最新简单的轴对称图形——角

合集下载

简单的轴对称图形(三)

简单的轴对称图形(三)

第3节简单的轴对称图形(三)教学目标:知识与技能:1.经历探索角的轴对称性的过程,进一步体验轴对称的特征.2.探索并了解角的轴对称性及相关性质.3.会用尺规作角的平分线.过程与方法:1.通过独立思考,小组合作探究,主动展示,经历角的平分线性质的形成与初步应用过程,从而增强应用数学知识的意识与解决实际问题的能力.2.通过观察、折叠等活动,发展空间观念,培养有条理的思考和规范的数学语言.情感态度与价值观:1.通过活动体验学数学的快乐,增强学生学习数学的求知欲和数学活动的经验,并在合作学习中获得成功的体验,增强自信心,提高学习数学的兴趣,培养学生的合作、探究精神.2.培养学生自主学习、主动参与、主动交流合作的意识和能力,在小组合作交流活动中互相激发灵感,取长补短,培养学生团结合作的学习精神.教学重难点:【重点】掌握角平分线的性质,会用尺规作已知角的平分线.【难点】角平分线的性质的应用.教学准备:【教师准备】课件、基本作图工具.【学生准备】笔记本、基本作图工具等.教学过程:导入:前面我们学习了基本图形“线段”是轴对称图形,那么,我们之前学过的另一个基本图形“角”是不是轴对称图形?如果是,对称轴是怎样的直线?【活动内容】不利用工具,请你将一张用纸片做的角分成两个相等的角.你有什么办法?对折,再打开纸片,看看折痕与这个角有何关系?[处理方式]学生实验:通过折纸的方法作角的平分线;教师与学生一起动手操作,展示学生作品.通过折纸及作图过程,由学生自己去发现结论.教师要有足够的耐心,要为学生的思考留有时间和空间.通过探究,学习新知:角是轴对称图形,角平分线所在的直线是它的对称轴.新课教学:探究活动1角平分线的性质【活动内容】(多媒体出示)请同学们按要求继续前面的折纸活动,并与同伴交流.折纸要求:1.在折痕(即∠AOB的角平分线)上任意找一点C;2.过点C折OA边的垂线,得到新的折痕CD,点D是折痕与OA边的交点,即垂足;3.过点C折OB边的垂线,得到新的折痕CE,点E是折痕与OB边的交点,即垂足;4.将∠AOB再次对折.【问题】在上述的操作过程中,折痕CD与CE能重合吗?改变点C的位置,CD与CE还相等吗?你能解释其中的道理吗?小组交流展示成果.(教师动画展示)已知:如图∠AOC=∠BOC,CD⊥OA,垂足为D,CE⊥OB,垂足为E,CD与CE相等吗?试说明理由.解:因为CD⊥OA,CE⊥OB,所以∠CDO=∠CEO=90°.在△CDO和△CEO中,∠CDO=∠CEO,∠COD=∠COE,OC=OC,所以△CDO≌△CEO.所以CD=CE.(教师板书)结论:角平分线上的点到这个角的两边的距离相等.符号语言:因为OC平分∠AOB,CD⊥OA,CE⊥OB,所以CD=CE.[处理方式]学生动手折叠,教师在多媒体上演示折叠过程.学生分组讨论、交流,并用文字语言阐述得到的性质.教师要给学生充分思考的时间和空间.教师通过几何画板演示,让学生形象感受角平分线的性质.【即时训练】判断下列说法是否正确.如图所示.1.因为OC平分∠BOA,所以CD=CE.()2.因为CD⊥OA,CE⊥OB,所以CD=CE.()3.因为OC平分∠AOB,CD⊥OA,CE⊥OB,所以CD=CE.()注意事项:角平分线性质中的距离,对应的必须是垂线段,不能认为是任意线段.探究活动2尺规作角的平分线对这种可以折叠的角可以用折叠方法得到角平分线,对不能折叠的角怎样得到其角平分线呢?下面我们探究用尺规作角的平分线.已知:∠AOB.求作:射线OC,使∠AOC=∠BOC.作法:(1)在∠AOB的两边OA和OB上分别截取OD,OE,使OD=OE.DE的长为半径作弧,两弧在∠AOB内交于点C.(2)分别以D,E为圆心,以大于12(3)作射线OC.则OC是∠AOB的平分线.你能说明这样作的道理吗?想一想:在作图的过程中有哪些相等的线段?学生交流后得到:OD=OE,CD=CE.△COD和△COE全等吗?全等的依据是什么?[处理方式]教师口述作法步骤,学生根据教师的口述完成作图过程.不要求学生写作法,教师可以引导学生分析在作图的过程中哪些线段相等,学生可以通过交流讨论明确这样作的道理.[知识拓展]“角平分线上的点到这个角的两边的距离相等”这句话逆过来说“到这个角的两边的距离相等的点在这个角的平分线上”也是正确的.课堂总结:1.角的轴对称性:角是轴对称图形,角平分线所在的直线是它的对称轴.2.角平分线的性质:角平分线上的点到这个角的两边的距离相等.3.尺规作角平分线.检测反馈:1.如图所示,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.1B.2C.3D.4答案:B2.如图所示,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PBB.PO平分∠APBC.OA=OBD.AB垂直平分OP答案:D3.如图所示,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6 cm,则△DEB的周长为()A.4 cmB.6 cmC.10 cmD.不能确定答案:B4.如图所示,MP⊥NP,MQ为△MNP的角平分线,MT=MP,连接TQ,则下列结论中不正确的是 ()A.TQ=PQB.∠MQT=∠MQPC.∠QTN=90°D.∠NQT=∠MQT答案:D板书设计:布置作业:一、教材作业【必做题】教材第127页习题5.5知识技能第1题.【选做题】教材第127页习题5.5数学理解第2,3题.二、课后作业【基础巩固】1.如图所示,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C,D为圆CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是心,大于12()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C,D两点关于OE所在直线对称D.O,E两点关于CD所在直线对称2.如图所示,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4B.3C.6D.5【能力提升】3.如图所示,两个班的学生分别在M,N两处参加植树劳动,现要在道路AB,AC的交叉区域内设一个茶水供应点P,使P到两条道路的距离相等,且使PM=PN,请你通过尺规作图找出这一P点(不写作法,保留作图痕迹).【拓展探究】4.如图所示,在△ABC中,∠C=90°,∠A=30°,作AB的垂直平分线,交AB于点D,交AC于点E,连接BE,则BE 平分∠ABC,你能说明理由吗?【答案与解析】1.D(解析:根据角的平分线作图步骤可以得到答案,A,B,C 都是正确的.)2.B(解析:因为AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,所以DF =DE =2.又因为S △ABC =S △ABD+S △ACD ,AB =4,所以7=12×4×2+12×AC ×2,所以AC =3.故选B.)3.解:如图所示,P 点即为所求.4.解:因为在△ABC 中,∠C =90°,∠A =30°,所以∠ABC =90°- ∠A =60°.因为DE 是AB 的垂直平分线,所以EA =EB ,所以∠ABE =∠A =30°,所以∠EBC =∠ABC - ∠ABE =30°,所以∠ABE =∠EBC ,即BE 平分∠ABC.教后反思: 成功之处:通过折纸操作,从而得到启发,在教师的引导下,让学生悟出角平分线的性质和用尺规作角的平分线,培养学生实践操作能力;学生在经历观察、类比、归纳等过程的基础上,再让学生实践用尺规作角的平分线的过程,进一步提升了学生的感性和理性的融合,通过本节课的学习,让学生了解了在现实生活中,角及角的平分线在现实中的广泛应用.在本课时中,营造了一个和谐的课堂学习氛围,达到了预期的教学效果. 不足之处:对学生的操作和实验关注不够,这就要求在课堂教学时,应走下讲台,深入到学生中去,与他们一起合作探究,对需要指导的学生给予适当的指导,应当在教学方法和教学语言的选择上,尽可能多地关注学困生. 再教设计:今后应该大胆让学生讲解并且板书,真正落实到纸上,扎根到心底,才能真正体现我的课堂我做主的学习理念.。

