第三章傅里叶变换汇总

合集下载

第三章――傅里叶变换周期信号的傅里叶级数分析

第三章――傅里叶变换周期信号的傅里叶级数分析

第三章 傅里叶变换3.1周期信号的傅里叶级数分析(一) 三角函数形式的傅里叶级数满足狄利赫里条件的周期函数()f t 可由三角函数的线性组合来表示,若()f t 的周期为1T ,角频率112T πω=,频率111f T =,傅里叶级数展开表达式为()()()0111cos sin n n n f t a a n t b n t ωω∞==++⎡⎤⎣⎦∑各谐波成分的幅度值按下式计算()0101t T t a f t dt T +=⎰()()0112cos t T n t a f t n t dt T ω+=⎰()()01012sin t T n t b f t n t dt T ω+=⎰其中1,2,n =⋅⋅⋅狄利赫里条件:(1) 在一个周期内,如果有间断点存在,则间断点的数目应是有限个;(2) 在一个周期内,极大值和极小值的数目应是有限个; (3) 在一个周期内,信号是绝对可积的,即()00t T t f t dt +⎰等于有限值。

(二) 指数形式的傅里叶级数周期信号的傅里叶级数展开也可以表示为指数形式,即()()11jn tnn f t F n eωω∞=-∞=∑其中()011011t T jn tn t F f t e dt T ω+-=⎰ 其中n 为从-∞到+∞的整数。

(三) 函数的对称性与傅里叶系数的关系(1) 偶函数由于()f t 为偶函数,所以()()1sin f t n t ω为奇函数,则()()01112sin 0t T n t b f t n t dt T ω+==⎰所以,在偶函数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。

(2) 奇函数由于()f t 为奇函数,所以()()1cos f t n t ω为奇函数,则()0100110t T t a f t dt T +==⎰()()010112cos 0t T n t a f t n t dt T ω+==⎰ 所以,在奇函数的傅里叶级数中不会含有直流项和余弦项,只可能包含正弦项(3) 奇谐函数(()12T f t f t ⎛⎫=-+ ⎪⎝⎭)半波对称周期函数的傅里叶级数中,只会含有基波和奇次谐波的正、余弦项,而不会含有偶次谐波项,这也是奇谐函数名称的由来。

信号与系统第三章:傅里叶变换

信号与系统第三章:傅里叶变换

bn
n1
sin(n1t)
其中
an
,
bn
称为傅里叶系数,
1
2
T

16
傅里叶系数如何求得
Ci
t2 t1
f
(t
)
i
(t
)dt
t2
t1
i
2
(
t
)dt
1 Ki
t2 t1
f
(t
)
i
(t
)dt
式中: Ki
t2
t1
i
2
(t
)dt
an
2 T
T
2 T
f (t) cos(n1t)dt
2
a0 2
,
1 T
0 T
2
(1)
cos(n1t
)dt
2 T
T
2 0
cos(n1t
)dt
23
0
T
1
n1
2 T
sin(n1t
)
T 2
2 T
1
n1
sin(n1t
)
2 0
1
2
T
an
0
n 0,1, 2,3,L
24
bn
2 T
T
2 T
f (t) sin(n1t)dt
2
2 T
0 T
2
(1)
sin(n1t
)dt
2 T
T
2 0
26
T
T
0
T/ 2
t
0
T/ 2
t
(a)基波
(b)基波+三次谐波
0
T/ 2
Tt

第三章离散傅里叶变换及其快速计算方法(DFT、FFT)

第三章离散傅里叶变换及其快速计算方法(DFT、FFT)

X (e jw )
(2)Z 变换 -- 提供任意序列的 z 域表示。
n

x( n)e jnw
X (z)
n


x ( n) z n
这两种变换有两个共同特征:
(1)变换适合于无限长序列 (2)它们是连续变量 ω 或 z 的函数
华北电力大学自动化系
3
3.1 问题的提出:可计算性
X (z)
而对于
n


x ( n) z n
n


x ( n) z n
找不到衰减因子使它绝对可和(收敛)。为此,定义新函 数,其 Z 变换:
华北电力大学自动化系
15
DFS 定义:正变换
X ( z)
n
x ( n) z n ~ ( n ) z n x
华北电力大学自动化系
6
3.1 问题的提出:傅里叶变换的四种形式 (3)
2. 周期连续时间信号:傅里叶级数 FS
~ (t ) x X (n 0 )
t T

