=.(2)=.【解答】解:(1)﹣1=去分母得:x(x+2)﹣(x﹣1)(x+2)=3,解得:x=1,检验:当x=1时,(x﹣1)(x+2)=0,故此方程无实数根;(2)=去分母得:2x+1=3x,解得:x=1,检验:当x=1时,x(2x+1)≠0,故x=1是原方程的解.四、解答题(本大题共2小题,每小题6分,满分12分)19.(6分)反比例函数y=的图象经过点A(1,2).(1)求反比例函数的表达式;(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系式.【解答】解:(1)∵反比例函数y=的图象经过点A(1,2),∴2=,k=2,∴反比例函数的表达式为y=;(2)如图:y2<y1<y3.20.(6分)小明有2件上衣,分离为红XXX和蓝群,有3条裤子,其中2条为蓝群、1条为棕XXX.小明随意拿出1件上衣和1条裤子穿上.请用画树状图或列表的办法列出全部可能浮现的结果,并求小明穿的上衣和裤子恰好都是蓝群的概率.【解答】解:画树状图得:如图:共有6种可能浮现的结果,∵小明穿的上衣和裤子恰好都是蓝XXX的有2种状况,∴小明穿的上衣和裤子恰好都是蓝群的概率为:=.五、解答题(本大题共2小题,每小题7分,满分14分)21.(7分)如图,直线y=﹣2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴相交于点P,且使OP=2OA,求△ABP 的面积.【解答】解:(1)∵令y=0,则x=;令x=0,则y=3,∴A(,0),B(0,3);(2)∵OP=2OA,∴P(3,0)或(﹣3,0),∴AP=或,∴S△ABP =AP×OB=××3=,或S△ABP=AP×OB=××3=.故答案为:或.22.(7分)已知抛物线y=ax2﹣4x+c经过点A(0,﹣6)和B(3,﹣9).(1)求出抛物线的解析式;(2)通过配方,写出抛物线的对称轴方程及顶点坐标.【解答】解:(1)依题意有,即,∴;∴抛物线的解析式为:y=x2﹣4x﹣6.(2)把y=x2﹣4x﹣6配方得,y=(x﹣2)2﹣10,∴对称轴方程为x=2;顶点坐标(2,﹣10).六、解答题(本大题共2小题,每小题8分,满分16分)23.(8分)父亲告知小明:“距离地面越远,温度越低,”并给小明出示了下面的表格.距离地面高度(千米)012345温度(℃)202382﹣4﹣10按照上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)假如用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你知道距离地面5千米的高空温度是多少吗?(4)你能猜出距离地面6千米的高空温度是多少吗?【解答】解:(1)上表反映了温度和距地面高度之间的关系,高度是自变量,温度是因变量.(2)由表可知,每升高一千米,温度降低6摄氏度,可得解析式为t=20﹣6h;(3)由表可知,距地面5千米时,温度为零下10摄氏度;(4)将t=6代入h=20﹣t可得,t=20﹣6×6=﹣16.24.(8分)如图,△ABC中,∠C=90°,⊙O是△ABC的内切圆,D、E、F是切点.(1)求证:四边形ODCE是正方形;(2)假如AC=6,BC=8,求内切圆⊙O的半径.【解答】解:(1)∵⊙O是△ABC的内切圆,∴OD⊥BC,OE⊥AC,又∠C=90°,∴四边形ODCE是矩形,∵OD=OE,∴四边形ODCE是正方形;(2)∵∠C=90°,AC=6,BC=8,∴AB==10,由切线长定理得,AF=AE,BD=BF,CD=CE,∴CD+CE=BC+AC﹣BD﹣AE=BC+AC﹣AB=4,则CE=2,即⊙O的半径为2.七、解答题(本大题共2小题,每小题10分,满分20分)25.(10分)烟台享有“苹果之乡”的美誉.甲、乙两超市分离用3000元以相同的进价购进质量相同的苹果.甲超市销售计划是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售计划是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果所有售完,其中甲超市获利2100元(其它成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.【解答】解:(1)设苹果进价为每千克x元,按照题意得:400x+10%x(﹣400)=2100,解得:x=5,经检验x=5是原方程的解,答:苹果进价为每千克5元.(2)由(1)得,每个超市苹果总量为:=600(千克),大、小苹果售价分离为10元和5.5元,则乙超市获利600×(﹣5)=1650(元),∵甲超市获利2100元,∵2100>1650,∴将苹果按大小分类包装销售,更合算.26.(10分)某乒乓球馆使用发球机举行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球运行时,设乒乓球与端点A的水平距离为x(米),与桌面的高度为y(米),运行时光为t(秒),经多次测试后,得到如下部分数据:t(秒)00.160.20.40.60.640.8…x(米)00.40.51 1.5 1.62…y(米)0.250.3780.40.450.40.3780.25…(1)当t为何值时,乒乓球达到最大高度?(2)乒乓球落在桌面时,与端点A的水平距离是多少?(3)乒乓球落在桌面上弹起后,y与x满足y=a(x﹣3)2+k.①用含a的代数式表示k;②球网高度为0.14米,球桌长(1.4×2)米.若球弹起后,恰好有唯一的击球点,可以将球沿直线恰好擦网扣杀到点A,求a的值.【解答】解:(1)由表格中数据可知,当t=0.4秒时,乒乓球达到最大高度.(2)以点A为原点,桌面中线为x轴,乒乓球水平运动方向为正方向建立直角坐标系.由表格中数据可推断,y是x的二次函数,且顶点为(1,0.45),所以可设y=m(x﹣1)2+0.45,将(0,0.25)代入,得:0.25=m(0﹣1)2+0.45,解得:m=﹣0.2,∴y=﹣0.2(x﹣1)2+0.45.当y=0时,﹣0.2(x﹣1)2+0.45=0,解得:x=2.5或x=﹣0.5(舍去).∴乒乓球落在桌面时,与端点A的水平距离是2.5米.(3)①由(2)得,乒乓球落在桌面时的坐标为(2.5,0).∴将(2.5,0)代入y=a(x﹣3)2+k,得0=a(2.5﹣3)2+k,化简收拾,得:k=﹣a.②∵球网高度为0.14米,球桌长(1.4×2)米,∴扣杀路线在直线经过(0,0)和(1.4,0.14)点,由题意可得,扣杀路线在直线y=x上,由①得y=a(x﹣3)2﹣a,令a(x﹣3)2﹣a=x,收拾,得20ax2﹣(120a+2)x+175a=0.当△=(120a+2)2﹣4×20a×175a=0时,符合题意,解方程,得a1=,a2=.当a=时,求得x=﹣,不合题意,舍去;当a=时,求得x=,符合题意.答:当a=时,可以将球沿直线扣杀到点A.。
山西省2021年中考数学三模试卷(I)卷
山西省2021年中考数学三模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共20题;共40分)1. (2分)(2016·陕西) 下列各组数中,互为相反数的有()①2和;②-2和;③2.25和−2;④+(-2)和(-2);⑤-2和-(-2);⑥+(+5)和-(-5)A . 2组B . 3组C . 4组D . 5组2. (2分)(2019·揭阳模拟) 下列计算,正确的是()A . x5+x4=x9B . x5﹣x4=xC . x5⋅x4=x20D . x5÷x4=x3. (2分) (2019·贵阳) 如图,在3×3的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是()A .B .C .D .4. (2分)(2017·滨海模拟) 过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为()A . 3.12×105B . 3.12×106C . 31.2×105D . 0.312×1075. (2分)(2020·三明模拟) 如图所示的工件,其俯视图是()A .B .C .D .6. (2分)(2017·濮阳模拟) 一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A .B .C .D .7. (2分) (2017九上·鸡西期末) 如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为()A . 3B .C . 3D . 28. (2分) (2020八上·运城月考) 如图,把一张矩形纸片ABCD沿对角线BD折叠,使点C落在E处,BE与AD相交于F,下列结论:①BD=AD2+AB2②△ABF≌△EDF ③ ④AD=BD·cos45°正确的是()A . ①②B . ②③C . ①④D . ③④9. (2分)若(+)•w=1,则w=()A . a+2(a≠﹣2)B . ﹣a+2(a≠2)C . a﹣2(a≠2)D . ﹣a﹣2(a≠﹣2)10. (2分) (2016七上·孝义期末) 如图是用棋子摆成的“Τ”字图案.从图案中可以看出,第1个“Τ”字型图案需要5枚棋子.第2个“Τ”字型图案需要8枚棋子.第3个“Τ”字型图案需要11枚棋子,则第n个“Τ”字型所需棋子的个数()A . 2n+3B . 3n+2C . 3n+4D . 3n+511. (2分)(2020·云南模拟) 不等式组的解集在数轴上表示为()A .B .C .D .12. (2分) (2016七上·高密期末) 已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()A .B .C .D .13. (2分) (2019八下·温州期中) 如图,已知□AB CD的面积为100,P为边CD上的任一点,E,F分别为线段AP,BP的中点,则图中阴影部分的总面积为()A . 30B . 25C . 22.5D . 2014. (2分)已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(﹣1,0).下列结论:(1)b2>4ac;(2)抛物线的对称轴为x=﹣;(3)a﹣b+c=0;(4)当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧.其中结论正确的个数有()A . 4个B . 1个C . 2个D . 3个15. (2分)如图,在▱ABCD中,点M为CD的中点,且DC=2AD,则AM与BM的夹角的度数为()A . 100°B . 95°C . 90°D . 85°16. (2分)(2020·三门模拟) 如图,在4×4的正方形网格中,每一格长度为1,小正方形的顶点称为格点,A,B,C,D,E,F都在格点上,以AB,CD,EF为边能构成一个直角三角形,则点F的位置有()A . 1处B . 2处C . 3处D . 4处17. (2分)某扇形的面积为12πcm2 ,圆心角为120°,则该扇形的半径是()A . 3cmB . 4cmC . 5cmD . 6cm18. (2分)有一边长为2的正三角形,则它的外接圆的面积为()A . 2πB . 4πC . 4πD . 12π19. (2分)如图甲所示,在直角梯形ABCD中,AB∥DC,∠B=90°.动点P从点B出发,沿梯形的边由B→C→D→A运动.设点P运动的路程为x,△ABP的面积为y.把y看作x的函数,函数的图像如图乙所示,则△ABC的面积为()A . 10B . 16C . 18D . 3220. (2分)(2020·麻城模拟) 如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=4,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A .B .C .D . 6二、填空题 (共4题;共4分)21. (1分)(2017·深圳模拟) 因式分解:2x2﹣18=________.22. (1分) (2019九上·株洲期中) 在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公共点,若直线y=﹣x+b与反比例函数y=的图象有2个公共点,则b的取值范围是________.23. (1分)(2019·江汉) 如图,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD=9.6m,则旗杆AB的高度为________m.24. (1分) (2017九上·东丽期末) 如图,是半径为的⊙ 的直径,是圆上异于,的任意一点,的平分线交⊙ 于点,连接和,△ 的中位线所在的直线与⊙ 相交于点、,则的长是________.三、解答题 (共5题;共60分)25. (10分)(2020·西青模拟) 将矩形纸片OABC放在平面直角坐标系中,O为坐标原点,点A在y轴上,点C 在x轴上,点B的坐标是(8,6),点P是边AB上的一个动点,将△OAP沿OP折叠,使点A落在点Q处.(1)如图①,当点Q恰好落在OB上时.求点p的坐标;(2)如图②,当点P是AB中点时,直线OQ交BC于M点.①求证:MB=MQ;②求点Q的坐标.26. (10分)(2019·台湾) 市面上贩售的防晒产品标有防晒指数SPF,而其对抗紫外线的防护率算法为:防护率= ×100%,其中SPF≥1.请回答下列问题:(1)厂商宣称开发出防护率90%的产品,请问该产品的SPF应标示为多少?(2)某防晒产品文宣内容如图所示.请根据SPF与防护率的转换公式,判断此文宣内容是否合理,并详细解释或完整写出你的理由.27. (10分)(2020·顺义模拟) 已知:如图,AB是⊙O的直径,△ABC内接于⊙O .点D在⊙O上,AD平分∠CAB交BC于点E , DF是⊙O的切线,交AC的延长线于点F .(1)求证;DF⊥AF;(2)若⊙O的半径是5, AD=8,求DF的长.28. (15分)(2018·大庆) 如图,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作EC⊥OB,交⊙O于点C,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.(1)求证:AC平分∠FAB;(2)求证:BC2=CE•CP;(3)当AB=4 且 = 时,求劣弧的长度.29. (15分)(2018·金华模拟) 已知:如图一,抛物线与x轴正半轴交于A、B两点,与y 轴交于点C,直线经过A、C两点,且.(1)求抛物线的解析式;(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC 于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,如图;当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设,当t为何值时,s有最小值,并求出最小值.(3)在的条件下,是否存在t的值,使以P、B、D为顶点的三角形与相似;若存在,求t的值;若不存在,请说明理由.参考答案一、选择题 (共20题;共40分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:二、填空题 (共4题;共4分)答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、考点:解析:答案:24-1、考点:解析:三、解答题 (共5题;共60分)答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、考点:解析:答案:27-1、答案:27-2、考点:解析:答案:28-1、答案:28-2、答案:28-3、考点:解析:答案:29-1、答案:29-2、答案:29-3、考点:解析:。
