频率分布直方图与茎叶图概述

合集下载

频率分布直方图与茎叶图..

频率分布直方图与茎叶图..

(1)极差为67-28=39,取组距为5,分为8 组. 样本频率分布表:
分 组 频数 频率 [27,32) 3 0.06 [32,37) 3 0.06 [37,42) 9 0.18 [42,47) 16 0.32 [47,52) 7 0.14 [52,57) 5 0.10 [57,62) 4 0.08 [62,67] 3 0.06 合 计 50 1.00
合计
频数
4 8 15 22 25 15 5 4 2 100
频率
0.04
0.08 0.15
0.22 0.25 0.15
0.05 0.04 0.02
1
组距=0.5
频率/组距 0.08 0.16 0.3 0.44 0.5 0.3 0.1 0.08 0.04 2.00
第 频率/组距 (组距=0.5) 五 步: 0.6
出总体上在20—60元之间其 0.024
频率分布直方图如右图所示 0.01
,为具体了解同学们购买课
外读物的具体情况,按支出 的情况进行分层抽样,抽出
元 20 30 40 50 60
一个容量为100的样本进行分
析,其中支出在 [50,60)
元的同学应抽取 30 人。
课堂测试:
例1.关于频率分布直方图中小长方形的高说法,
(2)样本频率分布直方图:
频率 组距
0.06 0.05 0.04 0.03 0.02 0.01
O 27 32 37 42 47 52 57 62 67
年龄
(3)因为0.06+0.18+0.32+0.14=0.7, 故年龄在32~52岁的知识分子约占70%.
理论迁移 2 频率
某校共有5000名学生,该校 组距 学生每月课外读物方面的支 0.036

2.2.1频率分布直方图

2.2.1频率分布直方图
频率 组距 0.5 0.4 0.3 0.2 0.1
O
0.5 1 1.5 2 2.5 3 3.5 4 4.5
月均用水量/t
频率 组距
总体密度曲线
总体在区间 (a,b)内取 值的百分比.
O
a b 月均用水量/t
探究:在上述背景下,相应的频率分布折线 图越来越接近于一条光滑曲线,统计中称这 条光滑曲线为总体密度曲线.那么图中阴影部 分的面积有何实际意义?
6、(2016•海口模拟)某中学举行了一次“环保知识竞赛”, 全校学生参加了这次竞赛.为了了解本次竞赛成绩情况, 从中抽取了部分学生的成绩(得分取正整数,满分为100 分)作为样本进行统计.请根据下面尚未完成并有局部 污损的频率分布表和频率分布直方图(如图所示)解决 下列问题: 组别 分组 频数 频率 频率分布表
0.15
0.22 0.25 0.15 0.05 0.04 0.02 1
0.44 0.5
0.3 0.1 0.08 0.04 2.00
第一步,画平面直角坐标系. 第二步,在横轴上均匀标出各组分点,在纵轴上标出单位长度. 第三步,以组距为宽,各组的频率与组距的商为高,分别画出 第 各组对应的小长方形. 五 频率 步: 组距 画 出 小长方形的面 小长方形的面 月均用水量最 频 积=? =? 积总和 多的在那个区 率 0.5 0.50 0.44 间? 分 0.40 布 0.3 0.3 直 0.30 方 0.16 0.20 0.1 图. 0.08 月均用水量 0.08 0.10 0.04 /t 0.5 1 1.5 2 2.5 3 3.5 4 4.5
A

A.19、13
B.13、19
C.20、18
D.18、20
3. (2016•漳平市校级模拟) 某市重点中学奥数培训班共 有 14 人, 分为两个小组, 在一次阶段考试中两个小组成 绩的茎叶图如图所示,其中甲组学生成绩的平均数是 88, 乙组学生成绩的中位数是 89, 则 m+n 的值是 (

2.2.1频率分布折线图、总体密度曲线和茎叶图

2.2.1频率分布折线图、总体密度曲线和茎叶图

频数为 12. (1)第二小组的频 率是多少?0.08
(2)样本容量是多 少?150
频率/组距 0.036
0.032 0.028 0.024
0.020
(3)若次数在 110 以 上(含 110 次)为达 标,试估计该校全体
高一学生的达标率约
是多少?88%
0.016 0.012 0.008 0.004
A. 32 C. 40
B. 0.2 D. 0.25
o
90 100 110 120 130 140 150 次数
练习
2. 某班级共有学生 54 人,现根据学生的学号, 用系统抽样的方法,抽取一个容量为 4 的样本. 已知 2 号,28 号,41 号同学在样本中,那么样 本中还有一个同学的学号是 15 .
3. 在抽取某产品的尺寸过程中,将其尺寸分成
若干组,[a,b]是其中一组,抽查出的个体数在
2.2 用样本估计总体
第二课时
复习
1. 列出一组样本数据的频率分布表可以分 哪几个步骤进行?
第一步,求极差. 第二步,决定组距与组数. 第三步,确定分点,将数据分组. 第四步,统计频数,计算频率,制成表格.
复习
2. 频率分布直方图是在平面直角坐标系中画若 干个依次相邻的小长方形,这些小长方形的宽、 高和面积在数量上分别表示什么?
频率 组距 0.5 0.4 0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
湖南省长沙市一中卫星远程学校
探究 1:频率分布折线图与总体密度曲线
思考 2:当总体中的个体数很多时(如抽样调查全 国城市居民月均用水量),随着样本容量的增加, 作图时所分的组数增多,组距减少,你能想象出 相应的频率分布折线图会发生什么变化吗?

频率分布直方图与茎叶

频率分布直方图与茎叶
统计分析
通过对数据的可视化,可以更好地进 行统计分析,如找出数据的中心趋势 、离散程度、异常值等,为后续的数 据分析提供基础。
频率分布直方图与茎叶图的概念
频率分布直方图
是一种用直方图形表示数据分布情况的统计图。它将数据分组,并用矩形的面积表示各 组频数,各矩形面积总和代表频数的总和。通过直方图可以清晰地看出数据的分布情况,
在质量控制中的应用
过程能力分析
在质量控制中,需要对生产过程进行能力分析,以评估生产过程是否稳定并满足质量要求。频率分布 直方图和茎叶图可以帮助质量工程师了解产品质量的分布情况,计算过程能力指数并判断过程是否受 控。
异常值检测
在质量控制过程中,异常值的检测和处理是一个重要的环节。通过观察频率分布直方图和茎叶图,可 以发现数据中的异常值,及时进行处理和调整,保证生产过程的稳定性和产品质量的一致性。
• 适用性广:适用于各种类型的数据,包括连续型和离散型 数据。
频率分布直方图的优缺点
信息损失
不能反映数据的原始数值
由于数据被分组,可能会损失一些细 节信息。
只能反映数据的分布情况,不能反映 数据的具体数值。
组距选择
组距的选择对数据的分布情况有一定 影响,不同的组距可能会得到不同的 直方图。
03 茎叶图
异常值。
02
特征选择
在数据分析中,特征选择是一个重要的步骤,通过观察频率分布直方图
和茎叶图,可以发现某些特征与目标变量之间的关系,从而选择重要的
特征进行建模。
03
模型诊断
在建立统计模型后,需要对模型进行诊断,以评估模型的拟合效果和预
测能力。频率分布直方图和茎叶图可以帮助分析师检查模型的残差分布
情况,判断模型是否符合假设条件。

