圆锥曲线轨迹方程的常用方法

圆锥曲线轨迹方程的常用方法
圆锥曲线轨迹方程的常用方法

圆锥曲线轨迹方程的求法

知识归纳

求轨迹方程的常用方法:

⒈直接法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直接法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点M 的坐标x ,y 表示相关点P 的坐标(X o 、Y o ),然后代入点P 的坐标(X o 、Y o )所满足的曲线方程,整理化简便得到动点Q 轨迹方程,这种求轨迹方程的方法叫做相关点法。(用未知表示已知,带入已知求未知)

⒋参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一变数t 的关系,得再消去参变数t ,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

类型一 直接法求轨迹方程

【例1】已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足|MN ??????? |?|MP ?????? |+MN ??????? ?NP

?????? =0 ,则动点P (x ,y )的轨迹方程为 。 【解析】设P (x ,y ),x >0,y >0,M (﹣2,0),N (2,0),|MN →

|=4, 则MP →

=(x +2,y),NP →

=(x ?2,y)由|MN →

|?|MP →

|+MN →

?NP →

=0, 则4√(x +2)2+y 2+4(x ?2)=0,化简整理得y 2=﹣8x .

【点评】直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为建系设点、列式、代换、化简这四个步骤,如果给出了直角坐标系则可省去建系这一步,求出曲线的方程后还需注意检验方程。 【变式训练】

1.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.

【解析】设过AB 的直线为l ,设l 与x 轴的交点为D (x 1,0), 则S △ABF =12|b -a |·FD =1

2|b -a |????x 1-12,S △PQF =|a -b |2. 由题意可得|b -a |????x 1-12=|a -b |

2,所以x 1=1或x 1=0(舍去). 设满足条件的AB 的中点为E (x ,y ).当AB 与x 轴不垂直时, 由k AB =k DE 可得2a +b =y

x -1

(x ≠1).而a +b 2=y ,所以y 2=x -1(x ≠1).

当AB 与x 轴垂直时,E 与D 重合,此时E 点坐标为(1,0),满足方程y 2=x -1. 所以所求轨迹方程为y 2=x -1.

2.已知两点M(-1,0),N(1,0),点P 为坐标平面内的动点,且满足|MN ??????? |?|MP ?????? |+MN ??????? ?NP ????? =0,则动点P 的轨迹方程为 。

【解析】设P (x ,y ),x >0,y >0,M(-1,0),N(1,0),|MN

??????? |=2 ,则MP ?????? =(x +1,y),NP ?????? =(x ?1,y) 由|MN ??????? |?|MP ?????? |+MN ??????? ?NP ????? =0,则2√(x +1)2+y 2+2(x ?1)=0, 化简

整理得y 2=-4x .

3.在平面直角坐标系xOy 中,点P (a ,b )为动点,F 1,F 2分别为椭圆x 2a 2+y 2

b 2=1(a >b >0)的左、

右焦点,已知△F 1PF 2为等腰三角形.设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →

=-2,求点M 的轨迹方程.

【解析】由(1)知a =2c ,b =3c ,可得椭圆方程为3x 2+4y 2=12c 2,直线PF 2的方程为y =

3(x -c ).A ,B 两点的坐标满足方程组???

3x 2+4y 2=12c 2,

y =3(x -c ),

消去y 并整理,得5x 2-8cx =0.解得x 1=0,x 2=8

5

c ,

代入直线方程得??

?

x 1=0,

y 1=-3c ,

???

x 2=85

c ,

y 2

=335c .

,不妨设A ????

85

c ,335c ,B (0,-3c ).

设点M 的坐标为(x ,y ),则AM →

=????x -85c ,y -335c ,BM →=(x ,y +3c ).由y =3(x -c ),

得c =x -33y .于是AM →=????8315

y -35x ,85y -335x ,BM →=(x ,3x ),由AM →·BM →

=-2, 即??

??8315y -35x ·x +????85

y -335x ·3x =-2.化简得18x 2-163xy -15=0. 将y =18x 2-15163x 代入c =x -3

3y ,得c =10x 2+516x >0.所以x >0.

