勾股定理说课PPT课件
合集下载
人教版数学八年级下册17.1《勾股定理》说课课件_(共13张PPT)
教学反思
成功之处 不足之处
A
B
C
图1
2、动手操作,探索新知
A
CC
A
BB 图一 图1-1
C
C AA
B
B
图二 图1-2
引导学生在格子图上画一 个直角边分别为3和4的直 角三角形,并以其各边为 边长作正方形A、B、C。 同时给出图二,让学生小 组合作计算图一和图二中 正方形A、B、C的面积。
正方形面积间的关系:
SA+SB=SC 猜想:直角三角形三边之 间的关系,即:两直角边 的平方和等于斜边的平方。
勾股定理是人类文明的成果,几乎所有拥有古 代文化的民族和国家都对勾股定理有所研究.在地 球以外是否存在生命这个问题上,我国数学家华罗 庚曾认为,如果外星人也拥有文明的话,我们可以 用“勾股定理”的图形,作为人类探寻“外星人” 并与“外星人”联系的“语言”.
教学设计:
一、学情分析 二、教材分析 三、教法学法 四、教学过程设计 五、课后反思
学 有利因素
情
分
不利因素
析
教材分析
教材的地位和作用 教学目标 教学重点、难点
目标分析
知识与技能
过程与方法
情感态度与 价值观
教学重点、难点
重点:勾股定理的及其应用
难点:勾股定理的证明
难点成因
教法学法
教学过程
创设情境—引入新课 动手操作—探索新知 归纳猜想—引出命题 证明猜想—得到定理 运用知识—解决问题 归纳小结—梳理知识 布置作业—巩固知识
创设情境,引入新课
我国是最早了解勾股定理的国家之一.早在 三千多年前, 周朝的数学家商高就提出,将一根直 尺折成一个直角,如果 勾等于三,股等于四, 那么弦就等于五,即“勾三、股四、 弦五”.它被记载于我国古代著名的数学著作《周髀算经》中, 所以在我国人们就把这个定理叫作 “商高定理”。 在这本书 中 的另一处,还记载了勾股定理的一般形式.这一发现,至 少早于古希腊人500多年.作为一名中国人,我们应为我国古 人的博学和多思而感到自豪!
勾股定理数学优秀ppt课件
实际应用
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
数学:18.1勾股定理说课课件(人教新课标八年级下)
教学方法、教学手段的选择
数学是一门培养人的思维,发展人的思维的重 要学科,因此在教学中,不仅要使学生“知其 然”,而且还要使学生“知其所以然”。针对 八年级学生的认知结构和心理特征,本节课选 择“引导探索法”,由浅到深,由特殊到一般 的提出问题,引导学生自主探索,合作交流, 这种教学理念紧随新课改理念,也反映了时代 精神。基本的教学程序是“提出问题-实验操 作 -归纳验证-问题解决-课堂小结-布置作业” 六个方面。
学法指导
新课标明确提出要培养“可持续发展的
学生”,因此教师要有组织、有目的、 有针对性的引导学生并参入到学习活动 中,鼓励学生采用自主探索,合作交流 的研讨式学习方式,培养学生“动手”、 “动脑”、“动口”的习惯与能力,使 学生真正成为学习的主人。
教学程序设计
教学流程图
创 设 情 境 探 索 新 知 实 验 操 作 获 取 新 知 归 纳 验 证 完 善 新 知 问 题 解 决 应 用 新 知 课 堂 小 结 巩 固 新 知
2、再问:
当边长不为整数的直角三角形是否也存在这一结论 呢?投影例题:一个边长分别为1.5,3.6,3.9这种含有 小数的直角三角形,让学生计算。
3.6
3.9
1.5
归纳验证
对于定理的证明,是本堂课的难点,所以我采取 四人小组进行分组讨论,让学生尝试解决。学生讨论 时,我进行巡回指导。如果有些学生感到困难,可以 进行适当点拨, 在这一环节中,学生充分讨论,各抒己 见,充分暴露其思维过程。通过学生的互相讨论,激 发学生的思维活动,可以发现一些解题的方法。 学生代表上台展示拼图结果,对学生的不同解法用 实物投影仪展示出来,选一种方法用电脑显示详细解 题过程.
10分钟
5、课堂小结
人教版八年级下册数学《勾股定理》说课研讨教学复习课件
课堂检测
拓广探索题
如图,边长为1的正方体中,一只蚂蚁从顶点A出发沿着
正方体的外表面爬到顶点B的最短距离是( B )
A.3
B. 5
C.2
D.1
2
B
C
B
1
1
A
A
2
提示: 由于蚂蚁是沿正方体的外表面爬行的,
故需把正方体展开成平面图形(如图).