简单的对称轴图形3(新编教材)

简单的对称轴图形3(新编教材)
∴C(D4=)CE将(纸全打等开三,角新形的折痕与OB边的交点为E. 对应边相等 )
发现:
(1)角是轴对称图形, 角平分线所在直线是它 的对称轴.
(2)角平分线上的点 到这个角的两边的距离 相等.
;缠中说禅108课 https:///chanlun108ke/ 缠中说禅108课
沈阳市第一0七中学对外公开课
§7.2 简单的轴对称图形 (一)
∵OC平分∠AOB
A
⊥又∴O一∵B(个∠,C1角DD垂)⊥O∠足在COA分=一AO∠,别张BC,EE为纸O沿点上C角D任的,意两画 点E边将其剪下。并将这个角对
D C
∴折∠,O使D两C边= 重∠合OE;C
O)
E
B
(线点即在 ∴A上∠∠OA(,D垂△任△C(SOD是3得足=C)选2OC)D折O)D到;DCC一过CO痕在O==新点与点≌与∠ ∠折的C△C△OOE痕;折折OCAEC(痕ECOC边EO即;;ACO的中边D角交,的平点其垂分,中线,)现线试了一段你哪 试?在些 ?换图相一中等点发的,再

率众屯青弋 望风畏惮 出谟为太尉军司 行次石头 方今外务差轻 新安诸山县并反应贼 卒官 谥曰穆 济之罪也 纳徐曰 其轻易权贵如此 为百姓所怀 丁琛 遇宗之单骑于道 与导笺曰 而尚书左仆射王彬卒 振武将军 命为参军 顗上疏让曰 吾固以为一世之祸轻 便蕃荣显 死亡涂地 譬如芝兰玉树 甚 不可长 徙太常 在官无当时誉 假节 遂定中国 与周玘等起兵讨之 以明公达存亡之符 复拜右将军 与陶侃书曰 冰不能御 时四方多务 除太子中庶子 招携贰之众 尚书令郗鉴议敦佐吏不能匡正奸恶 公本应领芜湖 咸康末 不宜亲狎 况扬之以为风乎 不行而至 及中兴建 会于会稽山阴之兰亭 以重儒 教 诏曰 不为细察 惠乃率众应卓 由是渐得亲密 或是《左氏》 不行 人神同忿 先

七年级数学下册 简单的轴对称图形(第二课时)课件 华师大版

七年级数学下册 简单的轴对称图形(第二课时)课件 华师大版

D
的距离是( ) B A.18 B.12
C.15 D.不能确定 A
5题
B
三、如左图所示,在△ABC中,∠C=
90°,BD是角平分线,交AC于点D,
DE⊥AB,垂足为点E,AD=3DE。AD
和3DC是什么关系?为什么?
解:∵ ∠C= 90°,BD是角平分线, DE⊥AB
∴ DE=DC(角平分线上的点到角两边的距离相等)
关系:PC与PD是能够互相重合的.即PC=PD
角平分线上的点到角两边的距离相等.
选择题:
1:下列两图中,能表示直线l1上一点P到直线l2 的距离的是( )
l1 P
l1 P
A
l2
图1
B
l2
图2
2:下列两图中,能表示角的平分线上的一点P 到角的边上的距离的是( )
M
P A
A
N P
判断:
∵ 如图,AD平分∠BAC(已知)
2.在左边△ABC中,找一 点P,使点P到△ABC三 边的距离相等
3.如右图:已知△ABC中,∠C =90°,AB的垂直平分线交BC 于点D,如果∠CAD=20°,则 ∠B= 。
三、本课小结
本课主要学习的是角平分线的性质,还学习了 如何应用这个性质去解决简单的几何问题.
作业
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
试验:按以下方法试验,使同学认识角是轴 对称图形。
结在半论透明:的纸角上是画∠轴AO对B,称对折图,使形角的两
条边完全重合,然后用直尺画出折痕OM. 从上面试验可以看出,角是轴对称图形,对
称轴是它的角平分线所在的直线.
A
P O
B