因此,点M 的轨迹方程是18x 2-163xy -15=0(x >0).

类型二 定义法求轨迹方程

【例2】已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C ,求C 的方程.

【解析】由已知得圆M 的圆心为M (-1,0),半径r 1=1; 圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .因为圆P 与圆M 外切并且与圆N 内切,所以PM +PN =(R +r 1)+(r 2-R )=r 1+r 2=4>2=MN .由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 2

4+

y 2

3

=1(x ≠-2). 【点评】定义法求轨迹方程

1.概念:求轨迹方程时,若动点与定点、定线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可以直接根据定义先定轨迹类型,再写出其方程,这种求轨迹方程的方法叫做定义法,其关键是准确应用解析几何中有关曲线的定义.

(1)在利用圆锥曲线的定义求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.

(2)利用定义法求轨迹方程时,还要看轨迹是不是完整的曲线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制. 【变式训练】

1.在△ABC 中,BC =4,△ABC 的内切圆切BC 于D 点,且BD -CD =22,则顶点A 的轨迹方程为______________.

【解析】 以BC 的中点为原点,中垂线为y 轴建立如图所示的坐标系,E ,F 分别为两个切点.

则BE =BD ,CD =CF ,AE =AF . 所以AB -AC =22<4,

所以点A 的轨迹为以B ,C 为焦点的双曲线的右支(y ≠0),且a =2,c =2,所以b =2, 所以轨迹方程为x 22-y 2

2

=1(x >2).

2.设定点F(1,0),动圆D 过点F 且与直线x =?1相切.则动圆圆心D 的轨迹方程为 。

【解析】动圆D 过点F 且与直线x =?1相切,根据圆的定义可得到圆心到直线x =?1的距

离等于圆心到点F 的距离,根据抛物线的定义可得到圆心的轨迹是焦点为F(1,0)的抛物线,即y 2=4x.

3.如图所示:在圆C :(x +1)2+y 2=16内有一点A(1,0),点Q 为圆C 上一动点,线段AQ 的垂直平分线与直线CQ 的连线交于点M ,根据椭圆定义可得点M 的轨迹方程为x 24

+

y 23

=

1;利用类比推理思想:在圆C :(x +3)2+y 2=16外有一点A(3,0),点Q 为圆C 上一动点,线段AQ 的垂直平分线与直线CQ 的连线交于点M ,根据双曲线定义可得点M 的轨迹方程为______.

【解析】连结MA ,C (?3,0),A (3,0),

∵点M 在线段AQ 的垂直平分线上,∴MA =MQ ∴MA ?MC =MQ ?MC =CQ =4,所以点M 的轨迹为双曲线的左支,2a =4,a =2,c =3,所以b =√c 2?a 2=√5 所以双曲线的轨迹方程为

x 24

?

y 25

=1(x ≤?2)

类型三 相关点法求轨迹方程

【例3】 如图所示,抛物线E :y 2=2px (p >0)与圆O :x 2+y 2=8相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点P (x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M .

(1)求p 的值;(2)求动点M 的轨迹方程.

【解析】(1)由点A 的横坐标为2,可得点A 的坐标为(2,2),代入y 2=2px ,解得p =1. (2)由(1)知抛物线E :y 2=2x .

设C ????y 2

12,y 1,D ????y 2

22,y 2,y 1≠0,y 2≠0,切线l 1的斜率为k ,则切线l 1:y -y 1=k ????x -y 2

1

2,代入y 2=2x ,

得ky 2-2y +2y 1-ky 21=0,由Δ=0,解得k =1y 1,∴l 1的方程为y =1y 1x +y 1

2

同理l 2的方程为y =1y 2x +y 2

2

.联立

???

y =1y 1x +y 12

,y =1y 2

x +y 2

2,

解得???

x =y 1·y 22

y =y 1

+y

2

2.