课堂小结
勾股定理 的应用
化非直角三角形为直角三角形 将实际问题转化为直角三角形模型
解:在Rt△AOB中,∵OA=5,OB=4, ∴AB2=OA2+OB2=52+42=41,
∴AB= 41 .
∴A、B两点间的距离为 41 .
课堂检测
4.一木杆在离地面3米处折断,木杆顶端落在离木杆底端4米处. 木杆折断之前有多高?
解:由题意可知,在Rt△RPQ中, ∵PR=3,PQ=4,
∴RQ2=PR2+PQ2=32+42=25, ∴RQ=5,PR+RQ=3+5=8.
小于AC即可. 3.怎样判定这块木板能否通过木框?
求出斜边的长,与木板的宽比较.
探究新知
解:在Rt△ABC中,根据勾股定理, AC2=AB2+BC2=12+22=5. AC= 5 ≈2.24. 因为AC大于木板的宽2.2 m,所
以木板能从门框内通过.
巩固练习
如图,池塘边有两点A,B,点C是与BA方向成直角的AC方 向上一点,测得BC=60 m,AC=20m.求A,B两点间的距离
1.求出下列直角三角形中未知的边.
B
B
AC=8 6
C
10
8
15
A
C
《勾股定理》PPT优质课件(第1课时)
A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,
(精选幻灯片)勾股定理ppt课件
2 2 22
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
勾股定理课件ppt
THANKS
感谢观看
衡性非常重要。
03
地貌形成
地貌的形成过程中涉及到物体的高度和距离的关系,而这种关系可以用
勾股定理来描述,因此勾股定理可以帮助我们理解地貌的形成过程。
06
总结与回顾
勾股定理的重要性和应用价值
勾股定理是几何学中一个非常重要的定理,它揭示了直角三角形三边之间的数量关 系,对于解决几何问题具有关键作用。
建筑中的支撑结构需要精确计算和设计,勾股定理可以帮助建筑师确 定支撑结构的尺寸和形状,以确保建筑物的承重能力。
勾股定理在航天工程中的应用
确定飞行轨道
在航天工程中,勾股定理被用来确定飞行器的轨道和速度 ,以确保飞行器能够准确到达目标。
导航
飞行器在飞行过程中需要精确的导航,勾股定理可以帮助 飞行员计算出飞行器的位置和方向,以确保飞行器的安全 和准确性。
04
勾股定理的变式和推广
勾股定理的变式
勾股定理的逆定理
如果一个三角形的三条边满足勾 股定理的条件,那么这个三角形
是直角三角形。
勾股定理的推广
如果一个三角形的两条边长分别 为a和b,且它们的夹角为α,那 么这个三角形的第三条边长c满
足$c^2 = a^2 + b^2 2ab\cos(α)$。
勾股定理的变形
在现实生活中,勾股定理的应用非常广泛,例如在建筑、测量、航空等领域都有实 际应用。
通过对勾股定理的学习和应用,可以更好地理解几何学的基本概念和原理,提高解 决实际问题的能力。
学习勾股定理的收获和感悟
学习勾股定理需要掌握其基本 概念和定理,了解其历史背景 和证明方法。
通过学习和实践,可以培养自 己的逻辑思维能力和空间想象 力,同时提高对数学的兴趣和 热情。
勾股定理说课课件Microsoft PowerPoint 演示文稿
• (1)动手制作:每人用硬纸板/片制作四个两条 1 动手制作:每人用硬纸板/ 直角边分别为6cm 8cm的直角三角形模型 6cm和 的直角三角形模型; 直角边分别为6cm和8cm的直角三角形模型;边长 分别为2cm 6cm、8cm、10cm的正方形各一个 2cm、 的正方形各一个。 分别为2cm、6cm、8cm、10cm的正方形各一个。 • (2)事先准备好的标有统一单位的直角坐标系。 事先准备好的标有统一单位的直角坐标系。 • (3)学生分史故事,每组至少要搜集3 股定理的历史故事,每组至少要搜集3个不同的故 事。
GOUGUDINGLI
勾 股 定 理
课内探究
一、填空: 填空:
1、Rt△ABC中,∠C= 90°a=6,c=10。求b=____ 、 △ 中 = ° , 。 =____ 2、已知:已知直角三角形的两边长分别为 、4,求第三边 、已知:已知直角三角形的两边长分别为3、 , 长为_____ 长为_____
GOUGUDINGLI
勾 股 定 理
目标定位 .重点 重点、 2 .重点、难点
教学重点: 教学重点:勾股定理的探索及简单应用 . 教学难点: 教学难点:勾股定理的证明 . 突破方法:采用学生动手拼图, 突破方法:采用学生动手拼图,自主探 合作交流法. 索,合作交流法.