2021年浙江省温州外国语学校中考数学三模试卷(解析版)
2021年浙江省温州外国语学校中考数学三模试卷注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5 毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5 毫米黑色墨水签字笔描黑.一、选择题(有10小题,每小题4分,共40分).1.计算:6÷(﹣2)的结果是()A.﹣3B.3C.﹣4D.42.据统计,去年3月至年底,我国口罩出口量约22 400 000万只,用科学记数法可将数据22 400 000表示为()A.224×105B.22.4×106C.2.24×107D.0.224×108 3.如图所示的几何体由一个圆柱体和一个长方体组成,它的主视图是()A.B.C.D.4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在阴影部分的概率是()A.B.C.D.5.如图,在直角坐标系中,△OAB的顶点为O(0,0),A(6,3),B(6,6),以点O 为位似中心,在第一象限内作与△OAB的位似比为的位似图形△OCD,则点C的坐标为()A.(1,2)B.(2,1)C.(2,2)D.(3,6)6.若某圆锥的侧面展开图是一个半圆,已知圆锥的底面半径为r,那么圆锥的高为()A.B.r C.D.2r7.已知二次函数y=3x2+12x﹣15,若点(﹣5+t,y1),(1﹣t,y2),(﹣2,y3)在此二次函数图象上,则y1,y2,y3的大小关系正确的是()A.y3<y1<y2B.y3>y2>y1C.y3≤y1=y2D.y3≥y1=y28.如图,已知Rt△ABC,∠A=90°,P,Q分别为AC,BC上的点,且PQ∥AB,记AP =x,PQ=y,且y=2﹣x,则BC的长为()A.2B.4C.D.9.如图,将道具△ABC斜靠在墙OE上,已知∠ACB=90°,测得∠CAO=α,∠BAC=β,CO=m,则AB的长为()A.B.C.m•sinα•cosβD.10.如图,在⊙O中,将劣弧BC沿弦BC翻折恰好经过圆心O,A是劣弧BC上一点,分别延长CA,BA交圆O于E,D两点,连接BE,CD.若tan∠ECB=,记△ABE的面积为S1,△ADC的面积为S2.则=()A.B.C.D.二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:4x2﹣9=.12.不等式组的解集为.13.某校10名同学参加“环保知识竞赛”,成绩如下表:得分(分)78910人数(人)1423则这10名同学的成绩的平均数是.14.如图,点A在反比例函数y=的图象上,点B在反比例函数y=的图象上,且AB ⊥x轴于点C,点D在y轴上,则△ABD的面积为.15.如图1,书柜ABCD中放了7本厚度一样,高度分别为20cm和25cm的小书和大书,搬运过程中大书恰好倾斜成图2所示,则书柜的长AB为cm.16.图1是一种儿童可折叠滑板车,该滑板车完全展开后示意图如图2所示,由车架AB﹣CE﹣EF和两个大小相同的车轮组成,已知CD=25cm,DE=17cm,cos∠ACD=,当A,E,F在同一水平高度上时,∠CEF=135°,则AC=cm;为方便存放,将车架前部分绕着点D旋转至AB∥EF,如图3所示,则d1﹣d2为cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:﹣|﹣3|+(π﹣3.14)0﹣()﹣1;(2)化简:+.18.如图,在△ABC和△DBC中,AB=AC,DB=DC,点E,F分别为边AB,AC的中点,连结DF,DE.(1)求证:△BDE≌△CDF;(2)若∠EDF=60°,ED=5,求BC的长.19.在8×8的方格纸中,点A,B,C都在格点上,按要求画图(保留作图痕迹):(1)在图1中找一点D,使点D在线段BC上,且∠ADC=2∠B;(2)在图2中找一格点E,使∠BAC+∠BEC=180°.20.某校举行“汉字听写大赛,九年级A,B两班学生的成绩情况如下:【信息一】九A班40名学生成绩的频数分布直方图如图(每一组含前一个边界值,不含后一个边界值);【信息二】图中,从左到右第4组成绩如表:120120120121122122124125125126127129【信息三】九年级A,B两班各40名学生成绩的平均数、中位数、众数、优秀率(135分及以上为优秀)、方差等数据如下(部分空缺):班级平均数中位数众数优秀率方差九A班127.213030%190九B班127.212713225%210根据以上信息,回答下列问题:(1)九A班40名学生成绩的中位数为分;(2)求从A,B两班共80人中随机抽取一人成绩为优秀的概率;(3)请你选择适合的统计量,尽量从多个角度,综合阐述哪个班级的整体水平较高.21.已知二次函数y=ax2﹣4ax+c的最小值为﹣1.其图象与x轴交于A,B两点(点B在点A右侧),与y轴交于(0,3).(1)求二次函数表达式.(2)将线段OB向右平移m个单位,向上平移n个单位至O'B'(m,n均为正数),若点O',B'均落在此二次函数图象上,求m,n的值.22.如图,在Rt△ABC中,∠ABC=90°,点D是斜边AC的中点,点E为BC边上一点,以BE为直径的半圆恰好经过点D,且交线段CD于点F,连接BD,BF.(1)求证:BF=BA;(2)若AF=6,cos A=.求直径BE的长.23.某工厂生产A,B两种型号的环保产品,A产品每件利润200元,B产品每件利润500元,该工厂按计划每天生产两种产品共50件,其中A产品的总利润比B产品少4000元.(1)求该厂每天生产A产品和B产品各多少件.(2)据市场调查,B产品的需求量较大,该厂决定在日总产量不变的前提下增加B产品的生产,但B产品相比原计划每多生产一件,每件利润便降低10元.设该厂实际生产B产品的数量比原计划多x件,每天生产A,B产品获得的总利润为w.①若实际生产B产品的数量不少于A产品数量的1.2倍,求总利润w的最大值.②若每生产一件环保产品,政府给予a元(a为整数)的补贴,在此前提下,经核算,存在5种不同的生产方案使得该厂每日利润不少于17200元,试求a的值.24.如图,在矩形ABCD中,AB=8,O是对角线AC的中点,P是线段AB上一点,射线PO交CD于点Q,交AD延长线于点E,连结CE,在CE上取点F,使FQ=CQ,设AP =x(x>4),(1)连结DB,当x=时,判断四边形EDBC是否为平行四边形,并说明理由.(2)当x=6时,若FQ平行△ACB的某一边,求AD的长.(3)若EA=EC,分别记△FQC和△EDC的面积为S1和S2,且=,求的值.参考答案一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.计算:6÷(﹣2)的结果是()A.﹣3B.3C.﹣4D.4【分析】根据有理数除法的运算法则进行计算求解.解:原式=﹣6×=﹣3,故选:A.2.据统计,去年3月至年底,我国口罩出口量约22 400 000万只,用科学记数法可将数据22 400 000表示为()A.224×105B.22.4×106C.2.24×107D.0.224×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:22400000=2.24×107.故选:C.3.如图所示的几何体由一个圆柱体和一个长方体组成,它的主视图是()A.B.C.D.【分析】根据主视图是从正面看得到的视图,可得答案.解:从正面看下面是一个比较长的矩形,上面是一个比较窄的矩形.故选:B.4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在阴影部分的概率是()A.B.C.D.【分析】首先确定在图中阴影区域的面积在整个面积中占的比例,根据这个比例即可求出指针落在阴影部分的概率.解:∵阴影部分的面积可看成是5,圆的总面积看成是8,∴指针落在阴影部分的概率是5÷8=.故选:D.5.如图,在直角坐标系中,△OAB的顶点为O(0,0),A(6,3),B(6,6),以点O 为位似中心,在第一象限内作与△OAB的位似比为的位似图形△OCD,则点C的坐标为()A.(1,2)B.(2,1)C.(2,2)D.(3,6)【分析】根据位似变换的性质计算,得到答案.解:∵以点O为位似中心,在第一象限内作与△OAB的位似比为的位似图形△OCD,A(6,3),∴点C的坐标为(6×,3×),即(2,1),故选:B.6.若某圆锥的侧面展开图是一个半圆,已知圆锥的底面半径为r,那么圆锥的高为()A.B.r C.D.2r【分析】首先求得圆锥的母线长,然后利用勾股定理求得答案即可.解:设扇形的半径为R,根据题意得:=2πr,解得:R=2r,∴圆锥的该为=,故选:C.7.已知二次函数y=3x2+12x﹣15,若点(﹣5+t,y1),(1﹣t,y2),(﹣2,y3)在此二次函数图象上,则y1,y2,y3的大小关系正确的是()A.y3<y1<y2B.y3>y2>y1C.y3≤y1=y2D.y3≥y1=y2【分析】将题目中的函数解析式化为顶点式,即可得到该函数的顶点坐标和函数图象的开口方向,然后根据点(﹣5+t,y1),(1﹣t,y2),(﹣2,y3)在此二次函数图象上,即可得到y1,y2,y3的大小关系.解:∵二次函数y=3x2+12x﹣15=3(x+2)2﹣27,∴该函数图象开口向上,当x=﹣2时,取得最小值﹣27,∵(1﹣t)+(﹣5+t)=1﹣t﹣5+t=﹣4=﹣2×2,点(﹣5+t,y1),(1﹣t,y2),(﹣2,y3)在此二次函数图象上,∴y3≤y1=y2,故选:C.8.如图,已知Rt△ABC,∠A=90°,P,Q分别为AC,BC上的点,且PQ∥AB,记AP =x,PQ=y,且y=2﹣x,则BC的长为()A.2B.4C.D.【分析】根据题意可知当PQ=y=0,则有x=4,即AP=4,当P、Q与点C重合,则AC=4,当AP=x=0时,则有PQ=y=2,点P与点A重合,点Q与AB重合,即AB =2,进而可得AB=2,AC=4,然后根据勾股定理可求解.解:∵PQ∥AB,AP=x,PQ=y,且y=2﹣x,∴当PQ=y=0,则有x=4,即AP=4,∴当P、Q与点C重合,则AC=4,当AP=x=0时,则有PQ=y=2,∴点P与点A重合,点Q与AB重合,即AB=2,在Rt△ABC中,BC==2,故选:D.9.如图,将道具△ABC斜靠在墙OE上,已知∠ACB=90°,测得∠CAO=α,∠BAC=β,CO=m,则AB的长为()A.B.C.m•sinα•cosβD.【分析】由题意得AC=,然后根据三角函数可进行求解.解:∵∠CAO=α,CO=m,∠ACB=90°,∴AC=,∵∠BAC=β,∴AB=,故选:D.10.如图,在⊙O中,将劣弧BC沿弦BC翻折恰好经过圆心O,A是劣弧BC上一点,分别延长CA,BA交圆O于E,D两点,连接BE,CD.若tan∠ECB=,记△ABE的面积为S1,△ADC的面积为S2.则=()A.B.C.D.【分析】分别作点A、点O关于线段BC的对称点F、H,OH与BC交于点M,连接OH、OB,过点B作BG⊥CE于点G,根据轴对称的性质可得的度数为120°,则有∠BFC =∠BAC=120°,进而可得△ABE和△ADC都为等边三角形,然后根据三角函数可得,最后根据相似三角形的性质可求解.解:分别作点A、点O关于线段BC的对称点F、H,OH与BC交于点M,连接OH、OB,过点B作BG⊥CE于点G,如图所示:劣弧BC沿弦BC翻折恰好经过圆心O,由折叠的性质可得OM=MH=OH,OH⊥BC,∠BAC=∠BFC,∴OM=OB,,∴∠OBC=30°∴∠BOH=60°,∴的度数为120°,∴的度数为240°,∠D=∠E=60°,∴∠BFC=∠BAC=120°,∴∠EAB=∠DAC=60°,∴△ABE和△ADC都为等边三角形,且△ABE∽△ACD,∵BG⊥CE,∴EG=AG,∠EBG=∠ABG=30°,∴BG=,∵tan∠ECB=,设BG=x,CG=6x,则EG=AG=x,∴AE=2x,AC=5x,∴,∵∠EAB=∠DAC,∠E=∠D,∴△EAB∽△DAC,∴,故选:B.二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:4x2﹣9=(2x﹣3)(2x+3).【分析】先整理成平方差公式的形式.再利用平方差公式进行分解因式.解:4x2﹣9=(2x﹣3)(2x+3).故答案为:(2x﹣3)(2x+3).12.不等式组的解集为x<2.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.解:解不等式﹣x+2>0,得:x<2,解不等式≤4,得:x≤9,则不等式组的解集为x<2,故答案为:x<2.13.某校10名同学参加“环保知识竞赛”,成绩如下表:得分(分)78910人数(人)1423则这10名同学的成绩的平均数是8.7分.【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案.解:这10名同学的成绩的平均数是:×(7+8×4+9×2+10×3)=8.7(分).故答案为:8.7分.14.如图,点A在反比例函数y=的图象上,点B在反比例函数y=的图象上,且AB ⊥x轴于点C,点D在y轴上,则△ABD的面积为.【分析】根据反比例函数系数k的几何意义和三角形的面积公式进行计算即可.解:设C(m,0),则OC=m,B(m,),A(m,),∴AB=AC﹣BC=﹣=,∴△ABD的面积为AB•OC=××m=,故答案为:.15.如图1,书柜ABCD中放了7本厚度一样,高度分别为20cm和25cm的小书和大书,搬运过程中大书恰好倾斜成图2所示,则书柜的长AB为cm.【分析】先由勾股定理求出EI=15(cm),再证△HIE≌△FCG(AAS),得HI=FC=20cm,然后证△EBF∽△HIE,求出BE=(cm),EF=(cm),即可解决问题.