2018-2019学年浙江省杭州市萧山区九年级(上)期末数学试卷

合集下载

浙教版2018-2019学年九年级上期末数学试卷

浙教版2018-2019学年九年级上期末数学试卷

浙教版2018-2019学年九年级上期末数学试卷一.选择题(共10小题,3*10=30)1.从甲,乙,丙三人中任选两名代表,甲被选中的可能性是()A.B.C.D.12.将二次函数y=x2﹣6x+5用配方法化成y=(x﹣h)2+k的形式,下列结果中正确的是()A.y=(x﹣6)2+5 B.y=(x﹣3)2+5C.y=(x﹣3)2﹣4 D.y=(x+3)2﹣93.如图,矩形ABCD中,已知点M是线段AB的黄金分割点,且AM>BM,AD=AM,FB=BM,EF和GM把矩形ABCD分成四个小矩形,其面积分别用S1,S2,S3,S4表示,EF与MG相交与点N,则以下结论正确的有()①N是GM的黄金分割点②S1=S4③.A.①②B.①③C.③D.①②③4.在△ABC与△A′B′C′中,有下列条件:(1),(2);(3)∠A=∠A′;(4)∠C=∠C′,如果从中任取两个条件组成一组,那么能判断△ABC ∽△A′B′C′的共有()A.1组B.2组C.3组D.4组5.用圆心角为60°,半径为24cm的扇形做成一个圆锥的侧面,那么这个圆锥底面的半径是()A.4πcm B.8πcm C.4cm D.8cm6.如图,E、F分别在矩形ABCD的边CD、AB上,EF⊥AB,G、H分别是BC、EF 的中点,EH>HG,除矩形EFBC外,图中4个矩形都彼此相似,若BC=1,则AB等于()A.B.C.D.7.已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为()A.B.2 C.D.8.二次函数y=x2+5x+4,下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣9.如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A.1 B.2 C.12﹣6 D.6﹣610.方程x2+2x+1=的正数根的个数为()A.0 B.1 C.2 D.3二.填空题(共6小题,4*6=24)11.若+x=3,则=.12.在下列图形中:等腰三角形、等边三角形、正方形、正五边形、平行四边形,等腰梯形,其中有个旋转对称图形.13.在盒子里放有四张分别画有等边三角形、平行四边形、矩形、圆的卡片(卡片除所画内容不同外,其余均相同),从中随机抽取一张卡片,卡片上画的恰好是轴对称图形的概率是.14.如图,直角梯形ABCD中,AD∥BC,∠BAC=∠ADC=90°,AB=AC,CE平分∠ACB交AB于点E,F为BC上一点,BF=AE,连接AF交CE于点G,连接DG交AC 于点H.下列结论:①AF⊥CE;②△ABF∽△DGA;③AF=DH;④.其中正确的结论有.15.若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为.16.在矩形ABCD中,AB=4,BC=6,动点P为矩形边上的一点,点P沿着B﹣C的路径运动(含点B和点C),则△ADP的外接圆的圆心O的运动路径长是.三.解答题(共7小题,66分)17.(8分)小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为.(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C的长度和为多少?(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)18.(8分)如图,已知在⊙O中,AB=3,AC是⊙O的直径,AC⊥BD于F,∠A=30°.(1)求⊙O的半径;(2)求出图中阴影扇形OBD的面积.19.(10分)如图,点D在△ABC的边BC上,且与B,C不重合,过点D作AC的平行线DE交AB于E,作AB的平行线DF交AC于点F.又知BC=5.(1)设△ABC的面积为S.若四边形AEFD的面积为;求BD长.(2)若;且DF经过△ABC的重心G,求E,F两点的距离.20.(10分)某批足球的质量检测结果如下:抽取足球数n1002004006008001000合格的频数m93192384564759950合格的频率0.930.960.960.94(1)填写表中的空格.(结果保留0.01)(2)画出合格的频率的折线统计图.(3)从这批足球任意抽取的一只足球是合格品的概率估计值是多少?并说明理由.21.(10分)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?时间x(天)1≤x<99≤x<15x≥15售价(元/斤)第1次降价后的价格第2次降价后的价格销量(斤)80﹣3x120﹣x储存和损耗费用(元)40+3x3x2﹣64x+400(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?22.(10分)如图,已知⊙O的半径长为4,弦AB垂直平分半径OC,弦DE∥AB,过点B作AD的平行线交直线DE于点F.(1)当点E,F不重合时,试说明△BEF是等腰三角形.(2)填空:当AD=时,四边形ABFD是菱形.23.(10分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C (4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t 的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.参考答案与试题解析一.选择题(共10小题)1.从甲,乙,丙三人中任选两名代表,甲被选中的可能性是()A.B.C.D.1【分析】让2除以总人数即为所求的可能性.【解答】解:选两名代表共有以下情况:甲,乙;甲,丙;乙,丙;三种情况.故甲被选中的可能性是.故选:C.【点评】本题考查的是可能性大小的判断,用到的知识点为:可能性等于所求情况数与总情况数之比.2.将二次函数y=x2﹣6x+5用配方法化成y=(x﹣h)2+k的形式,下列结果中正确的是()A.y=(x﹣6)2+5 B.y=(x﹣3)2+5 C.y=(x﹣3)2﹣4 D.y=(x+3)2﹣9【分析】运用配方法把一般式化为顶点式即可.【解答】解:y=x2﹣6x+5=x2﹣6x+9﹣4=(x﹣3)2﹣4,故选:C.【点评】本题考查的是二次函数的三种形式,正确运用配方法把一般式化为顶点式是解题的关键.3.如图,矩形ABCD中,已知点M是线段AB的黄金分割点,且AM>BM,AD=AM,FB=BM,EF和GM把矩形ABCD分成四个小矩形,其面积分别用S1,S2,S3,S4表示,EF与MG相交与点N,则以下结论正确的有()①N是GM的黄金分割点②S1=S4③.A.①②B.①③C.③D.①②③【分析】首先证明四边形AMGD,四边形BMNF都是正方形,推出AM=AD=MG=BC,MB﹣BF=MN=FN,由点M是线段AB的黄金分割点,AM>BM,推出AM2=BM•AB,可得S1+S3=S3+S4,推出S1=S4,故②正确,推出MN2=GN•DG=NG•GM,可得N是GM 的黄金分割点,故①正确,因为==,由=.可得==,故③错误;【解答】解:∵四边形ABCD是矩形,AM=AD,BM=BF,∴四边形AMGD,四边形BMNF都是正方形,∴AM=AD=MG=BC,MB﹣BF=MN=FN,∵点M是线段AB的黄金分割点,AM>BM,∴AM2=BM•AB,∴S1+S3=S3+S4,∴S1=S4,故②正确,∴MN2=GN•DG=NG•GM,∴N是GM的黄金分割点,故①正确,∵==,∵=.∴==,故③错误,故选:A.【点评】本题考查黄金分割、矩形的性质等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.4.在△ABC与△A′B′C′中,有下列条件:(1),(2);(3)∠A=∠A′;(4)∠C=∠C′,如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有()A.1组B.2组C.3组D.4组【分析】根据相似三角形的判定方法对各个条件进行分析,从而得到答案.【解答】解:共有3组,其组合分别是(1)和(2)三边对应成比例的两个三角形相似;(2)和(4)两边对应成比例且夹角相等的两个三角形相似;(3)和(4)两角对应相等的两个三角形相似.故选:C.【点评】考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似.(2)两边对应成比例且夹角相等的两个三角形相似.(3)三边对应成比例的两个三角形相似.(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.5.用圆心角为60°,半径为24cm的扇形做成一个圆锥的侧面,那么这个圆锥底面的半径是()A.4πcm B.8πcm C.4cm D.8cm【分析】正确理解圆锥侧面与其展开得到的扇形的关系:圆锥的底面周长等于扇形的弧长.扇形中已知圆心角,半径,则根据扇形的弧长公式l===8π,设底面圆的半径是r,则8π=2πr,∴r=4cm.【解答】解:根据扇形的弧长公式l===8π,设底面圆的半径是r,则8π=2πr∴r=4cm,这个圆锥底面的半径是4cm.故选:C.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.6.如图,E、F分别在矩形ABCD的边CD、AB上,EF⊥AB,G、H分别是BC、EF的中点,EH>HG,除矩形EFBC外,图中4个矩形都彼此相似,若BC=1,则AB等于()A.B.C.D.【分析】根据条件矩形ABCD∽矩形EHGC,根据相似多边形对应边的比相等,即可求解.【解答】解:GC=BC=0.5.设AB=CD=x,CE=y.则DE=x﹣y.∵矩形ABCD∽矩形EHGC.∴=,即=(1)∵矩形ABCD∽矩形ADEF.∴=,即=(2)由(1)(2)解得:x=.故选:C.【点评】本题主要考查了相似多边形的对应边的比相等,注意分清对应边是解决本题的关键.7.已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为()A.B.2 C.D.【分析】设AC和BD的交点是O.过点O作GH⊥CD于G,交AB于H.根据等角的余角相等以及圆周角定理可以证明点H是AB的中点.再过点O作MN⊥AB于M,交CD于点N.同样可以证明N是CD的中点.设该圆的圆心是O′,连接O′N、O′H.根据垂径定理的推论,得O′N⊥CD,O′H⊥AB.则O′N∥GH,O′H∥MN,则四边形O′NOH是平行四边形,则O′H=ON=CD=2.【解答】解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于N,交CD于点M.在Rt△COD中,∠COD=90°,OG⊥CD;∴∠DOG=∠DCO;∵∠GOD=∠BOH,∠DCO=∠ABO,∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;即H是Rt△AOB斜边AB上的中点.同理可证得,M是Rt△COD斜边CD上的中点.设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;∵MN⊥AB,GH⊥CD;∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.故选:B.【点评】此题综合运用了等角的余角相等以及等弧所对的圆周角相等,发现垂直于一边的直线,和另一边的交点正好是它的中点.再根据垂径定理的推论,得到垂直,发现平行四边形.根据平行四边形的对边相等,即可求解.8.二次函数y=x2+5x+4,下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣【分析】首先利用配方法把二次函数化成顶点式的形式,然后利用二次函数的性质判断.【解答】解:y=x2+5x+4=(x+)2﹣,二次项系数是1>0,则函数开口向上,故A错误;函数的对称轴是x=﹣,顶点是(﹣,﹣),B错误;则D正确,函数有最小值是﹣,选项C错误.故选:D.【点评】本题主要考查二次函数的最值,掌握二次函数的顶点式求最值是解题的关键,即二次函数y=a(x﹣h)2+k当x=h时有最值k.9.如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A.1 B.2 C.12﹣6 D.6﹣6【分析】首先过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,易证得△ADG∽△ABC,然后根据相似三角形的性质以及正方形的性质求解即可求得答案.【解答】解:过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,∵AB=AC,AD=AG,∴AD:AB=AG:AC,∵∠BAC=∠DAG,∴△ADG∽△ABC,∴∠ADG=∠B,∴DG∥BC,∵四边形DEFG是正方形,∴FG⊥DG,∴FH⊥BC,AN⊥DG,∵AB=AC=18,BC=12,∴BM=BC=6,∴AM==12,∴,∴AN=6,∴MN=AM﹣AN=6,∴FH=MN﹣GF=6﹣6.故选:D.【点评】此题考查了相似三角形的判定与性质、正方形的性质、等腰三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10.方程x2+2x+1=的正数根的个数为()A.0 B.1 C.2 D.3【分析】求方程x2+2x+1=的解,可以理解为:二次函数y=x2+2x+1与反比例函数y=的图象交点的横坐标.【解答】解:二次函数y=x2+2x+1=(x+1)2的图象过点(0,1),且在第一、二象限内,反比例函数y=的图象在第一、三象限,∴这两个函数只在第一象限有一个交点.即方程x2+2x+1=的正数根的个数为1.故选:B.【点评】本题利用了二次函数的图象与反比例函数图象来确定方程的交点的个数.二.填空题(共6小题)11.若+x=3,则=.【分析】将方程+x=3的两边平方,得:=9,∴=7,代入化简后的式子即可.【解答】解:将方程+x=3的两边平方,得:=9,∴=7,∵x≠0,∴===.故答案为.【点评】根据所求分式,将已知条件中的分式方程进行变形,从而求出=7,是解答问题的关键.12.在下列图形中:等腰三角形、等边三角形、正方形、正五边形、平行四边形,等腰梯形,其中有4个旋转对称图形.【分析】根据旋转对称图形的定义:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.解答即可.【解答】解:在等腰三角形、等边三角形、正方形、正五边形、平行四边形,等腰梯形只有等边三角形、正方形、正五边形、平行四边形是旋转对称图形.故答案为4;【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.13.在盒子里放有四张分别画有等边三角形、平行四边形、矩形、圆的卡片(卡片除所画内容不同外,其余均相同),从中随机抽取一张卡片,卡片上画的恰好是轴对称图形的概率是.【分析】先根据轴对称图形的定义得到在所给图形中轴对称图有等边三角形、矩形、圆三个,然后根据概率公式进行计算.【解答】解:因为在等边三角形、平行四边形、矩形、圆中,轴对称图有等边三角形、所以从中随机抽取一张卡片,卡片上画的恰好是轴对称图形的概率是.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了轴对称图形.14.如图,直角梯形ABCD中,AD∥BC,∠BAC=∠ADC=90°,AB=AC,CE平分∠ACB交AB于点E,F为BC上一点,BF=AE,连接AF交CE于点G,连接DG交AC 于点H.下列结论:①AF⊥CE;②△ABF∽△DGA;③AF=DH;④.其中正确的结论有①②③④.【分析】先判断出△ABC是等腰直角三角形,过点E作EF′⊥BC于F′,根据角平分线上的点到角的两边的距离相等可得AE=EF′,再根据等腰直角三角形的性质可得BF′=EF′,从而确定点F、F′重合,再利用“HL”证明△ACE和△FCE全等,根据全等三角形对应边相等可得AC=CF,根据等腰三角形三线合一的可得AF⊥CE,判断出①正确;求出∠AFC=∠FAC=67.5°,再求出∠DAG=∠AFB=112.5°,∠BAF=∠ACE=22.5°,再根据点A、G、C、D四点共圆得到∠ADG=∠ACE,然后利用两组角对应相等,两三角形相似判断出②正确;求出△ACF和△HCD相似,利用相似三角形对应边成比例列式求解即可得到AF=DH,判断出③正确;根据S四边形ADCG=S△ACG+S△ADC,利用三角形的面积列出整理成AF•DG的形式,再把AF用DG表示,然后代入进行计算即可判断④正确.【解答】解:∵∠BAC=∠ADC=90°,AB=AC,∴△ABC是等腰直角三角形,过点E作EF′⊥BC于F′,则△BEF′是等腰直角三角形,∴BF′=EF′,∵CE平分∠ACB,∴AE=EF′,∵BF=AE,∴BF=BF′,∴点F、F′重合,在△ACE和△FCE中,,∴△ACE≌△FCE(HL),∴AC=CF,∵CE平分∠ACB,∴AF⊥CE,故①正确;∵∠AFC=∠FAC=90°﹣×45°=67.5°,∴∠DAG=∠AFB=112.5°,∠BAF=∠ACE=×45°=22.5°,∵∠AGC=90°,∠ADC=90°,∴点A、G、C、D四点共圆,AC是直径,∴∠ADG=∠ACE=22.5°,∴∠ADG=∠BAF,∴△ABF∽△DGA,故②正确;∵∠CDH=90°﹣∠ADG=90°﹣22.5°=67.5°,∴∠CDH=∠FAC=67.5°,又∵∠ACF=∠ACD=45°,∴△ACF∽△HCD,∴=,∵△ACD中,∠ACD=90°﹣45°=45°,∠ADC=90°,∴△ACD是等腰直角三角形,∴AC=CD,∴AF=DH,故③正确;∵∠GDC=∠GCD=90°﹣22.5°=67.5°,∵△ABF∽△DGA,∴=,∴AF•DG=AD•AB=AD•AD=AD2,∴AD2=AF•DG,S四边形ADCG=S△ACG+S△ADC,=AG•CG+AD•CD,=×AF•DG+×AF•DG,=AF•DG,∵DG=DH+GH=DH+AG=AF+AF=AF,∴AF=DG,=×DG•DG=DG2,故④正确.∴S四边形ADCG综上所述,正确的结论有①②③④.故答案为:①②③④.【点评】本题考查了相似三角形的判定与性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,直角梯形,根据角的度数22.5°和67.5°求出相等的角是解题的关键,也是本题的难点.15.若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为(4,33).【分析】把含p的项合并,只有当p的系数为0时,不管p取何值抛物线都通过定点,可求x、y的对应值,确定定点坐标.【解答】解:y=2x2﹣px+4p+1可化为y=2x2﹣p(x﹣4)+1,分析可得:当x=4时,y=33;且与p的取值无关;故不管p取何值时都通过定点(4,33).【点评】本题考查二次函数图象过定点问题,解决此类问题:首先根据题意,化简函数16.在矩形ABCD中,AB=4,BC=6,动点P为矩形边上的一点,点P沿着B﹣C的路径运动(含点B和点C),则△ADP的外接圆的圆心O的运动路径长是.【分析】如图,连接AC、BD交于点O′.当点P与B或C重合时,△PAD的外接圆的圆心与O′重合,当PA=PD时,设△PAD的外接圆的圆心为O,PO的延长线交AD于E,设PO=OD=x,因为△PAD的外心在线段AD的垂直平分线上,观察图象可知,点P沿着B﹣C的路径运动,△ADP的外接圆的圆心O的运动路径长是2OO′,由此即可解决问题;【解答】解:如图,连接AC、BD交于点O′.当点P与B或C重合时,△PAD的外接圆的圆心与O′重合,当PA=PD时,设△PAD的外接圆的圆心为O,PO的延长线交AD于E,设PO=OD=x,Rt△ODE中,∵OD2=OE2+DE2,∴x2=(4﹣x)2+32,解得x=,∴OE=4﹣=,∵O′B=O′D,AE=DE,∴O′E=AB=2,∴OO′=O′E﹣OE=,∵△PAD的外心在线段AD的垂直平分线上,2OO′=.故答案为.【点评】本题考查轨迹、矩形的性质、三角形的外接圆等知识,解题的关键是正确寻找点O的运动轨迹,属于中考常填空题中的压轴题.三.解答题(共7小题)17.小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为180cm.(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C的长度和为多少?(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)【分析】(1)设灯泡的位置为点P,易得△PAD∽△PA′D′,设出所求的未知数,利用相似三角形的对应边的比等于对应高的比,可得灯泡离地面的高度;(2)同法可得到横向影子A′B,D′C的长度和;(3)按照相应的三角形相似,利用相似三角形的对应边的比等于对应高的比,用字母表示出其他线段,即可得到灯泡离地面的距离.【解答】解:(1)设灯泡离地面的高度为xcm,∵AD∥A′D′,∴△PAD∽△PA′D′.根据相似三角形对应高的比等于相似比的性质,可得,∴=,解得x=180.(4分)(2)设横向影子A′B,D′C的长度和为ycm,同理可得∴=,解得y=12cm;(3分)(3)记灯泡为点P,如图:∵AD∥A′D′,∴∠PAD=∠PA′D′,∠PDA=∠PD′A′.∴△PAD∽△PA′D′.根据相似三角形对应高的比等于相似比的性质,可得(1分)(直接得出三角形相似或比例线段均不扣分)设灯泡离地面距离为x,由题意,得PM=x,PN=x﹣a,AD=na,A′D′=na+b,∴=1﹣=1﹣x=(1分).【点评】本题主要考查相似三角形的判定与性质,注意运用相似三角形对应高的比等于相似比这个性质.18.如图,已知在⊙O中,AB=3,AC是⊙O的直径,AC⊥BD于F,∠A=30°.(2)求出图中阴影扇形OBD的面积.【分析】(1)由∠A=30°,可求得∠BOC=60°,再根据垂径定理得∠BOD=120°,求出BF以及OB的长即可;(2)由扇形面积公式求出阴影部分的面积即可.【解答】解:(1)∵AC⊥BD于F,∠A=30°,∴∠BOC=60°,∠OBF=30°,∠BOD=120°,∴BF=AB=,在Rt△BOF中,OB===,即⊙O的半径为;(2)图中阴影扇形OBD的面积==π.【点评】本题考查了垂径定理、含30°角的直角三角形的性质、三角函数、扇形面积的计算、以及圆周角定理;熟练掌握垂径定理,由三角函数求出半径是解决问题的关键.19.如图,点D在△ABC的边BC上,且与B,C不重合,过点D作AC的平行线DE 交AB于E,作AB的平行线DF交AC于点F.又知BC=5.(1)设△ABC的面积为S.若四边形AEFD的面积为;求BD长.(2)若;且DF经过△ABC的重心G,求E,F两点的距离.【分析】(1)由题中条件可得△BDE∽△BCA∽△DCF,由相似三角形可得其面积比与对应边长的比的关系,进而再由题中的已知条件,求解其长度即可;(2)由平行线可得对应线段的比,通过线段之间的转化以及角的相等,可得△DEF∽△ABC,由其对应边成比例可得线段EF的长.【解答】解:如图,(1)∵DE∥AC,DF∥AB,∴△BDE∽△BCA∽△DCF,=S1,S△DCF=S2,记S△BDE∵S AEFD=S,∴S1+S2=S﹣S=S.①=,=,于是+==1,即+=,两边平方得S=S 1+S2+2,故2=S AEFD=S,即S1S2=S2.②由①、②解得S1=S,即=.而=,即=,解得BD===.(2)由G是△ABC的重心,DF过点G,且DF∥AB,可得=,则DF=AB.由DE∥AC,=,得DE=AC,∵AC=AB,∴=,==,得=,即=,又∠EDF=∠A,故△DEF∽△ABC,得=,所以EF=.【点评】本题主要考查了相似三角形的判定及性质以及三角形的重心的一些基本知识,能够掌握并熟练运用.20.某批足球的质量检测结果如下:抽取足球数n1002004006008001000合格的频数m93192384564759950合格的频率0.930.960.960.940.950.95(1)填写表中的空格.(结果保留0.01)(2)画出合格的频率的折线统计图.(3)从这批足球任意抽取的一只足球是合格品的概率估计值是多少?并说明理由.【分析】(1)根据频率=频数÷总数计算可得;(2)由表格中数据在坐标系内用点描出来,再用线段依次相连即可得;(3)根据频率估计概率,频率都在0.95左右波动,所以任意抽取的一只足球是合格品的概率估计值是0.95.【解答】解:(1)完成表格如下:抽取足球数n1002004006008001000合格的频数m93192384564759950合格的频率0.930.960.960.940.950.95(2)如图所示:(3)从这批足球任意抽取的一只足球是合格品的概率估计值0.95,因为从折线统计图中可知,随着实验次数的增大,频率逐渐稳定到常数0.95附近,所以从这批足球任意抽取的一只足球是合格品的概率估计值0.95.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了频率分布折线图.21.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?时间x(天)1≤x<99≤x<15x≥15售价(元/斤)第1次降价后的价格第2次降价后的价格销量(斤)80﹣3x120﹣x储存和损耗费用(元)40+3x3x2﹣64x+400(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?【分析】(1)设这个百分率是x,根据某商品原价为10元,由于各种原因连续两次降价,降价后的价格为8.1元,可列方程求解;(2)根据两个取值先计算:当1≤x<9时和9≤x<15时销售单价,由利润=(售价﹣进价)×销量﹣费用列函数关系式,并根据增减性求最大值,作对比;(3)设第15天在第14天的价格基础上可降a元,根据第15天的利润比(2)中最大利润最多少127.5元,列不等式可得结论.【解答】解:(1)设该种水果每次降价的百分率是x,10(1﹣x)2=8.1,x=10%或x=190%(舍去),答:该种水果每次降价的百分率是10%;(2)当1≤x<9时,第1次降价后的价格:10×(1﹣10%)=9,∴y=(9﹣4.1)(80﹣3x)﹣(40+3x)=﹣17.7x+352,∵﹣17.7<0,∴y随x的增大而减小,∴当x=1时,y有最大值,y大=﹣17.7×1+352=334.3(元),当9≤x<15时,第2次降价后的价格:8.1元,∴y=(8.1﹣4.1)(120﹣x)﹣(3x2﹣64x+400)=﹣3x2+60x+80=﹣3(x﹣10)2+380,∵﹣3<0,∴当9≤x≤10时,y随x的增大而增大,当10<x<15时,y随x的增大而减小,∴当x=10时,y有最大值,y大=380(元),综上所述,y与x(1≤x<15)之间的函数关系式为:y=,第10天时销售利润最大;(3)设第15天在第14天的价格基础上可降a元,由题意得:380﹣127.5≤(8.1﹣4.1﹣a)(120﹣15)﹣(3×152﹣64×15+400),252.5≤105(4﹣a)﹣115,a≤0.5,答:第15天在第14天的价格基础上最多可降0.5元.【点评】本题考查了一元二次方程的应用及二次函数的有关知识,解题的关键是正确的找到题目中的等量关系且利用其列出方程,注意第2问中x的取值,两个取值中的最大值才是最大利润.22.如图,已知⊙O的半径长为4,弦AB垂直平分半径OC,弦DE∥AB,过点B作AD的平行线交直线DE于点F.(1)当点E,F不重合时,试说明△BEF是等腰三角形.(2)填空:当AD=4时,四边形ABFD是菱形.【分析】(1)根据已知条件得到四边形ABFD是平行四边形.于是得到∠EFB=∠DAB.根据圆内接四边形的性质即可得到结论;(2)连接OA,根据勾股定理即可得到结论.【解答】(1)证明:∵DF∥AB,BF∥AD,∴四边形ABFD是平行四边形.∴∠EFB=∠DAB.∵四边形ABED是⊙O的内接四边形,∴∠DAB+∠DEB=180°.又∵∠FEB+∠DEB=180°,∴∠FEB=∠DAB,∴BE=BF,∴△BEF是等腰三角形;(2)解:当AD=4时,四边形ABFD是菱形.理由:连接OA,∵⊙O的半径长为4,弦AB垂直平分半径OC,∴OA=4,OG=2,OG⊥AB,∴AG==2,∴AB=4,∴AD=AB=4时,四边形ABFD是菱形.故答案为:4.【点评】本题考查了勾股定理和垂径定理的应用,平行四边形的判定,正确的作出辅助线是解题的关键.23.如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t 的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.【分析】(1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到n的值,然后利用待定系数法求二次函数解析式解答;(2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB 的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P与t的关系式,再利用二次函数的最值问题解答;(3)根据逆时针旋转角为90°可得A1O1∥y轴时,B1O1∥x轴,然后分①点O1、B1在抛物线上时,表示出两点的横坐标,再根据纵坐标相同列出方程求解即可;②点A1、B1在抛物线上时,表示出点B1的横坐标,再根据两点的纵坐标相差A1O1的长度列出方程求解即可.【解答】解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,。