直方图与茎叶图

直方图与茎叶图

中位数
平均数
S2= 方差
1 2 2 2 [( x - x ) + ( x - x ) +…+ ( x - x ) ]. 2 n n 1
1 x =n(x1+x2+…+xn)
其中s为标准差
二、样本的数字特征
数字特征
众 数
定义(直方图中,无原始数据) 最高矩形的中点的横坐标 直方图中使得左边和右边的直方图的
(1)若X=8,求乙组同学植树棵树的平均数与方差。
(2)如果X=9,分别从甲、乙两组中随机选取一名同 学,求这两名同学的植树棵树为19的概率
1.甲、乙两名同学在5次体育测试中的成绩统计如
图所示,若甲、乙两人的平均成绩分别是X甲,X乙, 则下列结论正确的是( A ) A.X甲<X乙,乙比甲成绩稳定 B.X甲>X乙,甲比乙成绩稳定 C.X甲>X乙,乙比甲成绩稳定 D.X甲<X乙,甲比乙成绩稳定 甲 8 7 2 6 2 乙 7 8 8 2 7 9 1 2
(1)直方图中x的值为 0.0044 (2)在这些用户中,用电量落在区间 [100,250] 内的户数为 70
茎叶图的应用
例2:(2011北京)以下茎叶图记录了甲、乙 两组各四名同学的植树棵数,乙组记录中有 一个数据模糊,无法确认,在图中以x表示: 甲组 9 1 9 1 0 1 乙组 X 8 9 0
练 习
2.下图是某学校举行的运动会上七位评委为某体 操项目打出的分数的茎叶图,去掉一个最高分 和一个最低分后,所剩数据的平均数和方差分 别为( C ) 7 9 8 4 4 6 4 7 9 3 A.84, 4.84 C.85,1.6 B.84, 1.6 D.85,4
与概率的综合应用
例3.(2013广东高考改)某车间共有12名工人,随 机抽 取 6名,他们某日加工零件个数的茎叶图如图所 示,其中茎为十位数,叶为个位数. (Ⅰ)根据茎叶图计算样本均值; 1 7 9 (Ⅱ)日加工零件个数大于样本均 2 0 1 5 值的工人为优秀工人.根据茎叶图 推断车间12名工人中有几名优秀工人 3 0 (Ⅲ) 从该车间12名工人中,任取3名, 求至少有2名优秀员工的概率 22 4

茎叶图

茎叶图
0 . 25 0 . 22
0 . 30 0 . 20
0 . 15
0 . 14
0 . 08
0 . 10
0 . 06
. . 0.04
.
..
. . . . 0.04 0 . 02
o
0.25
0.5
0.75
1 1.5 2
1.25 1.75
2.5
2.25 2.75
3
3.25
3.5
3.75
4 4.5
4.25
2.02
数学 必修3(配人教版)
2.2.2用样本的数字特 征估计总体的数字特征
什么是众数、中位数、平均数?
众数:在一组数据中,出现次数最多 的数称为众数 中位数:在按大小顺序排列的一组 数据中,居于中间的数称为中位数 平均数:一般是一组数据和的算术 平均数
求下面这组数据的众数、中位数、平均数
4、4、4、6、6、6、6、8、8、8
o
0.5 1 1.5
0 . 14
2 2.5
2.02
0 . 06 0 . 04 0 . 02
3 3.5 4 4.5
月均用水量 / t
总结:在频率分布直方图中,把频率分布直方图划分左
右两个面积相等的分界线与x轴交点的横坐标称为中位数。
如何从频率分布直方图中估计平均数 ?
频率 /组距
0 . 50 0 . 40
试利用频率分布直方图求: (1)这50名学生成绩的众数与中位数; (2)这50名学生的平均成绩.
数学 必修3(配人教版)
7994 824590 912
数学 必修3(配人教版)
预习·自主学习
茎叶图的画法 探究·课堂互动
反馈·课堂达标

茎叶图

茎叶图

2.2.1 用样本的频率估计总体分布
茎叶图
复习
1.频率分布是指各个小组数据在样本容量中 所占比例的大小.一般用频率分布直方图反映样本 的频率分布.具体步骤为:
第一步,求极差 第二步,决定组距与组数 第三步,将数据分组 第四步,列频率分布表 第五步,画频率分布直方图
2. 在频率分布直方图中,依次连接各小长方形上 端的中点,就得到频率分布折线图.
O
频率分布表、频率分布直方图和折线图的 主要作用是表示样本数据的分布情况 此外,我们还可以用茎叶图来表示样本数 据的分布情况.
例:某赛季甲、乙两名篮球运动员每场比赛的得分 情况如下: 甲运动员得分: 13,51,23,8,26,38,16,33,14,28,39; 乙运动员得分: 49,24,12,31,50,31,44,36,15,37,25, 36,39.

2 4 1 9 0 5 4 1 4
6 7
6 9
“茎”指的是中间的一列数,表示得分的十位数; “叶”指的是从茎的旁边生长出来的数,分别表示 两人得分的个位数. 用茎叶图表示,如下图: 甲 8 0 4 6 3 1 2 8 6 3 2 4 9 3 8 3 1 4 9 1 5 0 乙
5 4 1 4
6 7
频率 组距
0.5 0.4 0.3 0.2 0.1
O
0.5 1 1.5 2 2.5 3 3.5 4 4.5
月均用水量/t
3. 随着样本容量的增加,作图时所分的组数增加, 组距减小,相应的频率分布折线图越来越接近于一条 光滑曲线. 频率 组距 总体在区间(a,b)内 取值的百分比.
a b 月均用水量/t 统计中称这条光滑曲线为总体密度曲线.
6 9
你能通过茎叶图说明哪个运动员的发挥更稳 定吗?为什么?

茎叶图方差

茎叶图方差

x x1 f1 x2 f2 ... xn fn
频率/组距
各组频率
加权平均数
1 f 2
f1 f 2 f 3 f4 x1 x2 x3 x4
1 f 2
fn xn
x
IQ值
《固(第6课时)》:10.已知一组数据125、121、123、125、127、 129、125、128、130、129、126、124、125、127、126、122、 124、125、126、128,共20个数据; (1)填写频率分布表:
中位数左右两边频率各 将n个数据按照从小到大排列 中位数 占1/2 n为奇数,取第(n+1)/2 位的数 n为偶数,取中间两数的平均数 每个小矩形底边中点的 平均数 横坐标 各组频率

x x1 f1 x2 f2 ... xn fn
x1 x2 ... xn x n
《导(第6课时)》:探究二(B).由图象知甲.乙两人五次测试成绩分别为
x 121.5 0.1 123.5 0.15 125.5 0.4 127.5 0.2 129.5 0.15
《导(第6课时)》:探究二(B).由图象知甲.乙两人五次测试成绩分别为
甲:10、13、12、14、16;
10+13+12+14+16 x甲 = =13 5
0.25 0.4
众数: 124.5 126.5 125.5
2
中位数:0.25 2 124.5 125.75
0.4
0.1
0.15
数据
频率 0.1 0.15 0.4 0.2 0.15
120.5 122.5 124.5 126.5 128.5 130.5