解:由题意得:HE=GF=BC=25cm,HI=20cm,∠HIE=90°,∴EI===15(cm),∵四边形ABCD、四边形EFGH是矩形,∴∠B=∠C=∠HEF=∠EFG=90°,∴∠IEH+∠BEF=∠BEF+∠BFE=∠BFE+∠CFG=∠CFG+∠CGF=90°,∴∠IEH=∠BFE=∠CGF,在△HIE和△FCG中,,∴△HIE≌△FCG(AAS),∴HI=FC=20cm,∴BF=BC﹣FC=5(cm),∵∠B=∠HIE=90°,∠BFE=∠IEH,∴△EBF∽△HIE,∴==,即==,解得:BE=(cm),EF=(cm),∴BI=BE+EI=+15=(cm),AI=6EF=6×=50(cm),∴AB=AI+BI=+50=(cm),故答案为:.16.图1是一种儿童可折叠滑板车,该滑板车完全展开后示意图如图2所示,由车架AB﹣CE﹣EF和两个大小相同的车轮组成,已知CD=25cm,DE=17cm,cos∠ACD=,当A,E,F在同一水平高度上时,∠CEF=135°,则AC=30cm;为方便存放,将车架前部分绕着点D旋转至AB∥EF,如图3所示,则d1﹣d2为(﹣10)cm.【分析】(1)根据题意作出辅助线构造Rt△AHC,再根据cos∠ACD=按比例设出△AHC中CH═4x,AC═5x,AH═3x,最后根据△DAE为等腰直角三角形及线段之间的等量关系列出等式42﹣4x═3x,求解即可,(2)根据题意过点A作AM⊥EF交其延长线于点M,过点D作DN⊥EF交其延长线于点N,并延长ND,交AB于点P,得出四边形AMNP是矩形,再结合折叠的性质CD═25cm,DE═17cm,cos∠ACD=,∠DEN═45°,AC═30cm以及直角三角形的边角关系PC═CD cos∠ACD,EN═DE∠cos∠DEN求得相关线段的长度,设半径为r,则目标线段d1═2r+AE+EF,d2═2r+EM+EF,两式相减即可.解:如图2所示,过点A作AH⊥CE,∵cos∠ACD==,∴可设CH═4xcm,AC═5xcm,AH═3xcm,∵∠DEA═180°﹣∠DEF═45°,∴△DAE为等腰直角三角形,∴AH═HE,∵CE═CD+DE═25+17═42cm,∴AH═CE﹣CH═(42﹣4x)cm,∴42﹣4x═3x,解得x═6,∴AC═5×6═30cm.故答案为:30.(2)如图3所示,过点A作AM⊥EF交其延长线于点M,过点D作DN⊥EF交其延长线于点N,并延长ND,交AB于点P,∵AB∥EF,∴∠M═∠PNM═∠NPA═90°,∴四边形AMNP是矩形,∴AP═MN,∵CD═25cm,DE═17cm,cos∠ACD=,∠DEN═45°,AC═30cm,∴PC═CD cos∠ACD═20cm,EN═DE∠cos∠DEN═cm,∴MN═AP═AC﹣PC═30﹣20═10cm,∴ME═MN+EN═(10+)cm,由(1)可知AH═HE═18cm,∴AE═18cm,设车轮半径为rcm,则有:d1═(2r+AE+EF)cm,d2═(2r+AE+EF)cm,∴d1﹣d2═(2r+AE+EF)﹣(2r+EM+EF)═AE﹣EM═18﹣(10+)═(﹣10)cm,故答案为:(﹣10).三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:﹣|﹣3|+(π﹣3.14)0﹣()﹣1;(2)化简:+.【分析】(1)先化简算术平方根,绝对值,零指数幂,负整数指数幂,然后再计算;(2)根据同分母分式加减法运算法则进行计算.解:(1)原式=4﹣3+1﹣2=0;(2)原式====.18.如图,在△ABC和△DBC中,AB=AC,DB=DC,点E,F分别为边AB,AC的中点,连结DF,DE.(1)求证:△BDE≌△CDF;(2)若∠EDF=60°,ED=5,求BC的长.【分析】(1)根据等腰三角形的性质得∠ABC=∠ACD,∠DBC=∠DCB,则有∠ABD =∠ACD,然后由中点的定义得BE=CF,利用SAS即可求证;(2)连接EF,由题意易得△EDF是等边三角形,则EF=ED=5,然后根据三角形中位线可进行求解.【解答】(1)证明:AB=AC,DB=DC,∴∠ABC=∠ACD,∠DBC=∠DCB,∴∠ABD=∠ACD,即∠EBD=∠FCD,∵点E,F分别为边AB,AC的中点,AB=AC,∴BE=CF,在△BDE和△CDF中,,∴△BDE≌△CDF(SAS);(2)解:连接EF,如图所示:由(1)可得△BDE≌△CDF,∵∠EDF=60°,∴△EDF是等边三角形,∴EF=ED=5,∵点E,F分别为边AB,AC的中点,∴BC=2EF=10.19.在8×8的方格纸中,点A,B,C都在格点上,按要求画图(保留作图痕迹):(1)在图1中找一点D,使点D在线段BC上,且∠ADC=2∠B;(2)在图2中找一格点E,使∠BAC+∠BEC=180°.【分析】(1)取格点E,F作直线EF交BC于点D,点D即为所求.(2)作△ABC的外接圆,利用圆内接四边形的对角互补,解决问题即可.解:(1)如图,点D即为所求.(2)如图,点E即为所求(答案不唯一).20.某校举行“汉字听写大赛,九年级A,B两班学生的成绩情况如下:【信息一】九A班40名学生成绩的频数分布直方图如图(每一组含前一个边界值,不含后一个边界值);【信息二】图中,从左到右第4组成绩如表:120120120121122122124125125126127129【信息三】九年级A,B两班各40名学生成绩的平均数、中位数、众数、优秀率(135分及以上为优秀)、方差等数据如下(部分空缺):班级平均数中位数众数优秀率方差九A班127.212813030%190九B班127.212713225%210根据以上信息,回答下列问题:(1)九A班40名学生成绩的中位数为128分;(2)求从A,B两班共80人中随机抽取一人成绩为优秀的概率;(3)请你选择适合的统计量,尽量从多个角度,综合阐述哪个班级的整体水平较高.【分析】(1)由中位数的定义求解即可;(2)先求出A,B两班优秀的学生人数,再由概率公式求解即可.解:(1)由题意得:九A班40名学生成绩的中位数为=128(分),故答案为:128;(2)九年级A,B两班成绩优秀的学生人数分别为:40×30%=12(人),40×25%=10(人),∴从A,B两班共80人中随机抽取一人成绩为优秀的概率为=;(3)九A班的整体水平较高,理由如下:①九A班的中位数大于九B班的中位数;②九A班的优秀率大于九B班的优秀率;③九A班的方差小于九B班的方差,因此九A班的成绩更稳定.21.已知二次函数y=ax2﹣4ax+c的最小值为﹣1.其图象与x轴交于A,B两点(点B在点A右侧),与y轴交于(0,3).(1)求二次函数表达式.(2)将线段OB向右平移m个单位,向上平移n个单位至O'B'(m,n均为正数),若点O',B'均落在此二次函数图象上,求m,n的值.【分析】(1)用顶点式结合待定系数法可解答案;(2)根据二次函数的对称性结合平移的规律可解答案.解:(1)∵二次函数y=ax2﹣4ax+c的最小值为﹣1,∴对称轴为直线x=﹣=2,顶点(2,﹣1),∴y=a(x﹣2)2﹣1,代入(0,3).解得a=1,∴y=(x﹣2)2﹣1=x2﹣4x+3.(2)y=x2﹣4x+3=0,解得x=1或3,∴A(1,0),B(3,0),∴OB=O'B'=3,又∵对称轴为直线x=﹣=2,O',B'均落在此二次函数图象上,∴O',B'到对称轴的距离为,∴m=2+﹣3=,n=﹣1=.22.如图,在Rt△ABC中,∠ABC=90°,点D是斜边AC的中点,点E为BC边上一点,以BE为直径的半圆恰好经过点D,且交线段CD于点F,连接BD,BF.(1)求证:BF=BA;(2)若AF=6,cos A=.求直径BE的长.【分析】(1)连接DE,根据直角三角形的性质及直角的定义得出∠DEB=∠DBA=∠A,再根据同圆中同弧所对的圆周角相等得到∠DEB=∠DFB,则∠DFB=∠A,再根据等角对等边即可得解;(2)过点B作BH⊥AF于点F,根据直角三角形的性质得到AH=3,解直角三角形得到AB=4,设DE=3x,则BE=4x,BD=x,AD=BD=x,根据勾股定理求出x,据此即可得解.【解答】(1)证明:连接DE,∵∠ABC=90°,点D是斜边AC的中点,∴AD=BD,∴∠A=∠DBA,∵BE是直径,∴∠EDB=90°,∴∠DEB+∠DBE=90°,∵∠DBA+∠DBE=90°,∴∠DEB=∠DBA=∠A,∵∠DEB=∠DFB,∴∠DFB=∠A,∴BF=BA;(2)解:过点B作BH⊥AF于点F,由(1)知,BF=BA,∴AH=AF=3,∵cos A=,∴AB===4,∴BH===,由(1)得,∠DEB=∠A,∴cos∠DEB=cos A=,设DE=3x,则BE=4x,BD=x,∴AD=BD=x,在Rt△BDH中,BD2=DH2+BH2,即=+,解得,x=,∴BE=4x=.23.某工厂生产A,B两种型号的环保产品,A产品每件利润200元,B产品每件利润500元,该工厂按计划每天生产两种产品共50件,其中A产品的总利润比B产品少4000元.(1)求该厂每天生产A产品和B产品各多少件.(2)据市场调查,B产品的需求量较大,该厂决定在日总产量不变的前提下增加B产品的生产,但B产品相比原计划每多生产一件,每件利润便降低10元.设该厂实际生产B 产品的数量比原计划多x件,每天生产A,B产品获得的总利润为w.①若实际生产B产品的数量不少于A产品数量的1.2倍,求总利润w的最大值.②若每生产一件环保产品,政府给予a元(a为整数)的补贴,在此前提下,经核算,存在5种不同的生产方案使得该厂每日利润不少于17200元,试求a的值.【分析】(1)设每天生产A产品x件,则每天生产B产品(50﹣x)件,由题意列出方程可得答案;(2)①根据题意列出不等式可得x的取值范围,再结合二次函数的增减性可得答案;②由题意得,w=﹣10x2+100x+16000+50a,根据对称轴可得w=16000+160+50a<17200①,w=16000+210+50a≥17200②,解得可得答案.解:(1)设每天生产A产品x件,则每天生产B产品(50﹣x)件,由题意得:500(50﹣x)﹣200x=4000,解得x=30,50﹣30=20(件),答:每天生产A产品30件,生产B产品20件;(2)①由题意得,20+x≥1.2(30﹣x),解得x≥,w=(500﹣10x)(20+x)+200(30﹣x)=﹣10x2+100x+16000,∴对称轴为x=﹣=5,在对称轴的右侧,w随x的增大而减小,∴当x=8时,w最大值为16160元;②由题意得,w=﹣10x2+100x+16000+50a,∵对称轴为x=5,∴当x=3,4,5,6,7时,利润不少于17200元,即当x=2时,w=16000+160+50a<17200①,当x=3时,w=16000+210+50a≥17200②,综合①和②,解得19.8≤a≤20.8,∵a为整数,∴a=20.24.如图,在矩形ABCD中,AB=8,O是对角线AC的中点,P是线段AB上一点,射线PO交CD于点Q,交AD延长线于点E,连结CE,在CE上取点F,使FQ=CQ,设AP =x(x>4),(1)连结DB,当x=时,判断四边形EDBC是否为平行四边形,并说明理由.(2)当x=6时,若FQ平行△ACB的某一边,求AD的长.(3)若EA=EC,分别记△FQC和△EDC的面积为S1和S2,且=,求的值.【分析】(1)由题意易得CD=AB=8,CD∥AB,DA∥CB,DA=CB,则有∠DCA=∠CAB,进而可得△COQ≌△AOP,则CQ=AP=,然后可得△EDQ∽△EAP,则可得ED=DA,然后问题可求解;(2)分类讨论:①当FQ∥BC时,通过等腰直角三角形得到△EDQ∽△EAP,然后根据相似三角形的性质求解;②当FQ∥AC时,作DH∥FC交AC于点H,得到△QFC∽△CDH,然后根据相似三角形的性质求解;(3)过点Q作QN⊥CF于点N,根据题意得到△CNQ和S1的比值,然后得到CN:CD 的比值,从而求出CN,进而可得DQ=QN=m,CQ=8﹣m,然后根据勾股定理求解.解:(1)四边形EDBC是平行四边形,理由如下:∵四边形ABCD是矩形,AB=8,∴CD=AB=8,CD∥AB,DA∥BC,DA=CB,∴∠DCA=∠CAB,∵点O是对角线AC的中点,∴OA=OC,∵∠QOC=∠AOP,∴△COQ≌△AOP(ASA),∴CQ=AP=,∴DQ=8﹣=,∵CD∥BA,∴△EDQ∽△EAP,∴,∴ED=DA,∴ED=CB,∴四边形EDBC是平行四边形.(2)由(1)及题意得:CQ=AP=6,①如图1,当FQ∥BC时,则∠FQC=∠QCB=90°,∴∠FCQ=45°,∴△FQC、△EDC为等腰直角三角形,∴ED=DC=8,FQ=QC=6,∴DQ=2,∵△EDQ∽△EAP,∴,∴EA=24,∴AD=24﹣8=16;②如图2,当FQ∥AC时,作DH∥FC交AC于点H,∴∠FQC=∠HCD,∠FCQ=∠HDC,∴△QFC∽△CDH,∴CD=CH=8,∵△EDQ∽△EAP,DQ=CD﹣CQ=8﹣6=2,∴,∵DH∥EC,∴,∴AC=24,∴AD==16,综上所述,AD=16或AD=16.(3)如图3,过点Q作QN⊥CF于点N,则∠QNC=∠EDC=90°,∵∠NCQ=∠ECD,∴△CNQ∽△CDE,∵FQ=CQ,∴CN=FN,∴,∵=,∴,∴,∴CN=4,∵EA=EC,OA=OC,∴EO是∠EAC的角平分线,∴DQ=QN=m,∴AP=CQ=8﹣m,在Rt△CNQ中,CN2+QN2=CQ2,即42+m2=(8﹣m)2,解得:m=3,∴DQ=3,AP=CQ=8﹣3=5,∴,∴.。
2021年中考数学第三次模拟考试试卷及答案