浙江省杭州市萧山区2018学年第一学期期末教学质量检测九年级数学试卷

浙江省杭州市萧山区2018学年第一学期期末教学质量检测九年级数学试卷

2018学年杭州市萧山区九年级第一学期期末数学考试考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟;2.答题前,请在答题卡指定位置内墳写校名,姓名和班级,填涂考生号;3.答题时,所有答案必须做在答题卡标定的位置上,请务必注意试题序号和答题序号相对应;4如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑。

参考公式:二次函数()02≠++=a c bx ax y 的图像的顶点坐标公式.4422⎪⎪⎭⎫ ⎝⎛--a b ac a b ,一、选择题(本大题有10个小题,每小题3分,共30分。

)1.(2019萧山)已知34x y =,则x y y+=( ) A .47 B .74 C .37 D .732.(2019萧山)二次函数22y x =-图像的顶点坐标为( ) A .(0,-2) B .(-2,0) C .(0,2) D .(2,0)3.(2019萧山)掷一枚质地均匀的硬币,正面朝上的概率为12,则下列说法正确的是( ) A .连续抛掷2次必有1次正面朝上B .连续抛掷10次不可能都正面朝上C .大量反复抛掷每100次出现正面朝上50次D .通过抛掷硬币确定两人谁先发球的比赛规则是公平的4.(2019萧山)边长为2的正方形内接于⊙O ,则⊙O 的半径是( )A .1 BC .2 D.5.(2019萧山)Rt △ABC 中,∠C=90°,sinA=12,则tanB 的值是( ) A.3 B .1 CD6.(2019萧山)如图,已知点P 是四边形ABCD 对角线AC 上一点,PE //CD 交AD 于点E ,PF //BC 交AB 于点F .若23AP PC =,则四边形AFPE 的周长l 1与四边形ABCD 的周长l 2之比为( )A .1223l l =B .1249l l =C .1225l l =D .12425l l = 7.(2019萧山)已知二次函数2y x bx c =-++,其中0,0b c ><,则此函数的图像可以是( )8.(2019萧山)如图,在⊙O 中,∠ACB=50°,∠AOC=60°,则∠BAC 的度数为( )A .90°B .100°C .105°D .110°9.(2019萧山)已知二次函数()()1y ax b x =--,当x >1时,y 随x的增大而增大,给出下.则正确的有()列结论:①抛物线开口向上;②抛物线与坐标轴必有3个交点;③a bA.①②③B.①②C.①③D.②③10.(2019萧山)如图,在矩形ABCD 中,AB=4,AD=a ,点P 在AD 上,且AP=2.点E 是边AB 上的动点,以PE 为边作直角∠EPF ,射线PF 交边BC 于点F ,连接EF 给出下列结论:①tan ∠PFE=12;②a 的最小值为10.则下列说法正确的是( )A .①,②都对B .①,②都错C .①对,②错D .①错,②对二、填空题(本题有6个小题,每小题4分,共24分)11.(2019萧山)计算:cos45°=_________.12.(2019萧山)在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸一个球,它是白球的概率为它是黄球概率的12,则n =_________.13.(2019萧山)如图,将△ABC 绕点A 逆时针旋转100°,得到△ADE .若点D 在线段BC 的延长线上,则∠B 的大小为_________.14.(2019萧山)同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离如图,在一个路口,一辆长为10m 的大巴车遇红灯后停在距交通信号灯20m 的停止线处,小张驾驶一辆小轿车跟随大巴车行驶.设小张距大巴车尾x (m),若大巴车车顶高于小张的水平视线0.8m ,红灯下沿高于小张的水平视线3.2m ;若小张能看到整个红灯,则x 的最小值为_________.15.(2019萧山)如图,⊙O 中,弦CD 与直径AB 交于点H .若DH=CH=BD=4,则:(1)AB 的长为_________;(2)BD 的长为_________.16.(2019萧山)已知二次函数243y ax ax a =-+(1)若a =1,则函数y 的最小值为_________;(2)若当14x ≤≤时,y 的最大值是4,则a 的值为_________.三、解答题(本题有7小题,共66分)17.(2019萧山)(本题满分6分)某电脑公司现有A 、B 、C 三种型号的甲品牌电脑,D 、E 两种型号的乙品牌电脑.某中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写出所有选购方案(用合适的方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,求A 型号电脑被选中的概率.已知二次函数212y x x m =-+的图像经过点)1,2-(. (1)求此函数图像与坐标轴的交点坐标;(2)若122,,()(5),P y Q y -两点在此函数图像上,试比较12,y y 的大小.19.(2019萧山)(本题满分8分)已知△ABC 中,AB=5,AC=sinB=35,求△ABC 的面积.20.(2019萧山)(本题满分10分)如图,矩形窗户边框ABCD 由矩形AEFD ,矩形BNME ,矩形CFMN 组成,其中:1:3AE BE =.已知制作一个窗户边框的材料的总长是6米,设BC=x (米),窗户边框ABCD 的面积为S (米2).(1)①用x 的代数式表示AB ;②求x 的取值范围;(2)求当S 达到最大时,AB 的长.如图,在△ABC 中,AB=AC .以AC 为直径的⊙O 交AB 于点D ,交BC 于点E .(1)求证:DE CE .(2)若BD=2,BE=3,求tan ∠BAC 的值.22.(2019萧山)(本题满分12分)如图,□ABCD 中,BF 平分∠ABC 交AD 于点F ,CE 平分∠DCB 交AD 于点E ,BF 和CE 相交于点P .(1)求证:AE=DF .(2)已知AB=4,AD=5. ①求PE PC 的值; ②求四边形ABPE 的面积与△BPC 的面积之比.如图,等边△ABC中,点D是BC上任一点,以AD为边作∠ADE=∠ADF=60°,分别交AC,AB于点E,F.(1)求证:AD2=AE•AC.(2)已知BC=2,设BD的长为x,AF的长为y.①求y关于x的函数表达式;求x的值②若四边形AFDE。

浙江省2018-2019学年数学九年级上册期末模拟试卷(浙江专版)及参考答案

浙江省2018-2019学年数学九年级上册期末模拟试卷(浙江专版)及参考答案

A. B.
C. D.
7. 如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC,BD,以BD为直径的圆交AC于点E. 若DE=3,则AD的长为( )
A.5B.4C.3 D.2 8. 如图,小明为检验四边形MNPQ四个顶点是否在同一圆上,用尺规分别作了MN,MQ的垂直平分线交于点O,则M,N, P,Q四点中,不一定在以O为圆心,OM为半径的圆上的点是( )
,那么它对应的函数解析
12. 如图,点 A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格 点数为________.
13. 将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为________ 14. 如图,四边形ABCD内接于 ,若四边形ABCO是平行四边形,则

两点,且与 轴交于点 .
(1) 求抛物线的表达式;
(2) 如图②,用宽为4个单位长度的直尺垂直于 轴,并沿 轴左右平移,直尺的左右两边所在的直线与抛物线相交
于 、 两点(点 在点 的左侧),连接 ,在线段 上方抛物线上有一动点 ,连接 、 .
(Ⅰ)若点 的横坐标为 ,求
面积的最大值,并求此时点 的坐标;
(1) 设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1S2+S3;(填“>”“=”或“<”) (2) 写出图中的三对相似三角形,并选择其中一对进行证明. 22. 如图,在直角梯形ABCD中,AB//CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动 ,设AP=x,
(1) 求AD的长; (2) 点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的

2018-2019浙教版九年级上数学期末综合检测试卷含解析

2018-2019浙教版九年级上数学期末综合检测试卷含解析

2018-2019浙教版九年级上数学期末综合练习试卷含解析范围:九上-九下第一章姓名:__________班级:__________考号:__________一、选择题(本大题共12小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.2.下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95C.“打开电视,正在播放乒乓球比赛”是必然事件D .同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为3.已知二次函数y=x2+bx的图象经过点(1,﹣2),则b的值为( )A.﹣3 B.3 C.1 D.﹣14.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A.B.C.D.教习网-海量精品课件试卷教案免费下载5.如图所示,河堤横断面堤高米,迎水坡面的坡度为(坡度是指坡面的铅直高度与水平宽度之比,又称坡比),则的长是()A.米B.米C.米D.米6.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°7.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣38.下列四个三角形中,与图中的三角形相似的是()A.B.C.D.9.如图,在直角坐标系xOy中,A(﹣4,0),B(0,2),连结AB并延长到C,连结CO,若△COB∽△CAO,则点C的坐标为()A.(1,B.C.D.10.如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为E,如果CE=2,那么AB的长是()A.4 B.8 C.6 D.10二、填空题(本大题共6小题,每小题4分,共24分)11.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.12.在中,若,则的度数是______.13.(1)三条平行线截两条直线,所得的的比相等.(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的相等.(3)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所得的三角形与原三角形.14.在矩形ABCD中,AB=8,AD=6,以A为圆心作圆,如果B,C,D三点中至少有一点在圆内,且至少有一点在圆外,则圆A的半径r的取值范围是____________.15.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是.16.如图,P、Q分别是⊙O的内接正五边形的边AB、BC上的点,BP=CQ,则∠POQ= .三、解答题(本大题共8小题,共66分)17.先化简,再求值:•﹣(+1),其中x=2cos60°﹣3.18.如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB于点E,BD交CE于点F.求证:CF=BF.19.如图,如果,,那么与是否相似?与是否位似?试说明理由.20.现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.21.如图,某仓储中心有一斜坡AB,其坡度为i=1∶2,顶部A处的高AC为4 m,B,C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5 m,EF=2 m,将该货柜沿斜坡向上运送,当BF=3.5 m时,求点D离地面的高.(参考数据:5≈2.236,结果精确到0.1 m)22.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A.B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.23.(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.24.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A.B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.答案解析一、选择题1.【考点】锐角三角函数的定义.【分析】利用锐角三角函数定义求出cosB的值即可.解:∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,则cosB==,故选A【点评】此题考查了锐角三角函数定义,熟练掌握锐角三角函数定义是解本题的关键.2.【分析】根据抽样调查、众数和概率的定义分别对每一项进行分析,即可得出答案.解:A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查,正确;B、一组数据85,95,90,95,95,90,90,80,95,90的众数为95和90,故错误;C、“打开电视,正在播放乒乓球比赛”是随机事件,故错误;D、同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为,故选A.【点评】此题考查了抽样调查、众数、随机事件,概率,众数是一组数据中出现次数最多的数.3.【考点】二次函数图象上点的坐标特征.【分析】将点(1,﹣2)代入函数解析式,得出关于b的方程,解出即可得出答案.解:将点(1,﹣2)代入函数解析式得:1+b=﹣2,解得:b=﹣3.故选A.【点评】此题考查了待定系数法求二次函数解析式的知识,解答本题的关键是掌握二次函数图象上的点的坐标满足二次函数解析式.4.【考点】几何概率【分析】求得阴影部分的面积后除以正方形的面积即可求得概率.解:如图,连接PA.PB、OP;则S半圆O==,S△ABP=×2×1=1,由题意得:图中阴影部分的面积=4(S半圆O﹣S△ABP)=4(﹣1)=2π﹣4,∴米粒落在阴影部分的概率为=,故选:A.【点评】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积,难度不大.5.【考点】解直角三角形的应用﹣坡度坡角问题【分析】Rt△ABC中,已知坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.解:Rt△ABC中,∵BC=5米,tanA=,∴AC=BC÷tanA=15米.故选C.【点睛】本题主要考查学生对坡度坡角的掌握及三角函数的运用能力,熟练运用坡度的定义是解答本题的关键.6.【考点】圆内接四边形的性质;平行四边形的性质;圆周角定理.【分析】设∠ADC的度数=α,∠ABC的度数=β,由题意可得,求出β即可解决问题.解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ADC=∠AOC;∵∠ADC=β,∠AOC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故选C.【点评】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.7.【考点】二次函数图象与几何变换.【分析】先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.【考点】相似三角形的判定.【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.解:设单位正方形的边长为1,给出的三角形三边长分别为,2,.A.三角形三边2,,3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边2,4,2,与给出的三角形的各边成正比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;教习网-海量精品课件试卷教案免费下载D、三角形三边,4,,与给出的三角形的各边不成比例,故D选项错误.故选:B.【点评】此题考查三边对应成比例,两三角形相似判定定理的应用.9.【考点】相似三角形的性质;坐标与图形性质.【分析】根据相似三角形对应边成比例求出CB、AC的关系,从而得到===,过点C作CD ⊥y轴于点D,然后求出△AOB和△CDB相似,根据相似三角形对应边成比例求出CD、BD,再求出OD,最后写出点C的坐标即可.解:∵A(﹣4,0),B(0,2),∴OA=4,OB=2,∵△COB∽△CAO,∴==============,∴CO=2CB,AC=2CO,∴AC=4CB,∴===,过点C作CD⊥y轴于点D,∵AO⊥y轴,∴AO∥CD,∴△AOB∽△CDB,∴=========,∴CD==AOA==,BD==OOB==,∴OD=OB+BD=2++===,∴点C的坐标为((,,).故选B.【点评】本题考查了相似三角形的性质,坐标与图形性质,主要利用了相似三角形对应边成比例,求出∴===,是解题的关键,也是本题的难点.10.【考点】垂径定理;勾股定理.【分析】连接OA,由于半径OC⊥AB,利用垂径定理可知AB=2AE,又CE=2,OC=5,易求OE,在Rt△AOE中利用勾股定理易求AE,进而可求AB.解:连接OA,∵半径OC⊥AB,∴AE=BE=AB,∵OC=5,CE=2,∴OE=3,在Rt△AOE中,AE===4,∴AB=2AE=8,故选B.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题11.【考点】概率的意义.【分析】求出一次抛一枚硬币正面朝上的概率即可.解:∵抛硬币正反出现的概率是相同的,不论抛多少次出现正面或反面的概率是一致的,∴正面向上的概率为.故答案为:.【点评】本题考查的是概率的意义,注意抛硬币只有两种情况,每次抛出的概率都是一致的,与次数无关.12.【考点】特殊角的三角函数值【分析】先根据非负数的性质求出,,再由特殊角的三角函数值求出与的值,根据三角形内角和定理即可得出结论.解:在中,,,,,,.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.13.【考点】平行线分线段成比例【分析】根据平行线分线段成比例的定理直接填空.解:(1)三条平行线截两条直线,所得的对应线段的比相等.(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的两边上的对应线段的比相等.(3)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所得的三角形与原三角形的三边对应成比例.故答案是:对应线段;两边上的对应线段的比;的三边对应成比例.【点评】本题考查了平行线分线段成比例.(1)定理1:三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.(2)定理2:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(3)定理3:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.14.【考点】点与圆的位置关系解:如图,连接AC,∵在矩形ABCD中,AB=8,AD=6,∠ABC=90°,∴,∴AD<AB<AC,∵B,C,D三点中至少有一点在⊙A内,且至少有一点⊙A在外,∴点D一定在⊙A内,点C一定在⊙A外,∴⊙A半径r的取值范围应大于AD的长,小于对角线AC的长,即6<r<10.故答案为:6<r<10.【点睛】要确定点与圆的位置关系,就要确定点到圆心的距离与半径的大小关系,设点与圆心的距离d,圆的半径为r,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.15.【考点】待定系数法求函数解析式【分析】利用抛物线的解析式顶点式确定解:∵抛物线经过顶点(0,-1)∴该抛武线的解析式为y=ax2﹣1,又∵二次函数的图象开口向上,∴a>0,∴这个二次函数的解析式可以是y=2x2﹣1,故答案为:y=2x2﹣1.【点评】本题主要考查待定系数法求函数解析式,熟练掌握抛物线的顶点式是解题的关键.16.【考点】正多边形和圆.【分析】连接OA.OB、OC,证明△OBP≌△OCQ,根据全等三角形的性质得到∠BOP=∠COQ,结合图形计算即可.解:连接OA.OB、OC,∵五边形ABCDE是⊙O的内接正五边形,∴∠AOB=∠BOC=72°,∵OA=OB,OB=OC,∴∠OBA=∠OCB=54°,在△OBP和△OCQ中,,∴△OBP≌△OCQ,∴∠BOP=∠COQ,∵∠AOB=∠AOP+∠BOP,∠BOC=∠BOQ+∠QOC,∴∠BOP=∠QOC,∵∠POQ=∠BOP+∠BOQ,∠BOC=∠BOQ+∠QOC,∴∠POQ=∠BOC=72°.故答案为:72°.【点评】本题考查的是正多边形和圆、全等三角形的判定和性质,掌握正多边形的中心角的求法、全等三角形的判定定理是解题的关键.三、解答题17.【考点】分式的化简求值;特殊角的三角函数值.【分析】根据分式的乘法和减法可以化简题目中的式子,然后将x的值代入即可解答本题.解:•﹣(+1)===,当x=2cos60°﹣3=2×﹣3=1﹣3=﹣2时,原式=.【点评】此题考查分式的混合运算及特殊角的函数值.18.【考点】圆周角定理【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,即可得∠ACB=90°,又由CE⊥AB,根据同角的余角相等,可证得∠2=∠A,又由C是弧BD的中点,证得∠1=∠A,继而可证得CF﹦BF.解:如图所示:∵AB是⊙O的直径,∴∠ACB﹦90°,又∵CE⊥AB,∴∠CEB﹦90°,∴∠2﹦90°-∠3﹦∠A,又∵C是弧BD的中点,∴∠1﹦∠A,∴∠1﹦∠2,∴CF﹦BF.【点评】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.也考查了直径所对的圆周角为90度和等角的余角相等.19.【考点】位似变换【分析】由AC∥BD,CE∥DF,可证△OAC∽△OBD,△OCE∽△ODF ,继而证得,∠ACE=∠BDF,即可证得△ACE∽△BDF;又由△ACE与△BDF的各对应边的连线过点O,可得△ACE与△BDF位似.解:与相似,与位似.理由:∵,,∴,,教习网-海量精品课件试卷教案免费下载∴,,,,∴,,∴;∵与的各对应顶点的连线过点,∴与位似.【点睛】此题考查了位似变换以及相似三角形的判定与性质.注意相似三角形的各对应顶点连线过同一个点,即可得位似.20.【考点】列表法与树状图法;用样本估计总体;频数(率)分布表;频数(率)分布直方图.【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A.B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.【点评】此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,用样本估计整体让整体×样本的百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.21.【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)根据坡度定义直接解答即可;(2)作DS ⊥BC ,垂足为S ,且与AB 相交于H .证出∠GDH=∠SBH ,根据=,得到GH=1m ,利用勾股定理求出DH 的长,然后求出BH=5m ,进而求出HS ,然后得到DS .解:(1)∵坡度为i =1∶2,AC =4 m , ∴BC =4×2=8 m ;(2)作DS ⊥BC ,垂足为S ,且与AB 相交于H .∵∠DGH =∠BSH ,∠DHG =∠BHS , ∴∠GDH =∠SBH , ∴GH GD =12,∵DG =EF =2 m ,∴GH =1 m , ∴DH =5 m ,BH =BF +FH =3.5+(2.5-1)=5 m ,设HS=x m,则BS=2x m,∴x2+(2x)2=52,∴x= 5 m,∴DS=5+5=25≈4.5 m.∴点D离地面的高为4.5 m.【点评】本题考查了解直角三角形的应用-坡度坡角问题,熟悉坡度坡角的定义和勾股定理是解题的关键.22.【考点】二次函数综合题。

浙江省杭州市萧山区2018届九年级上学期期末考试数学试卷(无答案)

浙江省杭州市萧山区2018届九年级上学期期末考试数学试卷(无答案)

杭州市萧山区2018届九年级上学期期末考试数学试卷一、选择题(每小题3分,共30分)1、 将二次函数y =x 2的图象向上平移1个单位,则平移后图像的函数表达式为( )A . y =x 2-1B . y =x 2+1C . y =(x -1)2D . y =(x +1)2 2、 如下右图由4个小立方块搭成的几何体的俯视图是( )A .B .C .D .3、 如图,F 是△ABC 的边BC 上一点, DE ∥BC 交AF 于点G ,若34AD DB =,则GECF=( ) A .37B .47C .34D .434、 一只不透明的袋子中装有除颜色外都相同的4个黑球、2个白球,从中任意摸出3个球,下列事件为必然事件的是( )A . 至少有1个球是白球B . 至少有1个球是黑球C . 至少有2个球是白球D . 至少有2个球是黑球5、 如图,正五边形ABCDE 内接于⊙O ,以O 为旋转中心作顺时针旋转,则当旋转( )度后与原图形第一次重合。

A . 36°B . 45°C . 60°D . 72°6、 如图,△ABC 内接于⊙O ,若∠A =α,则∠OBC 等于( )A . 90°−2αB . 90°−αC . 2αD . 45°+α7、 在R t △ABC 中,∠C =R t ∠,给出下列结论:①s i nA =c o sB ;②22sin cos =1A A +;③sin tan cos BB B=;其中正确的是( )A . ①②B . ①③C . ②③D . ①②③8、 下列说法正确的是( )A . 菱形都相似B . 正六边形都相似C . 矩形都相似D . 一个内角为80°的等腰三角形都相似9、 已知直线m 与半径为5cm 的⊙O 相切于点P ,AB 是⊙O 的一条弦,且PA PB =,若AB =6cm ,则直线m 与弦AB 之间的距离为( ) A . 1cm 或9cmB . 4cm 或9cmC . 2cm 或8cmD . 1cm10、 若二次函数21y ax bx =+与一次函数2y ax b =+的图像经过相同的象限,给出下列结论:①a ,b 同号;②若b <0,则x >1时,12y y <.则下列判断正确的是( ) A . ①,②都对 B . ①,②都错C . ①对,②错D . ①错,②对二、填空题(每小题4分,共24分)11、 若t an θ=1,则锐角θ=________度.12、 某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图. 该事件最有可能是__________.(填写一个你认为正确的序号).① 掷一个质地均匀的正六面体骰子,向上一面的点数是2; ② 掷一枚硬币,正面朝上;③ 暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.13、 如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内,则r 的取值范围是__________.14、 2(1)该函数图像的对称轴为直线________.(2)当x 满足__________时,y >0.15、 如图,点P 是⊙O 外一点,过点P 作圆的两条切线P A 、PB ,点A 、B 是切点,Q 是⊙O 上不同于点A ,B的任意一点,已知∠P =44°,则∠AQB 的度数为 .16、 如图,四边形ABCD 的两条对角线相交于点P ,已知∠ADB =∠ACB =R t ∠,2CD CP AC =.(1)若425ABPCDPSS=,则s i n ∠DAP =__________.(2)若AD =3,AB =5,则BC =__________.三、解答题(本大题共有7个小题,共66分)17、某人的钱包内有10元钱、20元钱和50元钱的纸币各1张,从中随机取出2张纸币从中随机取出2张纸币.(1)请用树状图或表格列出所有等可能结果;(2)求取出纸币的总额可购买一件60元的商品的概率.18、如图,AB是⊙O的直径,直线A T切⊙O于点A,B T交⊙O于C,已知∠B=30°,A O的直径AB和弦BC的长.19、一个几何体的三视图如图所示.(1)写出这个几何体的名称;(2)求这个几何体侧面展开图的周长和面积;20、已知矩形的两边长分别为(2t-5)与(10-t),设矩形的面积为S.(1)求S关于t的函数表达式(化为一般式),并写出自变量t的取值范围.(2)判断命题“当上述矩形为正方形时,面积取得最大值”是真命题还是假命题?并说明理由.21、 如图,AB 是⊙O 的直径,且AB =10,弦CD ⊥AB 于点E ,G 是弧AC 上任意一点,延长AG ,与DC 的延长线交于点F ,连接AC ,BC ,DG . (1)求证:∠ACG =∠F ;(2)若t an ∠BAC =12,AG BG =,求DG 的长.22、 根据学习函数的经验“先确定自变量取值范围—后观察图像归纳性质”,对函数24(1)1y x =-+图象与性质进行了探究:(1)写出自变量x 的取值范围是 ;① 表中m 的值为 ; ② 根据描出的点,画出函数24(1)1y x =-+的大致图象;(3) 根据函数图象,①请写出函数24(1)1y x =-+的两条性质;②若此函数的图像与直线y =a 的交点有2个,那么a 的取值范围.23、如图,在R t△ABC中,∠BCA=90°,BC=8,AB=10,点P、E、F分别是AB、AC、BC上的动点,且AP=2CE=2BF;连接PE,PF,以PE,PF为邻边平行四边形PFQE.(1)直接写出s i nB,t anA的值;(2)当点P是AB的中点时,试求线段PF的长;(3)在运动过程中,设CE=m,若平行四边形PFQE的面积恰好被线段BC或射线AC分成1:3的两部分,试求m的值;。

最新浙教版2018-2019学年上学期九年级数学期末测试题含答案

最新浙教版2018-2019学年上学期九年级数学期末测试题含答案

18.动手画一画,请把下图补成以 A 为对称中心的中心对称图形.
A
19.如图, AB 是⊙ O 的直径,点 C 是⊙ O 上一点,连接 BC, AC,OD ⊥ BC 于 E.
( 1)求证: OD ∥ AC;
( 2)若 BC=8, DE =3,求⊙ O 的直径.
D
C
E
B
A
O
20.已知关于 x 的一元二次方程 x2+ 2( k- 1) x+ k2- 1=0 有两个不相等的实数根. ( 1)求实数 k 的取值范围; ( 2) x=0 可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.
16.如图,在⊙ O 中, AB 为⊙ O 的直径, AB=4.动点 P 从 A 点出发,以每秒 π个单位的速度在⊙ O 上按顺时针方 向运动一周.设动点 P 的运动时间为 t 秒,点 C 是圆周上一点,且
∠AOC =40°,当 t= ▲ 秒时,点 P 与点 C 中心对称,且对称中心在直径 AB 上.
A . 70°
B. 110 °
C. 120 °
D. 130 °
C
F E
O
B′
C
C′
B
D
A
(第 4 题)
B
A
(第 5 题)
5.如图,把△ ABC 绕着点 A 顺时针方向旋转 34°,得到△ AB′C′,点 C 刚好落在边 B′C′上. 则∠ C′(= ▲ )
A . 56°
B. 62°
C. 68°
D. 73°
4. 本次考试不得使用计算器,请耐心解答 . 祝你成功!
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分.请选出各题中一个符合题意的正确