GOUGUDINGLI
勾 股 定 理
勾 股 定 理
优胜小组评选: 优胜小组评选: G1: : G2: G3: G4: G5: G6: G7: G8:
板书设计
§5.2 勾股定理
数学表达式
学生习题板书: 学生习题板书:
学生习题板书: 学生习题板书:
GOUGUDINGLI
诚请各位专家同行指导
2010-7
勾股定理ppt课件
人教版八年级(下册)
17.1 勾股定理
创设情景 引入新课
说一说:它是由哪些基本几何图形组成?
师生互动 探究规律
毕达哥拉斯
假设每个小等腰直角三角形的面积为1.
三个正方形A, B,C面积SA , SB , SC分别是多少?
SA=2, SB=2, SC=4.
SA , SB , SC之间有什么等量关系呢?
勾 股
弦 勾
股
观察欣赏 感知文化
2000多年来,人们对勾股定理的证明颇感兴趣.不但因为这个定理重要、基本,还因为这个 定理贴近人们的生活实际.以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨、研究它 的证明,新的证法不断出现,现约有500种证明方法,是数学定理中证明方法最多的定理之一.
a b
c
b
ac
b
ac
b
动手实践 验证猜想
猜想 如果直角三角形的两条直角边长分别为a,b,斜边长为 c, 那么a2+b2=c2.
b ca
S小正方形= S大正方形- 4S直角三角形.
(a-b)2 = c2 -
.
a2-2ab+ b2 = c2 - 2ab .
∴ a2+ b2 = c2 .
动手实践 验证猜想
猜想 如果直角三角形的两条直角边长分别为a,b,斜边长为 c, 那么a2+b2=c2.
归纳总结 畅谈收获 本节课中你还有其他的收获吗?
美丽的勾股树
课后作业 深化新知
作业:
(1)整理课堂上所提到的勾股定理的证明方法; (2)教材中的练习; (3)通过上网等方式查找勾股定理的相关资料.
例1. 求出下列直角三角形中未知的边:
D
A
10
17.1 勾股定理
创设情景 引入新课
说一说:它是由哪些基本几何图形组成?
师生互动 探究规律
毕达哥拉斯
假设每个小等腰直角三角形的面积为1.
三个正方形A, B,C面积SA , SB , SC分别是多少?
SA=2, SB=2, SC=4.
SA , SB , SC之间有什么等量关系呢?
勾 股
弦 勾
股
观察欣赏 感知文化
2000多年来,人们对勾股定理的证明颇感兴趣.不但因为这个定理重要、基本,还因为这个 定理贴近人们的生活实际.以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨、研究它 的证明,新的证法不断出现,现约有500种证明方法,是数学定理中证明方法最多的定理之一.
a b
c
b
ac
b
ac
b
动手实践 验证猜想
猜想 如果直角三角形的两条直角边长分别为a,b,斜边长为 c, 那么a2+b2=c2.
b ca
S小正方形= S大正方形- 4S直角三角形.
(a-b)2 = c2 -
.
a2-2ab+ b2 = c2 - 2ab .
∴ a2+ b2 = c2 .
动手实践 验证猜想
猜想 如果直角三角形的两条直角边长分别为a,b,斜边长为 c, 那么a2+b2=c2.
归纳总结 畅谈收获 本节课中你还有其他的收获吗?
美丽的勾股树
课后作业 深化新知
作业:
(1)整理课堂上所提到的勾股定理的证明方法; (2)教材中的练习; (3)通过上网等方式查找勾股定理的相关资料.