高中数学专题讲义-频率直方图

高中数学专题讲义-频率直方图

一.随机抽样1.随机抽样:满足每个个体被抽到的机会是均等的抽样,共有三种经常采用的随机抽样方法:⑴简单随机抽样:从元素个数为N 的总体中不放回地抽取容量为n 的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样. 抽出办法:①抽签法:用纸片或小球分别标号后抽签的方法.②随机数表法:随机数表是使用计算器或计算机的应用程序生成随机数的功能生成的一张数表.表中每一位置出现各个数字的可能性相同. 随机数表法是对样本进行编号后,按照一定的规律从随机数表中读数,并取出相应的样本的方法.简单随机抽样是最简单、最基本的抽样方法.⑵系统抽样:将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本的抽样方法.抽出办法:从元素个数为N 的总体中抽取容量为n 的样本,如果总体容量能被样本容量整除,设Nk n=,先对总体进行编号,号码从1到N ,再从数字1到k 中随机抽取一个数s 作为起始数,然后顺次抽取第2(1)s k s k s n k +++-L ,,,个数,这样就得到容量为n 的样本.如果总体容量不能被样本容量整除,可随机地从总体中剔除余数,然后再按系统抽样方法进行抽样.系统抽样适用于大规模的抽样调查,由于抽样间隔相等,又被称为等距抽样.⑶分层抽样:当总体有明显差别的几部分组成时,要反映总体情况,常采用分层抽样,使总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样,这种抽样方法叫做分层抽样.分层抽样的样本具有较强的代表性,而且各层抽样时,可灵活选用不同的抽样方法,应用广泛.2.简单随机抽样必须具备下列特点:⑴简单随机抽样要求被抽取的样本的总体个数N 是有限的. ⑵简单随机样本数n 小于等于样本总体的个数N . ⑶简单随机样本是从总体中逐个抽取的. ⑷简单随机抽样是一种不放回的抽样.⑸简单随机抽样的每个个体入样的可能性均为nN.3.系统抽样时,当总体个数N 恰好是样本容量n 的整数倍时,取Nk n=;若Nn不是整数时,先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量n 整除.因为每个个体被剔除的机会相等,因而整个抽样过程中每个个体被抽取的机会仍知识内容板块二.频率直方图然相等,为N n.二.频率直方图列出样本数据的频率分布表和频率分布直方图的步骤:①计算极差:找出数据的最大值与最小值,计算它们的差;②决定组距与组数:取组距,用极差组距决定组数;③决定分点:决定起点,进行分组;④列频率分布直方图:对落入各小组的数据累计,算出各小数的频数,除以样本容量,得到各小组的频率.⑤绘制频率分布直方图:以数据的值为横坐标,以频率组距的值为纵坐标绘制直方图,知小长方形的面积=组距×频率组距=频率.频率分布折线图:将频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,一般把折线图画成与横轴相连,所以横轴左右两端点没有实际意义.总体密度曲线:样本容量不断增大时,所分组数不断增加,分组的组距不断缩小,频率分布直方图可以用一条光滑曲线()y f x =来描绘,这条光滑曲线就叫做总体密度曲线.总体密度曲线精确地反映了一个总体在各个区域内取值的规律.三.茎叶图制作茎叶图的步骤:①将数据分为“茎”、“叶”两部分;②将最大茎与最小茎之间的数字按大小顺序排成一列,并画上竖线作为分隔线; ③将各个数据的“叶”在分界线的一侧对应茎处同行列出.四.统计数据的数字特征用样本平均数估计总体平均数;用样本标准差估计总体标准差. 数据的离散程序可以用极差、方差或标准差来描述.极差又叫全距,是一组数据的最大值和最小值之差,反映一组数据的变动幅度; 样本方差描述了一组数据平均数波动的大小,样本的标准差是方差的算术平方根. 一般地,设样本的元素为12n x x x L ,,,样本的平均数为x , 定义样本方差为222212()()()n x x x x x x s n-+-++-=L ,样本标准差s =简化公式:22222121[()]n s x x x nx n=+++-L .五.独立性检验1.两个变量之间的关系;常见的有两类:一类是确定性的函数关系;另一类是变量间存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有一定随机性的.当一个变量取值一定时,另一个变量的取值带有一定随机性的两个变量之间的关系叫做相关关系. 2.散点图:将样本中的n 个数据点()(12)i i x y i n =L ,,,,描在平面直角坐标系中,就得到了散点图.散点图形象地反映了各个数据的密切程度,根据散点图的分布趋势可以直观地判断分析两个变量的关系.3.如果当一个变量的值变大时,另一个变量的值也在变大,则这种相关称为正相关;此时,散点图中的点在从左下角到右上角的区域.反之,一个变量的值变大时,另一个变量的值由大变小,这种相关称为负相关.此时,散点图中的点在从左上角到右下角的区域.散点图可以判断两个变量之间有没有相关关系.4.统计假设:如果事件A 与B 独立,这时应该有()()()P AB P A P B =,用字母0H 表示此式,即0:()()()H P AB P A P B =,称之为统计假设. 5.2χ(读作“卡方”)统计量:统计学中有一个非常有用的统计量,它的表达式为22112212211212()n n n n n n n n n χ++++-=,用它的大小可以用来决定是否拒绝原来的统计假设0H .如果2χ的值较大,就拒绝0H ,即认为A 与B 是有关的.2χ统计量的两个临界值:3.841、6.635;当2 3.841χ>时,有95%的把握说事件A 与B 有关;当2 6.635χ>时,有99%的把握说事件A 与B 有关;当2 3.841χ≤时,认为事件A 与B 是无关的.独立性检验的基本思想与反证法类似,由结论不成立时推出有利于结论成立的小概率事件发生,而小概率事件在一次试验中通常是不会发生的,所以认为结论在很大程度上是成立的. 1.独立性检验的步骤:统计假设:0H ;列出22⨯联表;计算2χ统计量;查对临界值表,作出判断.2.几个临界值:222()0.10( 3.841)0.05( 6.635)0.01P P P χχχ≈≈≈≥2.706,≥,≥.22⨯联表的独立性检验:如果对于某个群体有两种状态,对于每种状态又有两个情况,这样排成一张22⨯的表,如下:如果有调查得来的四个数据11122122n 4个数据来检验上述的两种状态A 与B 是否有关,就称之为22⨯联表的独立性检验.六.回归分析1.回归分析:对于具有相关关系的两个变量进行统计分析的方法叫做回归分析,即回归分析就是寻找相关关系中这种非确定关系的某种确定性. 回归直线:如果散点图中的各点都大致分布在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线. 2.最小二乘法:记回归直线方程为:ˆy a bx =+,称为变量Y 对变量x 的回归直线方程,其中a b ,叫做回归系数.ˆy是为了区分Y 的实际值y ,当x 取值i x 时,变量Y 的相应观察值为i y ,而直线上对应于i x 的纵坐标是ˆi i ya bx =+. 设x Y ,的一组观察值为()i i x y ,,12i n =L ,,,,且回归直线方程为ˆya bx =+, 当x 取值i x 时,Y 的相应观察值为i y ,差ˆ(12)i i y y i n -=L ,,,刻画了实际观察值i y 与回归直线上相应点的纵坐标之间的偏离程度,称这些值为离差.我们希望这n 个离差构成的总离差越小越好,这样才能使所找的直线很贴近已知点. 记21()ni i i Q y a bx ==--∑,回归直线就是所有直线中Q 取最小值的那条.这种使“离差平方和为最小”的方法,叫做最小二乘法.用最小二乘法求回归系数a b ,有如下的公式:1221ˆni ii nii x ynxy bxnx ==-=-∑∑,ˆˆa y bx =-,其中a b ,上方加“^”,表示是由观察值按最小二乘法求得的回归系数.3.线性回归模型:将用于估计y 值的线性函数a bx +作为确定性函数;y 的实际值与估计值之间的误差记为ε,称之为随机误差;将y a bx ε=++称为线性回归模型. 产生随机误差的主要原因有:①所用的确定性函数不恰当即模型近似引起的误差; ②忽略了某些因素的影响,通常这些影响都比较小; ③由于测量工具等原因,存在观测误差. 4.线性回归系数的最佳估计值:利用最小二乘法可以得到ˆˆab ,的计算公式为 1122211()()()()nnii iii i nniii i xx y y x ynxybxx xn x ====---==--∑∑∑∑$,ˆˆa y bx =-,其中11n i i x x n ==∑,11nii y y n ==∑ 由此得到的直线ˆˆya bx =+$就称为回归直线,此直线方程即为线性回归方程.其中ˆa ,b $分别为a ,b 的估计值,ˆa称为回归截距,b $称为回归系数,ˆy 称为回归值. 5.相关系数:()()nnii i ixx y y x ynx yr ---==∑∑6.相关系数r 的性质:⑴||1r ≤;⑵||r 越接近于1,x y ,的线性相关程度越强; ⑶||r 越接近于0,x y ,的线性相关程度越弱.可见,一条回归直线有多大的预测功能,和变量间的相关系数密切相关. 7.转化思想:根据专业知识或散点图,对某些特殊的非线性关系,选择适当的变量代换,把非线性方程转化为线性回归方程,从而确定未知参数. 8.一些备案 ①回归(regression )一词的来历:“回归”这个词英国统计学家Francils Galton 提出来的.1889年,他在研究祖先与后代的身高之间的关系时发现,身材较高的父母,他们的孩子也较高,但这些孩子的平均身高并没有他们父母的平均身高高;身材较矮的父母,他们的孩子也较矮,但这些孩子的平均身高却比他们父母的平均身高高.Galton 把这种后代的身高向中间值靠近的趋势称为“回归现象”.