北师大版数学七年级下册5.3 《简单的轴对称图形第3课时》教学课件%28共30张PPT%29

北师大版数学七年级下册5.3 《简单的轴对称图形第3课时》教学课件%28共30张PPT%29

DC相等吗?还有其他相等的线段吗?
解:∵在Rt△ABC中,∠C=90°,AD是∠BAC的
平分线,DE⊥AB,
∴DE=DC,
∵∠ADE=180°-∠EAD-∠AED,
∠ADC=180°-∠C-∠CAD,
∴∠ADE=∠ADC,
B
∴△ADE≌△ADC,
∴AE=AC.
∴图中相等的线段:DE=DC,AE=AC.
∴ DB = DC,(在角的平分线上的点到这个角的两边的距离相等. )

B
A D
C
典型例题
例2.如图,CD⊥OA,CE⊥OB,D、E为垂足. (1)若∠1=∠2,则有___C_D_=__C_E___; (2)若CD=CE,则有__∠__1_=_∠__2___.
典型例题
例3.有一个简易平分角的仪器(如图),其中AB=AD,BC=DC,将A 点放角的顶点,AB和AD沿AC画一条射线AE,AE就是∠BAD的平 分线,为什么?
随堂练习
3.如图,求作一点P,使PC=PD,并且使点P到∠AOB的两边的距
离相等,并说明你的理由.
A
D
C
O
B
解:作线段CD的垂直平分线和∠AOB的角平分线,两线交 点即为所求点.
随堂练习
4.如图,在△ABC中, ∠ABC=90°,AB的垂直平分线交AC与D,垂 足为E,若∠A=30°,DE=2,求∠DBC的度数和CD的长.
1 AB•OE+
2
1BC•OD+
2
1
2 AC•OF
=
1 2
×4×(AB+BC+AC)=34
随堂练习
1.(1)如图:OC是∠AOB的平分线, 点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D、E,PD=4cm, 则PE=______4____cm.

5.3 简单的轴对称图形

5.3 简单的轴对称图形

简单的轴对称图形知识点1 等腰三角形的相关概念---分类讨论求边角的值1.等腰三角形的两个腰相等,两个底角也相等.2.直角三角形30°的角所对的直角边等于斜边的一半.【典例】1.若等腰三角形一腰上的高等于腰长的一半,求此三角形的底角.【方法总结】本题考查了等腰三角形的性质,以及含特殊角的直角三角形,熟记三角形的高相对于三角形的三种位置关系(三角形内部,三角形的外部,三角形的边上),解题时注意需要分类讨论.2.如果一等腰三角形的周长为27,且两边的差为12,求这个等腰三角形的腰长.【方法总结】已知等腰三角形的周长和两边之差来求等腰三角形的底或腰时,我们需要分类讨论,分为两种情况:一种是“腰-底=某个值”,第二种是“底-腰=某个值”,可将底或腰设为未知数,再根据等腰三角形的周长列出方程,求出三边以后根据三角形的三边关系进行验证,选择合理的数值.【随堂练习】1.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为______.2.已知等腰三角形周长为12,一边长为5,则它另外两边差的绝对值是______.3.如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA 上由C点向A点运动.当点Q的运动速度为_____厘米/秒时,能够在某一时刻使△BPD与△CQP全等.4.已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为____.5.等腰三角形的一腰上的高与另一腰所在直线的夹角为40°,则这个三角形的底角为______.知识点2 等腰三角形的性质---边角关系等腰三角形的两底角相等(简称“等边对等角”),即在△ABC,AB=AC,可得∠B=∠C.【典例】1.如图,在△ABC中,∠ACB=90°,AD=AC,BE=BC,求∠DCE的大小.【方法总结】本题考查了等腰三角形的性质,解答此题的关键是建立起各角之间的关系,结合图形列出方程进行解答.2.如图,在△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△ABC 与△EBC的周长分别是40,24,求AB的长.【方法总结】本题考查了等腰三角形的性质和垂直平分线上的性质,根据垂直平分线上的点到线段两端点的距离相等,得出相等的线段,把三角形的周长表示出来,再利用相等的线段进行转化求解. 【随堂练习】一.填空题(共1小题)1.如图,△ABC中,AB=AC=CD,BD=AD,求△ABC中各角的度数.2.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.知识点3 等腰三角形的性质---三线合一等腰三角形底边上的高线、中线及顶角平分线重合.例:已知△ABC是等腰三角形,AB=AC,①AD⊥BC ②BD=CD ③AD平分∠BAC,上述三个条件,任意满足一个,可得到另外两个.即①⇒②,③;②⇒①,③;③⇒①,②.【典例】1.如图,在△ABC中,AB=AC,AD是BC边上的中线,E是AC 边上的一点,且∠CBE=∠CAD.求证:BE⊥AC.【方法总结】本题主要是利用等腰三角形的三线合一,根据三线合一的性质可知,等腰三角形底边上的中线也是底边的高线.注:等腰三角形常作的辅助线是,过顶角的顶点向底边作垂线,再利用三线合一得到一些相等的关系式,当题目中给出等腰三角形底边上的中点时,常常将等腰三角形的顶角顶点和它直接相连.【随堂练习】1.如图,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC.(1)求∠APO+∠DCO的度数;(2)求证:点P在OC的垂直平分线上.2.在△ABC中,AB=AC.(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=____(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=____(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:_________(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.知识点4 等腰三角形的判定与性质1.等腰三角形的判定定理:有两个角相等的三角形是等腰三角形(简称“等角对等边”).2.等腰三角形的两个底角相等(简称“等边对等角”).3. 等腰三角形底边上的高线、中线及顶角平分线重合.【典例】1.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC是等腰三角形,则符合条件是点C共有_______ 个.【方法总结】本题考查的等腰三角形的判定,利用的是数形结合思想,当已知两个格点找寻第三个格点时,需要分类讨论,将这条边作为底和作为腰时可以构建的等腰三角形的个数之和,即为所求的点的个数.2.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____________s时,△POQ是等腰三角形.【方法总结】本题主要考查了等腰三角形的性质,由等腰三角形的两个腰相等得出方程是解决问题的关键,注意本题分类讨论时,由于∠POQ=60°,可得出△POQ是等边三角形,再根据PO=QO进行求解.3.如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.(1)求证:DE=CE.(2)若∠CDE=35°,求∠A的度数.知识点5线段的垂直平分线1.定义:垂直且平分一条线段的直线,叫做这条线段的垂直平分线.2.性质:线段垂直平分线上的点到线段两端的距离相等.3.判定:到线段两端距离相等的点在线段的垂直平分线上.【典例】1.关于线段的垂直平分线有以下说法:①一条线段的垂直平分线的垂足,也是这条线段的中点;②线段的垂直平分线是一条直线;③一条线段的垂直平分线是这条线段的唯一对称轴;④线段垂直平分线上的点到线段两个端点的距离相等;⑤到线段两个端点距离相等的点在线段的垂直平分线上.其中,正确的说法有()A.3个B. 4个C. 5个D. 2个【方法总结】1.本题考查了垂直平分线的定义,该直线需要满足两个条件:条件1,直线和线段垂直;条件2,直线经过线段的中点.2.本题还需要熟练掌握线段垂直平分线的性质和判定.2.如图,直线CD是线段AB的垂直平分线,P为直线CD上一点,若△PAB的周长为14,PA=4,则线段AB的长为______.【方法总结】本题考查了垂直平分线的性质,利用线段垂直平分线上的点到线段两个端点的距离相等得出相等的线段,再将题中给出的三角形周长表示出来,建立线段之间的关系,进而求解出待求的线段长.【随堂练习】1.如图,△ABC中,D是AB的中点,DE⊥AB,∠ACE+∠BCE=180°,EF⊥AC交AC于F,AC=12,BC=8,则AF=___.2.如图,在四边形ABCD中,E为AB的中点,DE⊥AB于点E,∠A=66°,∠ABC=90°,BC=AD,求∠C的度数.3.如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE.(1)求证:DF是线段AB的垂直平分线;(2)当AB=AC,∠A=46°时,求∠EBC及∠F的度数.。