例1. 求出下列直角三角形中未知的边:
D
A
10
《勾股定理》说课PPT
教学目标
1.【知识与技能】
①理解并掌握勾股定理的内容和证明,能够灵活运 用勾股定理及其计算; ②通过观察分析,大胆猜想,并探索勾股定理,培 养学生动手操作、合作交流、逻辑推理的能力。
2.【过程与方法】
在探索勾股定理的过程中,让学生经历“观察-猜想 -归纳-验证”的数学思想,并体会数形结合和从特 殊到一般的思想方法。
深入探究 网络信息
要求学生利用网格画一个两直角边分别 为2、3的三角形,用不同的方法求面积,以 及探究直角三角形三边存在的关系。
(2+3)2-4*1/2*2*3=13=22+32 或4*1/2*2*3+1=13
利用正方形网格让学生感知其的实用性及便 捷性。
2
规律猜想 直达快车
由上面探究我们可以得出在直角三角形中,两直角 边的平方和等于斜边的平方。由此提出命题:如果 一个三角形是直角三角形,那么其两直角边的平方 和等于斜边的平方。分析并根据命题画图,写出已 知和求证。画图:a2+b2=c2。联想到用字母表示数字 的方法,贯彻代数的应用思想。
数字验证 拼图效果
证明勾股定理:证明该命题的方法有很多,先让学 生进行讨论回答。展示分割拼接的过程,展示拼图 出的效果,鼓励学生代表作示范演示,然后介绍古 代数学家赵爽的的证明方法,老师通过准备的PPT进 行演示。
实践应用 拓展提高
1.出示题目①在△ABC中,∠C=900,AC=21m,BC=28m. i 求△ABC的面积 ii斜边AB的长 iii 求高CD. 引导学生进行解决问题 ②媒体课件演示FLASH小动画片:某楼房三楼失火,消防 员赶来救火,了解到每层楼高3米,消防员取来6.5米长 的云梯,如果梯子底部离墙基距离为2.5米。问:消防员 能否进入三楼救火? 布置作业 试一试:你能把两个边长分别为5、12的正方形经过切割 后拼接成一个正方形吗?如果可以,那么所得到的新正 方形的边长为多少呢?
勾股定理说课稿ppt课件
(二)学情分析
八年级学生已初步具有几何图形的 观察,几何证明的理论思维能力。希 望老师预设便于他们进行观察的几何 环境,给他们发表自己见解和表现自 己才华的机会,希望老师满足他们的 创造愿望,让他们实际操作,使他们 获得施展自己创造才能的机会。
580 630
(三)教学方法
数学是一门培养人的思维,发展人的思维的重要学 科,因此,在教学中,要展现获取知识和方法的思维过 程, 针对八年级学生的知识结构和心理特征,本节 课采取引导探索法,由浅入深,由特殊到一般地提 出问题。以导为主,采用设疑的形式,让学生通过观 察、分析、讨论、操作、归纳,理解定理,提高学 生动手操作能力,以及分析问题和解决问题的能力。 5 使学生得到获得新知的成功感受,从而激发学生钻 m 研新知。并利用教具与多媒体进行教学。
2m
活动2、探索勾股定理
探究一(观察特例→发现新知)
{问题一}:在图中你能发现哪些基本图形? {问题二}:与等腰直角三角形相邻的正方形面积之间 有怎样的关系? {问题三}:如图,每个小方格的面积为1个单位,你能 写出正方形A、B、C的面积吗? {问题四}:由此你可以得出等腰直角三角形三边存在着一种怎样特殊的数量关 系吗? 学生在独立探究的基础上观察图片,计算面积,分组交流, 猜想和归纳。 教师参与学生小组活动,指导,倾听学生交流。 设计意图:通过讲传说故事来激发学生学习兴趣,引导学生进入学习状态。 学生会很积极的投入到探索这个问题的实践中。 “问题是思维的起点”,通过层层设问,引导学生发现新知。由正方形的面 积等于边长的平方归纳出:等腰直角三角形两条直角边的平方和等于斜边的平 方。 {问题五}:等腰直角三角形三边具有这样的特殊关系,那么一般的直角三角形 呢?
B
B
350 A
勾股定理说课(完整版)PPT课件
教学目标
(1)、知识与技能: 理解勾股定理的两种 证明方法——毕达哥拉斯证法和赵爽的弦图 证法;应用勾股定理解决简单的直角三角形 三边计算问题 (2)、过程与方法:通过对直角三角形三边 关系的猜想验证,经历从特殊到一般的探索 过程,发展合情推理,体会数形结合的思想 (3)、情感态度与价值观:在勾股定理的探 索过程中感受数学文化的内涵,增进数学学 习的信心
2、直角ABC的一条直角边a=10,斜边 c=26,则b=
( 24 )。
3、已知:∠C=90°,a=6, a:b=3:4, 求b和c。
c=10 b=8
ac
b
1.说一说本节课我有哪些收获? 2.本节课我还有哪些疑惑?
-
作业
必做题:课本69页第一题。 选做题:收集有关勾股定理的其它 证明方法,下节课展示、交流。
图2
4
9
13
图2
C
A
B
图3
图3
9 25 34
A、B、 C面积 关系
直角三 角形三 边关系
sA+sB=sC
两直角边的平方和 等于斜边的平方
ac
结论
b
直角三角形两直角边的平方和等于斜边的平方.
是不是所有的直角三角形都具有这样的特点呢? 这就需要我们对一个一般的直角三角形进行证 明.到目前为止,对这个命题的证明方法已有几百 种之多.下面我们就来看一看我国数学家赵爽是怎 样证明这个命题的.