后来,人们把由一个变量的变化去推测另一个变量的变化的方法称为回归分析.②回归系数的推导过程:22222[()]222i i i i i i i i Q y a bx y a y na b x y ab x b x =--=-+-++∑∑∑∑∑∑ 22222()2i i ii i i na a b x y b x b x y y =+-+-+∑∑∑∑∑,把上式看成a 的二次函数,2a 的系数0n >,因此当2()2i i i ib x y y b x a n n --=-=∑∑∑∑时取最小值. 同理,把Q 的展开式按b 的降幂排列,看成b 的二次函数,当2i iiix y a xb x-=∑∑∑时取最小值.解得:12221()()()ni iii i niii x ynxyx x y y b x x xnx==---==--∑∑∑∑,a y bx =-, 其中1i y y n =∑,1i x x n=∑是样本平均数. 9. 对相关系数r 进行相关性检验的步骤: ①提出统计假设0H :变量x y ,不具有线性相关关系;②如果以95%的把握作出推断,那么可以根据10.950.05-=与2n -(n 是样本容量)在相关性检验的临界值表中查出一个r 的临界值0.05r (其中10.950.05-=称为检验水平); ③计算样本相关系数r ;④作出统计推断:若0.05||r r >,则否定0H ,表明有95%的把握认为变量y 与x 之间具有线性相关关系;若0.05||r r ≤,则没有理由拒绝0H ,即就目前数据而言,没有充分理由认为变量y 与x 之间具有线性相关关系. 说明:⑴对相关系数r 进行显著性检验,一般取检验水平0.05α=,即可靠程度为95%.⑵这里的r 指的是线性相关系数,r 的绝对值很小,只是说明线性相关程度低,不一定不相关,可能是非线性相关的某种关系.⑶这里的r 是对抽样数据而言的.有时即使||1r =,两者也不一定是线性相关的.故在统计分析时,不能就数据论数据,要结合实际情况进行合理解释.题型一 频率分布直方图【例1】 (2010西城二模)某区高二年级的一次数学统考中,随机抽取200名同学的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成5组:第一组,成绩大于等于50分且小于60分;第二组,成绩大于等于60分且小于70分;……第五组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.则这200名同学中成绩大于等于80分且小于90分的学生有______名.典例分析【例2】 (2010东城二模)已知一个样本容量为100的样本数据的频率分布直方图如图所示,样本数据落在[6,10)内的样本频数为 ,样本数据落在[2,10)内的频率为 .【例3】 (2010北京)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a = .若要从身高在[)120,130,[)130,140,[]140,150三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[]140,150内的学生中选取的人数应为 .【例4】 (2010江苏高考)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[]540,中,其频率分布直方图如图所示,则其抽样的100根中,有____根在棉花纤维的长度小于20mm .(mm)频率组距【例5】 (2009湖北15)下图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,样本数据落在[)610,内的频数为 ,数据落在[)210,内的概率约为 .【例6】 (2009福建3)A .0.13B .0.39C .0.52D .0.64【例7】 某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示,根据条形图可得这50名学生这一天平均每人的课外阅读时间为( )时间(h)A .0.6hB .0.9hC .1.0hD .1.5h【例8】 为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[)4555,,[)5565,,[)6575,,[)7585,,[)8595,由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[)5575,的人数是 .产品数量0.0200.0150.0100.005【例9】 (2009山东8)某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96106],,样本数据分组为[)9698,,[)98100,,[)100102,,[)102104,,[104106],.已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A .90B .75C .60D .45【例10】 某路段检查站监控录象显示,在某时段内,有1000辆汽车通过该站,现在随机抽取其中的200辆汽车进行车速分析,分析的结果表示为右图的频率分布直方图,则估计在这一时段内通过该站的汽车中速度不小于90km/h 的车辆数为( )A .200B .600C .500D .300【例11】 (2006年全国II )一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本频率分布直方图,为了分析居民的收入与年龄、学历、职业等方面的联系,要从这10000人中用分层抽样的方法抽出100人做进一步调查,则在[25003000],(元)月收入段应抽出_____人.0.00050.00040.00030.00020.0001频率组距月收入(元)【例12】 如图为某样本数据的频率分布直方图,则下列说法不正确的是( )0.1频率组距A .[610),的频率为0.32B .若样本容量为100,则[1014),的频数为40C .若样本容量为100,则(10]-∞,的频数为40D .由频率分布布直方图可得出结论:估计总体大约有10%分布在[1014),【例13】 (2006北京模拟)下面是某学校学生日睡眠时间的抽样频率分布表:【例14】 (2010崇文一模)为了调查某厂2000名工人生产某种产品的能力,随机抽查了m 位工人某天生产该产品的数量,产品数量的分组区间为[)10,15,[)15,20,[)20,25,[)25,30,[30,35],频率分布直方图如图所示.已知生产的产品数量在[)20,25之间的工人有6位.⑴求m ;10 15 20 25 30 35产品数量⑵工厂规定从各组中任选1人进行再培训,则选取5人不在同一组的概率是多少?【例15】 考查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm )⑴ 作出频率分布表; ⑵ 画出频率分布直方图.【例16】 (2010陕西卷高考)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:/cm/cm⑴估计该小男生的人数;⑵估计该校学生身高在170~185cm 之间的概率; ⑶从样本中身高在165~180cm 之间的女生..中任选2人,求至少有1人身高在170~180cm 之间的概率.【例17】 从某校高一年级的1002名新生中用系统抽样的方法抽取一个容量为100的身高样本,如下(单位:cm ).作出该样本的频率分布表,画出频率分布直方图及折线图,并根据作出的频率分布直方图估计身高不小于170的同学的人数.【例18】 为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.10.30.4,,.第一小组的频数是5.⑴求第四小组的频率和参加这次测试的学生人数;⑵在这次测试中,学生跳绳次数的中位数落在第几小组内? ⑶参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩优秀率是多少?【例19】 为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计. 请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题: ⑴ 填充频率分布表的空格(将答案直接填在表格内); ⑵ 补全频数条形图;⑶ 若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?【例20】 (2010丰台一模)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.85987654322198653328698765叶茎6050分数频率组距0.040.0280.0160.008⑴求全班人数及分数在[)80,90之间的频数;⑵估计该班的平均分数,并计算频率分布直方图中[)80,90间的矩形的高;⑶若要从分数在[]80,100之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[]90,100之间的概率.【例21】 某地区为了了解70~80岁老人的日平均睡眠时间(单位:h ).随机选择了50位老人的进行调查.下表是这50位老人日睡眠时间的频率分布表.序号 (i ) 分组 (睡眠时间) 组中值 (i G ) 频数 (人数) 频率(i F ) 1 [4,5) 4.5 6 0.12 2 [5,6) 5.510 0.20 3 [6,7) 6.5 20 0.40 4 [7,8) 7.5 10 0.205[8,9]8.5 40.08在上述统计数据中,一部分计算见算法流程图(其中←可用=代替),则输出的S的值是.。