时域周期频域离散
0
2 T
x(t)
~
n -
X(n 0 )e jn0t

时域连续函数造成频域是非周期的谱。 频域的离散对应时域是周期函数。
X (e jT )



T T
X (e jT )e jnT d
取样定理
n

x(nT )e jnT
1 X ( 0 ) T n
时域的离散化造成频域的周期延拓 时域的非周期对应于频域的连续
华北电力大学自动化系
8

第3章 连续信号的频谱——傅里叶变换

第3章 连续信号的频谱——傅里叶变换

• 直到19世纪末,制造出电容器。20世纪初,谐振电路、滤波
器、正弦振荡器等一系列问题的解决为正弦函数与傅里叶分 析的在通信系统中的应用开辟了广阔的前景。 • 从此,在通信与控制系统的理论研究和实际应用之中,采用 频率域(频域)的分析方法比经典的时间域(时域)方法有 许多突出的优点。 • 当今,傅里叶分析方法已成为信号分析与系统设计不可缺少 的重要工具。 • 20世纪70年代,出现的各种二值正交函数(沃尔什函数), 它对通信、数字信号处理等技术领域的研究提供了多种途径 和手段。使人们认识到傅里叶分析不是信息科学与技术领域 中唯一的变换域方法。
nw1 nw1

0
w
nw1
w1 0 w1
nw1
w
正、负频率相应项成对合并,才是实际频谱函数。
4.周期信号的功率特性
—时域和频域能量守恒定理
周期信号的平均功率P:在一个周期内求平方再求积分。
1 t0 T1 2 f (t )dt P f (t ) t T1 0 1 1 2 2 2 2 2 a0 ( an bn ) c0 cn 2 n 1 2 n 1
其傅里叶级数三角展开式中 仅含基波和奇次谐波
例子
例如:奇谐函数
f (t )
E 2
T1 2
f (t )
E 2
T 1 2
0
E 2
T1 2
t
0
E 2
T1 2
t
sin( w1t )
E 2
f (t )
E 2
T1 2 T 1 2 T1 2
f (t )
0
E 2
t

0
E 2
T1 2

傅里叶变换知识点总结

傅里叶变换知识点总结

傅里叶变换知识点总结本文将从傅里叶级数、傅里叶变换和离散傅里叶变换三个方面来介绍傅里叶变换的知识点,并且着重介绍它们的原理、性质和应用。

一、傅里叶级数1. 傅里叶级数的定义傅里叶级数是一种将周期函数表示为正弦和余弦函数的线性组合的方法。

它可以将任意周期为T的函数f(x)分解为如下形式的级数:f(x)=a0/2+Σ(an*cos(2πnfx / T) + bn*sin(2πnfx / T))其中an和bn是傅里叶系数,f为频率。

2. 傅里叶级数的性质(1)奇偶性:偶函数的傅里叶级数只包含余弦项,奇函数的傅里叶级数只包含正弦项。

(2)傅里叶系数:通过欧拉公式和傅里叶系数的计算公式可以得到an和bn。

(3)傅里叶级数的收敛性: 傅里叶级数在满足柯西收敛条件的情况下可以收敛到原函数。

二、傅里叶变换1. 傅里叶变换的定义傅里叶变换是将信号从时间域转换到频率域的一种数学工具。

对于非周期函数f(t),它的傅里叶变换F(ω)定义如下:F(ω)=∫f(t)e^(-jwt)dt其中ω为频率,j为虚数单位。

2. 傅里叶变换的性质(1)线性性质:傅里叶变换具有线性性质,即对于任意常数a和b,有F(at+bs)=aF(t)+bF(s)。

(2)时移性质和频移性质:时域的时移对应频域的频移,频域的频移对应时域的时移。

(3)卷积定理:傅里叶变换后的两个函数的乘积等于它们的傅里叶变换之卷积。

3. 傅里叶逆变换傅里叶逆变换是将频域的信号反变换回时域的一种操作,其定义如下:f(t)=∫F(ω)e^(jwt)dω / 2π其中F(ω)为频域信号,f(t)为时域信号。

三、离散傅里叶变换1. 离散傅里叶变换的定义对于离散序列x[n],其离散傅里叶变换X[k]的定义如下:X[k]=Σx[n]e^(-j2πnk / N)其中N为序列长度。