教学重点、难点
重点:探究并理解勾股定理 难点:探索勾股定理的验证方法
教法 分析
平行线的性质是学生对图形性质的第一 次系统研究,对于研究过程和研究方法都 是陌生的,所以学生需要在老师的引导下 类比研究平行线的判定的过程来构建平行 线的性质的研究过程。
《勾股定理》PPT课件
AC 2 6
1.在△ABC中,∠C=90°.
练 习
(1)若a=6,c=10,则b=
;
(2)若a=12,b=9,则c= (3)若c=25,b=15,则a=
; ;
2.等边三角形边长为10,求它的高及面积。 C 3.如图,在△ABC中,C=90°,
CD为斜边AB上的高,你可以得 b 出哪些与边有关的结论? A m h
c2
;
a c
c a
b a
∵ c2= 4•ab/2 +(b-a)2 =2ab+b2-2ab+a2 =a2+b2 ∴a2+b2=c2
a
b
b c
b c
2 (a+b) 大正方形的面积可以表示为 ;
也可以表示为 c2 +4•ab/2
a b
a
b
c
c
a
b
c
∵ (a+b)2 = c2 + 4•ab/2 a2+2ab+b2 = c2 +2ab ∴a2+b2=c2
a
B D n
如图,在△ABC中,AB=AC,D点在CB延长线上, A 求证:AD2-AB2=BD· CD
证明:过A作AE⊥BC于E ∵AB=AC,∴BE=CE D 在Rt △ADE中, AD2=AE2+DE2 在Rt △ABE中, AB2=AE2+BE2 ∴ AD2-AB2=(AE2+DE2)-(AE2+BE2) B E C
a b
c
勾股定理的证明
证明方法3:赵爽弦图,动手拼图
勾股定理的证明
证明方法4:美国总统加菲尔德的证明方法
a b
《勾股定理》PPT
综合题:3.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求 △ABC的周长.
小贴士
为什么叫勾股定理这个名称呢? 在中国古代,人们把弯曲成直角的手臂的上半部分称 为“勾”,下半部分称为“股”.我国古代学者把直角三 角形较短的直角边称为“勾”,较长的直角边称为 “股”,斜边称为“弦”.由于命题1反映的正好是直 角三角形三边的关系,所以叫做勾股定理.
勾
股
勾2+股2=弦2 国外又叫毕达哥拉斯定理
当BC为斜边时,如图,BC 42 32 5.
B B
4
3
C 图 A
4
A
3
图
C
归纳 当直角三角形中所给的两条边没有指明是斜边或 直角边时,其中一较长边可能是直角边,也可能是斜 边,这种情况下一定要进行分类讨论,否则容易丢解.
当堂练习
1.下列说法中,正确的是
( C)
A.已知a,b,c是三角形的三边,则a2+b2=c2
新知应用
例1 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c;
B
(2)若a=1,c=2,求b.
a
解:(1)在Rt△ABC中, ∠C=90°
C
c a2 b2 52 52 50 5 2;
c
A
b
(2)在Rt△ABC中, ∠C=90°
b c2 a2 22 12 3.
注意:1.看好哪个角是直角,选择正确的公式来求边长
C
问题2 图中正方形A、B、C所围成的等腰直角三角 形三边之间有什么数量关系?
AB C
S正方形A S正方形B S正方形C
一直角边2 +
另一直角边2 =
斜边2
小贴士
为什么叫勾股定理这个名称呢? 在中国古代,人们把弯曲成直角的手臂的上半部分称 为“勾”,下半部分称为“股”.我国古代学者把直角三 角形较短的直角边称为“勾”,较长的直角边称为 “股”,斜边称为“弦”.由于命题1反映的正好是直 角三角形三边的关系,所以叫做勾股定理.
勾
股
勾2+股2=弦2 国外又叫毕达哥拉斯定理
当BC为斜边时,如图,BC 42 32 5.
B B
4
3
C 图 A
4
A
3
图
C
归纳 当直角三角形中所给的两条边没有指明是斜边或 直角边时,其中一较长边可能是直角边,也可能是斜 边,这种情况下一定要进行分类讨论,否则容易丢解.
当堂练习
1.下列说法中,正确的是
( C)
A.已知a,b,c是三角形的三边,则a2+b2=c2
新知应用
例1 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c;
B
(2)若a=1,c=2,求b.
a
解:(1)在Rt△ABC中, ∠C=90°
C
c a2 b2 52 52 50 5 2;
c
A
b
(2)在Rt△ABC中, ∠C=90°
b c2 a2 22 12 3.
注意:1.看好哪个角是直角,选择正确的公式来求边长
C
问题2 图中正方形A、B、C所围成的等腰直角三角 形三边之间有什么数量关系?