第1页(共4页)2021年中考数学第三次模拟考试题参考答案一.选择题(共10小题)1.C .2.D .3.A .4.C .5.A .6.D .7.A .8.D .9.C .10.B .二.填空题(共7小题)11.2460x x -+=.12.10x =,22x =.13.5-.14.2020.15.4.16.x (x +0.7)=0.98.17.312y y y <<.三.解答题(共8小题)18.解:移项得2224x x -=,配方得221124x x -+=+,即2(1)25x -=,开方得15x -=±,16x ∴=,24x =-.19.解:22223(21)13(1)4y x x x x x =--=-+--=--,∴顶点坐标为(1,4)-,对称轴为1x =.20.解: 关于x 的方程22210x x m -+-=有实数根,)12(442≥--=-m ac b 4解得:1≤m ,m 为正整数,1m ∴=,21.解:(1)设这两年该校植树棵数的年平均增长率为x ,根据题意得:2500(1)720x +=,解得:10.220%x ==,2 2.2x =-(不合题意,舍去).答:这两年该校植树棵数的年平均增长率为20%.(2)720(120%)864⨯+=(棵).答:该校第四年植树864棵.第2页(共4页)22.解:(1)(505)x -.(2)依题意,得:(1812)(505)275x x -+-=,整理,得:2450x x --=,解得:11x =-,25x =.当1x =-时,1817x +=,符合题意;当5x =时,182322x +=>,不符合题意,舍去.答:该商场每袋口罩的售价要定为17元.23.解:(1) 抛物线23y ax bx =++经过点(3,0)A 和点(4,3)B .∴933016433a b a b ++=⎧⎨++=⎩,解得14a b =⎧⎨=-⎩,∴这条抛物线所对应的二次函数的表达式为243y x x =-+;(2)把x =3代入243y x x =-+得,y =0≠1,所以,点A (3,1)不在该抛物线上.24.解:(1)4260x x --=设2x y =,则原方程可化为260y y --=,解得13y =,22y =-(舍去),当3y =时,23x =,x ∴=∴原方程的解为x =;(2)222()()6x x x x +++=设2x x y +=,则原方程可化为26y y +=,解得13y =-(舍去),22y =,当2y =时,22x x +=,解得12x =-,21x =,所以原方程的解为12x =-,21x =.25.解:(1)如图1, 四边形ABCD 是矩形,6AB CD ∴==,2AD BC ==,90A B C D ∠=∠=∠=∠=︒.第3页(共4页)1CQ cm = ,2AP cm =,624AB cm ∴=-=.22(14)52S cm +∴==.答:四边形BCQP 面积是25cm ;(2)如图1,作QE AB ⊥于E ,90PEQ ∴∠=︒,90B C ∠=∠=︒ ,∴四边形BCQE 是矩形,2QE BC cm ∴==,BE CQ t ==.2AP t = ,6263PE t t t ∴=--=-.在Rt PQE ∆中,由勾股定理,得2(63)49t -+=,解得:653t ±=.如图2,作PE CD ⊥于E ,90PEQ ∴∠=︒.90B C ∠=∠=︒ ,∴四边形BCQE 是矩形,2PE BC cm ∴==,62BP CE t ==-.CQ t = ,(62)36QE t t t ∴=--=-在Rt PEQ ∆中,由勾股定理,得2(36)49t -+=,解得:653t ±=.综上所述:63t -=或63;(3)如图3,当PQ DQ =时,作QE AB ⊥于E ,90PEQ ∴∠=︒,90B C ∠=∠=︒ ,∴四边形BCQE 是矩形,2QE BC cm ∴==,BE CQ t ==.2AP t = ,6263PE t t t ∴=--=-.6DQ t =-.PQ DQ = ,6PQ t ∴=-.在Rt PQE ∆中,由勾股定理,得22(63)4(6)t t -+=-,解得:372t ±=.如图4,当PD PQ =时,作PE DQ ⊥于E ,12DE QE DQ ∴==,90PED ∠=︒.90B C ∠=∠=︒ ,∴四边形BCQE 是矩形,2PE BC cm ∴==.第4页(共4页)6DQ t =- ,62t DE -∴=.622t t -∴=,解得:65t =;如图5,当PD QD =时,2AP t = ,CQ t =,6DQ t ∴=-,6PD t ∴=-.在Rt APD ∆中,由勾股定理,得2244(6)t t +=-,解得162333t -+=,262333t --=(舍去).综上所述:372t +=,372-,65,62333-+.故答案为:32,32,65,63-+.。
2021年浙江省中考数学第三次模拟考试试卷附解析
2021年浙江省中考数学第三次模拟考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如果α、β都是锐角,下面式子中正确的是( )A .sin (α+β)=sin α+sin βB .cos (α+β)=21时,则α+β=600C .若α≥β时,则cos α≥cos βD .若cos α>sin β,则α+β>9002. 如图,四边形 EFGD 是△ABC 的内接矩形,已知高线 AH 长 8 ㎝,底边 BC 长 10cm ,设 DG=x (cm ) , DE=y ( cm ) ,那么y 与x 的函数关系式为( )A .45y x =B .54y x =C .485y x =-D .584y x =-3.下列命题不正确的是( )A . 所有等边三角形都相似B .所有等腰直角三角形都相似C . 有一个角等于 40°的二个等腰三角形相似D . 有一个锐角对应相等的二个直角三角形相似4. 一个二次函数,当x=0时,y=-5;当x=-1时,y=-4;当x=-2时,y=5,则这个二 次函数的关系式是( )A .y=4x 2-3x-5B .y=4x 2+3x+5C .y=4x 2-3x+5D .y=4x 2+3x-55. 由函数y =5x 2的图像先向左平移1个单位,再向上平移2个单位得到的抛物线是( )A . y=5(x -1)2+2B .y =(x -1)2+2C .y =5(x -1)2+2D .y =5(x +1)2-26.如图,已知直线AB ∥CD ,∠C=72°,且BE=EF ,则∠E 等于( )A . 18°B .36°C .54°D . 72°7.一个锐角的补角与这个角的余角的差是( )A .锐角B .直角C .钝角D .平角 8.若方程3(2x-1)=2-3x 的解与关于x 的方程622(3)k x -=+的解相同,则k 的值为( )A .59B .59-C .53D .53-9.如图,每个小正方形的边长都是1,图中A 、B 、C 、D 、E 五个点分别为小正方形的顶点,则下列说法不正确的是( )A .△ABE 的面积为 3B .△ABD 的面积是4. 5C .线段 BE 与 DE 相等D .四边形 BCDE 不可能是正方形10.如图所示是人字形屋架的设计图,由AB 、AC 、AD 、BC 四根钢条焊接而成,其中A 、B 、C 、D 均为焊接点,现在焊接所需要的四根钢条已截好,且已标出BC 的中点D ,如果焊接工身边只有检验直角的角尺,那么为了准确快速度地焊接,他首先应取的两根钢条及焊接点是 ( ) A .AB 和BC ,焊接点BB .AB 和AC ,焊接点A C .AD 和BC ,焊接点D D .AB 和AD ,焊接点A二、填空题 11.某单位内线电话的号码由 3 个数字组成,每个数字可以是 1,2,3 的一个,如果不知道某人的内线电话号码,任意拨一个号码接通的概率是 .12.在Rt △ABC 中,∠C=90°,a=3,b=4,则c= ,tanA= .13.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为 米(结果用含α的三角比表示). 14.边长为 10 的等边三角形外接圆直径是 .15.某集团公司计划生产化肥 500t ,则每天生产化肥 y(t)与生产天数 x(天)之间的函数 .16.如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是 .17.点A(2,0)到点B(-4,0)的距离是 .18.一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:1u +1v=1f .若f =6厘米,v =8厘米,则物距u =________厘米. 19.如图,平移线段AB 到A ′B ′的位置,则AB=_________,A ′B ′∥__________,•_______=BB ′.20.计算:11211 4.5352553-+-+-= . 三、解答题21.某立体图形的三视图如图,请你画出它的立体图形:22.如图,已知AEAC DE BC AD AB ==,试说明∠BAD=∠CAE .23.现将三张形状、大小完全相同的平行四边形透明纸片,分别放在方格纸中,方格纸中的每个小正方形的边长均为 1,并且平行四边形纸片的每个顶点与小正方形的顶点重合(如图①、②、③).分别在图①、图②、图③中,经过平行四边形纸片的任意一个顶点画一条裁剪线,沿此裁剪线将平行四边形纸片裁成两部分,并把这两部分重新拼成符合下列要求的几何图形.要求如下(1)在左边的平行四边形纸片中画一条裁剪线,然后在右边相对应的方格纸中,按实际大小画出所拼成的符合要求的几何图形;(2)裁成的两部分在拼成几何图形时要互不重叠且不留空隙;AB C E D(3)所画出的几何图形的各顶点必须与小正方形的顶点重合.24.如图,在ΔABC 中,AB=AC,∠BAC=900,直角∠EPF 的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F .⑴求证:AE=CF ;⑵是否还有其他结论,不要求证明(至少写出2个).25.如图,请你用三种方法把左边的小正方形分别平移到右边的三个图形中,使它成为轴对称图形.P F E C B A26.分解因式:(1)2222236(9)m n m n-+;(2)2221a ab b++-27.如果12xy=⎧⎨=-⎩是方程组2513x aybx y-=⎧⎨=-⎩解,求a b+的值.17228.下列各图中,有∠1和∠2是对顶角的图吗?若没有请画一对对顶角.29.某商场进了一批布,出售时要在进价的基础上加一定的利润,其数量x与售价y如下表:数量x(米)1234…售价y(元)8+0.316+0.624+0.932+1.2…(1)(2)某日,该商场出售此种布的总价为2158元,问总共卖了多少米布?30.如图所示,长方形ABCD与长方形BEFG等长等宽,如将长方形BEFG向右平移,距离为EF,长方形ABCD向右平移距离为3个BC,则恰好构成新长方形AEPQ,若AEPQ周长为56,求长方形AEPQ的面积.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.C4.D5.C6.B7.B8.B9.D10.C二、填空题12712. 5,43 13.20sin α14.203315. 500y x=16. AD=BC17.618.2419.A ′B ′,AB ,AA ’20.11515-三、解答题21.22.∵AEAC DE BC AD AB == ,∴△ABC ∽△ADE ,∴∠BAC=∠DAE , ∴∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE .23.略24.(1)连结AP ,证明△APE ≌△CFP ,利用直角∠EPF 和直角∠APC 可证∠APE=∠FPC ,利用AP=PC ,∠EAP=∠C=45°;(2)BE=AF ,EP=PF 等等.如图:26.(1)22(3)(3)m n m n --+;(2)(1)(1)a b a b +++- 27. 17228. 没有,图略 29.(1)8.3y x = (2)260 米 30. 192。
中考数学三模试卷(含答案)
中考数学三模试卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.(3分)(﹣)0=()A.1B.0C.﹣D.﹣32.(3分)如图是由5个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.3.(3分)如图,AB∥CD,∠B=80°,∠D=45°,则∠E的度数为()A.34°B.35°C.36°D.37°4.(3分)已知正比例函数y=kx的图象经过第二、四象限,点P(m,n)是其图象上的点,且当﹣1≤m ≤1时﹣2≤n≤2,则k的值为()A.﹣B.C.﹣2D.25.(3分)下列运算正确的是()A.x2+x2=x4B.(x2)3=x5C.(x﹣3)2=x2﹣9D.2x3y2÷x2=2xy26.(3分)如图,△ABC中,AB=AC,AD是△ABC的中线,E是AC的中点,连接DE,若BC=6,AD =2,则DE=()A.B.C.D.7.(3分)在同一平面直角坐标系内,若直线y=2x+1与直线y=kx﹣k的交点在第二象限,则k的取值范围是()A.k<﹣1B.﹣1<k<0C.0<k<1D.k>18.(3分)如图,在矩形ABCD中,AB=m,BC=6,点E在边CD上,且CE=m.连接BE,将△BCE 沿BE折叠,点C的对应点C'恰好落在边AD上,则m=()A.3B.2C.D.59.(3分)如图,△ABC是⊙O的内接三角形,且AB=AC,∠ABC=56°,⊙O的直径CD交AB于点E,则∠AED的度数为()A.99°B.100°C.101°D.102°10.(3分)在平面直角坐标系中,点P的坐标为(1,2),将抛物线y=x2﹣3x+2沿坐标轴平移一次,使其经过点P,则平移的最短距离为()A.B.1C.5D.二、填空题(共4小题,每题3分,共12分)11.(3分)比较大小:﹣﹣.12.(3分)若正多边形的一个中心角为40°,则这个正多边形的一个内角等于.13.(3分)如图,菱形OABC中,AB=4,∠AOC=30°,OB所在直线为反比例函数y=的对称轴,当反比例函数y=(x<0)的图象经过A、C两点时,k的值为.14.(3分)如图,△ABC中,AB=AC=10,tan A=3,CD⊥AB于点D,点E是线段CD的一个动点,则BE+CE的最小值是.三、解答题(共11小题,共78分,解答应写出过程)15.计算:÷﹣|2﹣3|+(﹣)﹣3.16.解方程:=﹣1.17.如图,已知△ABC,P为AB上一点,请用尺规作图的方法在AC上找一点Q,使得AQ+PQ=AC(保留作图痕迹,不写作法).18.如图,∠C=∠E,AC=AE,点D在BC边上,∠1=∠2,AC和DE相交于点O.求证:△ABC≌△ADE.19.2020年伊始,全国发生了传播速度快、感染范围广、防控难度大的新冠肺炎疫情.根据教育部提出的2020年春节延期开学,“停课不停学”的相关要求,很多学校开展了线上授课相关工作.为了更好地提高学生线上授课的效果,某中学进行了线上授课问卷调查.其中一项调查是:你认为影响师生互动的最主要因素是A.教师的授课理念;B.网络配麦等硬件问题;C.科目特点;D.学生的配合情况,针对这个题目,问卷时要求每位同学必须且只能选择其中一项.现随机抽取了若干名学生的调查问卷,将所得数据进行整理,制成如图条形统计图和扇形统计图.请你根据以上提供的信息,解答下列问题:(1)补全如图的条形统计图和扇形统计图;(2)所抽取学生中认为影响师生互动最主要因素的众数为;(3)已知该校有2400名学生,请你估计该校学生中认为影响师生互动的最主要因素是C.科目特点的有多少人?20.在炎热的夏季,遮阳伞在我们的生活中随处可见.如图①,滑动调节式遮阳伞的立柱AC直于地面AB,点P为立柱上的滑动调节点,伞体的截面示意图为△PDE,F为PD中点,PD=2m,CF=1m,∠DPE =22°.当点P位于初始位置P0时,点D与C重合(如图②).根据生活经验,当太阳光线与PE垂直时,遮阳效果最佳.已知太阳光线与地面的夹角为65°(如图③),为使遮阳效果最佳,点P需从P0上调多少米?(结果精确到0.1m)(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)21.已知A,B两地相距200km,甲、乙两辆货车装满货物分别从A,B两地相向而行,图中l1,l2分别表示甲、乙两辆货车离A地的距离s(km)与行驶时间t(h)之间的函数关系.请你根据以上信息,解答下列问题:(1)分别求出直线l1,l2所对应的函数关系式;(2)何时甲货车离B地的距离大于乙货车离B地的距离?22.为了丰富校园生活,展现同学们英语表达的风采,某校组织了“英语风采大赛”,大赛共设置四个比赛项目.八年级六班的同学们踊跃报名,在“才艺表演”项目中,小怡报名表演古筝,小宏报名表演小提琴,小童报名表演笛子,小灿和小源报名唱英文歌曲.