频率分布直方图

频率分布直方图

频率分布直方图与折线图及茎叶图1、频数条形图例1.下表是某学校一个星期中收交来的失物件数,请将5天中收交来的失物数用条形图表示.解:象这样表示每一天频数的柱形图叫频数条形图.我们也可以利用直方图反映样本的频率分布规律,这样的直方图称为,简称频率直方图,下面用例1的数据说明2、频率分布直方图:例2解:(1)根据频率分布表,作直角坐标系,以横轴表示,纵轴表示;(画出频率分布直方图)(2)在横轴上和纵轴上标上表示的点;(3)在上面各点中,分别以连接相邻两点的线段为底作矩形,高等于该组的,每一个矩形的面积等于各个组的。

3、频率分布折线图在频率分布直方图中,取相邻矩形上底边的中点顺次连结起来,就得到频率分布折线图(简称频率折线图),请在例2的频率折线图上画出频率折线图。

4、密度曲线如果样本容量取得足够大,分组的组距取得足够小,则相应的频率折线图将趋于一条光滑的曲线,称这条光滑的曲线为总体的密度曲线.5.茎叶图.某篮球运动员在某赛季各场比赛的得分情况如下:12,15,24,25,31,31,36,36,37,39,44,49,50.问题:如何有条理地列出这些数据,分析该运动员的整体水平及发挥的稳定程度?【范例点睛】例1 .有一个容量为100的某高校毕业生起始月薪的样本,数据的分组及各组的频数如下:(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)根据频率分布直方图估计该校毕业生起始月薪低于2000元的可能性.2、为了了解各自受欢迎的程度,甲、乙两个网站分别随机选取了14天,记录下上午8:00-10:00间各自的点击量:甲:73,24,58,72,64,38,66,70,20,41,55,67,8,25;乙:12,37,21,5,54,42,61,45,19,6,19,36,42,14.你能用茎叶图表示上面的数据吗?你认为甲、乙两个网站哪个更受欢迎?【随堂演练】1.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示.根据条形图可得这50名学生这一天平均每天的课外阅读时间为()A.0.6小时B.0.9小时C.1.0小时D.1.5小时2.一般家庭用电(千瓦时)与气温(C )有一定的关系.图(1)表示某年12个月中每月的平均气温.图(2)所示某家庭在这年12个月中每月的用电量.根据这些信息,以下关于该家庭用电量与气温间的关系叙述中,正确的是()A.气温最高时,用电量最多B.气温最低时,用电量最少C.当气温大于某一值时,用电量随气温增高而增加D.当气温小于某一值时,用电量随气温降低而增加3.在频率分布直方图中,所有矩形的面积和为__________.4.为了解高中学生的体能情况,抽了100名学生进行引体向上次数测试,将所得数据整理后,画出频率直方图(如右图所示),图中从左到右依次为第1,2,3,4,5组.(1)第1组的频率为__________,频数为__________.(2)若次数在5次(含5次)以上为达标,则达标率为________________ .5、右面是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知()A.甲运动员的成绩好于乙运动员B.乙运动员的成绩好于甲运动员C.甲、乙两名运动员的成绩没有明显的差异D.甲运动员的最低得分为0分甲12345乙824719936250328754219441。

第八章第一讲频率分布直方图

第八章第一讲频率分布直方图

第一讲 频率分布直方图一:考纲解读、有的放矢统计部分要求不太高,主要是考抽样方法与频率分布直方图和茎叶图有关的问题,最多一个小题(选择或填空)属容易题,但应充分注意以统计为载体、问题实质涉及期望与方差计算的综合解答题.二:核心梳理、茅塞顿开3. 作频率分布直方图的方法为:(1)把横轴分成若干段,每一线段对应一个组的组距;(2)以此线段为底作矩形,它的高等于该组的组距频率,这样得出一系列的矩形;(3)每个矩形的面积恰好是该组上的频率.4. 频率折线图:如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起,就得到一条折线,称这条折线为本组数据的频率折线图.5. 作茎叶图的方法是:将所有两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出.三:例题诠释,举一反三知识点1:利用频率分布直方图分析总体分布例题1:(2011中山期末A )2000辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,时速在[50,60)的汽车大约有 ( ) A .30辆 B .60辆 C .300辆D .600辆变式:(2009山东卷理B)某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的 产品净重(单位:克)数据绘制的频率分布直方图,其中产品 净重的范围是[96,106],样本数据分组为[96,98),[98,100), [100,102),[102,104),[104,106],已知样本中产品净重小于 100克的个数是36,则样本中净重大于或等于98克并且 小于104克的产品的个数是 ( ). A.90 B.75 C. 60 D.45变式:(2011杭州质检B )某初一年级有500名同学,将他们的身高(单位:cm )数据绘制成频率分布直方图(如图),若要从身高在[)120,130,[)130,140,[]140,150三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在[)130,140内的学生中选取的人数为 .知识点2:用样本分估计总体例题2(2010安徽卷B )某市2010年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91, 77,86,81,83,82,82,64,79,86,85,75,71,49,45, (Ⅰ) 完成频率分布表;(Ⅱ)作出频率分布直方图;(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。