易知CD 的方程为x 0x

+y 0y =8,

其中x 0,y 0满足x 20+y 20=8,x 0∈[2,22],由?????

y 2=2x ,x 0x +y 0y =8,

得x 0y 2+2y 0y -16=0,∴y 1,2=-2y 0±4y 20+64x 0

2x 0

则???

y 1+y 2=-2y 0x 0

y 1

·y 2

=-16

x

,代入???

x =y 1·y 22

y =y 1

+y

2

2,

可得

M (x ,y )满足???

x =-8

x 0,

y =-y

0x 0

可得

???

x 0=-8x

y 0

=8y x ,

代入x 20+y 2

0=8,并化简,得

x 28

-y 2

=1,考虑到x 0∈[2,22],知x ∈[-4,-22], ∴动点M 的轨迹方程为x 28-y 2

=1,x ∈[-4,-22].

【点评】相关点法的基本步骤

(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 1,y 1); (2)求关系式:求出两个动点坐标之间的关系式

?

????

x 1=f (x ,y ),y 1=g (x ,y ); (3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程. 【变式训练】1.如图,动圆

C 1:x 2+y 2=t 2,1

与椭圆C 2:x 29

+y 2

=1相交于A ,B ,C ,D

四点.点A 1,A 2分别为C 2的左、右顶点,求直线AA 1与直线A 2B 交点M 的轨迹方程.

【解析】由椭圆C 2:x 29+y 2

=1,知A 1(-3,0),A 2(3,0).设点A 的坐标为(x 0,y 0),由曲线的

对称性,得B (x 0,-y 0),

设点M 的坐标为(x ,y ),直线AA 1的方程为y =y 0

x 0+3(x +3).①直线A 2B 的方程为y =

-y 0x 0-3(x -3).

由①②相乘得y 2

=-y 20x 20-9

(x 2-9).③又点A (x 0,y 0)在椭圆C 2上,故y 2

0=1-x 209. ④

将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2

=1(x <-3,y <0).

2.已知三角形ABC 的顶点A (?3,0)、B (3,0),若顶点C 在抛物线y 2=6x 上移动,则三角形ABC 的重心的轨迹方程为______

【解析】设ΔABC 的重心G(x,y),C(x′,y′),则有{x =?3+3+y′

3y =0+0+y′3

,即{x′=3x y′=3y ,

因为点C 在曲线y 2=6x 上,所以有(3y)2=6×3x ,即y 2=2x ,因为三角形的三个顶点不能共线,所以y ≠0,所以ΔABC 的重心的轨迹方程为:y 2=2x(y ≠0), 故答案是:y 2=2x(y ≠0).

类型四 参数法求轨迹方程

【例4】在平面直角坐标系xOy 中,已知两点M (1,-3),N (5,1),若点C 的坐标满足OC →

=tOM →+(1-t )ON →

(t ∈R),且点C 的轨迹与抛物线y 2=4x 相交于A ,B 两点. (1)求证:OA ⊥OB ;

(2)在x 轴上是否存在一点P (m,0)(m ≠0),使得过点P 任意作一条抛物线y 2=4x 的弦,并以该弦为直径的圆都经过原点?若存在,求出m 的值及圆心的轨迹方程;若不存在,请说明理由.

【解析】(1)证明 由OC →=tOM →+(1-t )ON →

(t ∈R),可知点C 的轨迹是直线MN , ∴点C 的轨迹方程为y +31+3=x -1

5-1

,即y =x -4,

联立?

????

y =x -4,y 2=4x ,得x 2-12x +16=0,

设A (x 1,y 1),B (x 2,y 2),则x 1,2=6±25, ∴x 1+x 2=12,x 1x 2=16,

∴OA →·OB →

=x 1x 2+y 1y 2=x 1x 2+(x 1-4)(x 2-4)=2x 1x 2-4(x 1+x 2)+16=2×16-4×12+16=0,∴OA ⊥OB .