2. 快速傅里叶变换(FFT)FFT是一种高效计算离散傅里叶变换的算法,它能够在O(NlogN)的时间复杂度内完成计算,广泛应用于数字信号处理和通信系统中。

第三章 傅里叶变换

第三章  傅里叶变换

P=a
2 0
1 2
n 1
an2 bn2
c02
1 2
cn2
n 1
n
Fn
2

3、一个特别的性质: e jn e jn
3.1.3 函数的对称性与傅里叶系数的关系
1、波形对称分类:(1)、整周期对称,例如偶函数和奇函数,其可决定级数中只可能含有余弦项或正弦项;(2)半 周期对称,例如奇谐函数,其可决定级数中只可能含有偶次项或奇次项。 2、对称条件: (1)、偶函数:若信号波形相对于纵轴是对称的,即满足 f(t)=f(-t),此时 f(t)是偶函数,偶函数的 Fn 为实数。在偶函 数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。 (2)奇函数:若波形相对于纵坐标是反对称的,即满足 f(t)=-f(-t),此时 f(t)是奇函数,奇函数的 Fn 为虚数。在奇函数 的傅里叶级数中不会含有余弦项,只可能含有正弦项。虽然在奇函数上加以直流成分,它不再是奇函数,但在它的 级数中仍然不会含有余弦项。 (3)寄谐函数:若波形沿时间轴平移半个周期并相对于该轴上下翻转,此时波形并不发生变化,即满足:
n2 1 2
) cos n1t
基波和偶次谐波频率分量。谐波幅度以 1 规律收敛。 n2
其中1
=
2 T1
;其频谱只包含直流、
3.2.5 周期全波余弦信号
1、周期全波余弦信号的傅里叶级数为:
f
(t)
2E
4E 3
cos(1t)
4E 15
cos(21t)
4E 35
cos(31t)
2E
4E
1n 1
第三章 傅里叶变换
傅里叶变换是在傅里叶级数正交函数展开的基础上发展而产生的;

信号与系统第3章 傅里叶变换

信号与系统第3章  傅里叶变换

P
f
2 (t) 1 T1
t0 T1 t0
f
2 (t)d t
a0 2
1 2
n1
(an
2
bn 2 )
2
Fn _____ 帕塞瓦尔定理
n
结论:周期信号的平均功率等于傅里叶级数展开 式中基波分量及各谐波分量有效值的平方 和,即时域和频域的能量守恒。
五. 周期信f号(t)的频c0 谱 (c三n c角os函(n数1t形 式n )) n1
(1) 偶函数 f (t) f (t)
4
an T1
T1
2 0
f (t) cos(n1t)dt
Fn
Fn
an 2
bn 0
傅里叶级数中不会含有正弦项, 只可能含有直流项和余弦项。
(2) 奇函数 f (t) f (t)
a0 0 , an 0
bn
4 T1
T1
2 0
f (t) sin(n1t)d t
e j n1t
T1 n 2
画频谱图:
c0
a0
E
T1
an
2E
T1
Sa
n1
2
, n
1,2,
cn an
1)令 m
2

2
m
即在
2
m,m为整数处有零点。
2)
2
2
T1
T1
零点间谱线个数
3) c n值为正,相位为0,值为负,相位为π
4)谱线间隔为 1 带宽
2
T1
,第一个过零点带宽定义为信号的
1 3
s in31t
1 4
sin41t
E
1 n1

信号与系统复习资料第3章离散傅立叶变换(DFT)

信号与系统复习资料第3章离散傅立叶变换(DFT)

1 2
1 e 12
j 2 ( k 11)
1 e 12
B
Ak
6, 6,
1k 21 k 6 101
…11…22…rr…
10 0
11 0
B 0, 0其 0它 的…k… x(n) Xc(oks)6 n 6 0 ……
0 0
6 6, k 112r 6X~(k) 6, k 1112r
NT
T0
1 f0
T0 2 f0
N
1
fs
时域离散化==>频域周期化
时域周期化==>频域离散化
N NΩ0
NT0 fs s T f0 0
-7-
§3.3 离散傅里叶级数DFS
( Discrete Fourier Series )
连续周期信号:
~xa(t) ~xa(t kT0) 基频:0 2/T0
x2 m … 5 4 3 2 1 0 5 4 3 2 1 0 … 10
x2 1m … 0 5 4 3 2 1 0 5 4 3 2 1 … 8 x2 2m … 1 0 5 4 3 2 1 0 5 4 3 2 … 6 x2 3m … 2 1 0 5 4 3 2 1 0 5 4 3 … 10
n 0
n 0
x ( n ) I D F S [ X ( k ) ] N 1 N k 0 1 X ( k ) e j2 N n k N 1 N k 0 1 X ( k ) W N n k
其中:
WN
j 2
e N
-9-
X k 与 z 变 换 的 关 系 :
x (n ) x (n )R N (n )

x(n) x(nrN)