AB C
S正方形A S正方形B S正方形C
一直角边2 +
另一直角边2 =
斜边2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
观察猜测 动手操作 交流讨论 归纳总结
教学程序设计
教学流程图
回顾小结深化新知 学以致用拓展新知 学生活动验证新知 拼图验证归纳新知 观察特例发现新知 创设情境引入新课
《 勾股定理》说课
《 勾股定理》说课
教学程序设计
第一环节 创设情境 引入新课
赵爽弦图 中国——赵爽
北京欢迎您!
18.1勾股定理(1)
勾股命定题理1: 如果直角三角形的两直角边长分别为
, a,斜b 边长为 ,那c 么 a2 b2 c2.
勾
弦
c
a
股bΒιβλιοθήκη 股世界两千两多千多年年前前,,古古希希腊有腊个有哥拉个毕达哥拉斯 学斯学派派,,他他们们首首先发先现发了勾现股了定勾理,股因定此 理,因此在 在国国外外人人们们通通常常称勾称股勾定理股为定毕理达哥为拉毕斯 达哥拉斯定 定理理。。为为了了纪纪念念毕达毕哥达拉斯哥学拉派斯,1学95派5 ,1955年 年希希腊腊曾曾经经发发行行了一了枚一纪念枚票纪。念邮票。
结论:
a2 b2 c2
a
b c
a
c
b
(a b)2 c2 4 1 ab 2
a2 b2 c2
《 勾股定理》说课
教学程序设计
第五环节 学以致用 拓展新知
基础训练
1、分别求出图中A、B的面积
A
81
144
B 196
289
基础训练
2 .求出下列直角三角形中未知边的长度.
A
A
B
17
3 C4
B
《 勾股定理》说课
教学程序设计
第四环节 学生活动 验证新知
动y动=手0
尝试用下面四个全等的直角三角形围成一个 正方形,然后通过面积分割法和整体计算法分别 求出正方形的的面积,看看你有什么发现。
c
c
c
c
a
a
a
a
b
b
b
b
动y动=0脑
c a
b c
b
a
(b a)2 4 1 ab c2 2
b2 2ab a2 2ab c2
小方格的面积均为1)
B AB
C
图1
C A
A C
B图1
图2
A的面 B的面积 C的面 积(单位 (单位 积(单位
面积) 面积) 面积)
图1 4 9 13
图2 9 25 34
A、B、 C 面积
关系
sA+sB=sC
网格中 直角三
两条直角边的平方和
角形三 等于斜边的平方.
边关系
命题1: 如果直角三角形的两直角边长分别为
A
8
C
13
12
B
C
归纳:
已知直角三角形任意两边,能求第三边.
基y础=0训练
3.在一个直角三角形中, 两边 长分别为6、8,则第三边的长为
________
实际应用
24m 9m
?
4、如图,大风将一根木制 旗杆吹裂,随时都可能倒 下,十分危急。接警后 “119”迅速赶到现场,并 决定从断裂处将旗杆折断。 现在需要划出一个安全警 戒区域,那么你能确定这 个安全区域的半径至少是 多少米吗?
本节课遵循启发式教学原则,在定理推导 上采用引导发现法,由浅入深,由特殊到一般 地发现问题。在定理证明上,采用自主探究法, 引导学生通过观察,自主探索,实践推理,获 得结论。教学手段上充分利用多媒体,提高教 学效率,增大课堂容量。
观察、发现、操作、验证、归纳
合作交流
自主探索
《 勾股定理》说课
学习方法
说课内容
《 勾股定理》说课
教学方 法选择
学法 指导
教材 分析
教学 过程
说
《 勾股定理》说课
教材分析
本节课是学生在已经掌握了直角三角形
▪ 教材地位作用: 有关性质的基础上进行学习的,学好本节不
仅为下节勾股定理的逆定理打下良好基础,
▪ 教学目标
而且为今后学习解直角三角形奠定基础。勾
▪ 知识技能: ▪ 数学思考: ▪ 解决问题:
, a,斜b 边长为 ,那c 么 a2 b2 c2.
c a
b
《 勾股定理》说课
教学程序设计
第三环节 拼图验证 归纳新知
观察操作:
仿照课本中赵爽的思路,将边长为 a、 b 的两个连体
正方形,拼成一个新的正方形.
ca
b
ab2
cb2
cb 2
〓
ba a
a
M a P bb
N
定理:经过证明被认为是正确的命题叫做定理 .