为了取得良好的节目效果,体现公平公正.文体委员决定采用以下方法搭配组合节目:制作5张完全相同的卡片,正面分别写上报名参加比赛同学的姓名,将卡片反面朝上洗匀,然后随机抽取卡片,卡片正面是谁的名字,谁就代表班级参加比赛.(1)随机抽取一张卡片,求六班才艺表演项目是“乐器独奏”的概率;(2)随机抽取两张卡片,请用树状图或列表法求小宏和小灿组合参加比赛的概率.(注:可以用A,B,C,D,E分别表示小怡,小宏,小童,小灿,小源的名字)23.如图,四边形ABCD内接于⊙O,BC为⊙O的直径,⊙O的切线AP与CB的延长线交于点P.(1)求证:∠P AB=∠ACB;(2)若AB=12,cos∠ADB=,求PB的长.24.如图,二次函数y=﹣x2﹣x的图象经过△AOB的三个顶点,其中A(1,m),B(﹣2,n)(1)求点A,B的坐标;(2)在第三象限存在点C,使以A、O、B、C为顶点的四边形是平行四边形,求满足条件的点C的坐标;(3)在(2)的条件下,能否将抛物线y=﹣x2﹣x平移后经过A、C两点,若能求出平移后经过A、C两点的拋物线的表达式,并写出平移过程.若不能,请说明理由.25.问题提出:(1)如图①,在Rt△ABC中,∠C=90°,AB=13,BC=5,则tan A的值是.(2)如图②,在正方形ABCD中,AB=5,点E是平面上一动点,且BE=2,连接CE,在CE上方作正方形EFGC,求线段CF的最大值.问题解决:(3)如图③,⊙O半径为6,在Rt△ABC中,∠B=90°,点A,B在⊙O上,点C在⊙O内,且tan A =.当点A在圆上运动时,求线段OC的最小值.2020年陕西师大附中中考数学三模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.【解答】解:(﹣)0=1.故选:A.2.【解答】解:从正面看去,一共三列,左边有2竖列,中间有1竖列,右边是1竖列.故选:C.3.【解答】解:设CD与BE交于点F,如图所示:∵AB∥CD,∠B=80°,∴∠EFC=∠B=80°,∵∠EFC=∠D+∠E,∠D=45°,∴∠E=∠EFC﹣∠D=80°﹣45°=35°,故选:B.4.【解答】解:∵正比例函数y=kx的图象经过第二、四象限,∴k<0,y随x的增大而减小,∵点P(m,n)是其图象上的点,∴km=n,∵当﹣1≤m≤1时﹣2≤n≤2,∴当m=﹣1时,n=2;当m=1时,n=﹣2,∴k=﹣2故选:C.5.【解答】解:A、x2+x2=2x2,故此选项错误;B、(x2)3=x6,故此选项错误;C、(x﹣3)2=x2﹣6x+9,故此选项错误;D、2x3y2÷x2=2xy2,正确.故选:D.6.【解答】解:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∴∠ADC=90°.在Rt△ACD中,∠ADC=90°,AD=2,CD=BC=3,∴AC==.又∵E是AC的中点,∠ADC=90°,∴DE=AC=.故选:C.7.【解答】解:解析式联立,解得:,∵交点在第二象限∴,解得﹣1<k<0故选:B.8.【解答】解:设AC'=x,∵四边形ABCD是矩形,∴AD=BC=6,CD=AB=m,∠A=∠D=90°.∵将△BCE沿BE折叠,点C的对应点C'恰好落在边AD上,∴BC'=BC=6,C'E=CE=m,DE=CD﹣CE=m﹣m=m.在Rt△ABC'中,由勾股定理得:AC'2+AB2=BC'2,即x2+m2=62,在Rt△DEC'中,由勾股定理得:C'E2=DE2+DC'2,即(m)2=(m)2+(6﹣x)2,化简得:3(6﹣x)2=m2,代入x2+m2=62中得:3(6﹣x)2=62﹣x2,解得:x=3,或x=6.当x=3时,m=3或﹣3(舍去);当x=6时,m=0(舍去);∴m=3;故选:A.9.【解答】解:连接AD,∵AB=AC,∴∠ACB=∠ABC=56°,∴∠BAC=180°﹣56°×2=68°,由圆周角定理得,∠ADC=∠ABC=56°,∵CD为⊙O的直径,∴∠DAC=90°,∴∠ACD=90°﹣∠ADC=34°,∴∠AED=∠BAC+∠ACD=68°+34°=102°,故选:D.10.【解答】解:y=x2﹣3x+2=(x﹣3)2﹣,当沿水平方向平移时,纵坐标和P的纵坐标相同,把y=2代入y=x2﹣3x+2得:2=x2﹣3x+2,解得:x=0或6,平移的最短距离是1﹣0=1,当沿竖直方向平移时,横坐标和P的横坐标相同,把x=1代入y=x2﹣3x+2得:y=×12﹣3×1+2=﹣,平移的最短距离是2+=,即平移的最短距离是1,故选:B.二、填空题(共4小题,每题3分,共12分)11.【解答】解:∵≈﹣1.41,﹣=﹣1.5,∴﹣>﹣.故答案为:>.12.【解答】解:∵正多边形的一个中心角为40°,∴360°÷40°=9,∴这个正多边形是正九边形,∴这个正九边形的一个内角等于:=140°.故答案为:140°.13.【解答】解:作CD⊥x轴于D,∵菱形OABC中,∠AOC=30°,∴∠BOC=15°,∵OB所在直线为反比例函数y=的对称轴,∴∠BOD=45°,∴∠COD=30°,∵OC=AB=4,∴OD=OC=2,CD=OC=2,∴C(﹣2,2),∵反比例函数y=(x<0)的图象经过C点,∴k=﹣2×2=﹣4,故答案为﹣4.14.【解答】解:如图,作EF⊥AC于F,∵CD⊥AB,∴∠ADC=90°,∵tan A=,设AD=a,CD=3a,∵AD2+CD2=AC2,∴a2+9a2=100,∴a2=10,∴a=或﹣(舍去),∴AD=a=,CD=3a=3,∴sin∠ACD=,∴EF=CE•sin∠ECF=CE,∴BE+CE=BE+EF,当B、E、F三点共线时,BE+CE=BE+EF=BF,此时BF⊥AC,则根据垂线段最短性质知BE+CE=BF值最小,此时BF=AB•sin∠A=10×.三、解答题(共11小题,共78分,解答应写出过程)15.【解答】解:原式=+2﹣3+(﹣8)=+2﹣3﹣8=﹣11.16.【解答】解:方程两边同乘以(x﹣2)(x+3)得(x+1)(x+3)=2x(x﹣2)﹣(x﹣2)(x+3),x2+4x+3=2x2﹣4x﹣x2﹣x+6,解得:,经检验为原方程的根.17.【解答】解:如图,点Q即为所求.18.【解答】证明:∵∠ADC=∠1+∠B,即∠ADE+∠2=∠1+∠B,而∠1=∠2,∴∠ADE=∠B,在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).19.【解答】解:(1)一共调查了6÷5%=120名学生,选择D的学生数有120﹣18﹣36﹣6=60,A:15%,B:30%;补全如图的条形统计图和扇形统计图;(2)所抽取学生中认为影响师生互动最主要因素的众数为:学生的配合情况,故答案为:学生的配合情况;(3)2400×5%=120(人)答:该校学生中认为影响师生互动的最主要因素是C.科目特点的约120人.20.【解答】解:已知当点P位于初始位置P0时,CP0=2,如图,当点P上调至图中的位置时,∵∠1=90°,∠CAB=90°,∠ABE=65°,∠APE=115°,∴∠CPE=180°﹣∠APE=65°,∵∠DPE=22°,∴∠CPF=43°,∵,△CPF为等腰三角形,过点F作FG⊥CP于点G,∴在Rt△FGP中,GP=PF•cos43°=1×0.73=0.73,∴CP=2GP=1.46,∴P0P=CP0﹣CP=2﹣1.46≈0.5所以点P需上调0.5m.21.【解答】解:(1)设l1对应的函数关系式为s1=k1t,∵l1过点(6,200),∴200=6k,得k1=,即l1对应的函数关系式为s1=t;设l2对应的函数关系式为s2=k2t+200,∵l2过点(5,0),∴0=5k2+200,得k2=﹣40,即l2所对应的函数关系式为s2=﹣40t+200;(2)由题意可得,s1<s2,则t<﹣40t+200,解得,,答:前甲货车离B地的距离大于乙货车离B地的距离22.【解答】解:(1)随机抽取一张卡片,共有5种等可能结果,其中才艺表演项目是“乐器独奏”的共有3种,∴才艺表演项目是“乐器独奏”的概率=.(2)列表如下:A B C D EA(A,B)(A,C)(A,D)(A,E)B(B,A)(B,C)(B,D)(B,E)C(C,A)(C,B)(C,D)(C,E)D(D,A)(D,B)(D,C)(D,E)E(E,A)(E,B)(E,C)(E,D)共有20种等可能的情况,其中小宏和小灿组合参加比赛的结果有2种,所以P(小宏和小灿组合参加比赛)=.23.【解答】解:(1)证明:如图,连接OA,∵AP为⊙O的切线,∴OA⊥AP,∴∠OAP=90°,∴∠OAB+∠P AB=90°,∵OA=OB,∴∠OAB=∠OBA,∴∠OBA+∠P AB=90°,∵BC为⊙O的直径,∴∠ACB+∠OBA=90°,∴∠P AB=∠ACB;(2)由(1)知∵∠P AB=∠ACB,且∠ADB=∠ACB,∴∠P AB=∠ACB=∠ADB,∴,∵AB=12,∴AC=16,∴,∴OB=10,过B作BF⊥AP于F,∵∠ADB=∠F AB,,∴,∴,∴在Rt△ABF中,,∵OA⊥AP,BF⊥AP,∴BF∥OA,∴△PBF∽△POA,∴,∴,∴.答:PB的长为.24.【解答】解:(1)∵的图象过点A(1,m),∴,同理:,∴A(1,﹣1),B(﹣2,﹣2);(2)如图,分别过△AOB的三个顶点作对边的平行线,三条平行线两两相交于点C1,C2,C3.因此,四边形AOC1B,四边形AOBC2,四边形OBAC3为平行四边形.∵O(0,0),A(1,﹣1),B(﹣2,﹣2),∴C1(﹣3,﹣1),C2(﹣1,﹣3),C3(3,1),因此,满足条件的点C坐标为(﹣3,﹣1),(﹣1,﹣3).(3)能.①∵A(1,﹣1),C1(﹣3,﹣1),设经过A,C1两点的抛物线的表达式为,依题意,得,解得,∴经过A,C1两点的抛物线的表达式为,∴该抛物线的顶点坐标为,而原抛物线顶点坐标为,∴将原抛物线先向左平移个单位,再向上平移个单位即可获得符合条件的抛物线;②当平移后的抛物线经过A,C2两点时,∵OA∥BC2,OA=BC2,O(0,0),A(1,﹣1),∴将O点向右平移1个单位再向下平移1个单位使点O移到A点,这时点B随着原抛物线平移到C2点.∴经过A,C2两点的抛物线的表达式为.即.∴将原抛物线先向右平移1个单位,再向下平移1个单位即可获得符合条件的抛物线.25.【解答】解:(1)∵Rt△ABC中,∠C=90°,AB=13,BC=5,∴AC===12,∴tan A==,故答案为:;(2)∵BE=2,点B为定点,∴点E在以B为圆心,BE长为半径的圆上运动,∴当C、B、E三点共线,且E在CB的延长线上时,线段CE取得最大值,∵在正方形ABCD中,AB=5,∴BC=AB=5,∴CE最大=BC+BE=5+2=7,∵四边形EFGC是正方形,∴CE最大时,CF最大,CF=CE,∴线段CF的最大值为:×7=7;(3)延长BC交⊙O于点F,连接AF,如图③所示:∵∠B=90°,∴AF为⊙O的直径经过点O,AF=2×6=12,∵tan A=,∴∠CAB、∠ACB为定值,∴∠ACF为定值,∴当OC⊥AF时,OC值最小,设BC=3x,则AB=4x,x>0,∵OC⊥AF,OA=OF,∴FC=AC===5x,∴BF=CF+BC=5x+3x=8x,在Rt△ABF中,AF2=AB2+BF2,即122=(4x)2+(8x)2,解得:x2=,∴AC2=(5x)2=25×=45,∴在Rt△AOC中,OC===3,∴线段OC的最小值是3.。
2021年陕西省西安市灞桥区铁一中滨河中学中考数学三模试卷(解析版)
2021年陕西省西安市灞桥区铁一中滨河中学中考数学三模试卷一.选拜题(共10小题).1.计算(﹣)0=()A.B.﹣C.1D.﹣2.如图所示几何体的俯视图是()A.B.C.D.3.如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=30°,则∠2等于()A.30°B.40°C.50°D.60°4.若正比例函数y=kx的图象经过第一、三象限,且过点A(m,1)和B(2,m),则k的值为()A.﹣B.C.﹣1D.15.下列计算正确的是()A.x2+x2=x4B.(﹣2xy3)2=4x2y3C.(﹣2a﹣3)(2a﹣3)=9﹣4a2D.(2a﹣b)2=4a2﹣2ab+b26.在△ABC中,∠C=90°,BC=16cm,∠A的平分线AD交BC于D,且CD:DB=3:5,则点D到AB的距离等于()A.6cm B.7cm C.8cm D.9cm7.在平面直角坐标系中,将直线y=kx﹣6沿x轴向左平移3个单位后恰好经过原点,则k 的值为()A.﹣2B.2C.﹣3D.38.如图,矩形ABCD中,AB>AD,AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N,G为MN的中点,GH⊥MN交CD于点H,且DM=a,GH=b,则CN的值为(用含a、b的代数式表示)()A.2a+b B.a+2b C.a+b D.2a+2b9.如图,AB是⊙O的直径,C、D为⊙O上的点,弧AD=弧CD,若∠CAB=40°,则∠CAD=()A.30°B.40°C.50°D.25°10.二次函数y=(x﹣1)2+(x﹣3)2与y=(x+a)2+(x+b)2的图象关于y轴对称,则(a+1)2+(1+b)2的值为()A.9B.10C.20D.25二.填空题(共4小题,每题3分,计12分)11.下列各数:,,5.12,﹣,0,,3.1415926,,﹣,2.181181118…(两个8之间1的个数逐次多1).其中是无理数的有个.12.如果一个多边形的每一个外角都等于60°,则它的内角和是.13.如图,矩形ABCD的两边AD,AB的长分别为3、8,E是DC的中点,反比例函数的图象经过点E,与AB交于点F.若AF﹣AE=2,则反比例函数的表达式为.14.如图,四边形OABC是边长为6的正方形,D点坐标为(4,﹣1),BE=OB,直线l过A、C两点,P是l上一动点,当|EP﹣DP|的值最大时,P点的坐标为.三.解答题(共11小题,计78分)15.计算:(﹣1)2020+|1﹣|﹣2cos45°﹣()﹣1.16.计算:(x﹣3﹣)÷.17.尺规作图:如图,在矩形ABCD中,分别在AD、BC上作点E、F,使四边形BEDF是菱形(不写作法,保留作图痕迹).18.如图,等边△ABC中,D是AB上一点,以CD为边向上作等边△CDE,连接AE.(1)求证:△BCD≌△ACE;(2)求证:AE∥BC.19.为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如图统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有人?在如图扇形统计图中A等级所对应的圆心角度数为度.(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?20.如图,小华和同班秋游时,发现在某地小山坡的点E处有一棵小树.他们想利用皮尺、倾角器和平面镜测量小树到山脚下的距离(即DE的长度),小华站在点B处,让同班移动平面镜至点C处,此时小华在平面镜内可以看到点E.