频率分布直方图与茎叶图的应用

频率分布直方图与茎叶图的应用
2
图2
1 s (8 11) 2 (9 11) 2 (10 11) 2 (13 11) 2 (15 11) 2 5 1 (9 4 1 4 16 ) 5 34 5


茎叶图 当数据是两位有效数字时,用中间的数字表示 十位数,即第一个有效数字,两边的数字表示 个位数,即第二个有效数字,它的中间部分像 植物的茎,两边部分像植物茎上长出来的叶子, 因此通常把这样的图叫做茎叶图
A、0.09 C、0.25
B、0.2 D、0.45
(二) 、典型题型剖析 例 1、有一个容量为 66 的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5)1l [31.5,35.5) 12 [35.5.39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是( B ) 1 1 1 2 A、 B、 C、 D、 6 3 2 3
指一个样本数据在各个小范围内所占比例的大小以每个组距为底以各频率除以组距的商为高分别画长方形得到的图形叫做频率分布直方图求极差将数据分组列频率分布表画频率分布直方图众数中位数平均数1众数在一组数据中出现次数最多的数据叫做这一组数据的众数
频率分布直方图与茎叶图的应用
2、理解茎叶图的概念和准确绘制茎叶图; 3、能够通过频率分布直方图和茎叶图解决统计的有关问题;
1 3、平均数 x ( x1 x2 x3 ...... xn ) n
二、学习探究 (一)基础演练 1.下列说法错误的是 ( B ) A、在统计里,把所需考察对象的全体叫做总体 B、一组数据的平均数一定大于这组数据中的每个数据 C 、平均数、众数与中位数从不同的角度描述了一组数据的集中趋势 D、一组数据的标准差越大,说明这组数据的波动越大 5 2、 已知一个容量为 20 的样本,某组的频率为 0.25 ,则该组的频数为__________ 3、容量为 20 的样本数据,分组后的频数如下表 分组 频数

茎叶图

茎叶图
污染的天数,共有 17 天,占当月天数的
17 ,超过 50%,说明该市空气质量有待进一步改善。 30
5 300
41 51 61 71 81 91 101 111 空气污染指 数
(Ⅲ)答对下述两条中的一条即可: (1) 该市一个月中空气污染指数有 2 天处于优的水平,占当月天数的
1 ,有 26 天处于良的水平,占当 15
13 14 月天数的 ,处于优或良的天数共有 28 天,占当月天数的 。说明该市空气质量基本良好。 15 15 1 轻微污染有 2 天,占当月天数的 。污染指数在 80 以上的接近轻微污染的天数有 15 天,加上处于轻微 15
.解:(1)频率分1,71) [71,81) [81,91) [91,101) [101,111) 频数 2 1 4 6 10 5 2 频率 2 30 1 30 4 30 6 30 10 30 5 30 2 30
(2)频率分布直方图
10 300
频率/组距
注: 1、重复出现的数据要重复记录,不能遗 漏;特别是“叶”部分;
2、所有的信息都可以从这个茎叶图中得到; 3、茎叶图便于记录和表示;
4、不足的是其分析只是粗略的,对差异不 大的两组数据不易分析;表示三位数以上 的数据时不够方便;
例:甲、乙两篮球运动员上赛季每场比赛 的得分如下,试比较这两位运动员的得分 水平:
茎叶图
知识回顾
频率分布直方图
注意 1.纵轴 :频率/组距 2.小长方形面积表示频率
1.求极差 2.决定组距与组数
步骤
3.将数据分组
4.列频率分布表 5.画频率分布直方图
3.小长方形的面积之和为1
我们将样本的数据有条理的列出来,从中观察数据 的分布情况,这种方法就是茎叶图。 制作茎叶图的方法 将所有两位数的十位数字作为“茎”,个位数字作 为“叶”,茎相同者共用一个茎,茎按从小到大的 顺序从上向下列出,共茎的叶依次在同一行列出。

直方图和其他频率分布图(histogram and other frequency distributions)

直方图和其他频率分布图(histogram and other frequency distributions)

直方图和其他频率分布图(histogram and other frequency distributions)直方图和其他频率分布图(histogram and other frequency distributior.s包括多边形图、茎叶图、点图、分位图、CDF图、累积多边形图。

概述频率分布表明了一组数据不同数值出现的频数。

直方图是最常用的频率分布图,与条形图很相似,但是两者之问有些重要的区别。

这部分也包含了其他的频率分布图。

多边形图和直方图的形状一样,但是用线而不是条柱连接频率值;茎叶图通过运用单个数值作为数据点的标识来保存单个数值:点图是在一条垂线上用小圆圈表示每个数据点;分位图和累积点线图表示有多少测量值(或测量值的百分比)小于或等于每个值。

适用场合·数据是数值型时;·想弄清楚数据分布的形状;·确定一个过程的输出是否近乎符合正态分布;·分析一个过程是否满足顾客的要求;·分析供应商的过程输出的分布情况;·检查两个时间段内过程是否发生交化;·确定两个或多个过程输出是否不同;·将分布情况快速简单地表示出来。

决策树(图表5. 68)有助于确定最适合于表示不同的数据和目的的图形。

实施步骤构建1.从一个过程中搜集至少50个连续的数据点。

如果没有那么多数据,就使用点图。

2.用直方图计算表(参阅图表5.81)建立直方图。

通过填写计算表确定组数,组距和组边界值。

计算完步骤2的组距(W)后,判断并将其调整到一个方便计算的数比如,你可以将0.9调整到1.0。

W的小数位不能比图中数的小数位多。

3.在图纸上画x轴和y轴。

y轴表示数据出现的个数。

用计算表中计算得到的L值在x轴标刻度。

这些数值之差是组距。

条柱间不要留空隙。

4.对于每个数据,准确找出其落入的组,并在该组上增加一个x或涂上一段条柱。

如果数据刚好落在组限处,则将该数据记入其右侧的一组内。

怎么画频率分布折线图频数分布表茎叶图作频率分布直方图的步骤

怎么画频率分布折线图频数分布表茎叶图作频率分布直方图的步骤

频率分布:样本中所有数据(或者数据组)的频率和样本容量的比就是该数据的频率,所有数据(或者数据组)的频率的分布变化规律叫做频率分布,可以用频率分布表,频率分布折线图,茎叶图,频率分布直方图来表示.频率分布折线图:如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起,就得到一条折线,称这条折线为本组数据的频率折线图。

频数分布表:反映总体频率分布的表格。

一般地,编制频率分布表的步骤如下:(1)求全距,决定组数和组距;(2)分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;(3)登记频数,计算频率,列出频率分布表。

茎叶图:(1)茎是指中间的一列数,叶是从茎的旁边生长出来的数。

(2)制作茎叶图的方法是:将所有两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出;(3)茎叶图的性质:①茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况。

②茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况。

1、频率分布样本中所有数据(或者数据组)的频率和样本容量的比就是该数据的频率,所有数据(或者数据组)的频率的分布变化规律叫做频率分布,可以用频率分布表,频率分布折线图,茎叶图,频率分布直方图来表示.2、频率分布折线图如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起,就得到一条折线,称这条折线为本组数据的频率折线图。

3、频数分布表:反映总体频率分布的表格。

一般地,编制频率分布表的步骤如下:(1)求全距,决定组数和组距;(2)分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;(3)登记频数,计算频率,列出频率分布表茎叶图的性质:①茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况。

②茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况。

6章2节

6章2节
由于平均数与每一个样本的数据有 关,所以任何一个样本数据的改变都会 引起平均数的改变,这是众数、中位数 不具有的性质.也正因为这个原因,与 众数、中位数比较起来,平均数可以反 映出更多的关于样本数据全体的信息, 但平均数受数据中极端值的影响较大, 这使其在估计总体时可靠性降低.
基础知识梳理
由于上式含绝对值, 运算不太方便, 因此, 通常改为如下公式来计算标准差: s = 1 2 2 2 [( x 1- x ) +(x2- x ) +„+(xn- x ) ] n . (5)方差:从数学的角度考虑,有时 用标准差的平方 s2(方差)来代替标准差, 作为衡量样本数据离散程度的工具, s2 1 = n [(x1 - x )2 + (x2 - x )2 + „ + (xn - x )2].
课堂互动讲练
【点评】 一般用频率分布直方图反映样 本的频率分布,从而对总体的频率分布作出估 计.其具体步骤如下: ①将数据分组,确定合适的组距,列出频 率分布表,本题中已经给出频率分布表;②明 确纵、横轴的意义,纵轴表示 ,频率= ,横 轴表示样本数据,画出直方图;③直方图中每 一个小长方形的面积是样本数据落在这个区间 上的频率,所有的小长方形的面积之和等于1, 即频率之和为1,由此可以估计样本数据落在 某个区间的频率或概率或者总体的数字特征.
三基能力强化
1.200辆汽车经过某一雷达地区, 时速频率分布直方图如图所示,则时速 不低于60 km/h的汽车为________辆.
三基能力强化
解析:由频率分布直方图得时速不 低于60 km/h的车辆数为(0.028×10+0.01 0×10)×200=76. 答案:76
三基能力强化
2.某射手在一次训练中五次射击的 成绩分别为9.4,9.4,9.4,9.6,9.7,则该射 手成绩的方差是________.

茎叶图

茎叶图

高中数学新课程中茎叶图的考点茎叶图又称“枝叶图”,与频率分布直方图一样,都是用来表示样本数据的一种统计图。

通常我们将数的大小基本不变或者变化不大的位作为“茎”,将变化大的位作为“叶”。

1.茎叶图的书写规则书写规则是:“茎”一般要求按照从小到大的顺序从上到下列出。

公用“茎”的“叶”一般也按照从小到大的顺序同行列出,注意重复的项也必须写上。

2.特点图形形状的特点:(1)若图形扁而宽,则说明整体的样本数据集中,样本数据的差异性不大。

(2)若图形长而窄,则说明样本数据比较分散,标准差较大,距组较大。

3.优缺点同频率分布直方图比较,茎叶图中所有的原始数据都可以得到。

并且在以后新增加数据的时候容易修改,但直方图这样操作起来就很困难了。

茎叶图也有其缺点,就是当样本数据比较多的时候,很难进行此操作。

如果我们将茎叶图的茎和叶按逆时针方向旋转90度,得到的是一个没有坐标的直方图。

通过此操作,很容易求出各个数据段的频率分布或频率百分比。

下面我们通过几个例子来阐述上述问题。

例1右图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图。

其中左边两位数字从左到右的分别表示学生身高的百位数字和十位数字,15 5 5 7 8右边的数字表示学生身高的个位数字,从图中可以得到这10个同学16 1 3 3 5身高的中位数是()17 1 2A.161cm B. 162cm解析:15 ∣5表示身高155cm。

这10个数字分别是:155cm、155cm、157cm、158cm、161cm、163c m、163cm、165cm、171cm、172cm。

所以中位数为 =162cm。

评注:由样本数据来求样本的中位数,一般先将所有的数据按从小到大排序。

若个数为奇数则取正中间一个,若个数为偶数,则取中间两个数的平均值。

茎叶图的优点就是对数据不需要排序,可以快速的求出统计量。

例2某中学高一(1)班中段考试数学成绩的茎叶图如右图所示,那么优秀率(90分以上)和最低分分别是() 5 1235%,15 %,51 6 09%,51 %,15 7 98 023367789 1245解析:我们可以将茎叶图转化为样本数据,可以知道最低分为51分。

2.2.1频率分布直方图、茎叶图

2.2.1频率分布直方图、茎叶图

画一组数据的频率分布直方图, 画一组数据的频率分布直方图,可以按以下的 步骤进行: 步骤进行:
一、求极差,即数据中最大值与最小值的差 极差, 极差/组数 二、决定组距与组数 :组距 极差 组数 决定组距与组数 组距=极差 组距 三、分组,通常对组内数值所在区间, 通常对组内数值所在区间, 分组 通常对组内数值所在区间 取左闭右开区间 , 最后一组取闭区间 左闭右开区间 四、登记频数 计算频率 列出频率分布表 登记频数,计算频率,列出 频数 计算频率 列出频率分布表 五、画出频率分布直方图(纵轴表示频率/组距) 画出频率分布直方图(纵轴表示频率/组距) 频率分布直方图 频率
说明: 说明 : 样本频率分布与总体频率分布 有什么关系? 有什么关系?
通过样本的频数分布、频率分布可以 通过样本的频数分布、频率分布可以 频数分布 估计总体的频率分布. 估计总体的频率分布.
如何用样本的频率分布 估计总体分布? 估计总体分布?
探究: 探究:我国是世界上严重缺水的国 家之一,城市缺水问题较为突出。 家之一,城市缺水问题较为突出。
2000年全国主要城市中缺水情况排在前10位的城市 2000年全国主要城市中缺水情况排在前10位的城市 年全国主要城市中缺水情况排在前10
某市政府为了节约生活用水, 例 某市政府为了节约生活用水,计划在本市试 行居民生活用水定额管理, 行居民生活用水定额管理,即确定一个居民月用水 量标准a ,用水量不超过 的部分按平价收费, 用水量不超过a 量标准a ,用水量不超过a的部分按平价收费,超过 的部分按议价收费。 a的部分按议价收费。 ①如果希望大部分居民的日常生活不受影响,那 如果希望大部分居民的日常生活不受影响, 么标准a定为多少比较合理呢? 么标准a定为多少比较合理呢 ②为了较合理地确定这个标准,你认为需要做 为了较合理地确定这个标准, 哪些工作? 哪些工作?