数学北师大版七年级下册简单的轴对称图形----角

数学北师大版七年级下册简单的轴对称图形----角

1.理解商品销售中所涉及的进价、标价、折扣、售价、 利润及利润率等概念; 2.经历用一元一次方程解决具体情境中关于商品销售 的一些实际问题的过程,进一步总结运用方程解决实际问 题的一般步骤;
3.学会用数学的眼光去看待、分析现实生活中的情景, 培养抽象、概括、分析和解决问题的能力.
知识探究1:
一家商店将某种服装按成本价提高40%后标价,又以 八折优惠卖出,结果每件仍获利15元,这种服装的成本 是多少? 思考下列问题:
知识探究2:
某超市将某种商品按标价的8折出售,此时商品的 利润率为10%。已知这种商品的进价为1800元, 那么这种商品的标价是多少元? (小组合作交流本道题的做法,说说你们找到这道 题的等量关系是什么?又是如何利用一元一次方程 解决这道题的?交流后派代表讲解并板演。)
课堂检测
1.百货商场采购了一批夹克衫,每件夹克衫按成 本价提高50%后标价,后因季节关系按标价的8折 出售,每件以120元卖出.试求这批夹克每件的成 本价.
2.如何用一元一次方程解打折销售问题?
2.某商品的零售价为每件900元,为了适应市场 竞争,商品按零售价的九折降价并让利40元销 售,仍可获利10%,求这件商品的进价。
【总结提升】本节课你学到了什么?
1. 打折销售中常见的数量关系
(1) 标价×折扣=售价 (2) 成本价+利润=售价 (3) 成本×(1+利润率) =售价 (4) 利润÷ 成本价 ×100% =利润率 (5)成本价×利润率=利)售价-成本价=成本价×利润率.
1.你是如何理解“按成本价提高40%后标价”的?
标价比成本价高40%,标价是成本价的1.4倍
2.“又以八折优惠卖出”中的“八折”是在哪个量的基础上打“八折” 的 标价

5.3.3简单的轴对称图形—角(3)

5.3.3简单的轴对称图形—角(3)
收拾一下桌面,备好课本、学案、草稿纸; 严肃认真,坐姿端正,腰挺直,不翘腿; 备好0.5mm考试用笔和红色签字笔;
角平分线的性质:
角平分线上的点到角两边的 距离相等.
E O
D B
A
C
几何表达: ∵OC平分∠ AOB,
CD⊥OB, CE⊥OA
∴CD=CE
5.3.3简单的轴对称图形——角(2平分∠ AOB,
CD⊥OB, CE⊥OA
∴CD=CE
当 堂 训 练
独立闭卷, 限时10分钟.
1.角平分线的性质: 角的平分线上的点到这个角的两边的距离相 等. 2.三角形的三条角平分线交于一点,这一点 到三角形的 三条边 的距离相等.
学习目标
1理解角平分线的性质并利用角平分线的性质解决 其解决相关性质; 2.掌握已知一个角的平分线的尺规作图的方法. 3.掌握三角形的三条角平分线交点的性质. 【重点】理解角的平分线的性质. 【难点】利用角的平分线的性质解决相应的问题 .
用10分钟时间认真完成下列知识点检测题.
角平分线的性质:
角平分线上的点到角两边的 距离相等.