2018-2019学年九年级数学上学期期末考试原创卷A卷(浙江)(考试版)

2018-2019学年九年级数学上学期期末考试原创卷A卷(浙江)(考试版)

数学试题 第1页(共6页) 数学试题 第2页(共6页)…………○………………装……………………○………………装…………:______________姓名:__________绝密★启用前|2018-2019学年上学期期末原创卷A 卷(浙江)九年级数学(考试时间:100分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:浙教版九上全册、九下全册。

第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.由五个小立方体搭成的几何体如图所示,其主视图是A .B .C .D .2.下列事件是必然事件的是 A .打开电视机,正在播放动画片 B .2018年世界杯德国队一定能夺得冠军 C .某彩票中奖率是1%,买100张一定会中奖D .投掷一枚普通的正方体骰子,连续投掷3次,出现的点数之和不可能等于193.如图,在O 中,AD 是直径,40ABC ∠=︒,则CAD ∠等于A .40︒B .50︒C .60︒D .70︒4.在△ABC 中,∠C =90°,sin A =1213,则tan A 的值为 A .1213B .513C .125D .13125.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是 A .12B .14C .13D .166.如图,在△ABC 中,AD 是中线,G 是重心,过点G 作EF ∥BC ,分别交AB ,AC 于点E ,F ,若AC =18,则AF 的长为A .6B .9C .12D .157.已知⊙O 的直径AB 与弦AC 的夹角为30° ,过C 点的切线PC 与AB 长线交于点P .PC =12,则⊙O 的半径为A .6B .C .10D .8.如图,PA 、PB 分别切⊙O 于A 、B 两点,射线PD 与⊙O 相交于C ,D 两点,点E 是CD 中点,若∠APB =40°,则∠AEP 的度数是………………内………………○………………装………………订………………○…线………………○…………卷只密封………………外………………○………………装………………订………………○…线………………○…………A.40°B.50°C.60°D.70°9.如图,有一块直角三角形余料ABC,∠BAC=90°,G,D分别是AB,AC边上的一点,现从中切出一条矩形纸条DEFG,其中E,F在BC上,若BF=4.5 cm,CE=2 cm,则GF的长为A.3 cm B.cm C.2.5 cm D.3.5 cm10.对于二次函数y=x2-2mx+3m-3,以下说法:①图象过定点(3324-,);②函数图象与x轴一定有两个交点;③若x=1时与x=2017时函数值相等,则当x=2018时的函数值为-3;④当m=-1时,直线y=-x+1与直线y=x+3关于此二次函数对称轴对称,其中正确命题是A.①②B.②③C.①②④D.①③④第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)11.对于二次函数y=(x+1)2-5的最小值是__________.12.如图,ABC△与DEF△是位似三角形,且2AC DF=,则OE OB=∶__________.13.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连接OB,OD.若∠ABC=40°,则∠BOD的度数是__________.14.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为__________.15.如图,在平行四边形ABCD中,对角线AC、BD交于点O,M为AD中点,连接CM交BD于点N.若ON=1,则BD=__________.16.如图,将△ABC绕点A按逆时针方向旋转至△AB′C′(B与B′,C与C′分别是对应顶点),使AB′⊥BC,B′C′分别交AC,BC于点D,E,已知AB=AC=5,BC=6,则DE的长为__________.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分6分)李航想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,李航边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD=1.2 m,CE=0.6 m,CA=30 m(点A、E、C在同一直线上).已知李航的身高EF是1.6 m,请你帮李航求出楼高AB.18.(本小题满分8分)如图,AB是⊙O的直径,四边形ABCD内接于⊙O,延长AD,BC交于点E,且CE=CD.(1)求证:AB=AE;(2)若∠BAE=40°,AB=4,求弧CD的长.数学试题第3页(共6页)数学试题第4页(共6页)数学试题 第5页(共6页) 数学试题 第6页(共6页)内………………○………………………○……………外………………○………………………○……………学校:________________考号:_______________19.(本小题满分8分)某住宅小区有一栋面朝正南的居民楼(如图),该居民楼的一楼高为6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.已知冬季正午的阳光与水平线的夹角为30°时.(1)新楼的建造对超市以上的居民住房冬季正午的采光是否有影响,为什么?(2)若要使超市冬季正午的采光不受影响,新楼应建在相距居民楼至少多少米的地方,为什么?(结果保留整数,参考数据:sin30°≈0.5,cos30°≈0.87,tan30°≈0.58 1.732 ,结果保留两位小数)20.(本小题满分10分)在一个不透明的袋子里有1个红球,1个黄球和n 个白球,它们除颜色外其余都相同.(1)从这个袋子里摸出一个球,记录其颜色,然后放回,摇均匀后,重复该实验,经过大量试验后,发现摸到白球的频率稳定于0.5左右,求n 的值;(2)在(1)的条件下,先从这个袋中摸出一个球,记录其颜色,放回,摇均匀后,再从袋中摸出一个球,记录其颜色.请用画树状图或者列表的方法,求出先后两次摸出不同颜色的两个球的概率. 21.(本小题满分10分)已知△ABC 内接于⊙O ,AC 是⊙O 的直径,D 是弧AB 的中点.过点D 作CB的垂线,分别交CB 、CA 延长线于点F 、E . (1)判断直线EF 与⊙O 的位置关系,并说明理由; (2)若CF =6,∠ACB =60°,求阴影部分的面积.22.(本小题满分12分)在平面直角坐标系中,设二次函数y 1=mx 2-6mx +8m (m 为常数).(1)若函数y 1经过点(1,3),求函数y 1的表达式; (2)若m <0,当x <2a时,此二次函数y 随x 的增大而增大,求a 的取值范围; (3)已知一次函数y 2=x -2,当y 1·y 2>0时,求x 的取值范围.23.(本小题满分12分)如图,菱形ABCD 中,∠A 是锐角,E 为边AD 上一点,△ABE 沿着BE 折叠,使点A 的对应点F 恰好落在边CD 上,连接EF ,BF . (1)若∠A =70°,请直接写出∠ABF 的度数. (2)若点F 是CD 的中点, ①求sin A 的值;②求证:S △ABE =13S ABCD . (3)设DE AD =k ,DFCF=m ,试用含k 的代数式表示m .。

浙江杭州2018-2019学年第一学期九年级期末测试-数学试题卷

浙江杭州2018-2019学年第一学期九年级期末测试-数学试题卷

6. 如图,△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示的虚线剪开,剪下的阴影三
角形与原三角形不相似的是( )
九年级数学第 1 页(共 4 页)
A.
B.
C.
D.
7. 如图,点 A,B,C 在⊙O 上,∠A=36°,∠B=64°,则∠C 的度数为( )
A.28°
B.32°
C.44°

14.如图,四边形 ABCD 内接于⊙O,∠DAB=130°,连接 OC,点 P 是半径 OC 上任意一点
(P 可与 O,C 重合),连接 DP,BP,则∠BPD 可能为
度(写出一个即可).
15.如图,一根长为 a 的竹竿 AB 斜靠在墙上,竹竿 AB 的倾斜角为 α ;当竹竿的顶端 A 下滑
九年级数学第 2 页(共 4 页)
到点 Aʹ时,竹竿的另一端 B 向右滑到了点 Bʹ,此时倾斜角为 β .
(1)线段 AAʹ的长为

(2)当竹竿 AB 滑到 AʹBʹ位置时,AB 的中点 P 滑到了 Pʹ位置,则点 P 所经过的路线长

.(两小题均用含 a, α , β 的代数式表示)
16.已知二次函数 y k 2 1 x2 2k 1 x 1.
(1)写出抛物线 y2 的函数表达式,并在直角坐标系中画出抛物线 y2;
(2)过点(0,a-3)(a 为实数)作 x 轴的平行线,与抛物线 y1,y2 共有 4 个不同的交点,
D.52°
8. 如图,在△ABC 中,CD⊥AB 于点 D.已知 AC=a,∠A= ,∠B= ,则 BC 的长是( )
A.
a sin α sin β
B.
a cos α tan β

2018-2019学年浙教版九年级数学第一学期期末试卷(含答案)

2018-2019学年浙教版九年级数学第一学期期末试卷(含答案)

2018-2019学年九年级数学(上)期末试卷一•选择题(共12小题,满分48分)1 •对于抛物线y= -(x+2)2+3,下列结论中正」确结论的个数为()①抛物线的开口向下;②对称轴是直线x= - 2;③图象不经过第一象限;④当x>2时,y随x的增大而减小.A. 4B. 3C. 2 D . 12. 已知△ ABC 中,/ C=90°,AC=6 , BC=8,贝U cosB的值是()A. 0.6B. 0.75C. 0.8 D ."3. 下列事件中,是必然事件的是()A .明天太阳从东方升起B. 随意翻到一本书的某页,这页的页码是奇数C. 射击运动员射击一次,命中靶心D .经过有交通信号灯的路口,遇到红灯4. 若2a=3b,贝叮等于()aA.二B. 1C. = D .不能确定5. —个扇形的圆心角是60。

,半径是6cm,那么这个扇形的面积是()A. 3 n CmB. n cmC. 6 n Cm D . 9 n Sm6. 下随有关圆的一些结论:①任意三点确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂宜于弦;并且平分弦所对的弧,④圆内接四边形对角互补.其中错误的结论有()7. 如图,在厶ABC 中,点D 是AB 边上的一点,若/ACD= / B , AD=1 , AC=2 ,△ ADC 的面积为3,则厶BCD 的面积为( )则弧DE 的长为(C .n 4四个整数中任取两个数作为一个点的坐标,那么这个点恰好在抛物线y=x 2上的概率是() B. '■ 10. 如图,已知 AB 是。

O 的直径,点P 在BA 的延长线上,PD 与。

O 相切于 点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若。

O 的半径为4, BC=6,B. C . 68.如图,菱形ABCD 中, / B=70 ,AB=3,以AD 为直径的。

O 交CD 于点E , B .B . 2 二C . 3D . 2.5 D . .1A . 12 D9.从 1、2、3、 A . 4则PA的长为()11. 如图,已知点C在以AB为直径的。

2018-2019学年最新浙教版数学九年级上册期末试题含答案

2018-2019学年最新浙教版数学九年级上册期末试题含答案

2018-2019学年九年级(上)期末数学试卷
一、选择题(共10小题,每小题3分,满分30分)
1.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()
A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断
2.下列事件中,属于必然事件的是()
A.掷一枚硬币,正面朝下
B.三角形两边之和大于第三边
C.一个三角形三个内角的和小于180°
D.在一个没有红球的盒子里,摸到红球
3.已知圆锥的底面半径为5,母线长为8,则这个圆锥的侧面积是()
A.13π B.20π C.40π D.200π
4.将抛物线y=2x2向右平移2个单位,能得到的抛物线是()
A.y=2x2+2 B.y=2x2﹣2 C.y=2(x+2)2D.y=2(x﹣2)2
5.由5个相同的立方体搭成的几何体如图所示,则它的主视图是()
A.B.C.D.
6.如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是()
A.2 B.8 C.2 D.4
7.如图,已知AB是⊙O的直径,弦CD⊥AB于点E,G是的中点,连结AD,AG,CD,则下列结论不一定成立的是()
第1页(共30页)。

浙教版2018-2019年秋数学九年级(上)期末综合达标测试卷(含答案)

浙教版2018-2019年秋数学九年级(上)期末综合达标测试卷(含答案)

期末综合达标测试卷(满分:120分 时间:120分钟)一、选择题(每小题3分,共30分)1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( B )A .4个B .3个C .2个D .1个2.如图,在△ABC 中,D 、E 两点分别在BC 、AC 边上.若BD =CD ,∠B =∠CDE ,DE =2,则AB 的长为( A )第2题A .4B .5C .6D .73.如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB 的度数为( A )第3题A .25°B .30°C .40°D .50°4.如图,在△ABC 中,∠B =90°,AB =6,BC =8,将△ABC 沿DE 折叠,使点C 落在AB 边上的点C ′处,并且C ′D ∥BC ,则CD 的长是( A )第4题A .409B .509C .154D .2545.一个布袋里装有3个红球、2个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是红球的概率是( C )A .15B .25C .35D .236.在同一坐标系中,一次函数y =ax +b (a ≠0)与二次函数y =bx 2+a (b ≠0)的图象可能是( C )7.如图,AB 为⊙O 的直径,弦DC ⊥AB 于点E ,∠DCB =30°,EB =3,则弦DC 的长度为( D )第7题A .3 3B .4 3C .5 3D .6 38.如图,在四边形ABCD 中,E 、F 分别在AD 和BC 上,AB ∥EF ∥DC ,且DE =3,DA =5,CF =4,则FB 等于( B )第8题A .32B .83C .5D .69.在一个不透明的盒子中,装有2个白球和1个红球,这些球除颜色外其余都相同,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,应在该盒子中再添加红球( B )A .2个B .3个C .4个D .5个10.已知关于x 的方程ax -x 2+2x -3=0只有一个实数根,则实数a 的取值范围是( C )A .a >0B .a <0C .a ≠0D .a 为一切实数二、填空题(每小题4分,共32分)11.给出下列四个函数:①y =-x ;②y =x ;③y =1x ;④y =x 2(x <0).其中,y 随x 的增大而减小的函数有 ①④ .(写出正确答案的序号)12.如图,D 、E 两点分别在△ABC 的边AB 、AC 上,DE 与BC 不平行,当满足条件__∠ADE =∠C (答案不唯一)__(写出一个即可)时,△ADE ∽△ACB .第12题13.如图,AB 是⊙O 的直径,BC ︵ =CD ︵ =DE ︵,∠COD =34°,则∠AEO 的度数是__51°__ .第13题14.如图,△ABC 中,点D 、E 分别在边AB 、BC 上,DE ∥AC .若BD =4,DA =2,BC =5,则EC =53.第14题15.在一个暗箱里放有m 个除颜色外其他完全相同的球,这m 个球中绿球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到绿球的频率稳定在25%,那么可以推算出m 大约是__12__.16.出售某种文具盒,若每个获利x 元,一天可售出(6-x )个,则当x =__3__元时,一天出售该种文具盒的总利润最大.17.一个扇形的圆心角为120°,弧长为6π,则此扇形的半径为__9__ .18.如图,在△ABC 中,∠C =90°,BC =16 cm ,AC =12 cm ,点P 从点B 出发,沿BC 以2 cm /s 的速度向点C 移动,点Q 从点C 出发,以1 cm /s 的速度向点A 移动,若点P 、Q。

浙教版-学年度第一学期九年级期末数学试卷(含解析)

浙教版-学年度第一学期九年级期末数学试卷(含解析)