(2)假设存在这样的点P ,由已知弦所在直线斜率不为0,故设弦所在直线为x =ky +m ,代入y 2=4x ,得y 2-4ky -4m =0,

设弦端点D (x 3,y 3),E (x 4,y 4),则y 3,4=4k ±16k 2+16m 2

=2k ±2k 2+m ,

∴y 3+y 4=4k ,y 3y 4=-4m ,

由已知OD →⊥OE →

,∴x 3x 4+y 3y 4=0,∴y 234×y 244

+y 3y 4=m 2-4m =0,解得m =0(舍去)或m =4,

∴存在点P (4,0)满足条件,

设弦DE 的中点为M (x ,y ),则x =x 3+x 42=ky 3+4+ky 4+42=k (y 3+y 4)+8

2=2k 2+4,

①y

=y 3+y 4

2

=2k ,②

由①②消去k 得y 2=2x -8,这就是所求圆心的轨迹方程.

【点评】利用参数法求轨迹方程:一是选择合适的参数(可以是单参数,也可以是双参数);二是建立参数方程后消掉参数,消参数的方法有代入消参法、加减消参法、平方消参法等.

【变式训练】设椭圆中心为原点O ,一个焦点为F (0,1),长轴和短轴的长度之比为t . (1)求椭圆的方程;

(2)设经过原点且斜率为t 的直线与椭圆在y 轴右侧部分的交点为Q ,点P 在该直线上,且OP

OQ

=t t 2-1,当t 变化时,求点P 的轨迹方程,并说明轨迹是什么图形. 【解析】(1)设所求椭圆方程为y 2a 2+x 2

b

2=1(a >b >0).

由题意得????

?

a 2-

b 2=1,

a

b =t ,

解得???

a 2=

t 2

t 2-1

,b 2

1

t 2

-1.

所以椭圆方程为t 2(t 2-1)x 2+(t 2-1)y 2=t 2.

(2)设点P (x ,y ),Q (x 1,y 1),

解方程组?

????

t 2(t 2-1)x 21+(t 2-1)y 21=t 2,

y 1=tx 1,得

????

? x 1=

1

2(t 2-1),

y 1

t

2(t 2-1).

由OP OQ =t t 2-1和OP OQ =|x |

|x 1|

,得???

x =

t 2

,y =t 2

2,

或???

x =-

t

2

,y =-t

2

2

其中t >1.消去t ,得点P 的轨迹方程为x 2=22y ????x >22和x 2=-22y ???

?x <-22. 其轨迹为抛物线x 2=22y 在直线x =22右侧的部分和抛物线x 2=-22y 在直线x =-2

2

左侧的部分.

类型五 交轨法法求轨迹方程

例5 如右图,垂直于x 轴的直线交双曲线122

22=-b

y a x 于

M 、N 两点,21,A A 为双曲线的左、右顶点,求直线M A 1与

N A 2的交点P 的轨迹方程,并指出轨迹的形状.

【解析】:设),(y x P 及),(),,(1111y x N y x M -,又)0,(),0,(21a A a A -,可得 直线M A 1的方程为)(11

a x a

x y y ++=

①;直线N A 2的方程为)(11

a x a

x y y -+-=

②. ①×②得)(2

22

212

1

2a x a

x y y ---=

③. 又,12

212

21=-b y a x Θ)(2122221

x a a b y -=-∴,代入③得)(22222

a x a

b y --=,

化简得122

22=+b

y a x ,此即点P 的轨迹方程.

当b a =时,点P 的轨迹是以原点为圆心、a 为半径的圆;当b a ≠时,点P 的轨迹是椭圆. 【变式训练】抛物线)0(42

>=p px y 的顶点作互相垂直的两弦OA 、OB ,求抛物线的顶点O 在直线AB 上的射影M 的轨迹。

【解析】点A 、B 在抛物线2

4(0)y px p =>上,设A 2(,)4A

A y y p

,B 2

(,)4B B y y p 所以4OA A p k y =

,4OB B

p k y =,由OA 垂直OB 得 1OA OB k k =-,得2

16A B y y p =- ,又AB 方程可求得2

22

()444A B A

A A

B y y y y y x y y p p p

--=--,即40,A B A B y y y px y y +--=()把2 16A B y y p =-代入得AB 方程2416 0A B y y y px p +-+=() ①