第3章--离散傅里叶变换(DFT)

第3章--离散傅里叶变换(DFT)

设x(n)是一种长度为M旳有限长序列, 则定义x(n)旳N点
离散傅里叶正变换为
N 1
j 2 nk
X (k ) DFT[x(n)] x(n)e N
N 1
x(n)WNnk
n0
n0
离散傅里叶逆变换为
离散傅里叶变换对
x(n)
IDFT[ X (k )]
1 N
N 1
j 2 nk
X (k )e N
3.2 离散傅里叶变换旳基本性质
1 线性性质 假如x1(n)和x2(n)是两个有限长序列,长度分别为N1和N2。 y(n)=ax1(n)+bx2(n) 式中a、 b为常数, 即N=max[N1, N2],
则y(n)旳N点DFT为 Y(k)=DFT[y(n)]=aX1(k)+bX2[k], 0≤k≤N-1(3.2.1) 其中X1(k)和X2(k)分别为x1(n)和x2(n)旳N点DFT。 若N1<N2,则N=N2,那么需将x1(n)补上N2-N1个零值点后变
k 2 k f f s k
N
N
以上所讨论旳三种频率变量之间旳关系,在对模 拟信号进行数字处理以及利用模拟滤波器设计数 字滤波器乃至整个数字信号处理中十分主要,望 同学们高度注重。
第三章 离散傅里叶变换DFT
3.1.2 DFT旳隐含周期性------ DFT与 DFS旳关系
DFT变换对中,x(n)与X(k)均为有限长序列,但因为WknN旳周
第三章 离散傅里叶变换DFT
例2 : x(n) R8 (n),分别计算x(n)旳8点、16点DFT。
解: x(n)旳8点DFT为
X (k)
7 n0
R8 (n)W8k n
7 j2k n

第三章傅里叶变换

第三章傅里叶变换


f1 (t )
f
2
(t
)
F
1
2
F1() F2 ()
可见:频域中卷积信号的傅里叶变换等于信号傅里叶变 换的卷积并乘以 1/2π 。
对于一个线性非时变系统,若知系统的单位冲激响应为 h(t)
时,系统对于任何输入x(t) 的响应 y(t) 可以用卷积求出,即
y(t) x(t) h(t)
运用傅里叶变换的时域卷积定理,有
第三章 傅里叶变换
傅里叶生平
• 1768年生于法国
• 1807年提出“任何周 期信号都可用正弦函 数级数表示”
• 拉格朗日反对发表
• 1822年首次发表“热 的分析理论”
• 1829年狄里赫利第一 个给出收敛条件
傅里叶的两个最主要的贡献——
“周期信号都可以表示为成谐波关 系的正弦信号的加权和”——傅里 叶的第一个主要论点
假定线性时不变系统单位冲激响应为h(t),系统频率响应为H(),即有
F [h(t)] H()
当输入为 x(t) e jk0t 时,系统输出的傅里叶变换为
Y () X ()H ()
输入信号 x(t) e jk0t 可以看成 e jk0t 与一个直流信号的乘积,根据傅里
叶变换的频移特性,有
1F 2 ()
2
Ω为模拟角频率,它与实际频率的关系:Ω=2πf
F(Ω )通常为复函数,可以写成:
F () F () e j ()
F(Ω)︱是F(Ω)的幅度函数,表示信号中各频率下谱密度的相对大小;
是F(Ω()的) 相位函数,表示信号中各频率成分的相位关系。在工程技
术中︱F(Ω)︱通常也称为幅度频谱, 为相(位)频谱,它们都是频率 Ω的连续函数。

第三章.离散时间信号的傅里叶变换

第三章.离散时间信号的傅里叶变换

4、时域卷积定理

) = x ( 0 ) + 2∑ x ( n ) cos (ω n )
n =1
y (n) = x ( n) * h ( n)
Y ( e jω ) = X ( e jω ) H ( e jω )
X I ( e jω ) = 0 x ( n) =
π∫
1
π
0
X R ( e jω ) cos (ω n ) d ω
jω jω 2 2 ⎤ X ( e jω ) = ⎡ ⎣ X R ( e ) + X I ( e )⎦
12
如果 x ( n ) 是实信号,根据DTFT的正、反变换的定义,有 如下性质: ① X ( e jω ) 的实部 X R ( e jω ) 是 ω 的偶函数,即 ② X (e