绝密★启用前浙教版2018-2019学年九年级第一学期期末数学试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共10小题,3*10=30)1.已知,则代数式的值为()A.B.C.D.2.下列事件是必然事件的是()A.打开电视机,正在播放动画片B.2018年世界杯德国队一定能夺得冠军C.某彩票中奖率是1%,买100张一定会中奖D.投掷一枚普通的正方体骰子,连续投掷3次,出现的点数之和不可能等于19 3.在Rt△ABC中,∠C=90°,AC=3,AB=5,则cos A的值为()A.B.C.D.4.将抛物线y=﹣x2向左平移2个单位后,得到的抛物线的解析式是()A.y=﹣(x+2)2B.y=﹣x2+2C.y=﹣(x﹣2)2D.y=﹣x2﹣25.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC的值为()A.6cm B.5cm C.4cm D.3cm6.半径为6的圆中,120°的圆心角所对的弧长是()A.4πB.5πC.6πD.8π7.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.8.如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与A、C重合),DE与AB相交于点F,则图中有()对相似三角形(全等除外)A.2B.3C.4D.59.如图,将正方形ABCD对折,使点A点与D重合,点B与C重合,折痕EF;展开后再次折叠,使点A与点D重合于正方形内点G处,折痕分别为BH,CI,如果正方形ABCD的边长是2,则下列结论:①△GBC是等边三角形;②△IGH的面积是7﹣12;③tan∠BHA=2+;④GE=2,其中正确的个数有()A.1个B.2个C.3个D.4个10.如图,抛物线y=﹣2x2+4x与x轴的另一个交点为A,现将抛物线向右平移m(m>2)个单位长度,所得抛物线与x轴交于C,D,与原抛物线交于点P,设△PCD的面积为S,则用m表示S正确的是()A.(m2﹣4)B.m2﹣2C.(4﹣m2)D.2﹣m2第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共8小题,3*8=24)11.布袋中装有4个红球和3个黑球,它们除颜色外没有任何其他区别,小红从中随机摸出1个球,摸出红球的概率是.12.已知线段c是线段a、b的比例中项,且a=4,b=9,则线段c的长度为.13.一个圆锥的底面圆的半径为2,母线长为4,则它的侧面积为.14.直径为4的圆内接正三角形的边长为.15.如图,在矩形AOBC中,AO=3,BO=4,⊙O的半径为1,点M是矩形对角线AB 边上的动点,过点M做⊙O的一条切线MN,切点为N,则切线长MN的最小值是.16.已知△ABC是⊙O的内接三角形,AD是BC边上的高,AC=3,AB=5,AD=2,此圆的直径等于.17.如图,在直线l上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC=CE,F、G分别是BC、CE的中点,FM∥AC∥HG∥DE,GN∥DC∥HF∥AB.设图中三个四边形的面积依次是S1,S2,S3,若S1+S3=20,则S1=,S2=.18.如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m =.评卷人得分三.解答题(共7小题,66分)19.(8分)(1)计算:sin60°﹣cos45°+tan230°;(2)若==≠0,求的值.20.(8分)有三张正面分别标有数字0,1,﹣3的卡片,它们除了数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后在从中随机抽出一张记下数字.(1)请用列表或画树状图的方法,表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在抛物线y=x2+2x﹣3上的概率.21.(8分)下表给出了代数式﹣x2+bx+c与x的一些对应值:x…﹣2﹣10123…﹣x2+bx+c…5n c2﹣3﹣10…(1)根据表格中的数据,确定b,c,n的值;(2)设y=﹣x2+bx+c,直接写出0≤x≤2时y的最大值.22.(8分)如图是放在水平地面上的一把椅子的侧面图,椅子高为AC,椅面宽为BE,椅脚高为ED,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得点D、E的俯角分别为64°和53°.已知ED=35cm,求椅子高AC约为多少?(参考数据:tan53°≈,sin53°≈,tan64°≈2,sin64°≈)23.(10分)如图,AB,CD是⊙O的弦,AB⊥CD,且AE=,EB=3,的度数为120°.解答问题:(1)请用直尺和圆规作出圆心O(不写作法,保留痕迹)(2)求出⊙O的半径;(3)求出弦CD的长度.24.(12分)若一个四边形的两条对角线互相垂直且相等,则称这个四边形为“非常四边形”,如图1,四边形ABCD中,若AC=BD,AC⊥BD,则称四边形ABCD为“非常四边形”,根据以上信息回答:(1)矩形“非常四边形”(填“是”或“不是”);(2)如图2,已知⊙O的内接四边形ABCD是“非常四边形”,若⊙O的半径为6,∠BCD=60°.求“非常四边形”ABCD的面积;(3)如图3,已知⊙O的内接四边形ABCD是“非常四边形”作OM⊥BC于M.请猜测OM与AD的数量关系,并证明你的结论.25.(12分)如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y=x+4,与x轴相交于点D,以点C为顶点的抛物线过点B.(1)求抛物线的解析式;(2)判断直线l与⊙E的位置关系,并说明理由;(3)动点P在抛物线上,当点P到直线l的距离最小时.求出点P的坐标及最小距离.参考答案与试题解析一.选择题(共10小题)1.已知,则代数式的值为()A.B.C.D.【分析】用b表示出a,然后代入比例式进行计算即可得解.【解答】解:∵=,∴a=b,∴==.故选:B.【点评】本题考查了比例的性质,用b表示出a是解题的关键.2.下列事件是必然事件的是()A.打开电视机,正在播放动画片B.2018年世界杯德国队一定能夺得冠军C.某彩票中奖率是1%,买100张一定会中奖D.投掷一枚普通的正方体骰子,连续投掷3次,出现的点数之和不可能等于19【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A、打开电视机,正在播放动画片是随机事件,不符合题意;B、2018年世界杯德国队一定能夺得冠军是随机事件,不符合题意;C、某彩票中奖率是1%,买100张一定会中奖是随机事件,不符合题意;D、投掷一枚普通的正方体骰子,连续投掷3次,出现的点数之和不可能等于19是必然事件,符合题意;故选:D.【点评】本题考查了必然事件的概念.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.在Rt△ABC中,∠C=90°,AC=3,AB=5,则cos A的值为()A.B.C.D.【分析】根据三角函数的定义进行选择即可.【解答】解:∵∠C=90°,AC=3,AB=5,∴cos A==,故选:B.【点评】本题考查了锐角三角函数的定义,掌握三个三角函数的定义是解题的关键.4.将抛物线y=﹣x2向左平移2个单位后,得到的抛物线的解析式是()A.y=﹣(x+2)2B.y=﹣x2+2C.y=﹣(x﹣2)2D.y=﹣x2﹣2【分析】易得原抛物线的顶点和平移后新抛物线的顶点,根据平移不改变二次项的系数用顶点式可得所求抛物线.【解答】解:∵原抛物线的顶点为(0,0),∴新抛物线的顶点为(﹣2,0),设新抛物线的解析式为y=﹣(x﹣h)2+k,∴新抛物线解析式为y=﹣(x+2)2,故选:A.【点评】考查二次函数的几何变换;用到的知识点为:二次函数的平移不改变二次项的系数;左右平移只改变顶点的横坐标,左加右减.5.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC的值为()A.6cm B.5cm C.4cm D.3cm【分析】连接OA,先根据垂径定理求出AC的长,再由勾股定理求出OC的长即可.【解答】解:连接OA,∵弦AB=6cm,OC⊥AB于点C,∴AC=AB=3cm.∵OA=5cm,∴OC===4cm.故选:C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.6.半径为6的圆中,120°的圆心角所对的弧长是()A.4πB.5πC.6πD.8π【分析】根据弧长的公式l=进行解答.【解答】解:根据弧长的公式l=,得到:l==4π.故选:A.【点评】本题考查了弧长的计算,熟记弧长公式即可解答该题,属于基础题.7.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.故选:C.【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.8.如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与A、C重合),DE与AB相交于点F,则图中有()对相似三角形(全等除外)A.2B.3C.4D.5【分析】只要求写出相似的三角形,不必写出求证过程,根据相似三角形的判定定理,两个等边三角形的3个角分别相等,可推出△ABC∽△EDB,根据2个角对应角相等推出△BDC∽△EFB∽△AFD.△BDF∽△BAD.【解答】解:图中的相似三角形是△ABC∽△EDB,△BDC∽△EFB,△BDC∽△AFD,△EFB∽△AFD,△BDF∽△BAD,一共5对.故选:D.【点评】本题主要考查相似三角形的判定定理及有关性质的运用,关键在于根据图中两个等边三角形,找出相关的相等关系,然后结合已知条件,证明结论.9.如图,将正方形ABCD对折,使点A点与D重合,点B与C重合,折痕EF;展开后再次折叠,使点A与点D重合于正方形内点G处,折痕分别为BH,CI,如果正方形ABCD的边长是2,则下列结论:①△GBC是等边三角形;②△IGH的面积是7﹣12;③tan∠BHA=2+;④GE=2,其中正确的个数有()A.1个B.2个C.3个D.4个【分析】由折叠的性质得,AB=BG,CD=CG,根据正方形的性质得到AB=BC=CD,等量代换得到BG=BC=CG,推出△GBC是等边三角形;故①正确;根据正方形的性质得到AD=AB=BC=DC=2;∠D=∠A=90°,由等边三角形的性质得到∠BGC=60°,GE=BC=,故④错误;推出∠FIG=30°,得到FI=FG=(2﹣)=2﹣3,根据三角形打麻将公式得到△HIG的面积=7﹣12,故②正确;根据勾股定理得到AH=HG==4﹣2,由三角函数的定义得到tan∠BHA ===2+;故③正确.【解答】解:由折叠的性质得,AB=BG,CD=CG,∵四边形ABCD是正方形,∴AB=BC=CD,∴BG=BC=CG,∴△GBC是等边三角形;故①正确;∵FE⊥BC,EF⊥AD,∵四边形ABCD为正方形,∴AD=AB=BC=DC=2;∠D=∠A=90°,又∵将正方形ABCD折叠,使点A与点D重合于正方形内点G处,∵△GBC为等边三角形,∴∠BGC=60°,GE=BC=,故④错误;∴∠HGI=120°,FG=EF﹣GE=2﹣,∴∠FIG=30°,∴FI=FG=(2﹣)=2﹣3,∴HI=2FI=4﹣6,∴△HIG的面积=HI•FG=(2﹣)(4﹣6)=7﹣12,故②正确;∵AH=HG==4﹣2,∴tan∠BHA===2+;故③正确;故选:C.【点评】本题考查了折叠的性质:折叠前后的两图形全等,即对应角相等,对应线段相等.也考查了正方形和等边三角形的性质以及含30°的直角三角形三边的关系.10.如图,抛物线y=﹣2x2+4x与x轴的另一个交点为A,现将抛物线向右平移m(m>2)个单位长度,所得抛物线与x轴交于C,D,与原抛物线交于点P,设△PCD的面积为S,则用m表示S正确的是()A.(m2﹣4)B.m2﹣2C.(4﹣m2)D.2﹣m2【分析】先求出A的坐标,设P关于x=1的对称点为Q,且设P的横坐标为x1,Q的横坐标为x2,根据题意可知x1+x2=2,x1﹣x2=m,从而求出x1与x2的表达式,【解答】解:抛物线的对称轴为:x=1,令y=0代入y=﹣2x2+4x,∴0=﹣2x2+4x,∴x=0或x=2,∴A(2,0)∴OA=2,设P关于x=1的对称点为Q,且设P的横坐标为x1,Q的横坐标为x2,∴,∵抛物线向右平移m(m>2)个单位长度,∴PQ=m,∴x1﹣x2=m,∴解得:x1=,x2=把x1=代入y=﹣2x2+4x∴y=2﹣<0∴在△PCD中,CD边上的高为:﹣2,∵OA=CD=2,=×2×()=﹣2∴S△PCD故选:B.【点评】本题考查抛物线与x轴的交点,解题的关键是求出P的坐标,然后根据三角形面积公式即可求出△PCD的面积,本题属于中等题型.二.填空题(共8小题)11.布袋中装有4个红球和3个黑球,它们除颜色外没有任何其他区别,小红从中随机摸出1个球,摸出红球的概率是.【分析】让红球的个数除以球的总个数即为所求的概率.【解答】解:∵布袋中装有4个红球和3个黑球,∴从中任意摸出一个球,则摸出红球的概率是=,故答案为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.已知线段c是线段a、b的比例中项,且a=4,b=9,则线段c的长度为6.【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=4×9,解得c=±6(线段是正数,负值舍去),故答案为:6.【点评】此题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数.13.一个圆锥的底面圆的半径为2,母线长为4,则它的侧面积为8π.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为2,则底面周长=4π,圆锥的侧面积=×4π×4=8π,故答案为:8π.【点评】本题利用了圆的周长公式和扇形面积公式求解,解题的关键是了解圆锥的侧面积的计算方法,难度不大.14.直径为4的圆内接正三角形的边长为2.【分析】首先根据题意作出图形,然后由垂径定理,可得BD=BC,求得∠BOD=∠BOC=∠A,再利用三角函数求得BD的长,继而求得答案.【解答】解:如图:△ABC是等边三角形,过点O作OD⊥BC于D,连接OB,OC,∴BD=CD=BC,∵△ABC是等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴∠BOD=∠BOC=60°,∵直径为4,∴OB=×4=2,∴BD=OB•sin∠BOD=2×=,∴BC=2BD=2,即直径为4的圆的内接正三角形的边长为:2.故答案为:2.【点评】此题考查了正多边形和圆的性质、垂径定理以及三角函数等知识.此题难度适中,注意掌握数形结合思想的应用.15.如图,在矩形AOBC中,AO=3,BO=4,⊙O的半径为1,点M是矩形对角线AB边上的动点,过点M做⊙O的一条切线MN,切点为N,则切线长MN的最小值是.【分析】由MN为⊙O切线,推出ON⊥MN,在Rt△OMN中,MN==,当OM最小时,MN最小,而当OM⊥AB时,OM最小,此时OM=,由此即可解决问题.【解答】解:连结ON、如图,在Rt△AOB中,∵OA=3,OB=4,∴AB==5,∵MN为⊙O切线,∴ON⊥MN,在Rt△OMN中,MN==,当OM最小时,MN最小,而当OM⊥AB时,OM最小,此时OM==,∴MN的最小值为==.故答案为.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.16.已知△ABC是⊙O的内接三角形,AD是BC边上的高,AC=3,AB=5,AD=2,此圆的直径等于.【分析】首先连接AO交⊙O于E,连接BE,进而利用相似三角形的判定与性质得出,求出即可.【解答】解:连接AO交⊙O于E,连接BE,∵∠BEA与∠BCA都是AB边对应的圆周角,∴∠BEA=∠BCA,又∵AE是直径,∴∠ABE=90°,∵∠ADC=90°,∴△ABE∽△ADC,∴,则AE=,即⊙O的直径为.故答案为:【点评】此题主要考查了相似三角形的判定与性质以及圆周角定理,得出△ABE∽△ADC 是解题关键.17.如图,在直线l上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC=CE,F、G分别是BC、CE的中点,FM∥AC∥HG∥DE,GN∥DC∥HF∥AB.设图中三个四边形的面积依次是S1,S2,S3,若S1+S3=20,则S1=2,S2=6.【分析】根据题意,可以证明S2与S1两个平行四边形的高相等,长是S1的3倍,S3与S2的长相等,高是S3的,这样就可以把S1和S3用S2来表示,从而计算出S2的值.【解答】解:根据正三角形的性质,∠ABC=∠HFG=∠DCE=60°,∴AB∥HF∥DC∥GN,设AC与FH交于P,CD与HG交于Q,∴△PFC、△QCG和△NGE是正三角形,∵F、G分别是BC、CE的中点,∴MF=AC=BC,PF=AB=BC,又∵BC=CE=CG=GE,∴CP=MF,CQ=BC=3PF,QG=GC=CQ=AB=3CP,∴S1=S2,S3=3S2,∵S1+S3=20,∴S2+3S2=20,∴S2=6,∴S1=2,故答案为:2;6.【点评】本题考查了面积及等积变换、等边三角形的性质及平行四边形的面积求法,平行四边形的面积等于平行四边形的边长与该边上的高的积.即S=a•h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高.18.如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m =﹣1.【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果.【解答】解:∵y=﹣x(x﹣2)(0≤x≤2),∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,﹣1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);C6顶点坐标为(11,﹣1),A6(12,0);∴m=﹣1.故答案为:﹣1.【点评】本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标.三.解答题(共7小题)19.(1)计算:sin60°﹣cos45°+tan230°;(2)若==≠0,求的值.【分析】(1)将sin60°=,cos45°=,tan30°=代入进行计算即可得解;(2)设比值为k(k≠0),然后用k表示出x、y、z,再代入比例式进行计算即可得解.【解答】解:(1)sin60°﹣cos45°+tan230°,=×﹣×+()2,=﹣1+,=;(2)设===k(k≠0),则x=2k,y=3k,z=4k,所以,==.【点评】本题考查了比例的基本性质,比较简单,利用“设k法”求解更简便,还考查了特殊角的三角函数值,需熟记.20.有三张正面分别标有数字0,1,﹣3的卡片,它们除了数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后在从中随机抽出一张记下数字.(1)请用列表或画树状图的方法,表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在抛物线y=x2+2x﹣3上的概率.【分析】(1)根据题意画出树状图即可得;(2)结合树状图,利用概率公式计算即可.【解答】解:(1)画树状图如下:(2)在所有9种等可能结果中,落在抛物线y=x2+2x﹣3上的有(0,﹣3)、(1,﹣2)、(﹣3,0)这3种结果,∴点(x,y)落在抛物线y=x2+2x﹣3上的概率为=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.下表给出了代数式﹣x2+bx+c与x的一些对应值:x…﹣2﹣10123…﹣x2+bx+c…5n c2﹣3﹣10…(1)根据表格中的数据,确定b,c,n的值;(2)设y=﹣x2+bx+c,直接写出0≤x≤2时y的最大值.【分析】(1)把(﹣2,5)、(1,2)分别代入﹣x2+bx+c中得到关于b、c的方程组,然后解方程组即可得到b、c的值;然后计算x=﹣1时的代数式的值即可得到n的值;(2)利用表中数据求解.【解答】解:(1)根据表格数据可得,解得,∴﹣x2+bx+c=﹣x2﹣2x+5,当x=﹣1时,﹣x2﹣2x+5=6,即n=6;(2)根据表中数据得当0≤x≤2时,y的最大值是5.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.22.如图是放在水平地面上的一把椅子的侧面图,椅子高为AC,椅面宽为BE,椅脚高为ED,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得点D、E的俯角分别为64°和53°.已知ED=35cm,求椅子高AC约为多少?(参考数据:tan53°≈,sin53°≈,tan64°≈2,sin64°≈)【分析】根据正切函数的定义,可得方程①②,根据代入消元法,可得答案.【解答】解:在Rt△ACD中,tan∠ADC=tan64°==2,CD=①.在Rt△ABE中tan∠AEB=tan53°==,BE=AB②.BE=CD,得===AB,解得AB=70cm,AC=AB+BC=AB+DE=70+35=105cm.【点评】本题考查了解直角三角形的应用,利用正切函数得出方程①②是解题关键.23.如图,AB,CD是⊙O的弦,AB⊥CD,且AE=,EB=3,的度数为120°.解答问题:(1)请用直尺和圆规作出圆心O(不写作法,保留痕迹)(2)求出⊙O的半径;(3)求出弦CD的长度.【分析】(1)分别作AB和CD的垂直平分线,它们的交点为点O;(2)连接OB,AB的垂直平分线交AB于F,如图,根据垂径定理得到AF=BF,利用圆心角、弧、弦的关系得到∠BOF=60°,然后在Rt△BOF中利用∠BOF的正弦可求出OB;(3)CD的垂直平分线交CD于H,连接OD,如图,易得四边形OFEH为矩形,则OH =EF=,则在Rt△OHD中利用勾股定理可计算出DH=,然后根据垂径定理得到CD=2DH=2.【解答】解:(1)如图,点O为所作;(2)连接OB,AB的垂直平分线交AB于F,如图,∵OF⊥AB,∴AF=BF,∠BOF=×120°=60°,∵AE=,EB=3,∴AF=BF=2,在Rt△BOF中,∵sin∠BOF=,∴OB==4,即⊙O的半径为4;(3)CD的垂直平分线交CD于H,连接OD,如图,∵AF=2,AF=,∴EF=,易得四边形OFEH为矩形,∴OH=EF=,在Rt△OHD中,DH===,∵OH⊥CD,∴CH=DH,∴CD=2DH=2.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了垂径定理和解直角三角形.24.若一个四边形的两条对角线互相垂直且相等,则称这个四边形为“非常四边形”,如图1,四边形ABCD中,若AC=BD,AC⊥BD,则称四边形ABCD为“非常四边形”,根据以上信息回答:(1)矩形不是“非常四边形”(填“是”或“不是”);(2)如图2,已知⊙O的内接四边形ABCD是“非常四边形”,若⊙O的半径为6,∠BCD=60°.求“非常四边形”ABCD的面积;(3)如图3,已知⊙O的内接四边形ABCD是“非常四边形”作OM⊥BC于M.请猜测OM与AD的数量关系,并证明你的结论.【分析】(1)由矩形的对角线相等但不垂直即可判断;(2)连结OB、OD,作OH⊥BD,由∠BOD=2∠BCD=2×60°=120°知∠OBD=30°,在Rt△OBH中求得BH=3,则AC=BD=2BH=6,据此可得;(3)连结OB、OC、OA、OD,作OE⊥AD,证△BOM≌△OAE可得OM=AE,从而得出答案.【解答】解:(1)矩形的对角线相等但不垂直,所以矩形不是“非常四边形”;故答案为:不是;(2)如图2,连结OB、OD,作OH⊥BD于H,则BH=DH,∵∠BOD=2∠BCD=2×60°=120°,∴∠OBD=30°,在Rt△OBH中,∵∠OBH=30°,∴OH=OB=3,∴BH=OH=3,∵BD=2BH=6,∴AC=BD=6,∴“非常四边形”ABCD的面积=×6×6=54;(3)OM=AD.理由如下:如图3,连结OB、OC、OA、OD,作OE⊥AD于E,∵OE⊥AD,∴AE=DE,∵∠BOC=2∠BAC,而∠BOC=2∠BOM,∴∠BOM=∠BAC,同理可得∠AOE=∠ABD,∵BD⊥AC,∴∠BAC+∠ABD=90°,∴∠BOM+∠AOE=90°,∵∠BOM+∠OBM=90°,∴∠OBM=∠AOE,在△BOM和△OAE中,∵,∴△BOM≌△OAE,∴OM=AE,∴OM=AD.【点评】本题主要考查圆的综合问题,解题的关键是理解新定义,并熟练掌握圆心角定理、圆周角定理及全等三角形的判定与性质等知识点.25.如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y=x+4,与x轴相交于点D,以点C为顶点的抛物线过点B.(1)求抛物线的解析式;(2)判断直线l与⊙E的位置关系,并说明理由;(3)动点P在抛物线上,当点P到直线l的距离最小时.求出点P的坐标及最小距离.【分析】(1)连接AE,由已知得:AE=CE=5,OE=3,利用勾股定理求出OA的长,结合垂径定理求出OC的长,从而得到C点坐标,进而得到抛物线的解析式;(2)求出点D的坐标为(﹣,0),根据△AOE∽△DOA,求出∠DAE=90°,判断出直线l与⊙E相切与A.(3)过点P作直线l的垂线段PQ,垂足为Q,过点P作直线PM垂直于x轴,交直线l于点M.设M(m,m+4),P(m,﹣m2+m﹣4),得到PM=m+4﹣(﹣m2+m ﹣4)=m2﹣m+8=(m﹣2)2+,根据△PQM的三个内角固定不变,得到PQ最小=PM最小•sin∠QMP=PM最小•sin∠AEO=×=,从而得到最小距离.【解答】解:(1)如图1,连接AE,由已知得:AE=CE=5,OE=3,在Rt△AOE中,由勾股定理得,OA===4,∵OC⊥AB,∴由垂径定理得,OB=OA=4,OC=OE+CE=3+5=8,∴A(0,4),B(0,﹣4),C(8,0),∵抛物线的顶点为C,∴设抛物线的解析式为y=a(x﹣8)2,将点B的坐标代入上解析的式,得64a=﹣4,故a=﹣,∴y=﹣(x﹣8)2,∴y=﹣x2+x﹣4为所求抛物线的解析式,(2)在直线l的解析式y=x+4中,令y=0,得x+4=0,解得x=﹣,∴点D的坐标为(﹣,0),当x=0时,y=4,∴点A在直线l上,在Rt△AOE和Rt△DOA中,∵=,=,∴=,∵∠AOE=∠DOA=90°,∴△AOE∽△DOA,∴∠AEO=∠DAO,∵∠AEO+∠EAO=90°,∴∠DAO+∠EAO=90°,即∠DAE=90°,因此,直线l与⊙E相切与A.(3)如图2,过点P作直线l的垂线段PQ,垂足为Q,过点P作直线PM垂直于x轴,交直线l于点M.设M(m,m+4),P(m,﹣m2+m﹣4),则PM=m+4﹣(﹣m2+m﹣4)=m2﹣m+8=(m﹣2)2+,当m=2时,PM取得最小值,此时,P(2,﹣),对于△PQM,∵PM⊥x轴,∴∠QMP=∠DAO=∠AEO,又∠PQM=90°,∴△PQM的三个内角固定不变,∴在动点P运动的过程中,△PQM的三边的比例关系不变,∴当PM取得最小值时,PQ也取得最小值,PQ最小=PM最小•sin∠QMP=PM最小•sin∠AEO=×=,∴当抛物线上的动点P的坐标为(2,﹣)时,点P到直线l的距离最小,其最小距离为.【点评】本题考查了二次函数综合题,涉及勾股定理、待定系数法求二次函数解析式、切线的判定和性质、二次函数的最值等知识,在解答(3)时要注意点P、点M坐标的设法,以便利用二次函数的最值求解.。

2018-2019学年浙教版九年级数学上册期末测试卷及答案

2018-2019学年浙教版九年级数学上册期末测试卷及答案

2018-2019学年九年级数学上册期末测试题(本试卷满分120分,时间:120分钟)一、选择题(每小题3分,共36分)1.若29ab=,则a bb+=()A.119B.79C.911D.79-2.(2014·四川泸州中考)一个圆锥的底面半径是6 cm,其侧面展开图为半圆,则圆锥的母线长为()A.9 cmB.12 cmC.15 cmD.18 cm3.如图,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且,则∠()A.100°B.110°C.120°D.135°第4题图4.(2015·浙江宁波中考)如图,用一个半径为30 cm,面积为300π cm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A.5 cmB.10 cmC.20 cmD.5π cm5.(2014·四川宜宾中考)一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率是()A. 19B.13C.12D.236.(2014·天津中考)如图,在□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF∶FC等于()A.3∶2B.3∶1C.1∶1D.1∶27.如图,△ABC的三个顶点都在⊙O上,∠BAC的平分线交BC于点D,交⊙O于点E,则与△ABD相似的三角形有()A.3个B.2个C.1个D.0个8.(2015·浙江金华中考)如图,正方形ABCD 和正△AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则的值是( )A. B. C. D.2第8题图9.如图,一只蚂蚁从点出发,沿着扇形的边缘匀速爬行一周,设蚂蚁的运动时间为,蚂蚁绕一圈到点的距离..为,则关于的函数图象大致为( )10.(陕西中考)如图,是两个半圆的直径,∠ACP =30°,若,则 PQ 的值为( )A. B.C.a 3D.a 3211.(2014·哈尔滨中考)将抛物线y =-2x 2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为( ) A.y =-2(x +1)2-1 B.y =-2(x +1)2+3 C.y =-2(x -1)2+1 D.y =-2(x -1)2+3 12. (2015·宁波中考)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的处,称为第1次操作,折痕DE 到BC 的距离记为;还原纸片后,再将△ADE 沿着过AD 中点的直线折叠,使点A 落在DE 边上的处,称为第2次操作,折痕到BC的距离记为;按上述方法不断操作下去……经过第2015次操作后得到的折痕到BC 的距离记为,若=1,则的值为( )A. B. C.1- D.2-第12题图二、填空题(每小题3分,共30分)13.若,则yx yx +-=_____________. 14(2015·兰州中考)已知△ABC 的边BC =4 cm ,⊙O 是其外接圆,且半径也为 4 cm ,则∠A 的度数是 .15.(2014·山东烟台中考)在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是14,那么袋子中共有球_________个. 16.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (3,0),且对称轴为直线1x =,给出下列四个结论:①;②0bc <;③20a b +=;④0a b c ++=,其中正确结论的序号是___________.(把你认为正确的序号都写上)17.如图,四边形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2 cm ,CD =4 cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD =90°,则圆心O 到弦AD 的距离是 cm.18.(2014·山东烟台中考)如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为4,则阴影部分的面积等于 .19.(江苏中考)如图,四边形为正方形,图(1)是以AB 为直径画半圆,阴影部分面积记为,图(2)是以O 为圆心,OA 长为半径画弧,阴影部分面积记为,则的大小关系为_________.20.将一副三角板按如图所示叠放,则△AOB与△DOC的面积之比等于_________.4cm,一只蚂蚁由A点出发绕侧面一周后21.如图所示的圆锥底面半径OA=2 cm,高PO=2回到A点处,则它爬行的最短路程为________.22. (2014·山东潍坊中考)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,第22题图则建筑物的高是米.三、解答题(共54分)23.(6分)一段圆弧形公路弯道,圆弧的半径为2 km,弯道所对圆心角为10°,一辆汽车从此弯道上驶过,用时20 s,弯道有一块限速警示牌,限速为40 km/h,问这辆汽车经过弯道时有没有超速?(π取3)24.(6分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D.求证:(1)D是BC的中点;(2)△BEC∽△ADC.25.(6分)已知二次函数的图象经过点A(2,-3),B(-1,0).(1)求二次函数的解析式;(2)观察函数图象,要使该二次函数的图象与轴只有一个交点,应把图象沿轴向上平移几个单位?26.(7分)已知抛物线的部分图象如图所示.(1)求的值;(2)分别求出抛物线的对称轴和的最大值;(3)写出当时,的取值范围.27.(7分)如图,在△ABC中,AC=8 cm,BC=16 cm,点P从点A出发,沿着AC边向点C以1 cm/s的速度运动,点Q从点C出发,沿着CB边向点B以2 cm/s的速度运动,如果P与Q同时出发,经过几秒△PQC和△ABC相似? 28.(6分)(2014·武汉中考)袋中装有大小相同的2个红球和2个绿球. (1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球. ①求第一次摸到绿球,第二次摸到红球的概率; ②求两次摸到的球中有1个绿球和1个红球的概率.(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果. 29.(6分)(2015·浙江金华中考)如图,在矩形ABCD 中,点F 在边BC 上,且AF =AD ,过点D 作DE ⊥AF ,垂足为点E . (1)求证:DE =AB .(2)以D 为圆心,DE 为半径作圆弧交AD 于点G .若BF =FC =1,试求¼EG 的长.30.(10分)(2015·浙江金华中考)如图,抛物线+c (a ≠0)与y 轴交于点A ,与x 轴交于B ,C 两点(点C 在x 轴正半轴上),△ABC 为等腰直角三角形,且面积为4.现将抛物线沿BA 方向平移,平移后的抛物线经过点C 时,与x 轴的另一交点为E ,其顶点为F ,对称轴与x 轴的交点为H . (1)求a ,c 的值.(2)连接OF ,试判断△OEF 是否为等腰三角形,并说明理由.(3)现将一足够大的三角板的直角顶点Q 放在射线AF 或射线HF 上,一直角边始终过点E ,另一直角边与y 轴相交于点P ,是否存在这样的点Q ,使以点P ,Q ,E 为顶点的三角形与△POE 全等?若存在,求出点Q 的坐标;若不存在,请说明理由.图① 图②期末测试题参考答案一、选择题1.A 解析:22,,99a a b b =∴= 2111199=.9b b b a b b b b ++∴== 2.B 解析:设圆锥的母线长为l ,∴ 180180p ·l =2×π×6,∴ l =2×π×6×180180p=12(cm ). 3.C 解析: ∵ ,∴,∴ 弦三等分半圆,∴ 弦、、对的圆心角均为60°,∴ ∠=.4. B 解析:扇形的半径R =30 cm ,面积S =300π cm 2.根据S 扇形=12lR可得扇形的弧长l =260030S R =π=20π(cm).根据题意,得2πr =20π,∴ r =10 cm . 5. B 解析:因为袋子中装有6个黑球和3个白球,所以摸到白球的概率是363+=13. 6.D 解析:∵ AD ∥BC ,∴ DEF BCF ∠=∠,EDF CBF ∠=∠, ∴ △DEF ∽△BCF ,∴EF EDCF BC =. 又∵AD BC =,∴12ED BC =,∴ EF ︰FC =1︰2.7.B 解析: 由∠BAE =∠EAC , ∠ABC =∠AEC ,得△ABD ∽△AEC ; 由∠BAE =∠BCE ,∠ABC =∠AEC ,得△ABD ∽△CED .共两个.8.C 解析:如图所示,连结OC ,OF ,OD ,∵ 四边形ABCD 是正方形,△AEF 是正三角形,∴»A B =¼»»¼»»====,,BC CD DA AE EF AF ∴¼»»¼-=-,AE ABAF AD ∴»»¼»»»=-=-,,BEFD BC BE CD FD 即¼»=,EC CF ∴ OC ⊥EF .设垂足为点M .∵ 四边形ABCD 是正方形,△AEF 是正三角形,∴ ∠COD =90°,∠COF =60°.∵ OC =OD ,∴ ∠OCD =45°,∴ MH =MC .在Rt △OMF 中,设OM =a ,则OF =2a ,∴ MC =a ,MF ==a .又∵ OC ⊥EF ,∴ GH =2MH =2a ,EF =2MF =2a , ∴ ==,故选C.第8题答图9.C 解析:蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行,在开始时经过OA 这一段,蚂蚁到O 点的距离随运动时间t 的增大而增大;到弧AB 这一段,蚂蚁到O 点的距离s 不变,走另一条半径时,s 随t 的增大而减小,故选C .10.C 解析:如图,连接AP 、BQ .∵ AC ,BC 是两个半圆的直径,∠ACP =30°,∴ ∠APC =∠BQC =90°.设,在Rt △BCQ 中,同理,在Rt △APC 中,,则,故选C .11.D 解析:根据抛物线的平移规律:上加下减,左加右减,平移只改变其顶点.抛物线y =-2x 2+1平移以后的解析式为y =-2(x -1)2+1+2=-2(x -1)2+3,故选D. 12. D 解析:如图,连接AA 1,由已知可得DE 是△ABC 的中位线,∴ AA 1=2h 1=2,点A 与D 1E 1的距离为12,∴ h 2=2-12;点A 到D 2E 2的距离为,∴ h 3=2-2,h 4=2-3,…,h 2 015=2- 2 014=2-201412 .二、填空题13.31-解析:设,∴3122-=+-=+-kk k k y x y x .14. 30︒或150︒解析:由已知条件得到△OBC 是等边三角形,所以∠BOC =60︒,当点A 在优弧BC 上时,30A ∠=︒,当点A 在劣弧BC 上时,150A ∠=︒.15.12 解析:设袋中共有球x 个,∵ 有3个白球,且摸出白球的概率是14,∴ 31=4x ,解得x =12.16.①③ 解析:因为图象与轴有两个交点,所以, ①正确;由图象可知开口向下,对称轴在轴右侧,且与轴的交点在轴上方,所以,所以, ②不正确;由图象的对称轴为,所以,即,故, ③正确;由于当时,对应的值大于0,即,所以④不正确.所以正确的有①③. 17. 解析:如图,过点O 作OF ⊥AD ,已知∠B =∠C =90°, ∠AOD =90°, 所以.又,所以.在△ABO 和△OCD 中,所以△≌△.所以=.根据勾股定理得.因为△AOD 是等腰直角三角形,所以,即圆心O 到弦AD 的距离是.18.163π 解析:如图,连接OC 、OD 、OE ,OC 交BD 于点M ,OE 交DF 于点N ,过点O 作OZ ⊥CD 于点Z ,∵ 六边形ABCDEF 是正六边形,∴ BC =CD =DE =EF ,∠BOC =∠COD =∠DOE =∠EOF =60°. 由垂径定理得OC ⊥BD ,OE ⊥DF ,BM =DM ,FN =DN .∵ 在Rt △BMO 中,OB =4,∠BOM =60°, ∴ ∠OBM =30°∴ OM = 2.由勾股定理得BM ,∴ BD =2BM ,∴ △BDO 的面积是12·BD ·OM =12×同理△FDO 的面积是∵ ∠COD =60°,OC =OD =4,∴ △COD 是等边三角形.∴ ∠OCD =∠ODC =60°. ∴ ∠COZ =∠DOZ=30°.∴ CZ =DZ =2.由勾股定理得OZ 同理可得∠DOE =60°,∴ S 弓形CD =S 弓形DE .S 弓形CD =S 扇形COD -S △COD =2604360p 创-12×4×83p∴ S 阴影=+2(83p 163π. 19.解析:设正方形OBCA 的边长是1,则,∴,,故.20.1︰3 解析:∵ ∠ABC =90°,∠DCB =90°,∴ AB ∥CD ,∴ △AOB ∽△COD .又∵ AB ︰CD =BC ︰CD =1︰,∴ △AOB 与△DOC 的面积之比等于1︰3. 21.36cm 解析:圆锥的侧面展开图如图所示,设∠,由OA =2 cm ,高PO =24 cm ,得PA =6 cm ,弧AA ′=4 cm , 则,解得.作,由,得∠.又cm ,所以cm,∴所以cm.22.54 解析:∵ △ABG ∽△CDG ,∴ CD ∶AB =DG ∶BG .∵ CD =DG =2,∴ AB =BG . 又△EFH ∽△ABH ,∴ EF ∶AB =FH ∶BH .∵ EF =2,FH =4,∴ BH =2AB ,∴ BH =2BG =2GH .∵ GH =DH -DG =DF +FH -DG =52+4-2=54,∴ AB =BG =GH =54. 三、解答题23. 解:∵,∴ 汽车的速度为(km/h ),∵ 60 km/h >40 km/h ,∴ 这辆汽车经过弯道时超速.24.证明:(1)因为AB 为⊙O 的直径,所以∠ADB =90°,即AD ⊥BC .又因为AB =AC ,所以D 是BC 的中点.(2)因为AB 为⊙O 的直径, 所以∠AEB =90°. 因为∠ADB =90°,所以∠ADB =∠AEB . 又∠C =∠C ,所以△BEC ∽△ADC . 25.解:(1)将点A (2,-3),B (-1,0)分别代入函数解析式,得解得所以二次函数解析式为322--=x x y . (2)由二次函数的顶点坐标公式,得顶点坐标为,作出函数图象如图所示,可知要使该二次函数的图象与轴只有一个交点,应把图象沿轴向上平移4个单位. 26. 解:(1)由图象知此二次函数过点(1,0),(0,3), 将点的坐标代入函数解析式,得解得(2)由(1)得函数解析式为,即为,所以抛物线的对称轴为的最大值为4.(3)当时,由,解得,即函数图象与轴的交点坐标为(),(1,0). 所以当时,的取值范围为.27.解:设经过t s △PQC 和△ABC 相似,由题意可知PA =t cm ,则CQ =2t cm.(1)若PQ ∥AB ,则△PQC ∽△ABC ,∴CB CQ CA CP =,∴ 16288tt =-,解得4=t . (2)若B CPQ ∠=∠,则△PQC ∽△BAC ,∴CA CQ CB CP =,∴ 82168t t =-,解得58=t . 答: 经过4 s 或58s △PQC 和△ABC 相似.28.分析:(1)①先将两种颜色的球进行标号,然后列表或画树状图得出所有等可能的结果数,找出第一次摸到绿球,第二次摸到红球的结果数,根据概率计算公式求出其概率;②找出两次摸到的球中有1个绿球和1个红球的结果数,根据概率计算公式求出其概率. (2)分别用R 1,R 2表示2个红球,G 1,G 2表示2个绿球,列表如下:从表格中可以看出所有等可能的结果数为12,其中两次摸球中有1个绿球和1个红球的结果为8种,根据概率计算公式求出其概率为82= 123.解:(1)分别用R1,R2表示2个红球,G1,G2表示2个绿球,列表如下:由上表可知,有放回地摸2个球共有16种等可能结果.①∵其中第一次摸到绿球,第二次摸到红球的结果有4种,∴第一次摸到绿球,第二次摸到红球的概率P= 41= 164.②∵其中两次摸到的球中有1个绿球和1个红球的结果有8种,∴两次摸到的球中有1个绿球和1个红球的概率P=81= 162.(2)2 3 .29. (1)证明:∵DE⊥AF,∴∠AED=90°.又∵四边形ABCD是矩形,∴AD∥BC,∠B=90°.∴∠DAE=∠AFB,∠AED=∠B=90°.又∵AF=AD,∴△ADE≌△FAB(AAS),∴DE=AB.(2)解:∵BF=FC=1,∴AD=BC=BF+FC=2.又∵△ADE≌△FAB,∴AE=BF=1,∴在Rt△ADE中,AE=AD,∴∠ADE=30°.又∵DE===,∴¼EG的长===π.30.解:(1)∵△ABC为等腰直角三角形,∴OA=BC.又∵△ABC的面积=BC×OA=4,即=4,∴OA=2,∴A(0,2),B(-2,0),C(2,0),∴c=2,∴抛物线的函数表达式为+2. 把C(2,0)代入+2中得4a+2=0,解得a=-,∴a=-,c=2.(2)△OEF是等腰三角形.理由如下:图③如图③,设直线AB的函数表达式为y=kx+b,把A(0,2),B(-2,0)代入y=kx+b中得,k=1,b=2, ∴直线AB的函数表达式为y=x+2.又∵平移后的抛物线顶点F在直线BA上,∴设顶点F的坐标为(m,m+2),∴平移后的抛物线的函数表达式为y=-+m+2。