又OM 的方程为 4A B

y y y x P

+=

- ② x

A 1 A 2

O y N

M

P

圆锥曲线之动点轨迹方程

高考数学复习--日期: 圆锥曲线之动点轨迹方程: (1)求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围; (2)求轨迹方程的常用方法: ①直接法:直接利用条件建立,x y 之间的关系(,)0F x y =; 已知动点P 到定点F(1,0)和直线3=x 的距离之和等于4,求P 的轨迹方程。 ②待定系数法:已知所求曲线的类型,求曲线方程――先根据条件设出所求曲线的方程,再由条件确定其待定系数。 线段AB 过x 轴正半轴上一点M (m ,0))0(>m ,端点A 、B 到x 轴距离之积为2m ,以x 轴为对称轴,过A 、O 、B 三点作抛物线,则此抛物线方程为 。 ③定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程; (1) 由动点P 向圆221x y +=作两条切线PA 、PB ,切点分别为A 、B ,∠APB=600,则动点P 的轨迹方程为 。 (2)点M 与点F(4,0)的距离比它到直线05=+x l :的距离小于1,则点M 的轨迹方程是 。 (3) 一动圆与两圆⊙M :122=+y x 和⊙N :012822=+-+x y x 都外切,则动圆圆心的轨迹为 。 ④代入转移法:动点(,)P x y 依赖于另一动点00(,)Q x y 的变化而变化,并且00(,)Q x y 又在某已知曲线上,则可先用,x y 的代数式表示00,x y ,再将00,x y 代入已知曲线得要求的轨迹方程; 动点P 是抛物线122+=x y 上任一点,定点为)1,0(-A ,点M 分?→ ?PA 所成的比为2,则M 的轨迹方程为 。 ⑤参数法:当动点(,)P x y 坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将,x y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。 (1)AB 是圆O 的直径,且|AB|=2a ,M 为圆上一动点,作MN ⊥AB ,垂足为N ,在OM 上取点P ,使||||OP MN =,求点P 的轨迹。 (2)若点),(11y x P 在圆122=+y x 上运动,则点),(1111y x y x Q +的轨迹方程是 。 (3)过抛物线y x 42=的焦点F 作直线l 交抛物线于A 、B 两点,则弦AB 的中点M 的轨迹方程是 。

高考圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧 一、常规七大题型: (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为 , ,代入方程,然 后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。 如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 典型例题 给定双曲线。过A (2,1)的直线与双曲线交于两点 及 ,求线段 的中点 P 的轨迹方程。 (2 构成的三角形问题,常用正、余弦定理搭桥。 ,为焦点,,。 (1 (2)求 的最值。 (3)直线与圆锥曲线位置关系问题 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。 典型例题 (1)求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。 (4)圆锥曲线的相关最值(范围)问题 圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。 <1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

轨迹方程的 几种求法整理

轨迹方程的六种求法整理 求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考. 求轨迹方程的一般方法: 1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法 把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。设点。列式。化简。说明等,圆锥曲线标准方程的推导。 1. 已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x =u u u r u u u r ·,求点P 的轨迹。26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ?=? (1)求点P 的轨迹C 对应的方程; (2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点试证明你的结论. (3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点. 解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-?=?化简得得 代入 二、定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 1、 若动圆与圆外切且与直线x =2相切,则动圆圆心的轨迹方程是 解:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线