国我家国之是一。最早早在三了千解多勾年前股,定理的 国国家家之之一。一早。在早三千在多三年前千,多年前,周 朝国家数之学一。家早商在高三千就多提年前出,,将一根直 尺国家折之成一。一早个在直三千角多,年前如,果勾等于三, 股国家等之于一。四早,在那三千么多弦年前就,等于五,即 “国家勾之三一。、早股在四三千、多弦年前五,”,它被记 载国家于之我一。国早古在代三千著多名年前的,数学著作《 周国家髀之算一。经早》在中三千。多年前
▪ 情感态度:
通发生过学分对习析勾兴和股趣解,定决培理问养历题学史的生的能的了力民解。族,感自受豪数感学和文钻化研,精激神。
▪ 教学重点、难点:
【教学重点】探索和证明勾股定理 【教学难点】用拼图法的方法证明勾股定理
《 勾股定理》说课
教学方法、手段的选择
定理推导上采用引导发现法;
定理证明上采用自主探究法。
思维拓展
已 1 = 2 = S 3 = S 1 4 = 知 3 S 5 、 2 S 6 、 , S 4 7 的 , S ,
S2 S 1S 5
S 3
S4
S6
S 7
结论:
S1+S2+S3+S4 =S5+S6 =S7
1
1
美丽的勾股树
《 勾股定理》说课
教学程序设计
第六环节 回顾总结 深化新知
谈谈有何收获
《 勾股定理》说课
教学程序设计
第二环节 观察特例 发现新知
发现:等腰直角三角形两条直角边的平方和等于斜边的平方
sA+sB=sC 即 a2 + b 2= c 2
毕达哥拉斯(公元前572—前 497年),古希腊著名的哲学 家、数学家、天文学家.
A
B
Aa c bB
C C
猜一猜:等腰直角三角形有上述特点,网 格中的直角三角形也有这个特点吗?(每个
这节课你学习了那些知 识? 能谈谈你的收获吗?
本课小结:
▪ 1、今天我们通过观察、猜想、探索、证 明得到了勾股定理:如果直角三角形的两 直角边长分别为a 、b,斜边长为c,那么 a2 b2 c2
了会在解用学勾面股生股积定经定法理历理证揭“的明示观发勾了察现股直—过定角猜程理三想,;角—掌培形归握养三纳勾学边—股生之验定在间证理实的”的际数内生量容活关, 中勾体能和发股会运解现系的定数用决问,历理形勾实题将史的结股际总数背过合定问结与景程和理题规形,中从进,律密在,特行进的切理发殊相一意地论展到关步识联上合一的培和系占情般计养能起有推的算学力来重理思.,要能想它的力. 有地,着位丰。富
教学程序设计
教学流程图
回顾小结深化新知 学以致用拓展新知 学生活动验证新知 拼图验证归纳新知 观察特例发现新知 创设情境引入新课
《 勾股定理》说课
《 勾股定理》说课
教学程序设计
第一环节 创设情境 引入新课
赵爽弦图 中国——赵爽
北京欢迎您!
18.1勾股定理(1)
勾股命定题理1: 如果直角三角形的两直角边长分别为
, a,斜b 边长为 ,那c 么 a2 b2 c2.
勾
弦
c
a
股bΒιβλιοθήκη 股世界两千两多千多年年前前,,古古希希腊有腊个有哥拉个毕达哥拉斯 学斯学派派,,他他们们首首先发先现发了勾现股了定勾理,股因定此 理,因此在 在国国外外人人们们通通常常称勾称股勾定理股为定毕理达哥为拉毕斯 达哥拉斯定 定理理。。为为了了纪纪念念毕达毕哥达拉斯哥学拉派斯,1学95派5 ,1955年 年希希腊腊曾曾经经发发行行了一了枚一纪念枚票纪。念邮票。
结论:
a2 b2 c2
a
b c
a
c
b
(a b)2 c2 4 1 ab 2
a2 b2 c2
《 勾股定理》说课
教学程序设计
第五环节 学以致用 拓展新知
基础训练
1、分别求出图中A、B的面积
A
81
144
B 196
289
基础训练
2 .求出下列直角三角形中未知边的长度.
A
A
B
17
3 C4
B
《 勾股定理》说课
教学程序设计
第四环节 学生活动 验证新知
动y动=手0
尝试用下面四个全等的直角三角形围成一个 正方形,然后通过面积分割法和整体计算法分别 求出正方形的的面积,看看你有什么发现。
c
c
c
c
a
a
a
a
b
b
b
b
动y动=0脑
c a
b c
b
a
(b a)2 4 1 ab c2 2
b2 2ab a2 2ab c2
小方格的面积均为1)
B AB
C
图1
C A
A C
B图1
图2
A的面 B的面积 C的面 积(单位 (单位 积(单位
面积) 面积) 面积)
图1 4 9 13
图2 9 25 34
A、B、 C 面积
关系
sA+sB=sC
网格中 直角三
两条直角边的平方和
角形三 等于斜边的平方.