2018-2019浙教版九年级数学上学期期末考试卷(附答案)

2018-2019浙教版九年级数学上学期期末考试卷(附答案)

九年级数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列事件是必然事件的是()A.打开电视机,正在播放动画片B.2018年世界杯德国队一定能夺得冠军C.某彩票中奖率是1%,买100张一定会中奖D.投掷一枚普通正方体骰子,连续投3次,出现的点数之和不可能等于19 2.(3分)cos45°的值等于()A.B.C.D.13.(3分)从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A.B.C.D.4.(3分)对于抛物线y=﹣(x+1)2+3,下列结论正确的是()A.抛物线的开口向上B.x≤0时,y随x的增大而减小C.顶点坐标为(﹣1,3)D.对称轴为直线x=15.(3分)如果C是线段AB一点,并且AC>CB,AB=1,那么AC的长度为()时,点C是线段AB的黄金分割点.A.0.618B.C.D.6.(3分)△ABC中,AB=AC,且AB=10,BC=12,则sin∠ABC=()A.B.C.D.7.(3分)如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A.△PAB∽△PCAB.△ABC∽△DBAC.△PAB∽△PDAD.△ABC∽△DCA8.(3分)如图,四边形ABCD内接于⊙O,∠BAD=120°,AC平分∠BAD,AC与BD相交于E点,下列结论错误的是()(8题) (10题)A.△BDC为等边三角形B.∠AED=∠ABCC.△ABE∽△DBA D.BC2=CE•CA9.(3分)二次函数y=(x﹣a)(x﹣b)﹣2,(a<b)的图象与x轴交点的横坐标为m,n,且m<n,则a,b,m,n的大小关系是()A.m<a<b<n B.a<m<b<n C.a<m<n<b D.m<a<n 10.(3分)如图,在△ABC中,已知∠A=α,∠B=β,AC=b,AB=c,则b,c,α,β之间关系正确的是()A.=tanα(c﹣b•cosα)B.b•sinα=tanα(c﹣b•tanβ)C.b•sinα=D.b•sinα=tanβ(c﹣b•cosα)二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)一个不透明的布袋中装进a只红球,b只白球,它们除颜色外无其他差别,从袋中任意摸出一球,问摸出的球是红球的概率为.12.(4分)已知函数y=﹣x2+mx+4(m为常数),该函数的图象与x轴交点的个数是.13.(4分)以下图形为杭州国际会议中心,是全国最大的球形建筑,如图1是球体的轴截面,已知这个球体的高度为86米,球的半径为50米,则这个国际会议中心建筑的占地面积为.(结果保留π)14.(4分)如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD等于海里.(14题)(15题)15.(4分)已知△ABC是⊙O的内接三角形,AD是BC边上的高,AC=3,AB=5,AD=2,此圆的直径等于.16.(4分)如图,在直线l上摆放着三个三角形:△ABC、△HFG、△DCE,已知BC=CE,F、G分别是BC、CE的中点,FM∥AC∥HG∥DE,GN∥DC∥HF∥AB.设图中三个四边形的面积依次是S1,S2,S3,若S1+S3=20,则S1=,S2=.三、解答题(本题共7个小题,共66分)17.(6分)如图是某教室里日光灯的四个控制开关(分别记为A、B、C、D),每个开关分别控制一排日光灯(开关序号与日光灯的排数序号不一定一致).某天上课时,王老师在完全不知道哪个开关对应控制哪排日光灯的情况下先后随机按下两个开关.(1)求王老师按下第一个开关恰好能打开第一排日光灯的概率;(2)王老师按下两个开关恰好能打开第一排与第三排日光灯的概率是多少?请列表格或画树状图加以分析.18.(8分)如图在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC 于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)如AF=3,AG=5,求△ADE与△ABC的周长之比.19.(8分)如图,AB是⊙O的直径,四边形ABCD内接于⊙O,延长AD,BC交于点E,且CE=CD.(1)求证:AB=AE;(2)若∠BAE=40°,AB=4,求的长.20.(10分)近年来,共享单车服务的推出(如图1),极大的方便了城市公民绿色出行,图2是某品牌某型号单车的车架新投放时的示意图(车轮半径约为30cm),其中BC∥直线l,∠BCE=71°,CE=54cm.(1)求单车车座E到地面的高度;(结果精确到1cm)(2)根据经验,当车座E到CB的距离调整至等于人体胯高(腿长)的0.85时,坐骑比较舒适.小明的胯高为70cm,现将车座E调整至座椅舒适高度位置E′,求EE′的长.(结果精确到0.1cm)(参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)21.(10分)如图,有长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,有以下两种围法,(1)如图1,设花圃的宽AB为x米,面积为y米2,求y与x之间的含函数表达式,并确定x的取值范围;(2)如图2,为了方便出入,在建造篱笆花圃时,在BC上用其他材料造了宽为1米的两个小门,设花圃的宽AB为a米,面积为S米2,求S与a之间的函数表达式及S的最大值?22.(12分)在平面直角坐标系中,设二次函数y1=mx2﹣6mx+8m(m为常数).(1)若函数y1经过点(1,3),求函数y1的表达式;(2)若m<0,当x时,此二次函数y随x的增大而增大,求a的取值范围;(3)已知一次函数y2=x﹣2,当y1•y2>0时,求x的取值范围.23.(12分)如图,在直角三角形ABC中,∠ACB=90°,AC=6,BC=8,点M是AB上的一点,点N是CB上的一点.(1)若3BM=4CN,①如图1,当CN=时,判断MN与AC的位置关系,并说明理由;②如图2,连接AN,CM,当∠CAN与△CMB中的一个角相等时,求BM的值.(2)当MN⊥AB时,将△NMB沿直线MN翻折得到△NMF,点B落在射线BA 上的F处,设MB=x,△NMF与△ABC重叠部分的面积为y,求y关于x的函数表达式及x的取值范围.2017-2018开发区九年级(上)一、选择题(本大题共10小题,每小题3分,共30分)1.【解答】解:A、打开电视机,正在播放动画片是随机事件,不符合题意;B、2018年世界杯德国队一定能夺得冠军是随机事件,不符合题意;C、某彩票中奖率是1%,买100张一定会中奖是随机事件,不符合题意;D、投掷一枚普通的正方体骰子,连续投掷3次,出现的点数之和不可能等于19是必然事件,符合题意;故选:D.2.答】解:cos45°=.故选:B.3.【解答】解:∵直径所对的圆周角等于直角,∴从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B.故选:B.4.解:二次函数y=﹣(x+1)2+3中,a=﹣1<0,开口向下,对称轴为x=﹣1,顶点坐标为(﹣1,3),x<﹣1时,y随x的增大而增大.故选:C.5.∵C是线段AB的黄金分割点C,AC>CB,∴AC=AB=,选:C.6.解答】解:如图:过点A作AD⊥BC,∵AB=AC,BC=12,∴BD=6,∵AB=10,∴AD=8,∴sin∠ABC===;故选:C.7.【解答】解:∵∠APD=90°,而∠PAB≠∠PCB,∠PBA≠∠PAC,∴无法判定△PAB与△PCA相似,故A错误;同理,无法判定△PAB与△PDA,△ABC与△DCA相似,故C、D错误;∵∠APD=90°,AP=PB=BC=CD,∴AB=PA,AC=PA,AD=PA,BD=2PA,∴=,∴,∴△ABC∽△DBA,故选:B.8.【解答】解:∵∠BAD=120°,AC平分∠BAD,∴∠CAB=∠CAD=60°,∵∠CAB=∠CDB,∠DCA=∠CBD,∴∠CDB=∠CBD=60°,∴△BDC是等边三角形,故A正确,∴∠EBC=∠BAC=60°,∵∠ECB=∠ACB,∴∠CEB=∠AED=∠ABC,故B正确,∴△CEB∽△CBA,∴CB2=CE•CA,故D正确,无法判断△ABE∽△DBA,故选:C.9【解答】解:二次函数y=(x﹣a)(x﹣b)与x轴交点的横坐标为a、b,将其图象往下平移2个单位长度可得出二次函数y=(x﹣a)(x﹣b)﹣2的图象,如图所示.观察图象,可知:m<a<b<n.故选:A.10.【解答】解:过C点作CD⊥AB于D,CD=b•sinα,AD=b•cosα,BD=AB﹣AD=c﹣b•cosα,CD=tanβ•BD,即b•sinα=tanβ(c﹣b•cosα).故选:D.11解答】解:因为所有机会均等的可能共有a+b种,而摸到红球的机会有a种,因此摸到红球的概率为,故答案为12解:△=b2﹣4ac=m2+4>0,∴抛物线与x轴有两个交点.故答案为:2.13.解:连接OA,∵OA2=AD2+OD2∴AD2=OA2﹣OD2=502﹣(86﹣50)2=1204 ∴S=πAD2=1204π平方米.(13)(14)14.【解答】解:根据题意可知∠CAD=30°,∠CBD=60°,∵∠CBD=∠CAD+∠ACB,∴∠CAD=30°=∠ACB,∴AB=BC=20海里,在Rt△CBD中,∠BDC=90°,∠DBC=60°,sin∠DBC=,∴sin60°=,∴CD=20×sin60°=20×=10海里,15.【解答】解:连接AO交⊙O于E,连接BE,∵∠BEA与∠BCA都是AB边对应的圆周角,∴∠BEA=∠BCA,又∵AE是直径,∴∠ABE=90°,∵∠ADC=90°,∴△ABE∽△ADC,∴,则AE=,即⊙O的直径为.(15)(16)16.【解答】解:根据正三角形的性质,∠ABC=∠HFG=∠DCE=60°,∴AB∥HF∥DC∥GN,设AC与FH交于P,CD与HG交于Q,∴△PFC、△QCG和△NGE是正三角形,∵F、G分别是BC、CE的中点,∴MF=AC=BC,PF=AB=BC,又∵BC=CE=CG=GE,∴CP=MF,CQ=BC=3PF,QG=GC=CQ=AB=3CP,∴S1=S2,S3=3S2,∵S1+S3=20,∴S2+3S2=20,∴S2=6,∴S1=2,故答案为:2;6.三、解答题(本题共7个小题,共66分)17.【解答】解:(1)由题意可知王老师按下第一个开关恰好能打开第一排日光灯是:随机事件,概率为;(2)画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.即P(两个开关恰好能打开第一排与第三排日光灯)=.18.解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC。