且测得BC=2米,CD=59米,∠CDE=120°.已知小华的身高AB=1.6米,请根据以上数据,求DE的长度.(结果保留根号)21.某市为鼓励市民节约用水和加强对节水的管理,制订了以下每年每户用水的收费标准:①用水量不超过220立方米时,每立方米收费1.92元,并加收每立方米1.53元的污水处理费;②用水量超过220立方米时,在①的基础上,超过220立方米的部分,每立方米收费3.30元,井加收每立方米1.53元污水处理费.设某户一年的用水量为x立方米,应交水费y元.(1)请写出y与x的函数解析式;(2)当某户2019年全年缴纳的水费共计1000.5元时,求这户2019年全年用水量.22.学校选派25名志愿者准备参加社会服务工作,其中男生15人,女生10人.(1)若从这25人中通过抽签选取一人作为联络员,求选到女生的概率.(2)一项工作只在甲、乙两人中选一人,他俩以游戏方式决定谁参加.规则如下:将4张点数分别为2,3,4,5的扑克牌和匀后,背面朝上放于桌面,从中任取2张.若点数之和为合数,则甲得1分;否则乙得1分.谁先满10分谁参加.这个游戏公平吗?请说明理由.23.如图,已知在⊙O中,直径AB⊥弦CD于点F,P是CD延长线上一点,PE与⊙O相切于点E,连接BE交CD于点N.(1)求证:PE=PN;(2)连接DE,若DE∥AB,OF=3,BF=2,求PN的长.24.如图,抛物线y=ax2+bx+2与x轴交于两点A(﹣1,0)和B(4,0),与y轴交于点C,连接AC、BC.(1)求抛物线的解析式;(2)点M在线段AB上(与A、B不重合),点N在线段BC上(与B、C不重合),是否存在以C,M,N为顶点的三角形与△ABC相似,若存在,请求出点N的坐标;若不存在,请说明理由.25.在Rt△ABC中,∠A=90°,AB=6,AC=9.问题提出(1)如图①,D、E是分别是AB、AC两边上中点,则=.问题探究(2)若在AB上找一点M使得AM=AB,在AC上找一点N使得CN=AC,点D是直线MN上的一个动点,过A作AE⊥AD.使AD:AE=1:3,求BE的最小值.问题解决(3)如图③,某地有一块足够大的空地,现想在这片空地上修建一个四边形广场ABCD,其中AB=300m,BC:CD=3:5,BC⊥CD,BC∥AD,且∠BAD<90°.其中△ABC 将划分为老年人休闲活动区,规划人员希望这片区域面积尽可能大,试求△ABC的最大面积.参考答案一.选拜题(共10小题,每题3分,计30分)1.计算(﹣)0=()A.B.﹣C.1D.﹣【分析】直接利用零指数幂的性质计算得出答案.解:(﹣)0=1.故选:C.2.如图所示几何体的俯视图是()A.B.C.D.【分析】根据简单组合体的三视图的画法得出其俯视图即可.解:从上面看,选项B中的图形符合题意,故选:B.3.如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=30°,则∠2等于()A.30°B.40°C.50°D.60°【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.解:∵直角三角板的直角顶点在直线a上,∠1=30°,∴∠3=60°,∵a∥b,∴∠2=∠3=60°,故选:D.4.若正比例函数y=kx的图象经过第一、三象限,且过点A(m,1)和B(2,m),则k的值为()A.﹣B.C.﹣1D.1【分析】利用正比例函数的性质可得k>0,然后再将A,B两点坐标代入解析式,从而可确定答案.解:∵正比例函数y=kx的图象经过第一、三象限,∴k>0,又一次函数图象经过点A(m,1)和B(2,m),∴,解得:k=±1,∵k>0,∴k=1.故选:D.5.下列计算正确的是()A.x2+x2=x4B.(﹣2xy3)2=4x2y3C.(﹣2a﹣3)(2a﹣3)=9﹣4a2D.(2a﹣b)2=4a2﹣2ab+b2【分析】各式计算得到结果,即可作出判断.解:A、原式=2x2,错误;B、原式=4x2y6,错误;C、原式=9﹣4a2,正确;D、原式=4a2﹣4ab+b2,错误.故选:C.6.在△ABC中,∠C=90°,BC=16cm,∠A的平分线AD交BC于D,且CD:DB=3:5,则点D到AB的距离等于()A.6cm B.7cm C.8cm D.9cm【分析】根据比例求出CD的长,再过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DE=CD,即可得解.解:∵BC=16,DC:DB=3:5,∴CD=×16=6,过点D作DE⊥AB于E,∵AD是∠BAC的平分线,∠C=90°,∴DE=CD=6,即点D到AB的距离是6cm.故选:A.7.在平面直角坐标系中,将直线y=kx﹣6沿x轴向左平移3个单位后恰好经过原点,则k 的值为()A.﹣2B.2C.﹣3D.3【分析】根据平移规律得到平移后的直线为y=k(x+3)﹣6,然后把(0,0)代入解得即可.解:将直线y=kx﹣6沿x轴向左平移3个单位后得到y=k(x+3)﹣6,∵经过原点,∴0=k(0+3)﹣6,解得k=2,故选:B.8.如图,矩形ABCD中,AB>AD,AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N,G为MN的中点,GH⊥MN交CD于点H,且DM=a,GH=b,则CN的值为(用含a、b的代数式表示)()A.2a+b B.a+2b C.a+b D.2a+2b【分析】连接DG并延长交CN于Q,求出NQ=DM=a,求出GH是△DQC中位线,代入求出即可.【解答】解:连接DG并延长交CN于Q,∵DM⊥AN,GH⊥AN,CN⊥AN,∴DM∥GH∥CN,∵G为MN的中点,∴DG=GQ,DH=HC,∴GH=CQ,∵DM∥CN,∴△DGM∽△QGN,∴==,∴DM=NQ=a,∴CQ=CN﹣a,∴b=(CN﹣a),∴CN=2b+a,故选:B.9.如图,AB是⊙O的直径,C、D为⊙O上的点,弧AD=弧CD,若∠CAB=40°,则∠CAD=()A.30°B.40°C.50°D.25°【分析】连接OD、OC,如图,利用等腰三角形的性质和三角形内角和定理计算出∠AOC =100°,再根据圆心角、弧、弦的关系得到∠AOD=∠COD=50°,然后根据圆周角定理得到∠CAD的度数.解:连接OD、OC,如图,∵OA=OC,∴∠OCA=∠OAC=40°,∴∠AOC=180°﹣40°﹣40°=100°,∵=,∴∠AOD=∠COD=∠AOC=50°,∴∠CAD=∠COD=25°.故选:D.10.二次函数y=(x﹣1)2+(x﹣3)2与y=(x+a)2+(x+b)2的图象关于y轴对称,则(a+1)2+(1+b)2的值为()A.9B.10C.20D.25【分析】首先由二次函数y=(x﹣1)2+(x﹣3)2与y=(x+a)2+(x+b)2的图象关于y轴对称,即可求得y=(x+a)2+(x+b)2的解析式,然后根据整式相等的性质,求得2a+2b=8,a2+b2=10,又由(a+1)2+(1+b)2=a2+b2+2a+2b+2,即可求得答案.解:∵二次函数y=(x﹣1)2+(x﹣3)2与y=(x+a)2+(x+b)2的图象关于y轴对称,∴y=(x+a)2+(x+b)2的解析式为:y=(﹣x﹣1)2+(﹣x﹣3)2,即y=2x2+8x+10,又∵y=(x+a)2+(x+b)2=2x2+(2a+2b)x+a2+b2,∴2a+2b=8,a2+b2=10,∴(a+1)2+(1+b)2=a2+b2+2a+2b+2=10+8+2=20.故选:C.二.填空题(共4小题,每题3分,计12分)11.下列各数:,,5.12,﹣,0,,3.1415926,,﹣,2.181181118…(两个8之间1的个数逐次多1).其中是无理数的有4个.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.解:,,﹣,2.181181118…(两个8之间1的个数逐次多1)是无理数,故答案为:4.12.如果一个多边形的每一个外角都等于60°,则它的内角和是720°.【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n﹣2)•180°,因而代入公式就可以求出内角和.解:多边形边数为:360°÷60°=6,则这个多边形是六边形;∴内角和是:(6﹣2)•180°=720°.故答案为:720°.13.如图,矩形ABCD的两边AD,AB的长分别为3、8,E是DC的中点,反比例函数的图象经过点E,与AB交于点F.若AF﹣AE=2,则反比例函数的表达式为y=﹣.【分析】利用勾股定理计算出AE=5,则AF=7,设B(t,0),则F(t,1),C(t+3,0),E(t+3,4),利用反比例函数图象上点的坐标特征得到t×1=4(t+3),解得t=﹣4,所以F(﹣4,1),于是可计算出m的值,从而得到此时反比例函数的表达式.解:∵矩形ABCD的两边AD、AB的长分别为3、8,∴AE===5,∵AF﹣AE=2,∴AF=7,设B(t,0),则F(t,1),C(t+3,0),E(t+3,4),∵E是DC的中点,∴E(t+3,4),F(t,1),∵E(t+3,4),F(t,1)在反比例函数y=的图象上,∴t×1=4(t+3),解得t=﹣4,∴F(﹣4,1),∴m=﹣4×1=﹣4,∴反比例函数的表达式是y=﹣.故答案为y=﹣.14.如图,四边形OABC是边长为6的正方形,D点坐标为(4,﹣1),BE=OB,直线l过A、C两点,P是l上一动点,当|EP﹣DP|的值最大时,P点的坐标为(13,﹣7).【分析】根据正方形的性质,点E关于直线l的对称点E′的坐标为(1,1),连接DE′,与直线l的交点即为P点,此时|EP﹣DP|的值最大,根据待定系数法求得直线PD,然后与直线l的解析式联立,解方程组即可求得P的坐标.解:∵四边形OABC是边长为6的正方形,∴AC垂直平分OB,直线l为y=﹣x+6,∴点E关于直线l的对称点E′在OB上,∵BE=OB,B(6,6),∴OE′=OB,∴E′(1,1),连接DE′,与直线l的交点即为P点,此时|EP﹣DP|的值最大,设直线PD为y=kx+b,把D(4,﹣1),E′(1,1)代入得,解得,∴直线PD为y=﹣x+,解得,∴P(13,﹣7),∴当|EP﹣DP|的值最大时,P点的坐标为(13,﹣7),故答案为(13,﹣7).三.解答题(共11小题,计78分)15.计算:(﹣1)2020+|1﹣|﹣2cos45°﹣()﹣1.【分析】直接利用特殊角的三角函数值以及负整数指数幂的性质、绝对值的性质分别化简得出答案.解:原式=1+﹣1﹣2×﹣2=1+﹣1﹣﹣2=﹣2.16.计算:(x﹣3﹣)÷.【分析】根据分式的运算法则即可求出答案.解:原式=•=•=.17.尺规作图:如图,在矩形ABCD中,分别在AD、BC上作点E、F,使四边形BEDF是菱形(不写作法,保留作图痕迹).【分析】连接BD,AC交于点O,过点O作EF⊥BD交AD于E,交BC于F,连接BE,DF,四边形BEDF即为所求作.解:如图,四边形BEDF即为所求作.18.如图,等边△ABC中,D是AB上一点,以CD为边向上作等边△CDE,连接AE.(1)求证:△BCD≌△ACE;(2)求证:AE∥BC.【分析】(1)根据已知条件先证出∠BCD=∠ACE,再根据SAS证出△BCD≌△ACE;(2)根据(1)中全等三角形的性质得到:∠B=∠CAE=∠BAC=60°,从而得出∠B+∠BAE=180,再根据平行线的判定即可证出AE∥BC.【解答】证明:(1)∵∠BCA=∠DCE=60°,∴∠BCA﹣∠ACD=∠DCE﹣∠ACD,即∠BCD=∠ACE,∵△ABC和△DCE是等边三角形,∴BC=AC,DC=EC,在△BDC与△ACE中,,∴△BCD≌△ACE(SAS);(2)由(1)知,△BCD≌△ACE,∴∠B=∠CAE,∴∠B=∠CAE=∠BAC=60°,∴∠CAE+∠BAC=∠BAE=120°,∴∠B+∠BAE=180°,∴AE∥BC.19.为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如图统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有40人?在如图扇形统计图中A等级所对应的圆心角度数为45度.(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?【分析】(1)由C等级人数及其所占百分比可得总人数,用360°乘以A等级人数所占比例即可;(2)用总人数乘以B等级对应的百分比求出其人数,据此可补全图形;(3)用总人数乘以样本中A、B等级人数所占比例.解:(1)这次随机抽取的学生共有20÷50%=40(人),扇形统计图中A等级所对应的圆心角度数为360°×=45°,故答案为:40、45;(2)B等级人数为40×27.5%=11(人),补全图形如下:(3)这次九年级学生期末数学考试成绩为优秀的学生人数大约有1200×=480(人).20.如图,小华和同班秋游时,发现在某地小山坡的点E处有一棵小树.他们想利用皮尺、倾角器和平面镜测量小树到山脚下的距离(即DE的长度),小华站在点B处,让同班移动平面镜至点C处,此时小华在平面镜内可以看到点E.且测得BC=2米,CD=59米,∠CDE=120°.已知小华的身高AB=1.6米,请根据以上数据,求DE的长度.(结果保留根号)【分析】过E作EF⊥BC于F,根据相似三角形的性质解答即可.解:过E作EF⊥BC于F,∵∠CDE=120°,∴∠EDF=60°,设EF为x米,DF=x米,DE=x米,∵∠B=∠EFC=90°,∵∠ACB=∠ECD,∴△ABC∽△EFC,∴,即=,解得:x=8,∴DE=8,答:DE的长度为8米.21.某市为鼓励市民节约用水和加强对节水的管理,制订了以下每年每户用水的收费标准:①用水量不超过220立方米时,每立方米收费1.92元,并加收每立方米1.53元的污水处理费;②用水量超过220立方米时,在①的基础上,超过220立方米的部分,每立方米收费3.30元,井加收每立方米1.53元污水处理费.设某户一年的用水量为x立方米,应交水费y元.(1)请写出y与x的函数解析式;(2)当某户2019年全年缴纳的水费共计1000.5元时,求这户2019年全年用水量.解:(1)情况①:y=(1.92+1.53)x,即y=3.45x(0<x≤220),情况②:y=220×(1.92+1.53)+(x﹣220)(3.30+1.53),即所求的函数解析式为y=4.83x﹣303.6(x>220);(2)当该户一个月应交水费为1000.5元时,说明该户用水量已超过220立方米,则4.83x﹣303.6=1000.5,解得x=270.答:该户一个月的用水量为270立方米.22.学校选派25名志愿者准备参加社会服务工作,其中男生15人,女生10人.(1)若从这25人中通过抽签选取一人作为联络员,求选到女生的概率.(2)一项工作只在甲、乙两人中选一人,他俩以游戏方式决定谁参加.规则如下:将4张点数分别为2,3,4,5的扑克牌和匀后,背面朝上放于桌面,从中任取2张.若点数之和为合数,则甲得1分;否则乙得1分.