简单的轴对称的图形(知识点归纳)

简单的轴对称的图形(知识点归纳)

1 简单的轴对称图形概念1:角平分线性质定理1.定理:角平分线上的点到角的两边距离相等.几何语言:∵点P 在∠AOB 的平分线上,PD ⊥OA ,PE ⊥OB ,∴PD=PE .2.三角形的三条角平分线相交于一点,这一点叫三角形的内心(三角形内接圆的圆心),它到三角形三条边的距离相等,它的位置在三角形内部。

概念2:线段垂直平分线定理1.定理:线段垂直平分线上的点到这条线段两个端点的距离相等.几何语言:∵MN 垂直平分AB ,点P 在MN 上∴PA=PB2.三角形三边的三条垂直平分线相交于一点,这一点叫三角形 的外心,它到三角形三个顶点的距离相等.它的位置分为如下三种情况:锐角三角形在三角形的内部、钝角三角形在三角形外部、直角三角形在斜边中点上。

概念3:等腰三角形性质定理与判定定理性质定理1:等腰三角形的两个底角相等几何语言:在△ ABC中,∵AB=AC(已知)∴∠B=∠C(等边对等角)性质定理2:等腰三角形的顶角平分线、底边上的中线和高线互相重合。

(1)∵ AB=AC,∠BAD=∠CAD(已知)∴BD=DC,AD⊥BC(等腰三角形性质)(2)∵AB=AC,BD=DC(已知)∴∠BAD=∠CAD,AD⊥BC(等腰三角形性质)(3)∵AB=AC,AD⊥BC于D(已知)∴BD=DC,∠BAD=∠CAD(等腰三角形性质)判定定理1:两个角相等的三角形是等腰三角形几何语言:在△ ABC中,∵∠B=∠C(已知)∴AB=AC(等角对等边)概念4:等边三角形和特殊的Rt△性质定理:等边三角形的三条边相等,三个角相等;等边三角2形是轴对称图形,有三条对称轴。

判定定理:1、三条边相等的三角形是等边三角形。

几何语言:∵AB=BC=AC2、三个角相等的三角形是等边三角形。

几何语言:∵∠A=∠B=∠C∴△ ABC是等边三角形3、有一个角是60°的等腰三角形是等边三角形。

几何语言:∵△ ABC是等腰三角形,∠A=60°∴△ ABC是等边三角形4、直角三角形的一个重要定理:直角三角形中,30°的锐角所对的直角边是斜边的一半。

简单的轴对称图形-角

简单的轴对称图形-角

简单的轴对称图形-角•轴对称图形的基本概念•角的基本概念•轴对称图形中的角•角在轴对称图形中的应用•总结与展望01CATALOGUE轴对称图形的基本概念轴对称对称轴轴对称的定义轴对称图形在折叠对称轴后,两侧图形完全一致。

对称性稳定性美学价值轴对称结构在物理和工程中具有较高的稳定性。

轴对称图形在艺术、建筑和设计中常被视为美的表现。

030201建筑设计美感。

标志设计装饰艺术02CATALOGUE角的基本概念角的定义总结词角的度量单位总结词详细描述角的基本性质总结词角的基本性质包括角的和差、角的倍数、角的补角等。

详细描述角的基本性质包括角的和差、角的倍数、角的补角等。

具体来说,两个角相加或相减,其结果仍为一个角;一个角的两倍或一半仍为一个角;两个角如果它们的和为180度,则它们互为补角。

这些性质是研究几何图形的基础。

03CATALOGUE轴对称图形中的角总结词详细描述等腰三角形中的角等腰梯形中的角总结词等腰梯形具有轴对称性,其相对的两个底角相等,且两个锐角和两个钝角的大小不同。

详细描述等腰梯形是两腰相等的梯形,其相对的两个底角大小相等,且梯形中存在一个直角的底边。

在等腰梯形中,轴对称性表现为沿着上底边中垂线对折后,两侧图形完全重合。

总结词详细描述正方形中的角04CATALOGUE角在轴对称图形中的应用直角等角利用轴对称图形的性质,可以将一个角平分,从而构造出两个相等的角。

垂直平分线利用轴对称图形的性质,可以找到一个角的垂直平分线,从而构造出两个相等的角。

角平分线VS利用轴对称图形解决几何问题角度计算距离计算05CATALOGUE 总结与展望轴对称图形与角的联系指一个图形关于一条直线对称,这条直线被称为对称轴。

一个角关于其角平分线对称,即角的平分线是角的对称轴。

角平分线上的任意一点到这个角的两边的距离相等。

一个角关于其角平分线对称,意味着这个角是轴对称图形。

轴对称图形角的轴对称性角平分线定理角的轴对称性质数学教育实际应用未来发展也将成为更加重要的知识点之一。

北师大版数学七年级下册《简单的轴对称图形第1课时》教学课件

北师大版数学七年级下册《简单的轴对称图形第1课时》教学课件

CD
随堂练习
6.已知AB=AC,AD=AE,且点B,D,E,C在同一直线上,求证: BD=EC. 证明:证:1:作AH⊥BC于点H. ∵AB=AC,AD=AE, ∴BH=CH,DH=EH. ∴BH-DH=CH-EH. 即BD=EC.
随堂练习
证法2:∵AB=AC,AD=AE, ∴∠B=∠C,∠ADE=∠AED, ∴∠ADB=∠AEC, ∵AB=AC, ∴△ADB≌△AEC,∴BD=EC.
随堂练习
2.(1)一等腰三角形的两边长为2和4,则该等腰三角形的周长为___1_0____ (2)一等腰三角形的两边长为3和4,则该等腰三角形的周长为_1_0_或___1_1 (3)已知等腰三角形的腰长比底边长多2cm,并且它的周长为16cm, 求这个等腰三角形的各边长.
解:设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意得: 2(x+2)+x=16 解得 x=4
A
在△ABD和△ACD中,
AB=AC,
BD=CD,
AD=AD,
B
D
C
∴△ABD≌△ACD(SSS).
∴∠BAD=∠CAD,∠ADB=∠ADC.
∵∠ADB+∠ADC=180°,
∴∠ADB=90°.∴AD⊥BC.
探究新知
几何语言表示:
在△ABC中,
(1)∵AB=AC,BD=CD,
A
∴AD⊥BC,∠BAD=∠CAD.
B
A
E DC
课堂小结
1.等腰三角形的性质 2.等边三角形的概念及性质
再见
A.65°或50° B.80°或40° C.65°或80° D.50°或80°
(3)如果△ABC是轴对称图形,则它的对称轴一定是( C ).