2018-2019学年最新浙教版九年级(上册)数学期末测试卷及答案

2018-2019学年最新浙教版九年级(上册)数学期末测试卷及答案

2018-2019学年九年级(上册)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.若2a=5b,则=()A.B.C.2 D.52.抛物线y=x2﹣4与y轴的交点坐标是()A.(0,﹣4)B.(﹣4,0)C.(2,0) D.(0,2)3.二次函数y=2(x+1)2﹣3的最小值是()A.1 B.﹣1 C.3 D.﹣34.某路口交通信号灯的时间设置为:红灯亮25秒,绿灯亮30秒,黄灯亮5秒.当人或车随意经过该路口时,遇到绿灯的概率为()A.B.C.D.5.已知一扇形的半径长是6,圆心角为60°,则这个扇形的面积为()A.πB.2πC.6πD.12π6.如图,在△ABC中,∠ACB=90°,BC=3cm,AC=4cm,D是AB的中点,若以点C为圆心,以3cm长为半径作⊙C,则下列选项中的点在⊙C外的是()A.点A B.点B C.点C D.点D7.经过某十字路口的汽车,可能直行,也可能左转或者右转,若这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆直行,一辆右转的概率是()A.B.C.D.8.如图,在△ABC中,点D在边AB上,过点D作DE∥BC交AC于点E,DF∥AC交BC于F,若AE:DF=2:3,则BF:BC的值是()A.B.C.D.9.如图,AD是△ABC的外角∠EAC的平分线,与△ABC的外接圆交于点D,则图中与∠EAD相等的角(不包括∠EAD)有()A.2个B.3个C.4个D.5个10.如图,P是给定△ABC边AB上一动点,D是CP的延长线上一点,且2DP=PC,连结DB,动点P从点B出发,沿BA方向匀速运动到终点A,则△APC与△DBP面积的差的变化情况是()A.始终不变 B.先减小后增大 C.一直变大 D.一直变小二、填空题(共8小题,每小题3分,满分24分)11.抛物线y=x2﹣4x﹣1的对称轴为.12.将抛物线y=x2﹣2向左平移1个单位后所得抛物线的表达式为.13.某单位工会组织内部抽奖活动,共准备了100张奖券,设特等奖1个,一等奖10个,二等奖20个,三等奖30个.已知每张奖券获奖的可能性相同,则一张奖券中一等奖或二等奖的概率是.14.二次函数y=a(x+3)2+k的图象如图所示,已知点A(﹣1,y1),B(﹣2,y2)和C(﹣6.5,y 3)都在该图象上,则y1,y2,y3的大小关系是.15.如图,水平放置的圆柱形排水管道的截面直径是1m,排水管内水的最大深度CD是0.8m,则水面宽AB为m.16.如图,P是△ABC的重心,过点P作PE∥AB交BC于点E,PF∥AC交BC于点F,若△PEF的周长是6,则△ABC的周长为.17.如图,点A,B,C均在⊙O上,点O在∠ACB的内部,若∠A+∠B=56°,则为度.18.如图,P是AB为直径的半圆周上一点,点C在∠PAB的平分线上,且CB⊥AB于B,PB交AC于E,若AB=4,BE=2,则PE的长为.三、解答题(共6小题,满分46分)19.如图1,在8×8方格纸中,△ABC的三个顶点都在小方格的顶点上,按要求画一个三角形,使它的顶点都在方格的顶点上.(1)请在图2中画一个三角形,使它与△ABC相似,且相似比为2:1;(2)请在图3中画一个三角形,使它与△ABC相似,且相似比为:1.20.一个不透明的袋中,装有10个红球、2个黄球、8个篮球,它们除颜色外都相同.(1)求从袋中摸出一个球是红球的概率;(2)现从袋中取出若干个红球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率是,问取出了多少个红球?21.如图,抛物线y=﹣(x﹣1)2+4与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,CD∥x轴交抛物线另一点D,连结AC,DE∥AC交边CB于点E.(1)求A,B两点的坐标;(2)求△CDE与△BAC的面积之比.22.如图,点C,P均在⊙O上,且分布在直径AB的两侧,BE⊥CP于点E.(1)求证:△CAB∽△EPB;(2)若AB=10,AC=6,BP=5,求CP的长.23.某农场拟建三件矩形饲养室,饲养室一面靠现有墙(墙可用长≤20m),中间用两道墙隔开,已知计划中的建筑材料可建围墙的总长为60m,设饲养室宽为x(m),总占地面积为y(m2)(如图所示).(1)求y关于x的函数表达式,并直接写出自变量x的取值范围;(2)三间饲养室占地总面积有可能达到210m2吗?请说明理由.24.如图,点A,B的坐标分别为(0,8),(﹣3,0),点P从点A出发,以2单位/秒的速度沿射线AO方向运动,同时点E从点B出发,以1单位/秒的速度沿射线BO方向运动,以PE为斜边构造Rt△PEC(字母按逆时针顺序),且EC=2PC,抛物线y=﹣2x2+bx+c经过点(0,4),(﹣1,﹣2),设运动时间为t秒.(1)求该抛物线的表达式;(2)当t=2时,求点C的坐标;(3)①当t<3时,求点C的坐标(用含t的代数式表示);②在运动过程中,若点C恰好落在该抛物线上,请直接写出所有满足条件的t的值.一、选择题(共10小题,每小题3分,满分30分)1.若2a=5b,则=()A.B.C.2 D.5【考点】比例的性质.【分析】根据等式的性质,可得答案.【解答】解:两边都除以2b,得=,故选:B.【点评】本题考查了比例的性质,利用等式的性质是解题关键.2.抛物线y=x2﹣4与y轴的交点坐标是()A.(0,﹣4)B.(﹣4,0)C.(2,0) D.(0,2)【考点】二次函数图象上点的坐标特征.【分析】令x=0,求出y的值即可.【解答】解:∵令x=0,则y=﹣4,∴抛物线y=x2﹣4与y轴的交点坐标是(0,﹣4).故选A.【点评】本题考查的是二次函数图象上点的坐标特点,熟知二次函数与坐标轴交点的特点是解答此题的关键.3.二次函数y=2(x+1)2﹣3的最小值是()A.1 B.﹣1 C.3 D.﹣3【考点】二次函数的最值.【分析】根据顶点式解析式写出最小值即可.【解答】解:∵a=2>0,∴二次函数y=2(x+1)2﹣3的最小值是﹣3.故选D.【点评】本题考查了二次函数的最值问题,掌握利用顶点式解析式确定最值的方法是解题的关键.4.某路口交通信号灯的时间设置为:红灯亮25秒,绿灯亮30秒,黄灯亮5秒.当人或车随意经过该路口时,遇到绿灯的概率为()A.B.C.D.【考点】概率公式.【分析】由红灯的时间为25秒,黄灯的时间为5秒,绿灯的时间为30秒,直接利用概率公式求解即可求得答案.【解答】解:,故选D【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.5.已知一扇形的半径长是6,圆心角为60°,则这个扇形的面积为()A.πB.2πC.6πD.12π【考点】扇形面积的计算.【分析】利用扇形的面积公式即可直接求解.【解答】解:扇形的面积是=6π.故选C.【点评】本题考查扇形的面积公式,正确记忆公式是关键.6.如图,在△ABC中,∠ACB=90°,BC=3cm,AC=4cm,D是AB的中点,若以点C为圆心,以3cm长为半径作⊙C,则下列选项中的点在⊙C外的是()A.点A B.点B C.点C D.点D【考点】点与圆的位置关系;直角三角形斜边上的中线.【分析】分别求出AB、CD的长,根据点与圆的位置关系的判断方法进行判断即可.【解答】解:∵∠C=90°,BC=3cm,AC=4cm,∴AB==5,∵以点C为圆心,以3cm长为半径作⊙C,∴点A在⊙C外,∵D是AB的中点,∴CD=AB=2.5,故D在圆C内部,B在圆上,C是圆心.故选:A.【点评】本题考查的是点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.7.经过某十字路口的汽车,可能直行,也可能左转或者右转,若这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆直行,一辆右转的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】此题可以采用列表法或树状图求解.可以得到一共有9种情况,两辆汽车一辆直行,一辆右转的有2种情况,根据概率公式求解即可.【解答】解:画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:∵这两辆汽车行驶方向共有9种可能的结果,两辆汽车一辆直行,一辆右转的结果有2种,且所有结果的可能性相等,∴P(两辆汽车一辆直行,一辆右转)=.故选:C.【点评】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.8.如图,在△ABC中,点D在边AB上,过点D作DE∥BC交AC于点E,DF∥AC交BC于F,若AE:DF=2:3,则BF:BC的值是()A.B.C.D.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得出比例式,再把它们等量代换,即可得出答案.【解答】解:∵DE∥BC,∴,∵DF∥AC,∴,∴,故选B【点评】本题考查了平行线分线段成比例定理,此题比较简单,注意掌握比例线段的对应关系是解此题的关键.9.如图,AD是△ABC的外角∠EAC的平分线,与△ABC的外接圆交于点D,则图中与∠EAD相等的角(不包括∠EAD)有()A.2个B.3个C.4个D.5个【考点】三角形的外接圆与外心.【分析】直接利用角平分线的性质结合圆内接四边形的性质得出答案.【解答】解:∵AD 是△ABC 的外角∠EAC 的平分线,∴∠EAD=∠DAC ,∵∠DAC=∠DBC ,∠EAD=∠BCD ,∴∠EAD=∠DAC=∠DBC=∠BCD ,故与∠EAD 相等的角(不包括∠EAD )有3个.故选:B .【点评】此题主要考查了角平分线的性质以及圆内接四边形的性质,正确得出∠EAD=∠BCD 是解题关键.10.如图,P 是给定△ABC 边AB 上一动点,D 是CP 的延长线上一点,且2DP=PC ,连结DB ,动点P 从点B 出发,沿BA 方向匀速运动到终点A ,则△APC 与△DBP 面积的差的变化情况是( )A .始终不变B .先减小后增大C .一直变大D .一直变小【考点】动点问题的函数图象.【分析】根据题意可得S △APC ﹣S △DBP =S △ABC ﹣﹣S △DBC =S △APC +S △BPC ﹣S △DBP ﹣S △BPC ,根据等底的三角形面积比等于高之比,可得S △DBP +S △BPC 变大,再根据等量关系即可求解.【解答】解:∵S △APC ﹣S △DBP =S △ABC ﹣﹣S △DBC =S △APC +S △BPC ﹣S △DBP ﹣S △BPC ,∵S △APC +S △BPC 不变,S △DBP +S △BPC 变大,∴S △APC ﹣S △DBP 一直变小.故选:D .【点评】考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.二、填空题(共8小题,每小题3分,满分24分)11.抛物线y=x 2﹣4x ﹣1的对称轴为 直线x=2 .【考点】二次函数的性质.【分析】根据抛物线y=ax2+bx+c的对称轴公式为x=﹣,此题中的a=1,b=﹣4,将它们代入其中即可.【解答】解:x=﹣=﹣=2.故答案为直线x=2.【点评】本题考查二次函数对称轴公式的应用,熟练掌握对称轴公式是解题的关键.12.将抛物线y=x2﹣2向左平移1个单位后所得抛物线的表达式为y=(x+1)2﹣2 .【考点】二次函数图象与几何变换.【分析】根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,把抛物线y=x2﹣2向左平移1个单位,则平移后的抛物线的表达式为y=(x+1)2﹣2,故答案为:y=(x+1)2﹣2.【点评】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.13.某单位工会组织内部抽奖活动,共准备了100张奖券,设特等奖1个,一等奖10个,二等奖20个,三等奖30个.已知每张奖券获奖的可能性相同,则一张奖券中一等奖或二等奖的概率是.【考点】概率公式.【专题】计算题.【分析】直接利用概率公式求解.【解答】解:一张奖券中一等奖或二等奖的概率==.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.14.二次函数y=a (x+3)2+k 的图象如图所示,已知点A (﹣1,y 1),B (﹣2,y 2)和C (﹣6.5,y 3)都在该图象上,则y 1,y 2,y 3的大小关系是 y 2>y 1>y 3. .【考点】二次函数图象上点的坐标特征.【分析】根据函数解析式的特点为顶点式,其对称轴为x=﹣3,图象开口向下;根据二次函数图象的对称性,利用y 随x 的增大而减小,可判断y 2>y 1>y 3.【解答】解:由二次函数y=a (x+3)2+k 可知对称轴为x=﹣3,根据二次函数图象的对称性可知,C (﹣6.5,y 3)与D (0.5,y 3)对称,∵点A (﹣1,y 1),B (﹣2,y 2),D (0.5,y 3)在对称轴的右侧,y 随x 的增大而减小, ∵﹣2<﹣1<0.5,∴y 2>y 1>y 3,故答案是:y 2>y 1>y 3. 【点评】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.15.如图,水平放置的圆柱形排水管道的截面直径是1m ,排水管内水的最大深度CD 是0.8m ,则水面宽AB 为 0.8 m .【考点】垂径定理的应用.【分析】连接OB ,根据OB=OD 可得出OC 的长,再由勾股定理求出BC 的长,进而可得出结论.【解答】解:连接OB ,∵排水管道的截面直径是1m ,CD=0.8m ,∴OB=OD=0.5m ,∴OC=0.8﹣0.5=0.3m,∴BC===0.4m,∴AB=2BC=0.8m.故答案为:0.8.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.16.如图,P是△ABC的重心,过点P作PE∥AB交BC于点E,PF∥AC交BC于点F,若△PEF的周长是6,则△ABC的周长为18 .【考点】三角形的重心;平行线的性质.【专题】计算题.【分析】延长AP交BC于Q,如图,根据三角形重心性质得=,再证明△QPE∽△QAB得到===,即AB=3PE,QB=3EQ,同理可得AC=3PF,GC=3QF,然后可得△ABC的周长=AB+AC+BC=3(PE+PF+EF)=18.【解答】解:延长AP交BC于Q,如图,∵P是△ABC的重心,∴=2,∴=,∵PE∥AB,∴△QPE∽△QAB,∴===,∴AB=3PE,QB=3EQ,同理可得AC=3PF,GC=3QF,∴△ABC的周长=AB+AC+BC=3PE+3PF+3EF=3(PE+PF+EF)=3×6=18.故答案为18.【点评】本题考查了三角形的重心:三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了相似三角形的判定与性质.17.如图,点A,B,C均在⊙O上,点O在∠ACB的内部,若∠A+∠B=56°,则为112 度.【考点】圆周角定理.【分析】连接OC,则由圆的半径都相等可求得∠A=∠OCA、∠B=∠OCB,则可求得∠ACB,再利用圆周角定理可求得∠AOB.【解答】解:如图,连接OC,∵OA=OB=OC,∴∠A=∠OCA、∠B=∠OCB,∴∠ACB=∠OCA+∠OCB=∠A+∠B=56°,∴∠AOB=2∠ACB=112°,∴为112度,故答案为:112.【点评】本题主要考查圆周角定理,利用整体思想求得∠ACB的大小是解题的关键.18.如图,P是AB为直径的半圆周上一点,点C在∠PAB的平分线上,且CB⊥AB于B,PB交AC于E,若AB=4,BE=2,则PE的长为.【考点】圆周角定理;角平分线的性质.【分析】易证CB=BE,设PE=x,在直角△ABC中利用勾股定理即可列方程,求得PE的长.【解答】解:∵∠PAE=∠CAB,∠CAB+∠C=∠PAE+∠PEA,∴∠PEA=∠C.∵∠PEA=∠CEB,∴∠C=∠CEB,∴CB=BE=2=AB.设PE=x,PA=2x.(x+2)2+(2x)2=16,解得:x=或﹣2(舍去).则PE=.故答案是:.【点评】本题考查了圆周角定理和等腰三角形的判定定理,以及勾股定理,正确证明CB=BE是关键.三、解答题(共6小题,满分46分)19.如图1,在8×8方格纸中,△ABC的三个顶点都在小方格的顶点上,按要求画一个三角形,使它的顶点都在方格的顶点上.(1)请在图2中画一个三角形,使它与△ABC相似,且相似比为2:1;(2)请在图3中画一个三角形,使它与△ABC相似,且相似比为:1.【考点】作图—相似变换;勾股定理.【分析】(1)利用已知三角形的三边长进而结合相似比得出所求三角形的边长,进而得出答案;(2)利用已知三角形的三边长进而结合相似比得出所求三角形的边长,进而得出答案.【解答】解:(1)如图2所示:△A1B1C1即为所求;(2)如图3所示:△A2B2C2即为所求.【点评】此题主要考查了相似变换,正确得出相似三角形的边长是解题关键.20.一个不透明的袋中,装有10个红球、2个黄球、8个篮球,它们除颜色外都相同.(1)求从袋中摸出一个球是红球的概率;(2)现从袋中取出若干个红球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率是,问取出了多少个红球?【考点】列表法与树状图法;概率公式.【分析】(1)由一个不透明的袋中,装有10个红球、2个黄球、8个篮球,它们除颜色外都相同,直接利用概率公式求解即可求得答案;(2)首先设取出了x 个红球,由概率公式可得方程: =,解此方程即可求得答案.【解答】解:(1)∵一个不透明的袋中,装有10个红球、2个黄球、8个篮球,它们除颜色外都相同,∴从袋中摸出一个球是红球的概率为:=;(2)设取出了x 个红球,根据题意得:=, 解得:x=6,答:取出了6个红球.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.21.如图,抛物线y=﹣(x ﹣1)2+4与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,CD ∥x 轴交抛物线另一点D ,连结AC ,DE ∥AC 交边CB 于点E .(1)求A ,B 两点的坐标;(2)求△CDE 与△BAC 的面积之比.【考点】相似三角形的判定与性质;抛物线与x 轴的交点.【分析】(1)直接把y=0代入求出x 的值即可;(2)先根据CD ∥AB ,DE ∥AC 得出△CDE ∽△BAC ,求出CD 的长,再由相似三角形的性质即可得出结论.【解答】解:(1)∵令y=0,则﹣(x ﹣1)2+4=0,解得x 1=﹣1,x 2=3,∴A (﹣1,0),B (3,0);(2)∵CD∥AB,DE∥AC,∴△CDE∽△BAC.∵当y=3时,x1=0,x2=2,∴CD=2.∵AB=4,∴=,∴=()2=.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.22.如图,点C,P均在⊙O上,且分布在直径AB的两侧,BE⊥CP于点E.(1)求证:△CAB∽△EPB;(2)若AB=10,AC=6,BP=5,求CP的长.【考点】相似三角形的判定与性质;圆周角定理.【分析】(1)根据两角相等的三角形相似可得出结论;(2)先根据勾股定理求出BC的长,再由相似三角形的性质得出PE及BE的长,由勾股定理得出CE 的长,进而可得出结论.【解答】(1)证明:∵AB是⊙O的直径,BE⊥CP,∴∠ACB=∠BEP.∵∠CAB=∠BPC,∴△CAB∽△EPB;(2)解:∵AB=10,AC=6,∴BC==8.∵△CAB∽△EPB,BP=5,∴==,即==,∴PE=3,BE=4,∴CE==4,∴CP=4+3.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.23.某农场拟建三件矩形饲养室,饲养室一面靠现有墙(墙可用长≤20m),中间用两道墙隔开,已知计划中的建筑材料可建围墙的总长为60m,设饲养室宽为x(m),总占地面积为y(m2)(如图所示).(1)求y关于x的函数表达式,并直接写出自变量x的取值范围;(2)三间饲养室占地总面积有可能达到210m2吗?请说明理由.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)设饲养室宽为x(m),则长为(60﹣4x)m,根据长方形面积公式即可得,由墙可用长≤20m可得x的范围;(2)令y=210求出x,根据(1)中x的范围即可判断.【解答】解:(1)设饲养室宽为x(m),则长为(60﹣4x)m,∴y=x(60﹣4x)=﹣4x2+60x,∵0<60﹣4x≤20,∴10≤x<15;(2)不能,理由如下:当y=210时,﹣4x2+60x=210,解得:x=或x=,∵x=<10,且x=<10,∴不能.【点评】本题主要考查二次函数的应用,解题的关键是将实际问题转化为数学问题以后,准确列出二次函数关系式,正确运用二次函数的有关性质来解题.24.如图,点A,B的坐标分别为(0,8),(﹣3,0),点P从点A出发,以2单位/秒的速度沿射线AO方向运动,同时点E从点B出发,以1单位/秒的速度沿射线BO方向运动,以PE为斜边构造Rt△PEC(字母按逆时针顺序),且EC=2PC,抛物线y=﹣2x2+bx+c经过点(0,4),(﹣1,﹣2),设运动时间为t秒.(1)求该抛物线的表达式;(2)当t=2时,求点C的坐标;(3)①当t<3时,求点C的坐标(用含t的代数式表示);②在运动过程中,若点C恰好落在该抛物线上,请直接写出所有满足条件的t的值.【考点】二次函数综合题.【分析】(1)把(0,4),(﹣1,﹣2)代入抛物线解析式y=﹣2x2+bx+c,列方程组即可解决问题.(2)如图1中,t=2时,EO=1,OP=4,设C(x,y),作CH⊥x轴于H,PQ⊥HC于Q,由△PCQ∽△CEH,得==,列出方程组,解方程组即可解决问题.(3)①如图1中,设C(x,y),则PO=8﹣2t,EH=3﹣t+x,CH=y,QC=8﹣2t﹣y,PQ=x,由△PCQ∽△CEH,得==,由EC=2PC,可得==,用t表示x、y即可解决问题.②分三种情形①t<3时,列出方程即可解决问题.②3≤t<4时,显然不存在这样的点C在抛物线上.③t>4时,如图2中,作CH⊥x轴于H,PQ⊥HC于Q.设C(x,y),则PO=2t﹣8,EH=t﹣3﹣x,CH=﹣y,QC=2t﹣8+y,PQ=﹣x,由△PCQ∽△CEH,得到==,解方程组即可得到点C 坐标,代入抛物线即可解决问题.【解答】解:(1)∵抛物线y=﹣2x2+bx+c经过点(0,4),(﹣1,﹣2),∴∴,∴抛物线的解析式为y=﹣2x2+4x+4.(2)如图1中,t=2时,EO=1,OP=4,设C(x,y),作CH⊥x轴于H,PQ⊥HC于Q.∵∠PCQ+∠CPQ=90°,∠ECH+∠PCQ=90°,∴∠CPQ=∠ECH,∵∠Q=∠CHE=90°,∴△PCQ∽△CEH,∴==∵EC=2PC,∴==,∴x=,y=,∴点C坐标(,).(3)①如图1中,设C(x,y),则PO=8﹣2t,EH=3﹣t+x,CH=y,QC=8﹣2t﹣y,PQ=x,∵△PCQ∽△CEH,∴==∵EC=2PC,∴==,∴x=,y=,∴点C坐标(,).②当t<3时,如果点C在抛物线上,则有=﹣2()2+4•+4,解得t=1或6(舍弃),∴t=1时,点C在抛物线上.当3≤t<4时,由图象可知,不存在这样的点C在抛物线上,当t>4时,如图2中,作CH⊥x轴于H,PQ⊥HC于Q.设C(x,y),则PO=2t﹣8,EH=t﹣3﹣x,CH=﹣y,QC=2t﹣8+y,PQ=﹣x,∵△PCQ∽△CEH,∴==∵EC=2PC,∴==,∴x=,y=,∴点C坐标(,),如果点C在抛物线上,则有=﹣2()2+4•+4,解得t=6或1(舍弃),∴t=6时,点C在抛物线上,综上所述t=1或6s时,点C 抛物线上.【点评】本题考查二次函数综合题、待定系数法、相似三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,学会利用参数,构建方程解决问题,属于中考压轴题.。

最新浙教版九年级2018----2019学年度第一学期期末复习数学试卷

最新浙教版九年级2018----2019学年度第一学期期末复习数学试卷

绝密★启用前 最新浙教版九年级2018----2019学年度第一学期期末复习数学试卷 一、单选题 1.(本题4分)抛物线y= -3(x-1)2+2的顶点坐标是( ). A . (1,2) B . (1,-2) C . (-1, 2) D . (-1,-2) 2.(本题4分)在一个不透明的纸箱中放入m 个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量重复摸球实验后发现摸到红球的频率稳定在 ,因此可以估算m 值是( ) A . 8 B . 12 C . 16 D . 20 3.(本题4分)如图,某厂生产一种扇形折扇,OB=10cm ,AB=20cm ,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为π cm 2,则扇形圆心角的度数为( ) A . 120° B . 140° C . 150° D . 160° 4.(本题4分)如图,在平行四边形ABCD 中,AE :EB=1:2,E 为AB 上一点,AC 与DE 相交于点F . S △AEF =3,则S △FCD 为( )5.(本题4分)如图是小明画的正方体表面展开图,由7个相同的正方形组成.小颖认为小明画的不对,她剪去其中的一个正方形后,得到的平面图就可以折成一个正方体.小颖剪去的正方形的编号是( ) A . 7 B . 6 C . 5 D . 4 6.(本题4分)如图,从山顶望地面、两点,测得它们的俯角分别为和,已知米,点在上,则山高( )A . 米B . 米C . 米D . 米7.(本题4分)如图是某商场一楼与二楼之间的手扶电梯示意图,其中AB 、CD 分别表示一楼、二楼地面的水平线,电梯坡面BC 的坡度i=1:,则电梯坡面BC 的坡角α为( )A . 15°B . 30°C . 45°D . 60°8.(本题4分)如图,AB 是⊙O 的直径,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D . 若∠D =20°,则∠A 的度数为A . 20°B . 30°C . 35°D . 40°9.(本题4分)如图所示的几何体的主视图是( )A .B .C .D . 10.(本题4分)已知二次函数y=ax 2+bx+c (a 、b 、c 都是常数,且a≠0)的图象与x 轴交于点(﹣2,0)、(x 1,0),且1<x 1<2,与y 轴的正半轴的交点在(0,2)的下方,下列结论:①4a ﹣2b+c=0;②a <b <0;③2a+c >0;④2a ﹣b+1>0.其中正确结论的个数是( ) A . 1个 B . 2个 C . 3个 D . 4个二、填空题 11.(本题5分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是_____. 12.(本题5分)如图,桥洞的拱形是抛物线,其顶部C 离水面的距离为3,水面宽为AB .以水平向右方向为x 轴的正方向,建立平面直角坐标系.①当点C 为原点时,抛物线解析式是y=﹣x 2,若选取点B 为坐标原点,则抛物线解析式为_____. 13.(本题5分)如图,已知圆锥的母线 SA 的长为 4,底面半径 OA 的长为 2,则圆锥的侧面积等于_____. 14.(本题5分)如图,将一张矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上,设此点为F ,若AB :BC=4:5,则tan ∠CFD=_____.三、解答题 15.(本题8分)一天,小华和小夏玩掷骰子游戏,他们约定:他们用同一枚质地均匀的骰子各掷一次,如果两次掷的骰子的点数相同则小华获胜:如果两次掷的骰子的点数的和是6则小夏获胜.(1)请您列表或画树状图列举出所有可能出现的结果;(2)请你判断这个游戏对他们是否公平并说明理由.16.(本题8分)某广场有一个小型喷泉,水流从垂直于地面长为1.25米的水管OA 喷出,水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B 到O 的距离为2.5米.建立如图直角坐标系,水流喷出的高度y (米)与水平距离x (米)之间的关系式是y=ax 2+2x+c ,请回答下列问题:(1)求y 与x 之间的函数表达式;(2)求水流的最大高度.17.(本题8分)某专卖店经市场调查得知,一种商品的月销售量Q (单位:吨)与销售价格x (单位:万元/吨)的关系可用下图中的折线表示.(1)写出月销售量Q 关于销售价格x 的关系;(2)如果该商品的进价为5万元/吨,除去进货成本外,专卖店销售该商品每月的固定成本为10万元,问该商品每吨定价多少万元时,销售该商品的月利润最大?并求月利润的最大值.18.(本题8分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图统计图: 根据统计图所提供的倍息,解答下列问题: (1)本次抽样调查中的学生人数是多少人; (2 )补全条形统计图; (3)若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数; (4)现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率. 19.(本题10分)如图,已知⊙O 的弦AB ,E ,F 是弧AB 上两点,弧AE =弧BF ,OE 、OF 分别交于AB 于C 、D 两点,求证:AC=BD . 20.(本题10分)由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵速度向南偏东30°方向移动,距沙尘暴中心150km 的范围为受影响区域. (1)A 城是否受到这次沙尘暴的影响,为什么? (2)若A 城受这次沙尘暴影响,那么遭受影响的时间有多长? 21.(本题12分)如图,一堤坝的坡角∠ABC=60°,坡面长度AB=24米(图为横截面).为了使堤坝更加牢固,需要改变堤坝的坡面,为使得坡面的坡角∠ADB=45°,则应将堤坝底端向外拓宽(BD )多少米?(结果精确到0.1米)(参考数据:≈1.41,≈1.73)22.(本题12分)在同一水平线l 上的两根竹竿AB 、CD ,它们在同一灯光下的影子分别为BE 、DF ,如图所示:(竹竿都垂直于水平线l )(1)根据灯光下的影子确定光源S 的位置;(2)画出影子为GH 的竹竿MG (用线段表示);(3)若在点H 观测到光源S 的仰角是∠α,且 cosα=,GH=1.2m ,请求出竹竿MG 的长度.23.(本题14分)如图所示,在△ABC 中,AB=CB ,以BC 为直径的⊙O 交AC 于点E ,过点E 作⊙O 的切线交AB 于点F .(1)求证:EF⊥AB;(2)若AC=16,⊙O 的半径是5,求EF 的长.参考答案1.A【解析】【分析】直接根据顶点公式的特点求顶点坐标.【详解】∵y=-3(x-1)2+2是抛物线的顶点式,∴顶点坐标为(1,2).故选A.【点睛】主要考查了求抛物线的顶点坐标、对称轴及最值的方法.通常有两种方法:(1)公式法:y=ax2+bx+c的顶点坐标为(−,),对称轴是x=−;(2)配方法:将解析式化为顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.2.D【解析】【分析】由于摸到红球的频率稳定在,由此可以确定摸到红球的概率,而m个球中有4个红球,由此即可求出m.【详解】∵摸到红球的频率稳定在,∴摸到红球的概率为,而m个小球中红球只有4个,∴推算出m的值大约是4÷=20.故选D.【点睛】本题主要考查了利用频率估计概率,解题的关键首先通过实验得到事件的频率,然后利用频率估计概率即可解决问题.3.C【解析】【分析】根据扇形的面积公式列方程即可得到结论.【详解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,设扇形圆心角的度数为α,∵纸面面积为π cm2,∴,∴α=150°,故选:C.【点睛】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积= .4.D【解析】【分析】先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.【详解】解:∵四边形ABCD是平行四边形,AE:EB=1:2,∴AE:CD=1:3,∵AB∥CD,∴∠EAF=∠DCF,∵∠DFC=∠AFE,∴△AEF∽△CDF,∵S△AEF=3,∴==()2,解得S△FCD=27.故选:D.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.5.C【解析】【分析】由平面图形的折叠及正方体的表面展开图的特点解题.注意只要有“田”字格的展开图都不是正方体的表面展开图.【详解】根据只要有“田”字格的展开图都不是正方体的表面展开图,应剪去的小正方形的编号是5.故选C.【点睛】本题考查了展开图折叠成几何体,解题时勿忘记正方体展开图的各种情形.6.D【解析】【分析】直角△ABC与直角△ABD有公共边AB,若设AB=x,则在直角△ABC与直角△ABD就满足解直角三角形的条件,可以用x表示出BC与BD的长,根据BD-BC=CD,即可列方程求解.【详解】设AB=x米,在直角△ACB中,∠ACB=45°,∴BC=AB=x米,在直角△ABD中,∠D=30°,tanD=,∴BD==x,∵BD-BC=CD,∴x-x=100,得:x=50(+1).故选:D.【点睛】本题主要考查了解直角三角形的方法,解决的关键是注意到两个直角三角形有公共的边,利用公共边表示其它的量,从而把问题转化为方程问题.7.B【解析】【分析】根据坡比的值等于坡角的正切值,据此即可求得坡角.【详解】解:tanα=i=1:,则∠α=30°.故选:B.【点睛】本题考查了坡度与坡角,理解坡比的值等于坡角的正切值是关键.8.C【解析】【分析】连结OC,如图,根据切线的性质得∠OCD=90°,再利用互余得∠COD=70°,由于OA=OC,则∠A=∠ACO,然后根据三角形外角性质求解.【详解】连结OC,如图,∵CD为⊙O的切线,∴OC⊥CD,∴∠OCD=90°,而∠D=20°,∴∠COD=70°,∵OA=OC,∴∠A=∠ACO,∴∠COD=∠A+∠ACO=2∠A,∴∠A=×70°=35°.故选C.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质.9.A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:该几何体的主视图是三角形,故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.10.D【解析】【分析】根据待定系数法、方程根与系数的关系等知识和数形结合能力仔细分析即可解.【详解】①由y=ax2+bx+c与X轴的交点坐标为(-2,0)得:a×(-2)2+b×(-2 )+c=0,即4a-2b+c=0,所以正确;②由图象开口向下知a<0,由y=ax2+bx+c与X轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=−=,即<1,由a<0,两边都乘以a得:b>a,∵a<0,对称轴x=-<0,∴b<0,∴a<b<0.故正确;③由一元二次方程根与系数的关系知x1•x2=,结合a<0得2a+c>0,所以结论正确,④由4a-2b+c=0得2a−b=−,而0<c<2,∴−1<−,∴-1<2a-b<0∴2a-b+1>0,所以结论正确.故正确结论的个数是4个.故选D.【点睛】本题主要考查对二次函数图象上点的坐标特征,抛物线与X轴的交点,二次函数与系数的关系等知识点的理解和掌握,能根据图象确定与系数有关的式子的符号是解题的关键.11.【解析】【分析】先利用树状图列出两次取出的小球标号和的所有可能情况数,再找出两次取出的小球标号的和等于5的情况数,最后求出概率即可.【详解】两次取出的小球标号和的所有可能情况共有16种,其中和为5的情况有4种,故两次取出的小球标号的和等于5的概率是4÷16=.故答案为.【点睛】本题主要考查求随机事件概率的方法,列出两次取出的小球标号和的所有可能情况是解答本题的关键.12.y=﹣(x+6)2+3.【解析】【分析】本题是二次函数解决抛物线形状的实际应用题.选择适当的坐标系,获取顶点坐标,此时,a值不变,用顶点式即可求出抛物线的表达式.【详解】解:当选取点B为坐标原点时,顶点C坐标为(-6,3),此时a值不变,用顶点式即可直接写出方程.则:抛物线的解析式y=-(x+6)2+3.【点睛】本题考查了二次函数的抛物线图象在实际生活中的应用,关键点在于求出顶点坐标.13.8π【解析】【分析】圆锥的侧面积就等于母线长乘底面周长的一半.依此公式计算即可.【详解】侧面积=4×4π÷2=8π.故答案为8π.【点睛】本题主要考查了圆锥的计算,正确理解圆锥的侧面积的计算可以转化为扇形的面积的计算,理解圆锥与展开图之间的关系.14.【解析】【分析】根据折叠的定义可以得到CB=CF,则sin∠CFD=,然后再求得tan∠CFD的值即可.【详解】由折叠可知,CB=CF.矩形ABCD中,AB=CD,sin∠CFD==.∴tan∠CFD=.故答案是:.【点睛】考查折叠变换的性质及锐角三角函数的定义,检测学生灵活运用知识的能力.15.(1)36(2)不公平【解析】【分析】(1)根据题意列表即可;(2)根据根据表格可以求得得分情况,比较其大小,即可得出结论.【详解】(1)列表得:∴一共有36种等可能的结果,(2)这个游戏对他们不公平,理由:由上表可知,所有可能的结果有36种,并且它们出现的可能性相等,而P(两次掷的骰子的点数相同)P(两次掷的骰子的点数的和是6)=∴不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.16.(1)y=﹣x2+2x+1.25;(2)喷出的水流的最大高度2.25米.【解析】【分析】(1)根据题意可以求得a、c的值,从而可以写出y与x之间的函数表达式;(2)根据(1)中的函数解析式,将其化为顶点式,从而可以解答本题【详解】(1)由题意可得,抛物线经过(0,1.25)和(2.5,0),,解得,,即y与x之间的函数表达式是y=﹣x2+2x+1.25;(2)解:y=﹣x2+2x+1.25=﹣(x﹣1)2+2.25,∴当x=1时,y取得最大值,此时y=2.25,答:喷出的水流的最大高度2.25米.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用数形结合的思想解答17.(1)Q=;(2)该商品每吨定价9万元时,销售该商品的月利润最大,月利润的最大值为6万元【解析】【分析】(1)利用待定系数法分别求解可得;(2)根据月利润w=Q(x-5)-10,分别就5≤x≤8和8<x≤12两种情况列出函数解析式,配方成顶点式,利用二次函数的性质可得.【详解】(1)当5≤x≤8时,设Q=ax+b,则,解得:,∴Q=-x+25,同理可得,当8<x≤12时,Q=-x+13,则Q=;(2)月利润w=Q(x-5)-10,由(1)知,w=,即w=,所以当x=9时,w取得最大值,最大值为6,答:该商品每吨定价9万元时,销售该商品的月利润最大,月利润的最大值为6万元.【点睛】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式、依据“总利润=每吨利润×销售量-固定成本”列出函数解析式及二次函数的性质.18.(1)本次抽样调查中的学生人数为100人;(2)补全条形统计图见解析;(3)估计该校课余兴趣爱好为“打球”的学生人数为800人;(4).【解析】【分析】(1)用选“阅读”的人数除以它所占的百分比即可得到调查的总人数;(2)先计算出选“舞蹈”的人数,再计算出选“打球”的人数,然后补全条形统计图;(3)用2000乘以样本中选“打球”的人数所占的百分比可估计该校课余兴趣爱好为“打球”的学生人数;(4)画树状图展示所有12种等可能的结果数,再找出选到一男一女的结果数,然后根据概率公式求解.【详解】(1)30÷30%=100,所以本次抽样调查中的学生人数为100人;(2)选”舞蹈”的人数为100×10%=10(人),选“打球”的人数为100﹣30﹣10﹣20=40(人),补全条形统计图为:(3)2000×=800,所以估计该校课余兴趣爱好为“打球”的学生人数为800人;(4)画树状图为:共有12种等可能的结果数,其中选到一男一女的结果数为8,所以选到一男一女的概率=.【点睛】本题考查了条形统计图与扇形统计图,列表法与树状图法求概率,读懂统计图,从中找到有用的信息是解题的关键.本题中还用到了知识点为:概率=所求情况数与总情况数之比.19.见解析【解析】【分析】连接OA、OB,根据半径相等得到∠A=∠B,根据等弧所对的圆周角相等得到∠AOC=∠BOD,根据三角形全等的判定定理证明△AOC≌△BOD,根据全等三角形的性质证明结论.【详解】连接OA、OB,∵OA=OB,∴∠A=∠B,∵=,∴∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD,∴AC=BD.【点睛】本题考查的是圆心角、弧、弦的关系以及三角形全等的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等是解题的关键20.(1)见解析;(2)时间为15时.【解析】【分析】(1)过点A作AD⊥BC,垂足为D,在Rt△ABD中,由题意可知∠B=30°,由此可以求出AD的长度,然后和150比较大小即可判断A城是否受到这次沙尘暴的影响;(2)如图,设点E,F是以A为圆心,150km为半径的圆与CB的交点,根据勾股定理可以求出DE的长度,也就求出了EF的长度,然后除以沙尘暴的速度即可求出遭受影响的时间.【详解】解:(1)过点A作AD⊥BC,垂足为D,在Rt△ABD中,由题意可知∠DBA=30°,∴AD= AB= ×240=120(km),∵AD=120<150,∴A城将受这次沙尘暴的影响;(2)设点E,F是以A为圆心,150km为半径的圆与CB的交点,连接AE,AF,由题意得DE= =90(km),∴EF=2DE=2×90=180(km),∴A城受沙尘暴影响的时间为:180÷12=15(时),答:A城将受到这次沙尘暴的影响,影响的时间为15时.【点睛】本题考查的知识点是直角三角形中30°的角所对的直角边等于斜边的一半及勾股定理的应用,解题关键是正确理解题意,把握好题目的数量关系.21.应将堤坝底端向外拓宽(BD)8.8米.【解析】【分析】过A点作AE⊥CD于E,在Rt△ABE中,根据∠ABC=60°,AB=24米,求出AE的长度,然后在Rt△ADE中求出DE的长度,继而可求得BD的长度【详解】过点A作AE⊥BC,∵AB=24米,∠ABC=60°,∴AE=AB•sin60°=12米,BE=AB•cos60°=12米,∵AE=12米,∠ADB=45°,∴DE=12米,∴BD=12﹣12=12(﹣1)≈8.8米.答:应将堤坝底端向外拓宽(BD)8.8米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据题目所给的坡角构造直角三角形,利用三角函数的知识求解22.(1)如图见解析;(2)如图见解析;(3)竹杆MG的长度为0.9m.【解析】【分析】(1)过影子顶端与竹竿顶端作射线,交点S即为所求;(2)连接光源S与影子顶端H,过G作垂直于地面的直线,与SH交于点M,GM即为所求;(3)求得MH=1.5m,依据Rt△MHG中,∠MGH=90°,可得MG2=MH2﹣GH2=0.81,即可得到MG=0.9m【详解】(1)如图,点S即为所求;(2)如图,MG即为所求;(3)∵cosα==,GH=1.2m,∴MH=1.5m,在Rt△MHG中,∠MGH=90°,则MG2=MH2﹣GH2=0.81,则MG=0.9m,答:竹杆MG的长度为0.9m.【点睛】本题考查中心投影的作图,解题的关键是要知道:连接物体和它影子的顶端所形成的直线必定经过点光源23.(1)证明见解析;(2) 4.8.【解析】【分析】(1)连结OE,根据等腰三角形的性质可得∠OEC=∠OCA、∠A=∠OCA,即可得∠A=∠OEC,由同位角相等,两直线平行即可判定OE∥AB,又因EF是⊙O的切线,根据切线的性质可得EF⊥OE,由此即可证得EF⊥AB;(2)连结BE,根据直径所对的圆周角为直角可得,∠BEC=90°,再由等腰三角形三线合一的性质求得AE=EC =8,在Rt△BEC 中,根据勾股定理求的BE=6,再由△ABE的面积=△BEC的面积,根据直角三角形面积的两种表示法可得8×6=10×EF,由此即可求得EF=4.8.【详解】(1)证明:连结OE.∵OE=OC,∴∠OEC=∠OCA,∵AB=CB,∴∠A=∠OCA,∴∠A=∠OEC,∴OE∥AB,∵EF是⊙O的切线,∴EF⊥OE,∴EF⊥AB.(2)连结BE.∵BC是⊙O的直径,∴∠BEC=90°,又AB=CB,AC=16,∴AE=EC=AC=8,∵AB=CB=2BO=10,∴BE=,又△ABE的面积=△BEC的面积,即8×6=10×EF,∴EF=4.8.【点睛】本题考查了切线的性质定理、圆周角定理、等腰三角形的性质与判定、勾股定理及直角三角形的两种面积求法等知识点,熟练运算这些知识是解决问题的关键.。