谁先满10分谁参加.这个游戏公平吗?请说明理由.解:(1)P(选到女生)==;(2)这个游戏公平.理由如下:23452/56735/78467/95789/∵共有12种等可能结果.其中点数和为合数有6种,为质数有6种,∴P(点数和为合数)=P(点数和为质数)==,∴这个游戏公平.23.如图,已知在⊙O中,直径AB⊥弦CD于点F,P是CD延长线上一点,PE与⊙O相切于点E,连接BE交CD于点N.(1)求证:PE=PN;(2)连接DE,若DE∥AB,OF=3,BF=2,求PN的长.【解答】(1)证明:如图1,连接OE,∵PE与⊙O相切于点E,∴∠OEP=90°,∴∠OEB+∠PEN=90°.∵OE=OB,∴∠OEB=∠OBE.∴∠OBE+∠PEN=90°,∵AB⊥CD,∴∠OBE+∠BNF=90°,∴∠PEN=∠BNF,又∵∠PNE=∠BNF,∴∠PNE=∠PEN,∴PN=PE;(2)解:如图2,连接CE,∵DE∥AB,AB⊥CD,∴∠EDC=90°,∴CE为⊙O的直径.∵OF=3,BF=2,∴OC=OB=3+2=5,CE=2OC=10,∴.∵∠OFC=∠PEC=90°,∠OCF=∠PCE,∴△OFC∽△PEC,∴,即,解得:,∴.24.如图,抛物线y=ax2+bx+2与x轴交于两点A(﹣1,0)和B(4,0),与y轴交于点C,连接AC、BC.(1)求抛物线的解析式;(2)点M在线段AB上(与A、B不重合),点N在线段BC上(与B、C不重合),是否存在以C,M,N为顶点的三角形与△ABC相似,若存在,请求出点N的坐标;若不存在,请说明理由.解:(1)∵点A(﹣1,0),B(4,0)在抛物线y=ax2+bx+2上,∴,解得:,∴抛物线的解析式为:y=﹣x2+x+2;(3)存在,理由:由点A、B、C的坐标得,AB2=25,BC2=4+16=20,AC2=1+4=5,则AB2=BC2+AC2,故△ABC为以AB为斜边的直角三角形,tan∠ABC==;以C,M,N为顶点的三角形与△ABC相似,则△CMN为直角三角形,由点B、C的坐标得,直线BC的表达式为y=﹣x+2,点N在BC上,故设点N(n,﹣n+2),设点M(m,0);①当∠MCN为直角时,此时点M与点A重合,不符合题意,②当∠CMN为直角时,如图1,过点N作NG⊥x轴于点G,∵∠GMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠NMG,∴Rt△NGM∽Rt△MOC,当∠MCN=∠ABC时,tan∠ABC==,即两个三角形的相似比为1:2,则NG=OM,MG=OC=1,即﹣n+2=m且n﹣m=1,解得:n=,故点N的坐标为(,);当∠MNC=∠ABC时,同理可得:n=4(舍去);③当∠MNC为直角时,如图2,过点N作x轴的垂线,垂足为点H,过点C作CG⊥NH交NH的延长线于点G,当∠CMN=∠ABC时,同理可得:△CGN∽NHM且相似比为,则CG=NH,即n=×(﹣n+2),解得:n=,故点N的坐标为(,);当∠MCN=∠ABC时,则MC=MB,而MN⊥BC,则点N是BC的中点,由中点公式得,点N(2,1);综上,点N的坐标为:(2,1)或(,)或(,).25.在Rt△ABC中,∠A=90°,AB=6,AC=9.问题提出(1)如图①,D、E是分别是AB、AC两边上中点,则=.问题探究(2)若在AB上找一点M使得AM=AB,在AC上找一点N使得CN=AC,点D是直线MN上的一个动点,过A作AE⊥AD.使AD:AE=1:3,求BE的最小值.问题解决(3)如图③,某地有一块足够大的空地,现想在这片空地上修建一个四边形广场ABCD,其中AB=300m,BC:CD=3:5,BC⊥CD,BC∥AD,且∠BAD<90°.其中△ABC 将划分为老年人休闲活动区,规划人员希望这片区域面积尽可能大,试求△ABC的最大面积.解:(1)∵D、E是AB,AC的中点,∴BD=3,CE=,∴;故答案为:.(2)∵AM=AB=2,BM=4,CN=AC=3,AN=6,∴,当D在M上时,,当D在MN上时,BE1<BE2,2≤AD≤6,当D在N上时,BE=AE﹣AB=3AN﹣AB=18﹣6=12,由图可知,当D由M到N时,AD变大,则AE的长度变大,∴BE变大,∴,(3)当∠BAD=90°时,∵BC∥AD,∴四边形ABCD是矩形,∵,∴BC=180(m),∴(m2),∵,过点B作BE⊥AD于E,∴,∴当S矩形BCDE最大时,S△ABC最大,在Rt△ABE中,BE≤AB,∴BE最大时,BE=AB,即∠DAB=90°,∴(m2),故△ABC的面积最大是27000m2.。
201x版九年级数学第三次模拟考试试题答案
2019版九年级数学第三次模拟考试试题答案一、选择题1.D 2.A 3.B 4.D 5.C 6.B 7.C 8.B 9.D 10.B 11.D 12.A 13.D 14.A二、填空题15.x (x-3)2 16. x=-2 17.25° 18.245三、解答题19.(1)解:原式=1113244--+………4′ (2)解:原式=222(9)a a a ---………2′ =132- ………………5′ =2229a a a --+ ………4′=29a -+………5′20. 解:设海南粉每份x 元,馄饨每份y 元. 依题意得:2232330x y x y +=⎧⎨+=⎩解得:79x y =⎧⎨=⎩经检验:符合题意答:海南粉每份7元,馄饨每份9元.21.(8分)某中学为了了解本校学生喜爱的球类运动,在本校范围内随机调查了部分学生,将收集的数据绘制成如下两幅不完整的统计图.请你根据图中提供的信息解答下列问题: (1)100; (2)如图所示; (3)144° (4)540人401022.解:由题意可知:AB=500千米,∠ABC=40°过A点作AD⊥BC于点D,在Rt△ABD中,AD=AB·sin∠ABC=500×0.6428=321.4千米∵321.4>300∴三亚市不受这次台风的影响。
23.(1)证明;∵在矩形ABCD中,∠DCE=90°,F是斜边DE的中点,∴CF=DE=EF,∴∠FEC=∠FCE,∵∠BFC=90°,E为BC中点,∴EF=EC,∴CF=CE,在△BCF和△DEC 中,,∴△BCF≌△DEC(ASA);(2)解:设CE=a,由BE=2CE,得:BE=2a,BC=3a,∵CF是Rt△DCE斜边上的中线,∴CF=DE,∵∠FEC=∠FCE,∠BFC=∠DCE=90°,∴△BCF∽△DEC,∴=,即:=,解得:ED2=6a2,由勾股定理得:DC===a,东南A(三亚)北西BC60°20°图8∴==;(3)解:过C′作C′H⊥AF于点H,连接CC′交EF于M,如图所示:∵CF是Rt△DCE斜边上的中线,∴FC=FE=FD,∴∠FEC=∠FCE,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠ADF=∠CEF,∴∠ADF=∠BCF,在△ADF和△BCF中,,∴△ADF≌△BCF(SAS),∴∠AFD=∠BFC=90°,∵CH⊥AF,C′C⊥EF,∠HFE=∠C′HF=∠C′MF=90°,∴四边形C′MFH是矩形,∴FM=C′H=,设EM=x,则FC=FE=x+,在Rt△EMC和Rt△FMC中,由勾股定理得:CE2﹣EM2=CF2﹣FM2,∴12﹣x2=(x+)2﹣()2,解得:x=,或x=﹣(舍去),∴EM=,FC=FE=+;由(2)得:,把CE=1,BE=n代入计算得:CF=,∴,解得:n=424.解:(1)∵抛物线与x 轴交于A (-1,0)、B (4,0)两点∴设抛物线的解析式为y =a (x +1)(x -4) ………………1′ 又∵抛物线与y 轴交于点C (0,3) ∴3=-4a解得:a=34-………………2′ ∴抛物线的解析式为3(1)(4)4y x x =-+-即:239344y x x =-++………………3′(2)当y=3时,120,3x x ==,∴D (3,3)由题意可知:在Rt △BCO 中:225BC OB OC =+=CP=t ,CP=52t ,则DP=3-t , P (t ,3),Q (2t ,3-32t ),113()(3)222DPQ p q S PD y y t t =⋅-=-⋅配方得:23327()4216DPQ S t =--+∴当32t =时,DPQ S 有最大值2716(3)∵P (t ,3),Q (2t ,3-32t ),D (3,3)∴DP=3-t ,223()2PQ t t =+223(23)()2DQ t t =-+ ABCDPOQ图10ⅰ)以P 为顶角顶点时,PQ=PD3t =-解得: 143t --=(不符合题意舍去) 243t -+= ⅱ)以Q 为顶角顶点时, DQ = PQ即:=解得:31t =,43t =(不符合题意舍去), ⅲ)以D 为顶角顶点时,DQ =D P即:3t =-解得:50t =(不符合题意舍去), 687t =综上所述:当1t =或87t =或t =时,△DPQ 为等腰三角形 如有侵权请联系告知删除,感谢你们的配合!。
【推荐】201X年九年级数学中考三模试题(含答案)-范文模板 (5页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! == 201X年九年级数学中考三模试题(含答案)以下是数学网为您推荐的201X年九年级数学中考三模试题(含答案),希望本篇文章对您学习有所帮助。
201X年九年级数学中考三模试题(含答案)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷共3页,满45分;第Ⅱ卷共7页,满分75分.本试题共10页,满分120分,考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷的密封线内.3.第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案,答案写在试卷上无效.4.考试期间,一律不得使用计算器;考试结束,应将本试卷和答题卡一并交回.第Ⅰ卷(选择题共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.化简: =( )A.2B.-2C.4D.-42.我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每年排放的污水减少了167000吨.将167000用科学记数法表示为 ( )A. B. C. D.3.下列计算正确的是 ( )A. B.C. D.4.已知,如图,AD与BC相交于点O,AB∥CD,如果B=20,那么C为( )A. 40B. 30C. 20D. 105. 如图,空心圆柱的主视图是( )6.已知菱形ABCD的周长是16,A=60,则对角线BD的长度为( )A.2B.23C.4D.437.下列各点中,在函数图像上的是 ( )A .(-2,-4) B.(2,3) C.(-6,1) D.(- ,3)8.已知方程组的解为,则的值为( )A. B. C. D.9.下列说法正确的是( )A .事件如果是实数,那么是必然事件;B.在一次抽奖活动中,中奖的概率是表示抽奖100次就一定会中奖;C.随机抛一枚均匀硬币,落地后正面一定朝上;D.在一副52张扑克牌(没有大小王)中任意抽一张,抽到的牌是6的概率是 .10.如果代数式的值为18,那么代数式的值等于( )A. B. C. D.11.一元二次方程的根为( )A. B. C. D.12.在如图所示的55方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三。
2021年陕西省西安市中考数学三模试卷(含解析)
∴与直线 关于y轴对称的直线表达式为y=- x+6,
故选:D.
8.B
【分析】
根据题意,作出合适的辅助线,然后根据平行四边形的性质和锐角三角函数,可以求得AF的长,本题得以解决.
【解析】解:作CN⊥AD于点N,作EM⊥AD于点M,
则CE=MN,
∵S▱ABCD=12 ,BC=6 ,
A.m> B.m> C.m< D.m<
二、填空题
11.已知实数﹣0.21, , , , ,﹣ ,其中为无理数的是_____.
12.若圆内接正方形的边心距为3,则这个圆内接正三角形的边长为_____.
13.如图,在Rt△ABC中,∠C=90°,AC=BC,BC∥x轴,点A、B都在反比例函数y= (x>0)上,点C在反比例函数y= (x>0)上,则AB=_____.
本题考查了二次函数图象与几何变换,一次函数的性质,旋转的性质,根据题意得到关于m的不等式是解题的关键.
11. , ,﹣ .
【分析】
根据无理数的定义逐一判断即可.
【解析】∵﹣0.21是负分数,
∴﹣0.21是有理数;
∵ =2 ,是开方不尽的数,
∴ 是无理数;
∵ 是无理数,
∴ 是无理数;
∵ =6,
∴ 是有理数;
问题探究:
(2)如图①,在四边形ABCD中,AD=BD,AD⊥BD,当2CD2+BC2=AC2时,判断四边形ABCD是否为对余四边形.证明你的结论;
问题解决:
(3)为贯彻“精准扶贫”战略思想,某驻村扶贫干部准备帮助村民老王在他家的田地中划出部分区域来种植经济作物以提高家庭经济收入.如图②,四边形ABCD是老王家的田地示意图.其中AF为一条小路、∠BAD=60°,AD=40米.AB> AD,∠ADC=120°,DF=20米.根据规划老王要在原有地块上划分出一个互余四边形AEFH来种粮食,剩余部分种植经济作物,十四五规划提出:严守18亿亩耕地红线,粮食一定要自给自足,当用来种粮的四边形地块AEFH满足点E在边AB上、点H在边AD上,且AE=AH时;此地块出产粮食能够满足老王家生活所需.为切实落实扶贫工作,尽可能多种经济作物,要使四边形AEFH占地面积最小.请问能否找到满足条件的点E、H?如果能,求出四边形AEFH面积的最小值及面积最小时线段AH的值;如果不能,请说明理由.(小路的宽度忽略不计)
2021年广东省某校部中考数学三模试卷祥细答案与解析
【解答】
由图象可以判定: = = . = ,
当点 在 上运动时, = ,
∴ = ,
∴ = ,
∴当 时,点 在 上运动, = ,
∴ 是等腰三角形,
故①正确;
= ,
故②错误;
当 时,点 在 上运动,该段函数图象经过 和 两点,解析式为 = ,
故③正确;
D
【考点】
抛物线与x轴的交点
二次函数图象与系数的关系
【解析】
①将 = 代入 = ,可以结合图象得出 = 时, ;
②由 = 的图象经过点 , = ,与 轴交于 点, = ,从而得出 = ,二次函数的开口向下, ,∴ ;
③根据抛物线的开口方向判定 ;
④利用③的解析式得出, .
【解答】
二次函数 = 的图象经过点 ,与 轴交于 点,且与 轴交点的横坐标分别为 、 ,其中 , ,下列结论
A
【考点】
坐标与图形性质
矩形的性质
【解析】
过 作 轴于 ,根据矩形的性质得到 , ,根据余角的性质得到 ,根据相似三角形的性质得到 , ,于是得到结论.
【解答】
解:如图,过 作 轴于 ,
∵四边形 是矩形,
∴ , ,
∴ ,
∴ ,
∴ ,
∴ ,
∵ , ,
∴ , ,
∴ , ,
∴ ,
∴ .
故选 .
12.