= X ( e − jω )
x (t ) =
k =−∞
X ( k Ω0 ) =
1 T /2 x ( t ) e − jk Ω0t dt T ∫−T / 2
X ( k Ω 0 )代表了x ( t ) 中第k次谐波的幅度,并且它是离散的。
∑ X ( kΩ ) e
0

jk Ω0 t
并非所有周期信号都可展开成傅里叶级数。一个周期信号 能展开成傅里叶级数,除满足前面指出的平方可积条件 外,还需要满足如下的Dirichlet条件: ① 在任一周期内若存在间断点,则间断点的数目应是有限 的。 ② 在任一周期内的极大值和极小值的数目应是有限的。 ③ 在一个周期内应是绝对可积的,即
第三章
离散时间信号的傅里叶变换
第三章 离散时间信号的 傅里叶变换
内容概要
1、连续时间信号的傅氏变换 2、离散时间信号的傅氏变换(DTFT) 3、连续时间信号的抽样 4、离散时间周期信号的傅氏级数 5、离散傅氏变换(DFT) 6、利用DFT计算线性卷积 7、希尔伯特变换

第三章 傅里叶变换

第三章 傅里叶变换
~x(n) x((n))N
周期序列的离散傅立叶级数
X~(k)
N1 ~x (n)WNkn
N 1
x((n))
W kn
NN
N 1
x(n)
W kn N
பைடு நூலகம்n0
n0
n0
~x (n)
1 N
N 1 X~ (k )WNkn
k 0
1 N
N 1
X (k )WNkn
k 0
上式中的
X (k) X~(k)RN (k)
X (k) DFT[x(n)] x(n)WNkn
两者比较可知:
n0
,0 k N 1
X (k) X (z)
j 2 k ze N
,
0 k N 1
x(n)的N点DFT是x(n)的Z变换在单位圆上的N点等间隔采样。
X (k) X (e j ) 2 k , 0 k N 1 N
X(k) 为x(n)的傅立叶变换在区间【0,2π】上的N点等间隔采样。
结论:有限长序列的离散傅立叶变换X(k)正好是x(n)的周 期延拓序列x((n))N的离散傅立叶级数系数 X~(k) 的 主值序列。
3.2 离散傅立叶变换的基本性质
• 线性性质
若 y(n) ax1(n) bx2 (n)
则y(n)的N点(N =max(N1,N2), N1,N2 为两序列的长度)DFT为:
则有
Y
(k
)
W km N
X
(k
)
3、频域循环移位定理(证明留作业)
证明 时域循环移位定理
Y (k) DFT [ y(n)]
N-1
N-1
x((n
m))N
RN
(n)WNkn

第三章3典型信号傅里叶变换 性质1

第三章3典型信号傅里叶变换 性质1

f (t) 1 F ()e jtd
2
1 F () e d j[t ()]
2
1
F () cos[ t ()]d
2
j
F () sin[ t ()]d
2
f (t) 1
F () cos[ t ()]d
2
1
F() cos[ t ()]d
0
F () d
0 cos[ t ()]
2 , f 1 , B f 1
2
(4)符号函数
sgn(t)
1 (t 0) f (t) sgn(t) 0 (t 0)
实奇函数 1 (t 0)
1
0
t
1
符号函数信号不满足绝对可积条件,但它却存在 傅里叶变换。可以利用它和奇双边指数的关系:
f
(t
)
sgn(t
)
lim
a0
eat ea
1.信号在时间轴上的平移对应频域中的相移 (相位谱产生附加相移)
2.信号在时间轴上的平移不会影响信号的幅频 特性
例题:写出下列信号的傅里叶变换
f1(t)
2
0
4 6t
f3 (t )
2 1
0 1 2 3t
f 2 (t )
24
0
t
2
课本例题131页: 例题3-2 3-3
主要内容
典型信号的傅里叶变换 信号频谱的概念:幅度谱和相位谱 信号频谱带宽的概念:信号幅度谱的带宽,
0
t
F()
2a
a2
2,
F ()
2a
a2 2
() 0
正实偶函数
1
e f (t) a t
(a 0)