浙教版九年级2018--2019学年度第一学期期末考试数学试卷

浙教版九年级2018--2019学年度第一学期期末考试数学试卷

试卷第1页,总9页 绝密★启用前 浙教版九年级2018--2019学年度第一学期期末考试 数学试卷 温馨提示:亲爱的同学们,考试只是检查我们对所学知识的掌握情况,希望你不要慌张,平心静气,做题时把字写得工整些,让老师和自己看得舒服些,祝你成功! 一、单选题(计40分) 1.(本题4分)若点M (-2,y 1),N (-1,y 2),P (8,y 3)在抛物线2122y x x =-+上,则下列结论正确的是( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 3<y 1<y 2 D .y 1<y 3<y 2 2.(本题4分)如图,在□ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,,则DE :EC =( ) A . 2:5 B . 2:3 C . 3:5 D . 3:2 3.(本题4分)如图,在中,,则的度数是( ) A . B . C . D . 4.(本题4分)我国古代把一昼夜划分成十二个时段,每一个时段叫一个时辰,古时与今时的对应关系(部分)如下表所示.天文兴趣小组的小明等4位同学从今夜23:00至明晨7:00将进行接力观测,每人两小时,观测的先后顺序随机抽签确定,小明在子时观测的概率为( )试卷第2页,总9页 0 A .13 B .14 C .16 D .112 5.(本题4分)如图,从地面竖直向上抛出一个小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的关系式为h=30t-5t 2,那么小球从抛出至回落到地面所需要的时间是( )A . 6sB . 4sC . 3sD . 2s6.(本题4分)图中所示几何体的俯视图是 ( )A .B .C .D .7.(本题4分)如图,△ABC 中,∠B=90°,AB=5,BC=12,将△ABC 沿DE 折叠,使点C 落在AB 边上的C '处,并且D C '∥BC ,则CD 的长是( )A .25156B .6C .96601D .2138.(本题4分)有一拱桥洞呈抛物线形,这个桥洞的最大高度是16 m ,跨度为40 m ,现把它的示意图(如图)放在坐标系中,则抛物线的解析式为( )A . y =251x 2+85x试卷第3页,总9页 B . y =-251x 2+85x C . y =-85x 2-251x D . y =-251x 2+85x +16 9.(本题4分)如图,线段AB 两个端点的坐标分别为A (2,2)、B (3,1),以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A . (3,1)B . (3,3)C . (4,4)D . (4,1) 10.(本题4分)如图,正三角形ABC 的边长为,在三角形中放入正方形DEMN 和正方形EFPH ,使得D 、E 、F 在边CB 上,点P 、N 分别在边CA 、AB 上,设两个正方形的边长分别为m ,n ,则这两个正方形的面积和的最小值为( ) A . B . C . 3 D . 二、填空题(计20分) 11.(本题5分)如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下一层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;;则从第()个图中随机取出一个球,是黑球的概率是____________.试卷第4页,总9页12.(本题5分)正方形网格中,∠AOB 如图放置,则tan ∠AOB=______________.13.(本题5分)如图,在△ABC 与△ADE 中, ABAEBC ED =,要使△ABC 于△ADE 相似,还需要添加一个条件,这个条件是_____.14.(本题5分)如图,AB 为⊙O 的直径,AB=30,正方形DEFG 的四个顶点分别在半径OA 、OC 及⊙O 上,且∠AOC=45°,则正方形DEFG 的面积为 .BA三、解答题(计90分)15.(本题8分)计算:(1)2-212sin30º; (2)(1+11x -)÷21xx -.试卷第5页,总9页 16.(本题8分)已知:∠ACB =90°,CD ⊥AB ,求证:CD 2=AD·BD .17.(本题8分)父亲节快到了,明明准备为爸爸煮四个大汤圆作早点:一个芝麻馅,一个水果馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同(分别用A ,B ,C 表示芝麻馅、水果馅、花生馅的大汤圆)。

浙教版-学年九年级上期末数学试卷A(含解析)

浙教版-学年九年级上期末数学试卷A(含解析)