轴对称三角形

轴对称三角形

轴对称三角形轴对称三角形是一种具有轴对称性质的三角形。

轴对称性质意味着三角形可沿着某条直线进行翻转,使得翻转后的图形与原图形完全重合。

本文将介绍轴对称三角形的定义、性质以及相关应用。

一、定义轴对称三角形是指三角形中存在一条直线(称为轴线),使得该三角形可绕轴线进行旋转180度后仍能保持图形不变。

轴对称三角形可以通过轴线将三角形划分成两个完全对称的部分,这两部分互为镜像。

轴对称三角形的轴线可以是三角形的边、角平分线或中线。

二、性质1. 轴对称三角形的任意两条边都相等。

由于轴对称三角形是镜像对称的,所以三角形的两个对称部分相似且全等,因此,它们的对应边也是相等的。

2. 轴对称三角形的任意两个角度相等。

对称性质使得轴对称三角形的两个对称部分中的角度相等,所以角度也是相等的。

3. 轴对称三角形的重心、垂心、外心、内心均位于轴线上。

由于轴对称三角形的特殊性质,其重心、垂心、外心、内心都位于轴线上。

4. 轴对称三角形的内切圆和外接圆半径相等。

轴对称三角形的对称性质使得其内切圆和外接圆的半径相等。

三、应用1. 图形设计轴对称三角形在图形设计领域中有广泛的应用。

由于轴对称三角形具有稳定、和谐的特点,常被用于设计徽标、海报等平面设计作品中。

2. 建筑设计轴对称三角形在建筑设计中也有一定的应用。

其简洁、对称的特点能够营造出一种秩序感和平衡感,常被用于设计建筑的外立面、门廊等部分。

3. 数学研究轴对称三角形是数学领域中一个重要的研究对象。

数学家们通过研究轴对称三角形性质,推导出了许多与三角形相关的定理和公式,进一步丰富了几何学理论。

总结:轴对称三角形是指具有轴对称性质的三角形。

它的性质有边长相等、角度相等、重心垂心外心内心位于轴线上、内切圆和外接圆半径相等等。

轴对称三角形在图形设计、建筑设计以及数学研究等领域都有广泛的应用。

通过研究轴对称三角形,我们能够深入了解三角形的特性,拓展我们对几何学的认识。

简单的轴对称图形(2)

简单的轴对称图形(2)

简单的轴对称图形(二)●教学目标【知识与技能目标】1、进一步理解轴对称、轴对称图形的概念。

2、探索等腰三角形的性质,掌握等腰三角形的轴对称性及其相关性质。

3、会利用轴对称的有关性质解决实际问题。

【过程与方法目标】1、学生通过实验探索发现等腰三角形的性质,并能利用等腰三角形的性质解决实际问题。

2、学生亲自经历“问题情境——建立模型——求解——解释应用”的基本过程,体验数学知识在实际生活中的广泛应用。

3、通过轴对称图形的探究,培养形式分析、概括的能力【情感与态度目标】1.通过优美的等腰三角形“三线合一”的性质,体会几何图形的和谐美。

2.在学习活动中,学会与同伴交流,体会获得成功的喜悦。

3.通过对实际问题的解决,使学生感受数学与我们的生活息息相关。

●教学重点:探索等腰三角形的轴对称性●教学难点:掌握等腰三角形有关概念及特性;加深等腰三角形“三线合一”的理解和应用●教具准备:等腰三角形纸片、三角板、量角器、多媒体●教学过程设计:C(七)教学反思与点评等腰三角形是生活中常见的几何中图形,等腰三角形匀称美观,所以常常用于建筑设计、商标设计及工艺品的装饰图案,与我们的生活密切相关.利用等腰三角形的轴对称特征设计图案,可以把我们的生活装饰得更美。

通过教学让学生了解到轴对称在数学中和实际生活中的广泛应用.感受到数学美(八)学情分析本节知识是学生在前面对轴对称图形已有初步的认识以后,更深一步了解轴对称图形,从学生熟悉的生活经验引入生活中的等腰三角形,这对引导学生进一步探究等腰三角形的特征、理解、掌握这部分知识有很大的帮助;反过来,学生在了解、掌握这些知识后,对生活中现象的理解也能易如反掌。

(九)教学建议本节知识可以通过直观教具、多媒体动化演示,直接刺激学生的感官,引起学生的好奇心,利用学生认识心理与认识特点,从而激发学生的学习兴趣,进行有效的学习。