傅里叶变换

傅里叶变换

第三章 傅里叶变换一.周期信号的傅里叶级数知 识 要 点1、 周期信号的傅里叶级数任一满足狄利克雷条件的周期信号()f t (1T 为其周期)可展开为傅里叶级数。

(1)三角函数形式的傅里叶级数 0111()[cos()sin()]nn n f t a an t b n t ωω∞==++∑式中112T πω=,n 为正整数。

直流分量010011()t T t a f t dt T +=⎰ 余弦分量的幅度010112()cos()t T t a f t n t dt T ω+=⎰正弦分量的幅度01112()sin()t T n t b f t n t dt T ω+=⎰ 三角函数形式的傅里叶级数的另一种形式为011()cos()nn n f t c cn t ωϕ∞==++∑频谱:离散性、谐波性、收敛性或011()sin()nn n f t d dn t ωϑ∞==++∑以上几种表示形式中各个量之间的关系为000a c d ==n n c d ==cos sin n n n n n a c d ϕϑ== sin cos n n n n n b c d ϕϑ=-=tan nn n a b ϑ=tan nn na b ϕ=-(1,2,)n =,,n n n a c d 为1n ω的偶函数,,,n n n b ϕϑ为1n ω的奇函数。

(2)指数形式的傅里叶级数11()()jn tn f t F n eωω∞=-∞=∑式中,n 为从-∞到+∞的整数。

复数频谱0110111()()t T jn tn t F F n f t e dt T ωω+-==⎰n F 与其他系数之间的关系为 0000F c d a ===1()2n j n n n n F F c a jb ϕ==-1()2n j n n n n F F c a jb ϕ---==+1122n n n n F F c d -====n n n F F a -+=n n n F F c -+=()n n n b j F F -=-n F 是1n ω的偶函数。

信号与系统 第3章傅里叶变换

信号与系统 第3章傅里叶变换
3.11 抽样定理
傅里叶生平




1768年生于法国 1807年提出“任何周期信号 都可用正弦函数级数表示” 1829年狄里赫利第一个给出 收敛条件 拉格朗日反对发表 1822年首次发表“热的分析 理论”中
傅里叶的两个最主要的贡献——

―周期信号都可表示为成谐波关系的正弦信号的加权”—— 傅里叶的第一个主要论点 “非周期信号都可用正弦信号的加权积分表示”——傅里叶 的第二个主要论点
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
3.3 典型周期信号的傅里叶级数
本节以周期矩形脉冲信号为例进行分析 主要讨论:频谱的特点,频谱结构, 频带宽度,能量分布。 其他信号: 周期锯齿脉冲信号 周期三角脉冲信号 周期半波余弦信号
周期全波余弦信号请自学。
六.周期信号的功率
周期信号平均功率=直流、基波及各次谐波分量有效值的平 方和;也就是说,时域和频域的能量是守恒的。
证明
对于三角函数形式的傅里叶级数 平均功率
对于指数形式的傅里叶级数
总平均功率=各次谐波的平均功率之和
三角函数公式 sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
例1
不满足条件1的例子如右图所示, 这个信号的周期为8,它是这样组 成的:后一个阶梯的高度和宽度是 前一个阶梯的一半。可见在一个周 期内它的面积不会超过8,但不连 续点的数目是无穷多个。
f (t ) 1
1 2
L 8 O 8
L t
例2
不满足条件2的一个函数是
f (t ) 1 L L O 1 t

三章傅里叶变换

三章傅里叶变换

r
n 1
cr
g
r
(t
))
2
]dt
ci
f t2
t1 t2
t1
(t)gi (t)dt gi2 (t)dt
1 Ki
t2 t1
f
(t)gi (t)dt
在最佳近似条件下给定项数的 2 :
2
1 [
t2 t1
t2 t1
f
2 (t)dt
n
cr 2Kr ]
r 1
归一化正交函数集:
t2 t1
g
2 i
[cos(1t )
4
3
cos(21t )
4
15
cos(41t )
...]
E
2E
n1
1 (n2 1)
cos( n
2
) cos(n1t)
其中1
2
T1
频谱只含有直流,基波和偶次谐波频率分量.
谐波幅度以
1 n2
规律收敛.
周期全波余弦信号
E f (t)
T 0 T
t
2
f (t) E | cos(0t) |
函数旳对称性与傅里叶 系数旳关系
(1)偶函数 : f (t) f (t)
系数为: an
4 T1
T1 2
0
f (t) cos n1tdt
bn 0
信号分解为f (t) a0 an cos n1t n1
(2)奇函数 : f (t) f (t)
系数为: an a0 0
4
bn T1
T1 2
x(t)gi (t)dt
0
(i为任意正整数)
则此函数集成为完备正交函数集.
{1, cos1t, sin 1t, cos 21t, sin 21t,...,