浙教版2018-2019学年九年级上期末数学试卷A一.选择题(共12小题,4*12=48)1.抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)2.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.B.C.4D.2+3.如图,若△ABC和△DEF的面积分别为S1,S2,则()A.S1=S2B.S1=S2C.S1=S2D.S1=S24.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180°D.抛一枚硬币,落地后正面朝上5.如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A.=B.=C.=D.=6.对于函数y=5x2,下列结论正确的是()A.y随x的增大而增大B.图象开口向下C.图象关于y轴对称D.无论x取何值,y的值总是正的7.如图,点O是⊙O的圆心,点A、B、C在⊙O上,AO∥BC,∠AOB=38°,则∠OAC 的度数是()A.52°B.38°C.22°D.19°8.如图,△ABC是一张三角形纸片,⊙O是它的内切圆,点D、E是其中的两个切点,已知AD=6cm,小明准备用剪刀沿着与⊙O相切的一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长是()A.9cm B.12cm C.15cm D.18cm9.如图,四边形ABCD内接于⊙O,E为AD延长线上一点,若∠CDE=80°,则∠B等于()A.60°B.70°C.80°D.90°10.将抛物线y=x2平移得到抛物线y=(x+3)2,则这个平移过程正确的是()A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位11.如图,在直角坐标系中,以点O为圆心,半径为4的圆与y轴交于点B,点A(8,4)是圆外一点,直线AC与⊙O切于点C,与x轴交于点D,则点C的坐标为()A.(2,﹣2)B.(,﹣)C.(,﹣)D.(2,﹣2)12.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+1上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2二.填空题(共6小题,4*6=24)13.有一个正六面体,六个面上分别写有1~6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是.14.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.15.把抛物线y=x2﹣2x+3沿x轴向右平移2个单位,得到的抛物线解析式为.16.如图,是一个长方体的主视图,左视图与俯视图,根据图中数据计算这个长方体的表面积是.17.把一张半径为6cm圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则的长度为cm.18.如图,在以O为圆心,2为半径的圆上任取一点A,过点A作AM⊥y轴于点M,AN⊥x轴于点N,点P为MN的中点,当点A沿着圆圈在第一象限内顺时针方向走完45°弧长时,则点P走过的路径长为.三.解答题(共8小题,78分)19.(8分)(1)计算:sin60°﹣cos45°+tan230°;(2)若==≠0,求的值.20.(8分)一块三角形的余料,底边BC长18米,高AD=10米,如图.要利用它裁剪一个长宽比是3:2的长方形,使长方形的长在BC上,另两个顶点在AB、AC上,求长方形的长EH和宽EF的长.21.(10分)已知直线y=﹣2x+3与抛物线y=ax2相交于A、B两点,且A的坐标(﹣3,m),求:(1)a、m的值;(2)抛物线的表达式及其对称轴和顶点坐标;(3)x取何值时,二次函数y=ax2中的y随x的增大而减小;(4)A、B两点及二次函数y=ax2的顶点构成的三角形面积.22.(10分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m ,求障碍物B,C两点间的距离.(结果保留根号)23.(10分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球试验,将球搅匀后,从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近于多少?100150200 500 800 1000摸球的次数m5896 116 295 484 601摸到白球的次数n0.580.640.58 0.59 0.605 0.601摸到白球的概率(2)假如你去摸一次,你摸到白球的可能性为多大?这时摸到黑球的可能性为多大?(3)试估算口袋中黑、白两种颜色的球各有多少个?24.(10分)如图,正五边形ABCDE的两条对角线AC,BE相交于点F.(1)求证:AB=EF;(2)若BF=2,求正五边形ABCDE的边长.25.(10分)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC=.26.(12分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【考点】H3:二次函数的性质.【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【解答】解:∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.【点评】本题考查由抛物线的顶点坐标式写出抛物线顶点的坐标,比较容易.2.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.B.C.4D.2+【考点】MN:弧长的计算.【分析】根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.【解答】解:如图:BC=AB=AC=1,∠BCB′=120°,∴B点从开始至结束所走过的路径长度为2×弧BB′=2×=,故选:B.【点评】本题考查了弧长的计算方法,求弧长时首先要确定弧所对的圆心角和半径,利用公式求得即可.3.如图,若△ABC和△DEF的面积分别为S1,S2,则()A.S1=S2B.S1=S2C.S1=S2D.S1=S2【考点】T7:解直角三角形.【分析】作AM⊥BC于M,DN⊥EF于N,如图,在Rt△ABM中利用正弦的定义得到AM=3sin50°,利用三角形面积公式得到S1=BC•AM=sin50°,同样在Rt△DEN中得到DN=7sin50°,则S2=EF•DN=sin50°,于是可判断S1=S2.【解答】解:作AM⊥BC于M,DN⊥EF于N,如图,在Rt△ABM中,∵sin∠B=,∴AM=3sin50°,∴S1=BC•AM=×7×3sin50°=sin50°,在Rt△DEN中,∠DEN=180°﹣130°=50°,∵sin∠DEN=,∴DN=7sin50°,∴S2=EF•DN=×3×7sin50°=sin50°,∴S1=S2.故选:D.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了三角形面积公式.4.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180°D.抛一枚硬币,落地后正面朝上【考点】X1:随机事件.【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【解答】解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,只有三角形是等边三角形时才符合,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选:C.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A.=B.=C.=D.=【考点】S8:相似三角形的判定.【分析】本题中已知∠BAC=∠D,则对应的夹边比值相等即可使△ABC与△ADE相似,结合各选项即可得问题答案.【解答】解:∵∠BAC=∠D,,∴△ABC∽△ADE.故选:C.【点评】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似,熟记各种判定相似三角形的方法是解题关键.6.对于函数y=5x2,下列结论正确的是()A.y随x的增大而增大B.图象开口向下C.图象关于y轴对称D.无论x取何值,y的值总是正的【考点】H3:二次函数的性质.【分析】根据二次函数解析式结合二次函数的性质,即可得出结论.【解答】解:∵二次函数解析式为y=5x2,∴二次函数图象开口向上,当x<0时y随x增大而减小,当x>0时y随x增大而增大,对称轴为y轴,无论x取何值,y的值总是非负.故选:C.【点评】本题考查了二次函数的性质,根据二次函数的性质逐一对照四个选项即可得出结论.7.如图,点O是⊙O的圆心,点A、B、C在⊙O上,AO∥BC,∠AOB=38°,则∠OAC 的度数是()A.52°B.38°C.22°D.19°【考点】JA:平行线的性质;M5:圆周角定理.【分析】由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠C的度数,又由A0∥BC,根据平行线的性质,即可求得∠0AC的度数.【解答】解:∵∠AOB=38°,∴∠C=∠AOB=19°,∵A0∥BC,∴∠OAC=∠C=19°.故选:D.【点评】此题考查了圆周角定理与平行线的性质.此题比较简单,注意掌握数形结合思想的应用.8.如图,△ABC是一张三角形纸片,⊙O是它的内切圆,点D、E是其中的两个切点,已知AD=6cm,小明准备用剪刀沿着与⊙O相切的一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长是()A.9cm B.12cm C.15cm D.18cm【考点】MI:三角形的内切圆与内心.【分析】利用切线长定理得出DM=MF,FN=EN,AD=AE,进而得出答案.【解答】解:如图所示:∵△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,AD=6cm,∴设E、F分别是⊙O的切点,故DM=MF,FN=EN,AD=AE,∴△AMN的周长=AM+AN+MN=AD+AE=6+6=12(cm).故选:B.【点评】此题主要考查了三角形的内切圆、切线长定理;由切线长定理得出AM+AN+MN=AD+AE是解题关键.9.如图,四边形ABCD内接于⊙O,E为AD延长线上一点,若∠CDE=80°,则∠B等于()A.60°B.70°C.80°D.90°【考点】M5:圆周角定理;M6:圆内接四边形的性质.【分析】根据圆内接四边形的性质解答.【解答】解:∵四边形ABCD内接于⊙O,∴∠B=∠CDE=80°,故选:C.【点评】本题考查的是圆内接四边形的性质,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.10.将抛物线y=x2平移得到抛物线y=(x+3)2,则这个平移过程正确的是()A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位【考点】H6:二次函数图象与几何变换.【分析】先利用顶点式得到两抛物线的顶点坐标,然后通过点的平移情况判断抛物线平移的情况.【解答】解:抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(﹣3,0),∵点(0,0)向左平移3个单位可得到(﹣3,0),∴将抛物线y=x2向左平移3个单位得到抛物线y=(x+3)2.故选:A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.11.如图,在直角坐标系中,以点O为圆心,半径为4的圆与y轴交于点B,点A(8,4)是圆外一点,直线AC与⊙O切于点C,与x轴交于点D,则点C的坐标为()A.(2,﹣2)B.(,﹣)C.(,﹣)D.(2,﹣2)【考点】D5:坐标与图形性质;MC:切线的性质.【分析】作AE⊥x轴于E,CH⊥x轴于H,连接OC,如图,根据切线长定理可切线的性质得OC⊥AC,AC=AB=8,再证明△OCD≌△AED得OD=AD,设OD=x,则AD=x,DE=8﹣x,根据勾股定理得(8﹣x)2+42=x2,解得x=5,所以OD=5,DE=CD=3,然后利用面积法求出CH,利用勾股定理计算出OH,从而得到C点坐标.【解答】解:作AE⊥x轴于E,CH⊥x轴于H,连接OC,如图,∵B(0,4),A(8,4),∴AB=8,AE=OB=4,AB⊥y轴,∴AB为⊙O的切线,∵直线AC与⊙O切于点C,∴OC⊥AC,AC=AB=8,在△OCD和△AED中,∴△OCD≌△AED,∴OD=AD,设OD=x,则AD=x,DE=8﹣x,在Rt△ADE中,(8﹣x)2+42=x2,解得x=5,∴OD=5,DE=CD=3,∵CH•OD=OC•CD,∴CH==,在Rt△OCH中,OH==,∴C点坐标为(,﹣).故选:C.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了坐标与图形性质.12.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+1上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2【考点】H5:二次函数图象上点的坐标特征.【分析】根据二次函数的对称性,可利用对称性,找出点A的对称点A′,再利用二次函数的增减性可判断y值的大小.【解答】解:∵函数的解析式是y=﹣(x+1)2+1,∴对称轴是x=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选:A.【点评】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,二.填空题(共6小题)13.有一个正六面体,六个面上分别写有1~6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是.【考点】X4:概率公式.【分析】让向上一面的数字是2的倍数或3的倍数的情况数除以总情况数即为所求的概率.【解答】解:投掷这个正六面体一次,向上的一面有6种情况,向上一面的数字是2的倍数或3的倍数的有2、3、4、6共4种情况,故其概率是=.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为5.【考点】KQ:勾股定理;M2:垂径定理.【分析】连接OC,由垂径定理知,点E是CD的中点,CE=CD,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.【点评】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.15.把抛物线y=x2﹣2x+3沿x轴向右平移2个单位,得到的抛物线解析式为y=(x﹣3)2+2.【考点】H6:二次函数图象与几何变换.【分析】根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【解答】解:y=x2﹣2x+3=(x﹣1)2+2,其顶点坐标为(1,2).向右平移2个单位长度后的顶点坐标为(3,2),得到的抛物线的解析式是y=(x﹣3)2+2,故答案为:y=(x﹣3)2+2【点评】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.16.如图,是一个长方体的主视图,左视图与俯视图,根据图中数据计算这个长方体的表面积是52.【考点】I4:几何体的表面积;U3:由三视图判断几何体.【分析】根据三视图我们可以得出这个几何体应该是个长方体,进而得出其表面积.【解答】解:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,依题意可求出该几何体的表面积为:2×(2×3+3×4+2×4)=52.故答案为:52.【点评】此题考查了由三视图判断几何体,本题要先判断出几何体的形状,然后根据其表面积公式进行计算即可.17.把一张半径为6cm圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则的长度为5πcm.【考点】MN:弧长的计算;PB:翻折变换(折叠问题).【分析】直接利用翻折变换的性质结合锐角三角函数关系得出∠BOD=30°,再利用弧度与圆心角的关系得出的度数,进而利用弧长公式解答得出答案.【解答】解:如图所示:连接BO,过点O作OE⊥AB于点E,由题意可得:EO=BO,AB∥DC,可得∠EBO=30°,故∠BOD=30°,则∠BOC=150°,故的度数是150°,所以的长度=,故答案为:5π【点评】此题主要考查了翻折变换的性质以及弧度与圆心角的关系,正确得出∠BOD的度数是解题关键.18.如图,在以O为圆心,2为半径的圆上任取一点A,过点A作AM⊥y轴于点M,AN⊥x轴于点N,点P为MN的中点,当点A沿着圆圈在第一象限内顺时针方向走完45°弧长时,则点P走过的路径长为.【考点】D5:坐标与图形性质;MN:弧长的计算.【分析】根据题意,得四边形ONAM是矩形,再根据矩形的性质,知点P是OA的中点,则OP=1,再进一步根据弧长公式,即l=进行计算.【解答】解:∵AM⊥y轴于点M,AN⊥x轴于点N,∴四边形ONAM是矩形,又点P为MN的中点,∴点P为OA的中点,则OP=1.根据题意,得点P走过的路径长==.故答案为.【点评】此题综合运用了矩形的判定和性质以及弧长公式.三.解答题(共8小题)19.(1)计算:sin60°﹣cos45°+tan230°;(2)若==≠0,求的值.【考点】2C:实数的运算;S1:比例的性质;T5:特殊角的三角函数值.【分析】(1)将sin60°=,cos45°=,tan30°=代入进行计算即可得解;(2)设比值为k(k≠0),然后用k表示出x、y、z,再代入比例式进行计算即可得解.【解答】解:(1)sin60°﹣cos45°+tan230°,=×﹣×+()2,=﹣1+,=;(2)设===k(k≠0),则x=2k,y=3k,z=4k,所以,==.【点评】本题考查了比例的基本性质,比较简单,利用“设k法”求解更简便,还考查了特殊角的三角函数值,需熟记.20.一块三角形的余料,底边BC长18米,高AD=10米,如图.要利用它裁剪一个长宽比是3:2的长方形,使长方形的长在BC上,另两个顶点在AB、AC上,求长方形的长EH和宽EF的长.【分析】根据比例设EH、EF分别为3k、2k,然后根据△AEH和△ABC相似,利用相似三角形对应高的比等于对应边的比列式比例式求出k值,即可得解.【解答】解:∵长方形的长宽比是3:2,∴设EH、EF分别为3k、2k,∴EH∥BC,∴△AEH∽△ABC,∴=,即=,解得k=,∴EH=米,EF=米.【点评】本题考查了相似三角形的应用,主要利用了相似三角形对应高的比等于对应边的比,利用“设k法”表示出边更简便.21.已知直线y=﹣2x+3与抛物线y=ax2相交于A、B两点,且A的坐标(﹣3,m),求:(1)a、m的值;(2)抛物线的表达式及其对称轴和顶点坐标;(3)x取何值时,二次函数y=ax2中的y随x的增大而减小;(4)A、B两点及二次函数y=ax2的顶点构成的三角形面积.【考点】H3:二次函数的性质;H8:待定系数法求二次函数解析式.【分析】(1)先A(﹣3,m)代入y=﹣2x+3可求出m,从而确定A点坐标,再把A 点坐标代入线y=ax2可计算出m;(2)由(1)易得抛物线的表达式为y=x2,然后根据二次函数的性质确定对称轴和顶点坐标;(3)根据二次函数的性质得在对称轴左侧y随x的增大而减小;(4)先解由两解析式所组成的方程组确定B点坐标,再确定直线AB与y轴的交点C的坐标,然后利用S△OAB =S△OAC+S△OBC进行计算.【解答】解:(1)把A的坐标(﹣3,m)代入y=﹣2x+3得m=﹣2×(﹣3)+3=9,所以A点坐标为(﹣3,9),把A(﹣3,9)代入线y=ax2得9a=9,解得a=1;(2)抛物线的表达式为y=x2,对称轴为y轴,顶点坐标为(0,0);(3)当x<0时,y随x的增大而减小;(4)如图,解方程组得或,所以B点坐标为(1,1),把x=0代入y=﹣2x+3得y=3,则C点坐标为(0,3),所以S△OAB =S△OAC+S△OBC=×3×3+×3×1=6.【点评】本题考查了用待定系数法求二次函数的解析式:利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.22.如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D 处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】过点D作DF⊥AB于点F,过点C作CH⊥DF于点H,则DE=BF=CH=10m,根据直角三角形的性质得出DF的长,在Rt△CDE中,利用锐角三角函数的定义得出CE的长,根据BC=BE﹣CE即可得出结论.【解答】解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt△ADF中,AF=AB﹣BF=70m,∠ADF=45°,∴DF=AF=70m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(70﹣10)m.答:障碍物B,C两点间的距离为(70﹣10)m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球试验,将球搅匀后,从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近于多少?100150200 500 800 1000摸球的次数m5896 116 295 484 601摸到白球的次数n0.580.640.58 0.59 0.605 0.601摸到白球的概率(2)假如你去摸一次,你摸到白球的可能性为多大?这时摸到黑球的可能性为多大?(3)试估算口袋中黑、白两种颜色的球各有多少个?【考点】X6:列表法与树状图法;X9:模拟实验.【分析】(1)本题需先根据表中的数据,估计出摸到白球的频率.(2)本题根据摸到白球的频率即可求出摸到白球和黑球的概率.(3)根据口袋中黑、白两种颜色的球的概率即可求出口袋中黑、白两种颜色的球有多少只.【解答】解:(1)根据题意可得当n很大时,摸到白球的频率将会接近0.6;(2)因为当n很大时,摸到白球的频率将会接近0.6;所以摸到白球的概率是,摸到黑球的概率是(3)因为摸到白球的概率是,摸到黑球的概率是所以口袋中黑、白两种颜色的球有白球是20×=12个,黑球是20×=8个【点评】本题主要考查了如何利用频率估计概率,在解题时要注意频率和概率之间的关系,属于中考常考题型.24.如图,正五边形ABCDE的两条对角线AC,BE相交于点F.(1)求证:AB=EF;(2)若BF=2,求正五边形ABCDE的边长.【考点】MM:正多边形和圆.【分析】(1)根据正多边形的性质解答即可;(2)根据相似三角形的判定和性质解答即可.【解答】解:(1)∵正五边形ABCDE,∴AB=AE,∠BAE=108°,∴∠ABE=∠AEB=36°,同理:∠BAF=∠BCA=36°,∴∠FAE=∠AFE=72°,∴AE=EF,∴AB=EF;(2)设AB=x,由(1)知;∠BAF=∠AEB,∵∠ABF=∠ABE,∴△ABF∽△EBA,∴,即,解得:(舍去),∴五边形ABCDE的边长为1+.【点评】此题考查正多边形的问题,关键是根据正多边形的性质解答.25.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF ⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC=3.【考点】SO:相似形综合题.【分析】(1)①由GE⊥BC、GF⊥CD结合∠BCD=90°可得四边形CEGF是矩形,再由∠ECG=45°即可得证;②由正方形性质知∠CEG=∠B=90°、∠ECG=45°,据此可得=、GE∥AB,利用平行线分线段成比例定理可得;(2)连接CG,只需证△ACG∽△BCE即可得;(3)证△AHG∽△CHA得==,设BC=CD=AD=a,知AC=a,由=得AH=a、DH=a、CH=a,由=可得a的值.【解答】解:(1)①∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形;②由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴=,GE∥AB,∴==,故答案为:;(2)连接CG,由旋转性质知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=cos45°=、=cos45°=,∴==,∴△ACG∽△BCE,∴==,∴线段AG与BE之间的数量关系为AG=BE;(3)∵∠CEF=45°,点B、E、F三点共线,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴==,设BC=CD=AD=a,则AC=a,则由=得=,∴AH=a,则DH=AD﹣AH=a,CH==a,∴=得=,解得:a=3,即BC=3,故答案为:3.【点评】本题主要考查相似形的综合题,解题的关键是掌握正方形的判定与性质、相似三角形的判定与性质等知识点.26.如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)将A、C两点坐标代入抛物线y=﹣x2+bx+c,即可求得抛物线的解析式;(2)①先用m表示出QE的长度,进而求出三角形的面积S关于m的函数;②直接写出满足条件的F点的坐标即可,注意不要漏写.【解答】解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(,8),当∠FQD=90°时,则F2(,4),当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),满足条件的点F共有四个,坐标分别为F1(,8),F2(,4),F3(,6+),F4(,6﹣).【点评】本题是二次函数的综合题,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年浙江省杭州市萧山区九年级(上)期末数学试卷一、选择题:本题有10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(3分)已知=,则=()A.B.C.D.2.(3分)抛物线y=x2﹣2的顶点坐标为()A.(0,﹣2)B.(﹣2,0)C.(0,2)D.(2,0)3.(3分)抛掷一枚质地均匀的硬币,正面朝上的概率为,则下列说法正确的是()A.连续抛掷2次必有1次正面朝上B.连续抛掷10次不可能都正面朝上C.大量反复抛掷每100次出现正面朝上50次D.通过抛掷硬币确定两人谁先发球的比赛规则是公平的4.(3分)边长为2的正方形内接于⊙O,则⊙O的半径是()A.1B.C.2D.25.(3分)Rt△ABC中,∠C=90°,sin A=,则tan B的值是()A.B.1C.D.6.(3分)如图,已知点P是四边形ABCD对角线AC上一点,PE∥CD交AD于点E,PF ∥BC交AB于点E,若=,则四边形AFPE的周长l1与四边形ABCD的周长l2之比为()A.=B.=C.=D.=7.(3分)已知函数y=﹣x2+bx+c,其中b>0,c<0,此函数的图象可以是()A.B.C.D.8.(3分)如图,在⊙O中,∠ACB=50°,∠AOC=60°,则∠BAC的度数为()A.95°B.100°C.105°D.110°9.(3分)已知二次函数y=(ax﹣b)(x﹣1),当x>1时,y随x的增大而增大,给出下列结论:①抛物线开口向上;②抛物线与坐标轴必有3个交点;③a≥b.则正确的有()A.①②③B.①②C.①③D.②③10.(3分)如图,在矩形ABCD中,AB=4,AD=a,点P在AD上,且AP=2.点E是边AB上的动点,以PE为边作直角∠EPF,射线PF交边BC于点F.连接EF.给出下列结论:①tan∠PFE=;②a的最小值为10.则下列说法正确的是()A.①,②都对B.①,②都错C.①对,②错D.①错,②对二、填空題:本题有6个小题,每小题4分,共24分11.(4分)计算:cos45°=.12.(4分)在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为它是黄球概率的,则n=.13.(4分)如图,将△ABC绕点A逆时针旋转100°,得到△ADE,若点D在线段BC的延长线上,则∠B的大小为.14.(4分)在同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离.如图,在一个路口,一辆长为10m的大巴车遇红灯后停在距交通信号灯20m的停止线处,小张驾驶一辆小轿车跟随大巴车行驶.设小张距大巴车尾xm,若大巴车车顶高于小张的水平视线0.8m,红灯下沿高于小张的水平视线3.2m,若小张能看到整个红灯,则x的最小值为.15.(4分)如图,⊙O中,弦CD与直径AB交于点H.若DH=CH=2,BD=4,则:(1)AB的长为;(2)劣弧的长为.16.(4分)已知二次函数y=ax2﹣4ax+3a(1)若a=1,则函数y的最小值为.(2)若当1≤x≤4时,y的最大值是4,则a的值为.三、解答题:本题有7个小题,共66分解答应写出文字说明、证明过程或推演步骤17.(6分)某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.某中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,求A型号电脑被选中的概率.18.(8分)已知二次函数y=x2﹣x+m的图象经过点(1,﹣2)(1)求此函数图象与坐标轴的交点坐标;(2)若P(﹣2,y1),Q(5,y2)两点在此函数图象上,试比较y1,y2的大小.19.(8分)已知△ABC中,AB=5,AC=3,sin B=,求△ABC的面积.20.(10分)如图,矩形窗户边框ABCD由矩形AEFD,矩形BNME,矩形CFMN组成,其中AE:BE=1:3.已知制作一个窗户边框的材料的总长是6米,设BC=x(米),窗户边框ABCD的面积为S(米2).(1)①用x的代数式表示AB;②求x的取值范围.(2)求当S达到最大时,AB的长.21.(10分)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:=.(2)若BD=2,BE=3,求tan∠BAC的值.22.(12分)如图,▱ABCD中,BF平分∠ABC交AD于点F,CE平分∠DCB交AD于点E,BF和CE相交于点P.(1)求证:AE=DF.(2)已知AB=4,AD=5①求的值;②求四边形ABPE的面积与△BPC的面积之比.23.(12分)如图,等边△ABC中,点D是BC边上任一点,以AD为边作∠ADE=∠ADF =60°,分别交AC,AB于点E,F.(1)求证:AD2=AE•AC.(2)已知BC=2,设BD的长为x,AF的长为y.①求y关于x的函数表达式;②若四边形AFDE外接圆直径为,求x的值.2018-2019学年浙江省杭州市萧山区九年级(上)期末数学试卷参考答案与试题解析一、选择题:本题有10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(3分)已知=,则=()A.B.C.D.【分析】直接利用比例的合比性质得到答案即可.【解答】解:∵=,∴==,故选:B.【点评】考查了比例的性质,牢记比例的合比性质是解答本题的关键,难度不大.2.(3分)抛物线y=x2﹣2的顶点坐标为()A.(0,﹣2)B.(﹣2,0)C.(0,2)D.(2,0)【分析】根据顶点式的坐标特点,直接写出顶点坐标即对称轴.【解答】解:抛物线y=x2﹣2是顶点式,根据顶点式的坐标特点可知,顶点坐标为(0,﹣2),故选:A.【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h.3.(3分)抛掷一枚质地均匀的硬币,正面朝上的概率为,则下列说法正确的是()A.连续抛掷2次必有1次正面朝上B.连续抛掷10次不可能都正面朝上C.大量反复抛掷每100次出现正面朝上50次D.通过抛掷硬币确定两人谁先发球的比赛规则是公平的【分析】根据概率的意义逐一判断即可得.【解答】解:A.连续抛掷2次可能有1次正面朝上,此选项错误;B.连续抛掷10次可能都正面朝上,但可能性较小,此选项错误;C.大量反复抛掷每100次出现正面朝上接近50次,此选项错误;D.通过抛掷硬币确定两人谁先发球的比赛规则是公平的,此选项正确;故选:D.【点评】此题主要考查了概率的意义和应用,要熟练掌握,解答此题的关键是要明确:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.4.(3分)边长为2的正方形内接于⊙O,则⊙O的半径是()A.1B.C.2D.2【分析】连接OB,CO,在Rt△BOC中,根据勾股定理即可求解.【解答】解:连接OB,OC,则OC=OB,∠BOC=90°,在Rt△BOC中,OB=.∴⊙O的半径是,故选:B.【点评】此题主要考查了正多边形和圆,本题需仔细分析图形,利用勾股定理即可解决问题.5.(3分)Rt△ABC中,∠C=90°,sin A=,则tan B的值是()A.B.1C.D.【分析】根据30°的正弦值是求出∠A,根据直角三角形的性质求出∠B,根据60°的正切值计算.【解答】解:sin A=,则∠A=30°,∵∠C=90°,∴∠B=60°,∴tan B=tan60°=,故选:D.【点评】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.6.(3分)如图,已知点P是四边形ABCD对角线AC上一点,PE∥CD交AD于点E,PF ∥BC交AB于点E,若=,则四边形AFPE的周长l1与四边形ABCD的周长l2之比为()A.=B.=C.=D.=【分析】由平行线截线段成比例求得四边形AFPE与四边形ABCD的对应边的比例,然后以后四边形的周长定义求得答案.【解答】解:∵PE∥CD,PF∥BC,=,∴===,===,∴=.故选:C.【点评】考查了平行线的性质,解题的关键是求得四边形AFPE与四边形ABCD的对应边的比例,难度不大.7.(3分)已知函数y=﹣x2+bx+c,其中b>0,c<0,此函数的图象可以是()A.B.C.D.【分析】根据已知条件“a<0、b>0、c<0”判断出该函数图象的开口方向、与x和y 轴的交点、对称轴所在的位置,然后据此来判断它的图象.【解答】解:∵a=﹣1<0,b>0,c<0,∴该函数图象的开口向下,对称轴是x=﹣>0,与y轴的交点在y轴的负半轴上;故选:D.【点评】本题考查了二次函数图象与系数的关系.根据二次函数y=ax2+bx+c系数符号判断抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数.8.(3分)如图,在⊙O中,∠ACB=50°,∠AOC=60°,则∠BAC的度数为()A.95°B.100°C.105°D.110°【分析】由圆心角∠AOC=60°,可知圆周角∠ABC=30°,所以∠BAC=180°﹣50°﹣30°=100°.【解答】解:∵∠AOC=60°,∴∠ABC=30°,∵∠ACB=50°,∴∠BAC=180°﹣50°﹣30°=100°,故选:B.【点评】本题考查了圆周角定理,关键是根据同弦所对圆心角与圆周角的关系解答.9.(3分)已知二次函数y=(ax﹣b)(x﹣1),当x>1时,y随x的增大而增大,给出下列结论:①抛物线开口向上;②抛物线与坐标轴必有3个交点;③a≥b.则正确的有()A.①②③B.①②C.①③D.②③【分析】根据二次函数的图象与性质即可求出答案.【解答】解:①由x>1时,y随x的增大而增大,可知开口必定向上,否则不能满足x>1时,y随x的增大而增大,故①正确;②当b=0时,此时y=ax(x﹣1),此时抛物线与坐标轴只有两个交点,故②错误;③x>1时,y随x的增大而增大,∴,∵a>0,∴b≤a,故③正确;故选:C.【点评】本题考查二次函数的图象,解题的关键是熟练运用运用二次函数的图象与性质,本题属于中等题型.10.(3分)如图,在矩形ABCD中,AB=4,AD=a,点P在AD上,且AP=2.点E是边AB上的动点,以PE为边作直角∠EPF,射线PF交边BC于点F.连接EF.给出下列结论:①tan∠PFE=;②a的最小值为10.则下列说法正确的是()A.①,②都对B.①,②都错C.①对,②错D.①错,②对【分析】①tan∠PFE=,利用矩形ABCD四个直角,再加上∠EPF为直角,联想到构造三垂直模型,故过F作AD垂线,垂足为G,即有△AEP∽△GPF,且相似比为1:2,即求得tan∠PFE.②显然,若a要取最小值,则F、C要重合(G、D重合),又AE与PG为对应边,AE越小则PG(PD)越小,当AE=0时,PD=0最小,此时a=2.【解答】解:过点F作FG⊥AD于点G∴∠FGP=90°∵矩形ABCD中,AB=4,∠A=∠B=90°∴四边形ABFG是矩形,∠AEP+∠APE=90°∴FG=AB=4∵∠EPF=90°∴∠APE+∠FPG=90°∴∠AEP=∠FPG∴△AEP∽△GPF∴∴Rt△EPF中,tan∠PFE=,故①正确.如图2,当A、E重合,C、F重合,D、P重合时,AD最短,此时a=2,故②错误.故选:C.【点评】本题考查了矩形的性质,相似三角形判定和性质,解直角三角形.关键是对几个直角的条件进行组合运用(三垂直模型),动点题求最值时可把动点移到极端位置(一般是线段端点)来思考问题.二、填空題:本题有6个小题,每小题4分,共24分11.(4分)计算:cos45°=.【分析】根据特殊角的三角函数值计算即可.【解答】解:根据特殊角的三角函数值可知:cos45°=.故答案为.【点评】本题主要考查了特殊角的三角函数值,比较简单,熟练掌握特殊角的三角函数值是解答的关键.12.(4分)在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为它是黄球概率的,则n=4.【分析】根据黄球的概率公式列出关于n的方程,求出n的值即可.【解答】解:根据题意得:=×,解得:n=4,故答案为:4.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.13.(4分)如图,将△ABC绕点A逆时针旋转100°,得到△ADE,若点D在线段BC的延长线上,则∠B的大小为40°.【分析】根据旋转的性质可得出AB=AD、∠BAD=100°,再根据等腰三角形的性质可求出∠B的度数,此题得解.【解答】解:根据旋转的性质,可得:AB=AD,∠BAD=100°,∴∠B=∠ADB=×(180°﹣100°)=40°.故答案为:40°.【点评】本题考查了旋转的性质以及等腰三角形的性质,根据旋转的性质结合等腰三角形的性质求出∠B的度数是解题的关键.14.(4分)在同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离.如图,在一个路口,一辆长为10m的大巴车遇红灯后停在距交通信号灯20m的停止线处,小张驾驶一辆小轿车跟随大巴车行驶.设小张距大巴车尾xm,若大巴车车顶高于小张的水平视线0.8m,红灯下沿高于小张的水平视线3.2m,若小张能看到整个红灯,则x的最小值为10.【分析】如图,当红灯下沿,大巴车车顶,小张的眼睛三点共线时,求出x的值即可;【解答】解:如图,当红灯下沿,大巴车车顶,小张的眼睛三点共线时,∵CD∥AB,∴△ECD∽△EAB,∴=,∴=,解得x=10,故答案为10【点评】本题考查视点、视角和盲区,相似三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题,学会把实际问题转化为数学问题,属于中考常考题型.15.(4分)如图,⊙O中,弦CD与直径AB交于点H.若DH=CH=2,BD=4,则:(1)AB的长为8;(2)劣弧的长为.【分析】(1)连接OD,根据垂径定理得到AB⊥CD,根据正弦的定义求出∠B,得到△BOD为等边三角形,根据等边三角形的性质求出OB,得到答案;(2)根据弧长公式计算即可.【解答】解:(1)连接OD,∵AB为⊙O的直径,DH=CH,∴AB⊥CD,在Rt△BHD中,sin B==,∴∠B=60°,又OB=OD,∴△BOD为等边三角形,∴OB=BD=4,∴AB=8,故答案为:8;(2)劣弧的长==,故答案为:.【点评】本题考查的是垂径定理、等边三角形的判定和性质、弧长的计算,掌握垂径定理、弧长公式是解题的关键.16.(4分)已知二次函数y=ax2﹣4ax+3a(1)若a=1,则函数y的最小值为﹣1.(2)若当1≤x≤4时,y的最大值是4,则a的值为或﹣4.【分析】(1)将a=1代入二次函数y=ax2﹣4ax+3a,然后配方即可.(2)先求出抛物线的对称轴是直线x=2,然后分a>0和a<0两种情况讨论,根据函数增减性即可求出a的值.【解答】解:(1)当a=1时,y=x2﹣4x+3=(x﹣2)2﹣1∵a=1>0∴抛物线的开口向上,当x=2时,函数y的最小值为﹣1.(2)∵二次函数y=ax2﹣4ax+3a=a(x﹣2)2﹣a∴抛物线的对称轴是直线x=2,∵1≤x≤4,∴当a>0时,抛物线开口向上,在对称轴直线x=2右侧y随x的增大而增大,当x=4时y有最大值,a×(4﹣2)2﹣a=4,解得a=,当a<0时,抛物线开口向下,x=2时y有最大值,a×(2﹣2)2﹣a=4,解得a=﹣4.故答案为(1)﹣1;(2).【点评】本题考查了二次函数的最值问题,解题的关键是熟练掌握最值的计算公式.三、解答题:本题有7个小题,共66分解答应写出文字说明、证明过程或推演步骤17.(6分)某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.某中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,求A型号电脑被选中的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得A型号电脑被选中的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:∴有6种选择方案:AD、AE、BD、BE、CD、CE;(2)∵(1)中各种选购方案被选中的可能性相同,且A型号电脑被选中的有2种情况,∴A型号电脑被选中的概率==.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.(8分)已知二次函数y=x2﹣x+m的图象经过点(1,﹣2)(1)求此函数图象与坐标轴的交点坐标;(2)若P(﹣2,y1),Q(5,y2)两点在此函数图象上,试比较y1,y2的大小.【分析】(1)先把(1,﹣2)代入y=x2﹣x+m求出m得到抛物线解析式为y=x2﹣x ﹣,则通过解方程x2﹣x﹣=0得抛物线与x轴的交点坐标;通过计算自变量为0对应的函数值得到抛物线与y轴的交点坐标;(2)先确定抛物线的对称轴为直线x=1,然后根据二次函数的性质,通过比较P点和Q 点到对称轴的距离大小得到y1,y2的大小.【解答】解:(1)把(1,﹣2)代入y=x2﹣x+m得﹣1+m=﹣2,解得m=﹣,则抛物线解析式为y=x2﹣x﹣,当y=0时,x2﹣x﹣=0,解得x1=﹣1,x2=3,所以抛物线与x轴的交点坐标为(﹣1,0),(3,0);当x=0时,y=x2﹣x﹣=﹣,所以抛物线与y轴的交点坐标为(0,﹣);(2)抛物线的对称轴为直线x=1,因为P(﹣2,y1)到直线x=1的距离比点Q(5,y2)到直线x=1的距离小,而抛物线开口向上,所以y1<y2.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.19.(8分)已知△ABC中,AB=5,AC=3,sin B=,求△ABC的面积.【分析】分两种情形分别求解即可解决问题.【解答】解:如图,作AH⊥BC于H.∵AH=AB•sin B=5×=3,∴BH==4,CH==3∴S△ABC=×BC×AH=×(4+3)×3=,或S△ABC′=×(4﹣3)×3=.综上所述,△ABC的面积为或【点评】本题考查解直角三角形,三角形的面积等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.20.(10分)如图,矩形窗户边框ABCD由矩形AEFD,矩形BNME,矩形CFMN组成,其中AE:BE=1:3.已知制作一个窗户边框的材料的总长是6米,设BC=x(米),窗户边框ABCD的面积为S(米2).(1)①用x的代数式表示AB;②求x的取值范围.(2)求当S达到最大时,AB的长.【分析】(1)①设AE=a,根据题意列式即可得到结论;②解不等式即可得到结论;(2)根据题意求得函数的解析式S=AB•BC=•x=﹣x2+x,根据二次函数的性质即可得到结论.【解答】解:(1)①∵BC=x,∴AD=EF=BC=x,∵AE:BE=1:3,∴设AE=a,∴AB=CD=4a,MN=BE=3a,∴AB+CD+MN=11a,∵制作一个窗户边框的材料的总长是6米,∴11a+3x=6,∴a=,∴AB=;②∵AB>0,∴>0,解得:x<2,∴x的取值范围为:0<x<2;(2)∵S=AB•BC=•x=﹣x2+x,∴S=﹣(x﹣1)2+,∴当x=1时,S取最大值,∴AB=,则当S达到最大时,AB的长为米.【点评】本题考查的是二次函数的实际应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建二次函数解决最值问题,会用方程的思想思考问题,属于中考常考题型.21.(10分)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:=.(2)若BD=2,BE=3,求tan∠BAC的值.【分析】(1)连结AE,如图,根据圆周角定理,由AC为⊙O的直径得到∠AEC=90°,然后利用等腰三角形的性质即可得到BE=CE,进而利用等腰三角形的性质得出∠BAE =∠CAE,进而证明即可;(2)连结DE,如图,证明△BED∽△BAC,然后利用相似比可计算出AB的长,从而得到AC的长.【解答】(1)证明:连结AE,如图,∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC,而AB=AC,∴BE=CE,∴∠BAE=∠CAE,∴;(2)连结DE,CD,如图,∵BE=CE=3,∴BC=6,∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴,即,∴BA=9,∴AC=BA=9.∴AD=AB﹣BD=9﹣2=7,∴DC=∴tan∠BAC=【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和圆周角定理.22.(12分)如图,▱ABCD中,BF平分∠ABC交AD于点F,CE平分∠DCB交AD于点E,BF和CE相交于点P.(1)求证:AE=DF.(2)已知AB=4,AD=5①求的值;②求四边形ABPE的面积与△BPC的面积之比.【分析】(1)由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB,同理可证DE=DC,推出AF=DE即可解决问题.(2)①求出EF的值,利用平行线的性质即可解决问题.②连接P A.设△AEP的面积为S.求出四边形ABPE,△PBC的面积即可解决问题.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB,同理可证:DE=DC,∴AF=DE,∴AE=DF.(2)①解:由(1)可知AB=AF=DE=4,∵AD=5,∴AE=DF=1,EF=3,∵EF∥BC,∴==.②解:连接P A.设△AEP的面积为S.∵EF=3AE,∴△EFP的面积为3S,∵△EFP∽△CBP,∴=()2=,∴S△BCP=S,∵PB:PF=5:3,∴S△APB:S△APF=5:3,∴S△ABP=S,∴S四边形ABPE=S,∴==.【点评】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会利用参数解决问题.23.(12分)如图,等边△ABC中,点D是BC边上任一点,以AD为边作∠ADE=∠ADF =60°,分别交AC,AB于点E,F.(1)求证:AD2=AE•AC.(2)已知BC=2,设BD的长为x,AF的长为y.①求y关于x的函数表达式;②若四边形AFDE外接圆直径为,求x的值.【分析】(1)只要证明△ADE∽△ACD即可解决问题.(2)①作AM⊥BC于M.证明AD2=AE•AB,即可解决问题.②作EH⊥AF于H,连接EF,证明△AEF的等边三角形,求出AF的值,构建方程即可解决问题.【解答】(1)证明:∵△ABC是等边三角形,∴∠C=60°,∵∠ADE=60°,∴∠ADE=∠C,∵∠DAE=∠CAD,∴△ADE∽△ACD,∴=,∴AD2=AE•AC.(2)解:①作AM⊥BC于M.∵△ABC是等边三角形,BC=2,AM⊥BC,∴AB=BC=2,∠B=60°,BM=MC=1,AM=,∵∠ADF=60°,∴∠ADF=∠B,∵∠DAF=∠CAB,∴△ADF∽△AFB,∴AD2=AF•AB,∴AM2+DM2=AF•AB∴3+(1﹣x)2=2y,∴y=x2﹣x+2(0<x<2).②作EH⊥AF于H,连接EF.∵AD2=AE•AC=AF•AB,AB=AC,∴AF=AE,∵∠EAF=60°,∴△AEF是等边三角形,∴四边形AEDF的外接圆的圆心O在EH上,连接OF.∵OE=OF=,∠OFH=30°,∴y=AF=2FH=2××=,∴=x2﹣x+2,∴x=或,【点评】本题属于圆综合题,考查了等边三角形的性质和判定,相似三角形的判定和性质,三角形的外接圆等知识,解题的关键是正确寻找相似三角形解决问题,属于中考压轴题.。

相关文档
最新文档