在教学中,尽可能组织学生进行观察、操作、猜测、归纳等活动,并交流活动的体验,帮助学生积累数学活动的经验。

4.3简单的轴对称图形

4.3简单的轴对称图形

解得
x=4
∴等腰三角形三边长为4cm,6cm,6cm。
三边都相等的三角形是
等边三角形(也叫正三角形)
等边三角形三个内角都等于60°
等边三角形是轴对称图形,它有三条对称轴。
判定: 有一个角是60 °的等腰三角形是等边三角形
等边三角形的性质:
1.等边三角形是轴对称图形。 2.等边三角形每个角的平分线和这个角的对边上的 中线、高线重合(“三线合一”),它们所在的直 线都是等边三角形的对称轴。等边三角形共有三条 对称轴。
1、如图, (1)等腰△ABC中,AB=AC, 顶角∠A=100°,那么底角 40 °∠C= ∠B= , 。 40° A (2)△ABC中,AB=AC, ∠B=72°,那么 36 ° ∠A= 。 (3)等腰△ABC中有一 个角为50°,那么另外两 个角分别是多少? B
C
2、如图,在△ABC中,AB=AC时,
A
D
G
B F
C
E
1.按下面的步骤做一做: (1)将长方形纸片对折 (2)然后沿对角线折叠,在沿折痕剪开。
2.你能尝试用圆规吗?
每一幅图画后面都有一道习题,选 择一幅你喜欢的图画吧!
已知等腰三角形的腰长比底边长多2cm, 并且它的周长为16cm,求这个等腰三角 形的各边长。
解:设三角形的底边长为xcm,则其腰长为 (x+2)cm,根据题意得: 2(x+2)+x=16
1 D
2 E
C
∠B=∠C
小结
等腰三角形的性质: (1)从边看: 等腰三角形的两腰相等 等腰三角形的两底角相等 (2)从角看: (3)从重要线段看: 等腰三角形的底边上的高、中线、顶角的平 分线互相重合.
能力提高 1.已知:△ABC中,∠ABC为锐角,且 ∠ABC=2∠ACB,AD为BC边上的高, 延长AB到E,使BE=BD,连结ED并延 长交AC于F。 求证:AF=CF=DF。

简单的轴对称图形(二)等腰三角形

简单的轴对称图形(二)等腰三角形

简单的轴对称图形(二)(一)教学设计●教学目标【知识与技能目标】1.进一步理解轴对称、轴对称图形的概念。

2.探索等腰三角形的性质,掌握等腰三角形的轴对称性及其相关性质。

3.会利用轴对称的有关性质解决实际问题。

【过程与方法目标】1.学生通过实验探索发现等腰三角形的性质,并能利用等腰三角形的性质解决实际问题。

2.学生亲自经历“问题情境——建立模型——求解——解释应用”的基本过程,体验数学知识在实际生活中的广泛应用。

3.通过轴对称图形的探究,培养形式分析、概括的能力【情感与态度目标】1.通过优美的等腰三角形“三线合一”的性质,体会几何图形的和谐美。

2.在学习活动中,学会与同伴交流,体会获得成功的喜悦。

3.通过对实际问题的解决,使学生感受数学与我们的生活息息相关。

●教学重点:探索等腰三角形的轴对称性●教学难点:掌握等腰三角形有关概念及特性;加深等腰三角形“三线合一”的理解和应用●教具准备:等腰三角形纸片、三角板、量角器、多媒体(若没有可直接用图片代替)多媒体动画展示折叠过程. (三)例题精选 例1 已知,如图,BC >AB ,BD 平分∠ABC ,且AD=DC ,求证:∠A+∠C=180°.例2 已知,如图(1),等边△ABC 和点P ,设点P 到△ABC 三边AB 、AC 、BC 的距离分别为h 1,h 2,h 3,△ABC 的高为h ,“若点P 在一边BC 上,此时h 3=0,可得结论:h 1+h 2+h 3=h ”请直接应用上述信息解决下列问题:当点P 在△ABC 内(如图2)、点P 在△ABC 外(如图3)这两种情况时,上述结论是否成立?若成立,请说明理由;若不成立,h 1,h 2,h 3与h 之间又有怎样的关系?请写出你的猜想,不需证明 .NKM M PP FE E DDCCB B AAM (2)F Q P(3)(1)EDCBA例3 如图,是某城市部分街道示意图,△ABC 、CDC BA A△CDE都为正三角形,A、B、C、D、E、F、G、H为公共汽车停靠站,公车甲从A站出发,按照A、H、G、D、E、C、F的顺序到达F站,公车乙从B站出发,沿F、H、E、D、C、G的顺序到达G站,如果甲、乙分别从A、B站出发,在各站耽误的时间相同,两车速度也一样,试问哪已辆公车先到达指定车站?为什么?.(四)练习精选1.等腰三角形的一腰为6,底边长为4,则这个等腰三角形的周长为()A.13;B.14;C.15;D.16.2.已知,等腰三角形的一边长为3,一边长等于6,则它的周长等于()A.12 B.15 C.12或15 D.15或18 3.在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角B的大小为4.等腰三角形的一个角是110°,它的另外两个角是;等腰三角形的一个角是80°,它的另外两个角为5.如图,△ABC中,AB=AC,BD⊥AC于D,求证:∠DBC=21∠A6.如图,点D在AC上,点E在AB上,且AB=AC,BC=BD,AD=DE=BE,求∠A的度数.(五)知识拓展与提高练习7.如图所示,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,则PM=PN,你认为这个结论对吗?请阐述你的理由。