边关系
命题1: 如果直角三角形的两直角边长分别为
A
8
C
13
12
B
C
归纳:
已知直角三角形任意两边,能求第三边.
基y础=0训练
3.在一个直角三角形中, 两边 长分别为6、8,则第三边的长为
________
实际应用
24m 9m
?
4、如图,大风将一根木制 旗杆吹裂,随时都可能倒 下,十分危急。接警后 “119”迅速赶到现场,并 决定从断裂处将旗杆折断。 现在需要划出一个安全警 戒区域,那么你能确定这 个安全区域的半径至少是 多少米吗?
本节课遵循启发式教学原则,在定理推导 上采用引导发现法,由浅入深,由特殊到一般 地发现问题。在定理证明上,采用自主探究法, 引导学生通过观察,自主探索,实践推理,获 得结论。教学手段上充分利用多媒体,提高教 学效率,增大课堂容量。
观察、发现、操作、验证、归纳
合作交流
自主探索
《 勾股定理》说课
学习方法
说课内容
《 勾股定理》说课
教学方 法选择
学法 指导
教材 分析
教学 过程
说
《 勾股定理》说课
教材分析
本节课是学生在已经掌握了直角三角形
▪ 教材地位作用: 有关性质的基础上进行学习的,学好本节不
仅为下节勾股定理的逆定理打下良好基础,
▪ 教学目标
而且为今后学习解直角三角形奠定基础。勾
▪ 知识技能: ▪ 数学思考: ▪ 解决问题:
, a,斜b 边长为 ,那c 么 a2 b2 c2.
c a
b
《 勾股定理》说课
教学程序设计
第三环节 拼图验证 归纳新知
观察操作:
仿照课本中赵爽的思路,将边长为 a、 b 的两个连体
正方形,拼成一个新的正方形.
ca
b
ab2
cb2
cb 2
〓
ba a
a
M a P bb
N
定理:经过证明被认为是正确的命题叫做定理 .
国我家国之是一。最早早在三了千解多勾年前股,定理的 国国家家之之一。一早。在早三千在多三年前千,多年前,周 朝国家数之学一。家早商在高三千就多提年前出,,将一根直 尺国家折之成一。一早个在直三千角多,年前如,果勾等于三, 股国家等之于一。四早,在那三千么多弦年前就,等于五,即 “国家勾之三一。、早股在四三千、多弦年前五,”,它被记 载国家于之我一。国早古在代三千著多名年前的,数学著作《 周国家髀之算一。经早》在中三千。多年前
▪ 情感态度:
通发生过学分对习析勾兴和股趣解,定决培理问养历题学史的生的能的了力民解。族,感自受豪数感学和文钻化研,精激神。
▪ 教学重点、难点:
【教学重点】探索和证明勾股定理 【教学难点】用拼图法的方法证明勾股定理
《 勾股定理》说课
教学方法、手段的选择
定理推导上采用引导发现法;
定理证明上采用自主探究法。
思维拓展
已 1 = 2 = S 3 = S 1 4 = 知 3 S 5 、 2 S 6 、 , S 4 7 的 , S ,
S2 S 1S 5
S 3
S4
S6
S 7
结论:
S1+S2+S3+S4 =S5+S6 =S7
1
1
美丽的勾股树
《 勾股定理》说课
教学程序设计
第六环节 回顾总结 深化新知
谈谈有何收获
《 勾股定理》说课
教学程序设计
第二环节 观察特例 发现新知
发现:等腰直角三角形两条直角边的平方和等于斜边的平方
sA+sB=sC 即 a2 + b 2= c 2
毕达哥拉斯(公元前572—前 497年),古希腊著名的哲学 家、数学家、天文学家.
A
B
Aa c bB
C C
猜一猜:等腰直角三角形有上述特点,网 格中的直角三角形也有这个特点吗?(每个
这节课你学习了那些知 识? 能谈谈你的收获吗?
本课小结:
▪ 1、今天我们通过观察、猜想、探索、证 明得到了勾股定理:如果直角三角形的两 直角边长分别为a 、b,斜边长为c,那么 a2 b2 c2
了会在解用学勾面股生股积定经定法理历理证揭“的明示观发勾了察现股直—过定角猜程理三想,;角—掌培形归握养三纳勾学边—股生之验定在间证理实的”的际数内生量容活关, 中勾体能和发股会运解现系的定数用决问,历理形勾实题将史的结股际总数背过合定问结与景程和理题规形,中从进,律密在,特行进的切理发殊相一意地论展到关步识联上合一的培和系占情般计养能起有推的算学力来重理思.,要能想它的力. 有地,着位丰。富