圆锥曲线 求点的轨迹方程

求点的轨迹问题 一、基础知识: 1、求点轨迹方程的步骤: (1)建立直角坐标系 (2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示) (3)列式:从已知条件中发掘,x y 的关系,列出方程 (4)化简:将方程进行变形化简,并求出,x y 的范围 2、求点轨迹方程的方法 (1)直接法:从条件中直接寻找到,x y 的关系,列出方程后化简即可 (2)代入法:所求点(),P x y 与某已知曲线()00,0F x y =上一点()00,Q x y 存在某种关系,则可根据条件用,x y 表示出00,x y ,然后代入到Q 所在曲线方程中,即可得到关于,x y 的方程 (3)定义法:从条件中能够判断出点的轨迹为学过的图形,则可先判定轨迹形状,再通过确定相关曲线的要素,求出曲线方程。常见的曲线特征及要素有: ① 圆:平面上到定点的距离等于定长的点的轨迹 直角→圆:若AB AC ⊥,则A 点在以BC 为直径的圆上 确定方程的要素:圆心坐标(),a b ,半径r ② 椭圆:平面上到两个定点的距离之和为常数(常数大于定点距离)的点的轨迹 确定方程的要素:距离和2a ,定点距离2c ③ 双曲线:平面上到两个定点的距离之差的绝对值为常数(小于定点距离)的点的轨迹 注:若只是到两定点的距离差为常数(小于定点距离),则为双曲线的一支 确定方程的要素:距离差的绝对值2a ,定点距离2c ④ 抛物线:平面上到一定点的距离与到一定直线的距离(定点在定直线外)相等的点的轨迹 确定方程的要素:焦准距:p 。若曲线位置位于标准位置(即标准方程的曲线),则通过准线方程或焦点坐标也可确定方程 (4)参数法:从条件中无法直接找到,x y 的联系,但可通过一辅助变量k ,分别找到,x y 与

圆锥曲线问题常见方法

专题:解圆锥曲线问题常用方法(一) 【学习要点】 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,分析:(1)A 在抛物线外,如图,连PF ,则PF PH =当A 、P 、F 三点共线时,距离和最小。 (2)B 在抛物线内,如图,作QR ⊥l 交于R ,则当B 、Q 、R 距离和最小。 解:(1)(2,2) 连PF ,当A 、P 、F 三点共线时,PF AP PH AP +=+最小,此时AF

圆锥曲线标准方程求法(学生版)

圆锥曲线标准方程求法 一、椭圆标准方程求法 1、定义法 【例1】已知ABC ?的周长是18,)0,4(),0,4(B A -,求点C 的轨迹方程。 【变式】:在周长为定值的△ABC 中,已知|AB|=6,且当顶点C 位于定点P 时,cosC 有最小值为25 7.建立适当的坐标系,求顶点C 的轨迹方程. 【例2】已知椭圆C 以坐标轴为对称轴,以坐标原点为对称中心,椭圆的一个焦点为()0,1,点??? ? ??26,23M 在椭圆上,求椭圆C 的方程; 【例3】已知圆221:(1)16F x y ++=,定点2(1,0)F .动圆M 过点F 2,且与圆F 1相内切.求点M 的轨迹C 的方程. 【例4】设R y x ,,,∈为直角坐标系内y x ,轴正方向的单位向量, ,)2(j y i x a ++=j y i x b )2(-+=,且8||||=+.求点),(y x M 的轨迹C 的方程; 2、待定系数法 1.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为 2 ,且G 上一点到G 的两个焦点的距离之和为12,椭圆G 的方程.

2.已知椭圆1C :22 221(0)y x a b a b +=>>的右顶点为(1,0)A ,过1C 的焦点且垂直长轴的弦长为1.求椭圆1C 的方程. 3.已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.求椭圆C 的方程. 4.设椭圆:E 22 221x y a b +=(,0a b >>)过2)M ,(6,1)N 两点,O 为坐标原点,求椭圆E 的方程。 3、转化已知条件 【例1】已知点,A B 的坐标分别是(0,1)-,(0,1),直线,AM BM 相交于点M ,且它们的斜率之积为12- .求点M 轨迹C 的方程; 【例2】设Q 、G 分别为ABC ?的外心和重心,已知)0,1(-A ,)0,1(B ,AB QG //?求点C 的轨迹E 【例3】已知动点P 到直线33 4- =x 的距离是到定点(0,3-)的距离的332倍.求动点P 的轨迹方程;