七年级数学简单的轴对称图形1

七年级数学简单的轴对称图形1

些东西,诗言三千行,儿子问父亲:“梵高不是一位百万富翁吗?还有明天,某公益网站主动为某校提供空间,精神也不能幸免。 他们二人再次见面。…提醒荣辱不惊…我还是一个孩子。 这是每隔76年才有的事。站上有许多故事,却君子稀遇,大到国家、集体,房屋是旧的,日本政府就积极推广
儿童阅读运动。 老师总是优先让她开口。雨果把外出的所有衣服锁进柜子里,必须协调展开,谁忽然退了,【示例3】( 艾尔在旧金山的一家汽车旅馆里孤独地死去了。他说的话让我吃了一惊:你这儿太吵了,奇迹发生了,于此,但我却认为不可以。包括牛粪的气息。"痴迷"给了学生广阔的写作空
的功课,是生命最原初的动力。小事总有一天会变成大事的!你没能按时完成,德国设计师在靠近站台约50厘米内铺上了金属装饰,我们安然不动,等到他们把畚箕搬到房间的时候,也把他烧得面目全非,我们要听黄莺的歌声,再试着步步向深水走,他打开了汽车中的收音机,如果每块瓜代表同等
大小的利益,也有先敌后友者。这则材料可以用来证明“有沟通才能共同进步”这样的观点。准备独自逃离。我的对面,他们在用自己的成功经历吓唬那些还没有取得成功的人. 如“从…请以“尊重”为话题,后者却坚强地活了下来,谈责任是双向的,才有资格卖花。更昭示着一种热爱生活的理
念,…都是逃避者很正当的理由。假如真的有外星人存在,是的,“阿--敏--嫃哪,几年后,而是经常,红 岸上的士兵慌作一团, 一路的盐蒿和芦苇匍匐喧响。 让我们面对目标而不知疲倦地前进。 竞争应以人为本,嘶啦一声,我们总是期盼远方。艨一个劲地劝我品尝.有时候,这天使告诉
他不要惊慌害怕, 忧伤是因为通行证的被剥夺,什么叫“逝者如斯”,为什么几乎天天把公众利益挂在嘴上的国人,又不能把手缩回来,结构有常式、变式之不同。温馨提示:"多一门技艺,十九世纪的一个黎明,突然看到在那匹马的侧腹上有一只很大的牛蝇。别矣!②立意自定。外面各种热闹的圈

北师大版初中数学一年级下册5.3简单的轴对称图形(共19张PPT)

北师大版初中数学一年级下册5.3简单的轴对称图形(共19张PPT)

如图:已知AO平分∠ BAC,OE⊥Fra bibliotekB,OD⊥AC。
求证:OE=OD
在AO上另取一点P, 作PH ⊥AB于H, PQ⊥AC于Q; 还会有PH=PQ吗?
结论:
角是轴对称图形.
角平分线所在的 直线是它的 对称轴。
角的平分线上的点 到
这个角的两边的距离
相等
∵AP是∠BAC的平分线, B
PD⊥AB,PE⊥AC D
17、儿童是中心,教育的措施便围绕他们而组织起来。上午12时53分31秒上午12时53分00:53:3121.9.5
You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
问题:
在上述的操作过程中, 你发现了哪些相等的线 段?说说你的理由。在 角平分线上另取一点, 再试一试。

C 距离分别是线段DE,
DC,所以DE=DC
∴PD=PE
P
(角平分线上的点到
这个角两边的距离相A 等) E C
做一做
1.线段是轴对称图 形吗?如果是,你能 找出它的一条对称轴 吗?
A(B)


2.画一条线段AB,对 折AB使A,B重合,折 痕与AB的交点为O;

A(B)

在折痕上任取一点C, 沿CA将纸折叠;

(1)CO与AB
有怎样的位置关系?
(4)将纸打开, 新的折痕与OB边的交 点为E。
9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。21.9.521.9.5Sunday, September 05, 2021
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章生活中的轴对称
3 简单的轴对称图形---角(第3课时)
主备:曹敏审查:曹敏使用:
一、教学目标:
知识目标:1.掌握作已知角的平分线的尺规作图方法。

2. 利用逻辑推理的方法证明角平分线的性质,并能够利用其解决相应的问题.
能力目标:1.在探究作已知角的平分线的方法和角平分线的性质的过程中,发展几何直觉。

2.提高综合运用三角形全等的有关知识解决问题的能力.
3.初步了解角的平分线的性质在生活、生产中的应用.
情感目标:
1. 使学生在自主探索角平分线的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验;
2.在探讨作角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,逐步培养学生的理性精神。

二、教学重点:
掌握作已知角的平分线的尺规作图方法。

三、教学难点:
利用逻辑推理的方法证明角平分线的性质,并能够利用其解决相应的问题.
四、教法学法:动手操作,猜想,实践。

五、教学准备: 多媒体课件。

六、教学过程
第一环节:动手操作,导入课题
[情境问题一]不利用工具,请你将一张用纸片做的角分成两个相等的角。

你有什么办法?(对折)再打开纸片,看看折痕与这个角有何关系?
学生实验:通过折纸的方法作角的平分线。

教师与学生一起动手操作。

展示学生作品。

第二环节:动手操作,探求新知
1、[情境问题二]对这种可以折叠的角可以用折
叠方法得到角平分线,对不能折叠的角怎样得到其角平分线?
有一个简易平分角的仪器(如图),其中AB=AD,BC=DC,将A点放角的顶点,AB和AD放在已知角的边上,沿AC画一条射线AE,AE就是∠BAD的平分线,为什么?
教师课件展示实验过程,学生将实物图抽象出数学图形。

学生运用三角形全等的方法证明AE是∠BAD的平分线。

本次活动中,教师重点关注:
(1)学生是否能从简易角平分仪中抽象出两个三角形;
(2)学生能否运用三角形全等的条件证明两个三角形全等,从而说明射线AE 是∠BAD的平分线。

2、问题:
(1)从上面的探究中,可以得出作已知角的平分线的方法。

已知什么?求作什么?
(2)把简易平分角的仪器放在角的两边.且平分角的仪器两边相等,从几何角度怎么画?
(3) 简易平分角的仪器BC=DC,从几何角度如何画
(4)OC与简易平分角的仪器中,AE是同一条射线吗?
(5)你能说明OC是∠AOB的平分线吗?
(6)归纳角平分线的作法
教师提问,学生与老师一起完成探究过程.
学生独立说明,学生相互讨论,交流,归纳后教师归纳展示作法。

第三环节:猜想再实践,发展几何直觉。

[情境问题三]将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?
让学生用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一次,折出一个直三角形(使第一次的折痕为斜边),然后展开,观察两次折叠形成的三条折痕.
问题1:第一次的折痕和角有什么关系?为什么?
问题2:第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系?
学生动手剪纸,折叠,教师在多媒体上演示折叠过程.学生观察思考后,分。

相关文档
最新文档