高考数学一轮复习第十一章统计与统计案例2用样本估计总体课件新人教A版2

高考数学一轮复习第十一章统计与统计案例2用样本估计总体课件新人教A版2
②绘制频率分布直方图的步骤为:a. 求极差
;b.决定组距与
组数;c. 将数据分组
;d.列频率分布表;e.画频率分布直方
图.
-3知识梳理
双基自测
(3)总体密度曲线
①频率分布折线图:连接频率分布直方图中各小长方形上端的中
点,就得到频率分布折线图.
②总体密度曲线:随着样本容量的增加,作图时所分的组数增加,
底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方
24
图如图所示,则在抽测的60株树木中,有
株树木的底部
周长小于100 cm.
解析 由题意知,在抽测的60株树木中,底部周长小于100 cm的株
数为(0.015+0.025)×10×60=24.
-11考点1
考点2
考点3
考点 1
组距减小,相应的频率分布折线图会越来越接近于一条光滑曲线,
统计中称这条光滑曲线为总体密度曲线.总体密度曲线反映了总体
在各个范围内取值的百分比,它能提供更加精细的信息.
(4)茎叶图:茎叶图中茎是指 中间 的一列数,叶是从茎的 旁边
生长出来的数.当样本数据较少时,用茎叶图表示数据的效果较好,
它不但可以保留所有信息,而且可以随时记录,给数据的记录和表
月平均用电量在[260,280)的用户有0.005×20×100=10(户),
月平均用电量在[280,300]的用户有0.002 5×20×100=5(户),抽
11
1
= ,
取比例为
25+15+10+5
5
所以月平均用电量在[220,240)的用户中应抽取25×
1
5 =5(户).
-14考点1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

频数 4 8 15 22 25 15 5 4 2 100
频率
0.04
0.08 0.15 0.22 0.25 0.15 0.05 0.04 0.02 1
频率/组距 0.08
0.16
0.3 0.44 0.5 0.3
0.1 0.08 0.04 2.00
第 五 步: 画 出 频 率 分 布 直 方 图.
频率/组距 (组距=0.5)
下表一组数据是某车间30名工人加工零件的个数, 设计一个 茎叶图表示这组数据,并说明这一车间的生产情况.
134 112 117 126 128 124 122 116 113 107 116 132 127 128 126 121 120 118 108 110 133 130 124 116 117 123 122 120 112 112
思考:从频率分布直方图中,你能得到任意 区间(a,b)的频率?有什么困难?
一、频率分布折线图与概率密度曲线
频率/组距 (取组距中点, 并连线 )
0.6
0.5
0.4
0.44

0.5
0.3
0.2
0.16
0.3
0.3
0.1 0.08 0
0.1
0.08
0.04
0.5
1 1.5
2
2.5
3
3.5 4
4.5
月均用水量/t
总体密度曲线:
在样本频率分布直方图中,当样本容量增加,作图时所 分的组数增加,组距减少,相应的频率折线图会越来越 接近于一条光滑曲线,统计中称这条光滑曲线为总体密 度曲线. 它能够精确地反映了总体在各个范围内取值的 百分比,它能给我们提供更加精细的信息. 频率
组距
0
a
b
月均用水量/t
思考
1.对于任何一个总体,它的密度曲线是不是一定存在?它 的密度曲线是否可以被非常准确地画出来? 2.图中阴影部分的面积表示什么?
极差 4.1 组数= 8.2 组距 0.5
所以将数据分成9组较合适. 第三步: 将数据分组:( 给出组的界限) [0, 0.5), [0.5, 1), [1, 1.5),……[4, 4.5) 共9组.
第四步: 列频率分布表.
(包括分组、频数、频率、频率/组距)
组距=0.5
分组 [0-0.5) [0.5-1) [1-1.5) [1.5-2) [2-2.5) [2.5-3) [3-3.5) [3.5-4) [4-4.5) 合计
合作探究 :茎叶图 (一种被用来表示数据的图)
例: 甲乙两人比赛得分记录如下: 甲:13, 51, 23, 8, 26, 38, 16, 33, 14, 28, 39 乙:49, 24, 12, 31, 50, 31, 44, 36, 15, 37, 25, 36, 39 用茎叶图表示两人成绩,说明哪一个成绩好.
频率
组距
0
a
b
月均用水量/t
1.实际上,尽管有些总体密度曲线是客观存在 的,但一般很难想函数图象那样准确地画出来, 我们只能用样本的频率分布对它进行估计,一 般来说,样本容量越大,这种估计就越精确
二、茎叶图
当数据是两位有效数字时,用中间的数字表示十位数,即第一 个有效数字,两边的数字表示个位数,即第二个有效数字,它 的中间部分像植物的茎,两边部分像植物茎上长出来的叶子, 因此通常把这样的图叫做茎叶图

8 4, 6, 3 3, 6, 8 3, 8, 9 1 0 1 2 3 4 5

2, 5, 1, 4, 0
5 4 6, 1, 6, 7, 9 9



画茎叶图要注意什么:
1.将每个数据分为茎(高位)和叶(低位) 两部分,在此例中,茎为十位上的数字, 叶为个位上的数字; 2.将最小茎和最大茎之间的数按大小 次序排成一列,写在左(右)侧; 3.将各个数据的叶按大小次序 写在其茎右(左)侧.
频数 2 11 13 4 茎 10 11 12 13 叶 7, 8 2, 7, 6, 3, 6, 8, 6, 7, 2, 2,0 6, 8, 4, 2, 7, 8, 6, 1, 0, 4, 3, 2, 0 4, 2, 3, 0
小结:
1.不易知一个总体的分布情况时,往往从总体中 抽取一个样本,用样本的频率分布去估计总体的 频率分布,样本容量越大,估计就越精确. 2. 目前有:频率分布表、直方图、茎叶图. 3.当总体中的个体取值很少时,用茎叶图估计总 体的分布;当总体中的个体取值较多时,将样本 数据恰当分组,用各组的频率分布描述总体的分 布,方法是用频率分布表或频率分布直方图。
茎 叶 0 8 1 345 2 36 8 3 389 4 5 1
茎叶图的特征:
两个优点: 一是:没有原始数据信息的损失; 二是:茎叶图中的数据可以随时记录,随 时添加,方便记录与表示。 三个局限: 一是:只便于表示两位有效数字的数据; 二是:茎叶图只方便记录两组的数据; 三是:数据量不能太大
练习:
用样本的频率分布估计总体分布
衡南五中 谭亮
用样本的频率分布估计总体分布 一 频率分布图和频率分布直方图
二 频率分布折线图 和总体密度曲线

莖叶图
下表给出100位居民的月均用水量表
为此我们要对这些数据进行整理与分析
第一步: 求极差: (数据组中最大值与最小值的差距) 最大值= 4.3 最小值= 0.2 所以极差= 4.3-0.2 = 4.1 第二步: 决定组距与组数: (强调取整) 当样本容量不超过100时, 按照数据的多少, 常分成5~12组. 为方便组距的选择应力求”取整”. 本题如果组距为0.5(t). 则
0.6
0.5 0.5请大家阅读第 0.44 67页,直方图有 0.4 哪些优点和缺 0.3 0.3 0.3 点?
小长方形的面 月均用水量最 多的在哪个区 积总和 积=?=? 间?
0.2
0.16
0.1 0.08 0
0.1
0.08
0.04
0.5
1 1.5
2
2.5
3
3.5 4
4.5
月均用水量/t
频率分布直方图的特征: 从频率分布直方图可以清楚的看出数据分布 的总体趋势。 从频率分布直方图得不出原始的数据内容, 把数据表示成直方图后,原有的具体数据信 息就被抹掉了。
相关文档
最新文档