【答案】
【解答】
∵四边相等的四边形一定是菱形,∴ ①正确;
∵顺次连接矩形各边中点形成的四边形一定是菱形,∴ ②错误;
∵对角线相等的平行四边形才是矩形,∴ ③错误;
∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴ ④正确;
2021年江苏省中考数学三模试题附解析
2021年江苏省中考数学三模试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图所示是一个杯子,那么下列各图中是这个杯子的俯视图的是( )A .B .C .D . 2.若⊙O 1 和⊙O 2相交于A 、B 两点,⊙O 1 和⊙O 2的半径分别为2 和,公共弦长为 2,∠O 1AO 2的度数为( )A .105°B .75°或 15°C .105°或 15°D .15° 3.如图,顺次连结四边形ABCD 各边的中点得四边形EFGH ,要使EFGH 是菱形,应添加的条件是 ( )A .AD ∥BCB .AC=BDC .AC ⊥BD D .AD=AB4.课间操时,小华、小军、小刚的位置如图所示,如果小华的位置用(0,O )表示,小军的位置用(2,1)表示,那么小刚的位置可以表示成( )A .(5,4)B .(4,5)C (3,4)D .(4,3)5.化简(-2x )3·y 4÷12x 3y 2的结果是( )A .61y 2B .-61y 2C .-32y 2D .-32xy 2 6.已知:关于y x ,的方程组y x ,a y x a y x -⎩⎨⎧-=++-=+则3242的值为 ( ) A .-1 B .1-a C .0 D .17. 已知222220a a b b ++++=,则1b a +的值是( ) A .2 B .1 C .0 D .-1 8.x (g )盐溶解在 a (g )水中,取这种盐水m (g ),含盐( ) A .mx a (g ) B .am x (g ) C .am x a +(g ) D .mx x a +(g ) 9.下列计算中正确的是( )A .326x x x ⋅=B .222(3)9xy x y -=-C .235235x x x ÷=D .32()()x x x -÷-= 10.下列说法中,正确的是( ) A .a -是负数B .a 一定是非负数C .不论a 是什么数,都有11a a ⋅=D .7a 一定是分数 二、填空题11.如图,∠BAD=∠CAE ,AB = 2AD ,∠B=∠D ,BC=3 cm ,则 DE= cm .12.数a 在数轴上的位置如图所示:化简2|1|a a --= .13.如图,在△ABC 中,∠ACB=90°,∠B=25°,CD ⊥AB 于D ,则∠ACD= .14.某天早晨的气温为-6℃,中午上升了 8℃,半夜又下降了6℃,则半夜的气温是 .三、解答题15.一个两位数,十位上的数字与个位上的数字之和为5,把这个两位数的十位上的数字与个位上的数字对调后,所得的新的两位数与原来的两位数的积是736,求原来的两位数.16.计算:(1)105-++;(2)1 62 -÷.17.若∠AOB=30°,过点 0引一条射线OC,使∠COB=15°,求∠COA 的度数.18.按要求完成作图,并回答问题.如图,已知线段AB、BC、CA.(1)作线段BC的中点D,并连接AD;(2)过点A作BC的垂线,垂足为点E;(3)过点B作AB的平行线,交AC于点F;(4)作∠ABC的平分线,交AC于点 G;(5} 根据上述作图,若∠ABC = 60°,则∠GBC= .19.如果12xy=⎧⎨=-⎩是方程组2513x aybx y-=⎧⎨=-⎩解,求a b+的值.17220.已知(4x+y-1)2+2-xy=0,求4x2y-4x2y2+xy2的值.21.在世界环境日到来之际,希望中学开展A B C D E F G了“环境与人类生存”主题研讨活动,活动之一是对我们的生存环境进行社会调查,并对学生的调查报告进行评比,初三(三)班将本班50篇学生调查报告得分进行整理(成绩均为整数),列出了频数分布表,并画出了频数分布直方图如图所示.根据以上信息,回答下列问题:(1)该班90分以上(含90分)的调查报告共有 篇;(2)该班被评为优秀等级(80分及80分以上)的调查报告占 %;(3)补全频数分布直方图.22.如图,AB=AC ,BD=BC. 若∠A = 38°,求∠DBC 的度数.23.画出右图几何体的主视图、左视图和俯视图.主视图 左视图 俯视图24.如图,已知:在△ABC 中,∠BAC =90°,延长BA 到点D ,使AD =12AB ,点G 、E 、F 分别为边AB 、BC 、AC 的中点.求证:DF=BE .25.求证(填空):两条直线被第三条直线所截.如果同旁内角不互补,那么这两条直线不平行.已知:如图,直线12,l l 被3l 所截,∠1+∠2 180°. 求证:12l l 与 .证明:假设12____l l ,则∠1+∠2 180°( )这与 矛盾,故 不成立.所以 .26.某校的围墙上端由一段相同的凹曲拱形栅栏组成. 如图所示,其拱形图为抛物线的一部分,栅栏的跨径 AB 间隔相同的间距0.2 m 用 5 根立柱加固,拱高OC 为0.6m(1)以0为原点,OC 所在的直线为y 轴建立平面直角坐标系,请根据以上数据,求出抛物线 2y ax 的解析式;(2)计算一段栅栏所需立柱的总长度(精确到0.1 m).27.如图,电路图上有四个开关A 、B 、C 、D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C 都可使小灯泡发光。
2021年浙江省中考数学三模试题附解析
2021年浙江省中考数学三模试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,AB 是⊙O 的直径,∠ABC=30°,则∠BAC =( )A .90°B .60°C .45°D .30°2.为迎接图书馆的标准化检查,某中学图书馆将添置图书,用250无购进一种科普书,同时用 140元购进一种文学书. 由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多6本,求文学书的单价. 设这种文学书的单价为x 元,则根据题意,列方程正确的是( )A .1.51402506x x ⨯-=B .14025061.5x x -=C .25014061.5x x -=D .1.51402506x x⨯=+ 3. 小王身上只有 2元和 5元两种面值的人民币,他买一件学习用品要支付27元,则付款的( )A .1种B .2种C .3种D .4种4.如图,在边长为 a 的正方形上剪去一个边长为b 的小正方形(a b >),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是( )A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .2()a ab a a b -=- 5.王老师的一块三角形教学用玻璃不小心打破了(如图),他想再到玻璃店划一块,为了方便他只要带哪一块就可以了( )A .①B .②C .③D .④6.下列各式中,分解因式错误的是( )A .224(4)(4)m n m n m n -=+-B .2616(8)(2)x x x x +-=+-C . 22244(2)x xy y x y -+=-D .()()am an bm bn a b m n +++=++7.如图所示,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆孔,最后将正方形纸片展开,得到的图案是( )8.已知26x y -+=,则4)2(3)2(22+---y x y x 的值是( ) A .144B .94C .58D .142 9.下列多项式不能用完全平方公式分解因式的是( ) A .21124x x -+ B .20.010.2m m --- C .269y y -+- 224129a ab b ++10.实数a 、b 、c 在数轴上的对应点如图,化简2||a a b c ++-的值是( )A .-b-cB .c-bC .2(a-b+c )D .2a+b+c 11.若火箭发射点火前5秒记为-5秒,那么火箭发射点火后10秒应记为( )A .-10秒B .-5秒C .+5秒D .+10秒 12.在盒子里放有三张分别写有整式1a +、2a +、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( ).A . 13B . 23C . 16D . 34二、填空题13.已知□ABCD 的对角线AC ,BD 交于点O ,△AOB 的面积为2,那么□ABCD 的面积为_____.14.如果一次函数y=2x+b 的图象与y 轴的交点坐标为(0,3),那么该函数图象不经过第 象限.15.如图表示甲骑电动自行车和乙驾驶汽车沿相同的路线行驶45km ,由A 地到B 地时,行驶的路程y(km)与经过的时间x(h)之间的函数关系.请根据这个行驶过程中的图象填空: 汽车出发 h 与电动自行车相遇;电动自行车的速度为 /h ;汽车的速度为km /h ;汽车比电动自行车早 h 到达B 地.16.如图,在Rt△ABC中,AD是BC边上的高,若∠C=36°,则∠B= ,∠DAB= .17.已知4×23m·44m=29,则m= .18.已知△ABC中,AB=AC,①当它的两个边长分别为8 cm和3 cm时,它的周长为cm;②如果它的周长为18 cm,一边的长为4 cm,则腰长为 cm.19.如图,已知点D在AC上,点E在AB上,在△ABD和△ACE中,∠B=∠C,要判断△ABD≌△ACE,(1)根据ASA,还需条件;(2)根据AAS,还需条件 .20.如图所示,点O是直线AB上的点,OC平分∠AOD,∠BOD=30°,则∠AOC=______.21.某电影院共有座位n排,已知第一排有座位m个,后一排的座位总是比前一排多 1个,则电影院中共有座位个.22.比较数的大小:0 -0.4,5-- -3,0.00l -1000.三、解答题23.路灯下,两个亭子及其影子的情况如图所示,请你确定灯泡的位置,并画出灯下小明的影子.24.如图,在四边形ABCD中,AC⊥DC,∠ADC的面积为30cm2,DC=12 cm ,AB=3cm ,BC=4 cm,求△ABC的面积.25.若2228162n n ⨯⨯=,则n 的值是多少?26.一不透胡纸箱中装有形状、大小、质地等完全相同的 4个小球,分别标有数字 1、2、3、4.(1)从纸箱中随机地一次取出 2个小球,求这 2个小球上所标的数字一个是奇数、另一个是偶数的概率 ;(2)先从纸箱中随机地取出一个小球,用小球上所标的数字作为十位上的数字;将取出的小球放回后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,则组成的两位数恰好能被 3整除的概率是多少?试用画树状图或列表法加以说明.27.如图所示,在方格纸中如何通过平移或旋转这两种变换,由图形A 得到图形B ,再由图形B 得到图形C?(对于平移变换要求回答出平移的方向和平移的距离;对于旋转变换要求回答出旋转中心、旋转方向和旋转角度)28.如图所示,将△ABC 经相似变换、边长扩大一倍得到像△A ′B ′C ′.(1)请你画出像△A′B′C′.(2)猜测△A′B′C′的面积是△ABC的面积的多少倍.29.(1)如图,已知∠AOB是直角,∠B0C=30°.OM平分∠AOC,ON平分∠BOC,求∠MON的度数.(2)如果(1)中∠AOB=α,其它条件不变,求∠MON的度数.(3)你从(1)、(2)的结果中能发现什么规律?30.计算:(1)3322+÷+;xy x y x y(824)(3)(2)322x x y xy x y++÷+;(2)()(3)2++++÷++[()2()1](1)a b a b a b【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.C4.A5.A6.A7.C8.B9.A10.B11.D12.B二、填空题13.814.四15.0.5,9,45,216.54°, 36°17. 117 18. 19cm ,7cm19.AB=AC ,AD=AE 或EC=BD20.75°21.(1)2n n mn -+22. >,<,>三、解答题23.如图所示,虚线交点 P 为灯泡的位置,线段 AB 为小明的影子.24.6cm 225.因为2228162n n ⨯⨯=,所以34222(2)(2)2n n ⨯⨯=,34222222n n ⨯⨯=,1342222n n ++=,即7122n +=,解得3n =26.(1)从纸箱中随机地一次取出两个小球,所标数字的所有可能结果有:(1,2),(1,3),(1,4),(2,3),(2,4),(:3,4),共6种;而所标数字一个是奇数、另一个是偶数的有 4种.所以P=4263=. (2)画树状图·或用列表法: 1 2 3 4 1 ( 11)(12) (13) (14) 2(21) (22) (23) (24) 3( 31) ( 32) (33) (34) 4 (41) (42) (43) (44)所有可能出现的结果共有 16种,其中能被3整除的有5种.因此P=51627.将图形A 向上平移4个单位长度,得到图形B ;将图形B 以点P 1为旋转中心顺时针旋转90°,再向右平移4个单位长度得到图形C 或将图形B 向右平移4个单位长度,再以P 2为旋转中心顺时针旋转90°得到图形C28.(1)图略;(2)S 4A B C ABC S S '''∆∆=29.(1)45° (2)2α (3)∠MON 的大小总等于∠AOB 的一半 30.(1)8xy ;(2)2x xy +;(3)1a b ++ 第 二 次 第 一 次。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019版中考数学三模试题一、选择题(本大题共有10小题,每小题3分,共计30分.)1.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.14×1062.若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4 B.﹣2 C.2 D.43.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D.4.6的倒数是()A.B.C.6 D.﹣65.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.6.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°7.一元二次方程x2﹣7x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定8.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+xx对称轴为直线x=29.一元一次不等式组的解集在数轴上表示出来,正确的是()A.B.C.D.10.如图,AB是⊙O的切线,切点为A,OA=1,∠AOB=60°,则图中阴影部分的面积是()A.B.C.D.二、填空题(本大题共有6小题,每小题4分,共计24分.)11.已知∠A=40°,则∠A的余角的度数是_________ .12.计算:m3÷m2= _________ .13.16的算术平方根是.14.在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为.15.观察下列单项式:a,-2a2,4a3,-8a4,16a5,….按此规律,第7个单项式是.16.如图,把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC= cm.三、解答题(一)(每小题6分,共18分)17.计算:.18.先化简,再求值:(+)÷,其中x=﹣1.19.如图,在Rt△ABC中,∠C=90°.作∠BAC的平分线AP交边BC于点D. (保留作图痕迹,不写作法);若∠BAC=28°,求∠ADB的度数.四、解答题(二)(每小题7分,共21分)20.车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率(请用树状图或列表法等方式给出分析过程).21.学校准备购进一批篮球和足球,买1个篮球和2个足球共需170元,买2个篮球和1个足球共需190元.(1)求一个篮球和一个足球的售价各是多少元?(2)学校欲购进篮球和足球共100个,且足球数量不多于篮球数量的2倍,求出最多购买足球多少个?22.在□ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.五、解答题(三)(每小题9分,共27分)23.已知抛物线y=x2+1(如图所示).(1)填空:抛物线的顶点坐标是(,),对称轴是;(2)如图,已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB 是等边三角形,求点P的坐标;(3)如图,在第二问的基础上,在抛物线有一点C(x,y),连接AC、OC、BC、PC,当△OAC的面积等于△BCP的面积时,求C的横坐标.OGFEDCBA24.如图,四边形ABCD 内接于⊙O ,AB=AD ,对角线BD 为⊙O 的直径,AC 与BD 交于点E .点F 为CD 延长线上,且DF=BC. (1)证明:AC=AF ;(2)若AD=2,AF=13 ,求AE 的长;(3)若EG ∥CF 交AF 于点G ,连接DG.证明:DG 为⊙O 的切线.25.两个等腰直角三角形如图放置,∠B=∠CAD=90°,AB=BC=22cm ,AC=AD ,垂直于CD 的直线a 从点C 出发,以每秒2cm 的速度沿CD 方向匀速平移,与CD 交于点E ,与折线BAD 交于点F ;与此同时,点G 从点D 出发,以每秒1cm 的速度沿着DA 的方向运动;当点G 落在直线a 上,点G 与直线a 同时停止运动;设运动时间为t 秒(t>0). (1) 填空:CD=_______cm;(2) 连接EG 、FG ,设△EFG 的面积为y ,求y 与t 之间的函数关系式,并写出相应t 的取值范围;(3) 是否存在某一时刻t (0<t<2),作∠ADC 的平分线DM 交EF 于点M ,是否存在点M 是EF的中点?若存在,求此时的t 值;若不存在,请说明理由。
C一、选择题BDBAD BACBC二、填空题11.50°12.m 13.4 14.(1,-1)15.64a716.2+23三、解答题(一)(每小题6分,共18分)17.解:原式=2+2﹣1 3分=3.6分18.解:原式=×4分=3x+2 5分当x=﹣1时,3x+2=﹣1 6分19.(1)如下图所示3分(2)∵∠BAC的平分线AP∴∠CAD=BAD=14°5分∴∠ADB=104°6分四、解答题(二)(每小题7分,共21分)20.解:(1)选择A通道通过的概率=,故答案为:, 2分 (2)设两辆车为甲,乙,如图,5分两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果, ∴选择不同通道通过的概率==. 7分21.解:(1)设一个篮球和一个足球的售价各是x 元、y 元, 1分,得, 3分答:一个篮球和一个足球的售价各是70元、50元; 4分 (2)设购进足球a 个, 5分 a ≤2(100﹣a ), 6分 解得,a ≤,∴最多购买足球66个,答:最多购买足球66个. 7分22.(1)证明:∵四边形ABCD 是平行四边形, ∴AB∥CD.AB=CD , 1分 ∵AE=CF ,∴BE=DF, 2分 ∴四边形BFDE 是平行四边形. ∵DE⊥AB, ∴∠DEB=90°,∴四边形BFDE 是矩形; 3分 (2)解:在Rt△BCF 中,由勾股定理,得 AD =5432222=+=+DE AE , 4分∵四边形ABCD 是平行四边形,∴AB∥DC,∴∠DF A=∠FAB. 5分 ∵AF 平分∠DAB∴∠DAF=∠FAB, ∴∠DAF=∠DFA,∴DF=AD=5, 6分 ∴AB=8 ∴tan ∠BAF=2184=. 7分五、解答题(三)(每小题9分,共27分)23.解:(1)顶点坐标是(0,1),对称轴是y 轴(或x=O ). 2分 (2)∵△PAB 是等边三角形,∴∠ABO=90°﹣60°=30°. 3分 ∴AB=20A=4.∴PB=4. 4分 把y=4代入y=x 2+1, 得 x=±2. 5分∴P (2,4) 6分(3) )32(2x x -= 7分334=x 8分 ∴C 的横坐标是3349分OGFEDCBA24.(1)证明:∵四边形ABCD 内接于⊙O ,∴∠ABC+∠ADC=180°. ∵∠ADF +∠ADC=180°,∴∠ABC=∠ADF . 1分在△ABC 与△ADF 中,⎪⎩⎪⎨⎧=∠=∠=DF BC ADF ABC ADAB , 2分∴△ABC ≌△ADF .∴AC=AF ; 3分 (2)解:由(1)得,AC=AF=13+. 4分 ∵AB=AD , ∴⌒⌒AD AB =. ∴∠ADE=∠ACD . ∵∠DAE=∠CAD ,∴△ADE ∽△ACD . 5分 ∴ADAEAC AD =. ∴()232213413222-=-=+==AC AD AE . 6分(3)证明:∵EG ∥CF ,∴1==ACAFAE AG . ∴AG=AE . 由(2)得AD AE AC AD =,∴ADAGAF AD =. ∵∠DAG=∠FAD ,∴△ADG ∽△AFD . 7分 ∴∠ADG=∠F .∵AC=AF ,∴∠ACD=∠F . 又∵∠ACD=∠ABD ,∴∠ADG=∠ABD . 8分 ∵BD 为⊙O 的直径, ∴∠BAD=90°.∴∠ABD+∠BDA=90°.∴∠ADG+∠BDA=90°. ∴GD ⊥BD .∴DG 为⊙O 的切线. 9分25.(1)24 2分 (2)相遇时t=383分 0<t ≤2,y=8-3t 5分 2<t<38,y=1610232+-t t 6分 (3)t=23- 9分如有侵权请联系告知删除,感谢你们的配合!。