第三章 傅里叶变换 知识要点

第三章 傅里叶变换 知识要点
频谱的每条谱线,都只能出现在基波频率ω1 的整数倍的频率上,频谱中不
可能存在任何具有频率为基波频率非整数倍的分量。 (3)收敛性 各条谱线的高度,也即各次谐波的振幅,总的趋势是随着谐波次数的增高而
逐渐减小的;当谐波次数无限增高时,谐波分量的振幅亦就无限趋小。

但是,冲激函数序列δT (t) = ∑δ (t − nT1 ) 的频谱不满足收敛性。 n = −∞
(ω )⎤⎦
=
1 2π
∞ F (ω )e jωt dω
−∞
可简记为: f (t ) ←⎯FT→ F (ω )
(二)典型信号的傅里叶变换
1、δ (t ) ←⎯→1
2、δ ' (t ) ←⎯→ jω δ (n) (t ) ←⎯→ ( jω )n
3、1←⎯→ 2πδ (ω)
4、 u (t ) ←⎯→πδ (ω ) + 1
3、周期三角脉冲信号
∑ f
(t)
=
E 2
+
4E π2
∞ n=1
1 n2
sin 2
⎛ ⎜⎝
nπ 2
⎞ ⎟⎠
cos
(
nω1t
)
周期三角脉冲的频谱只包含直流、基波及奇次谐波频率分量,谐波的幅度以
1 的规律收敛。 n2
4、周期半波余弦信号
6
( ) ∑ f
(t
)
=
E π

2E π
∞ n=1
1 n2 −1
cos⎜⎛ ⎝
=
2π T1
这是因为它在区间 (t0 ,t0 + T1 )内满足:
⎧0
∫t0 +T1
t0
cos(mω1t
)cos(nω1t )dt
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P f 2 (t) 1 t0 T1 f 2 (t)dt
a02
12T1n1t0(an2
bn2 )
c02
1 2
n1
cn2
Fn 2
帕塞瓦尔定理
n
任意周期信号f(t)的平均功率P等于其傅里叶级数展开
式中各谐波分量有效值的平方和
三、函数的对称性与傅里叶系数的关系 1. 函数的对称性
要将信号f(t)展开为傅里叶级数,如果f(t) 是实函数,且它波形满足某种对称性,则在其 傅里叶级数中有些项为0,留下的各项系数的 表示式也比较简单。
nw1
Fn
c0
1
2
c1 1
2 c2
w1 0 w1
幅度谱与相位谱合并
n
nw1
0
nw1
w
Fn
c0
1
2
c1 1
2 c2
nw1
w1 0 w1
nw1
w
nw1
w
正、负频率相应项成对合并,才是实际频谱函数。
4. 周期信号的功率特性 —时域和频域能量守恒定理
周期信号的平均功率P: 在一个周期内求平方再求积分。
t在一个周期内,n=0,1,...
由积分可知
T
2 T
cosn1t
sinm1
t
0
2
T 2 T 2
cosn1t
cosm1t
T , 2 0,
mn mn
T 2 T 2
sinn1t
sinm1t
T , 2 0,
mn mn
3、傅里叶级数展开的充分条件
傅里叶级数存在的充分条件: 周期信号f(t)须满足“狄利克雷”(Dirichlet)条件,即
基波、谐波概念
通常把频率为:f1源自T12 1频率为:
2 2 f1 2T1 2 1
频率为:
3
f1
3T1
3
2 1
称为基波。 称为二次谐波。 称为三次谐波。
可见,直流分量的大小以及基波与各次谐波的 幅度、相位取决于周期信号的波形。
说明:三角函数集是一组完备函数集。
cosn1t , sinn1t 是一个完备的正交函数集
波形对称性有两类: (1)对整周期对称。即偶函数和奇函数。 (2)对半周期对称。即奇谐函数、偶谐函数。
2. 傅里叶级数的系数求解
1)偶函数信号:an
4 T1
T1
2 0
f (t) cos(n1t)dt
f (t) f (t) bn 0
cn an ,
Fn
Fn
an 2
n 0
2)奇函数信号: a0 0,an 0
其傅里叶级数表达式为:
f
(t)
E
s in( w1t )
1 2
s in(2w1t )
1 3
s in(3w1t )
(3)奇谐函数信号(半波对称函数)
奇谐函数信号:若波形沿时间轴平移半个周期
并相对于该轴上下反转,此时波形并不发生变
化,即满足:
f (t) f (t T1 ) 2
a 0 0
n为偶,an bn 0
n为奇,an
4 T1
T1
2 0
f (t) cos(n1t)dt
bn
4 T1
T1
2 0
f (t) sin(n1t)dt
例子 奇谐函数
f (t) f (t)
E
E 2
4E
2
cos( 1t
)
1 9
cos(
31t
)
1 25
cos( 51t
)
讨论:离散性、收敛性、谐波性
3、 频谱的初步知识——三角波频谱
f ( t ) c0 cn cosn1t n
n1
单边频谱图:cn ~ n1 信号的幅度谱
cn
n ~ n1 信号的相位谱
c0
c1 c2
其中各频谱分量幅度称为
an jbn
Fn
Fn
e jn
1 2 (an
jbn )
其中 Fn
1 2
a2 n
b2 n
1 2 cn
n n (三角函数形式)
例如:周期三角波信号
f (t)
E
T1 0
T1
t
2
2
偶函数其傅里叶级数三角展开式中仅含直流项和 余弦项,指数展开式中 F(n1) 为实函数。 其傅里叶级数表达式为:
f(t
)
c3
“谱线”;连各谱线顶点的
0 w1 3w1
nw1
n
曲线称为“包络线”
w
周期信号的主要特点:
离散性、谐波性、收敛性
0
w1 3w1
nw1
w
3. 指数形式表示的信号频谱--复数频谱
Fn一般是复函数,所以称这种频谱为复数频谱。
双边频谱图:Fn ~ n1 复函数幅度谱, n ~ n1 复函数相位谱
具有离散性、谐波性、收敛性 (负频率的结果仅是数学处理)
f (t) -f (t)
bn
4 T1
T1
2 0
f (t) sin(n1t)dt
c0
a0
0,
cn
bn ,
Fn
Fn
1 2 j bn
n 90o
例如:周期锯齿波信号是一奇函数
f (t)
E 2
T1 2
T1 0
2 E
2
其傅里叶级数三角展开式中
仅含正弦项,
其傅里叶级数指数展开式中
t
F (n1)为纯虚函数。
1 T1
t0 T1 f (t)dt 1
t0
T1
T1 f (t)dt
0
其中余弦分量幅度:an
2 T1
t0 T1 t0
f
(t) cos(n1t)dt
正弦分量幅度:bn
2 T1
t0 T1 t0
f
(t) sin(n1t)dt
n 1, 2,...
为了积分方便,通常取积分区间为:0
~
T1或
T1 2
~
一周期内仅有限个间断点; 一周期内仅有限个极值;
一周期内绝对可积,tt00 T1 f (t) dt
通常所遇到的周期性信号都能满足此条件,因此, 以后除非特殊需要,一般不再考虑这一条件。
二、指数形式的傅里叶级数
1、指数形式的傅里叶级数的形式
设f(t)为任意周期信号(周期
T1 , 角频率 1
2
T1

则其可展开为指数形式的傅里叶级数
e f (t)
F (n1) jn1t
n
2 指数形式的傅里叶级数中各个量之间的关系
e 复函数:F(n1) 记 Fn
其中
n ~
1 T1
t0 T1 f (t)
t0
jn1tdt
直流分量:F0 c0 a0
e 当n 0时,Fn Fn
jn 1 2
T1 2
2 傅里叶级数的另一种三角函数形式 f(t)展开为常用形式
f (t) c0 cn cos(n1t n ) 或 n1
f (t) d0 dn sin(n1t n ) n1
c0 d0 a0
其中cn dn
a2 b2
n
n
n
arctg
bn an
,
n
arctg
an bn
说明:基波、谐波概念
第三章 傅里叶变换
第二节 周期信号的傅里叶级数分析
一、三角函数形式的傅里叶级数 1、一种三角函数形式的傅里叶级数
设f(t)为任意周期信号(周期
T1 , 角频率 1
2
T1

则其可展开为三角函数形式的傅里叶级数
f (t) a0 an cos(n1t) bn sin(n1t) n1
直流分量:a0
相关文档
最新文档