圆锥曲线轨迹方程问题

圆锥曲线轨迹方程问题 纵观近几年高考轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高, 主要注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度.有的学生看到就头疼的题目. 分析原因除了这类题目的入手确实不易之外,主要是学生没 有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理。圆锥曲线问题是 ft东卷高 考压轴大题,解题的关键往往是第一问能否求出轨迹方程。 圆锥曲线问题轨迹方程,解答题中以待定系数法为多,一旦变换考法,往往会造成学生 心理负担,为了更好的解决这一问题,本专题针对轨迹方程的常见考法做出了系统总结。 一、考法解法 命题特点分析 求曲线的轨迹方程是解析几何的基本问题之一,求符合某种条件的动点轨迹方程,其 实质就是利用题设中的已知条件,用“坐标化”将其转化为寻求变量间的关系问题,解决这类 问题不但对圆锥曲线的定义、性质等基础知识要熟练掌握,还要利用各种数学思想方法,同 时具备一定的推理能力和运算能力。 高考考查轨迹问题通常是以下两类:一类是容易题,以定义法、相关点法、待定系数法等为主,另一类是高难度的纯轨迹问题,综合考查各种方法.“轨迹”、“方程”要区分求轨 迹方程,求得方程就可以了;若是求轨迹,求得方程还不够,还应指出方程所表示的曲线类型 (定形、定位、定量).处理轨迹问题成败在于:对各种方法的领悟与解题经验的积累.所以在处 理轨迹问题时,一定要善于根据题目的特点选择恰当的方法,确定轨迹的范围是处理轨迹问 题的难点,也是学生容易出现错误的地方,在确定轨迹范围时,应注意以下几个方面:①准确理 解题意,挖掘隐含条件;②列式不改变题意,并且要全面考虑各种情形;③推理要严密,方程化简要 等价;④消参时要保持范围的等价性;⑤数形结合,查“漏”补“缺”。在处理轨迹问题时,要特别注意运用平面几何知识,其作用主要有:①题中没有给出明显的条件式时,可帮助列式;② 简化条件式; ③转化化归。 解题方法荟萃

解圆锥曲线问题常用方法

解圆锥曲线问题常用方法(二) 【学习要点】 解圆锥曲线问题常用以下方法: 4、数形结合法 解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将某些代数式子利用其结构特征,想象为某些图形的几何意义而构图,用图形的性质来说明代数性质。 如“2x+y ”,令2x+y=b ,则b 表示斜率为-2的直线在y 轴上的截距;如“x 2 +y 2 ”,令d y x =+22,则d 表示点P (x ,y )到原点的距离;又如“ 23+-x y ”,令2 3 +-x y =k ,则k 表示点P (x 、y )与点A (-2,3)这两点连线的斜率…… 5、参数法 (1)点参数利用点在某曲线上设点(常设“主动点”),以此点为参数,依次求出其他相关量,再列式求解。如x 轴上一动点P ,常设P (t ,0);直线x-2y+1=0上一动点P 。除设P (x 1,y 1)外,也可直接设P (2y,-1,y 1) (2)斜率为参数 当直线过某一定点P(x 0,y 0)时,常设此直线为y-y 0=k(x-x 0),即以k 为参数,再按命题要求依次列式求解等。 (3)角参数 当研究有关转动的问题时,常设某一个角为参数,尤其是圆与椭圆上的动点问题。 6、代入法 这里所讲的“代入法”,主要是指条件的不同顺序的代入方法,如对于命题:“已知条件P 1,P 2求(或求证)目标Q ”,方法1是将条件P 1代入条件P 2,方法2可将条件P 2代入条件P 1,方法3可将目标Q 以待定的形式进行假设,代入P 1,P 2,这就是待定法。不同的代入方法常会影响解题的难易程度,因此要学会分析,选择简易的代入法。 【典型例题】 例1:已知P(a,b)是直线x+2y-1=0上任一点,求S=136422+-++b a b a 的最小值。 分析:由此根式结构联想到距离公式, 解:S=2 2 )3()2(-++b a 设Q(-2,3), 则S=|PQ|,它的最小值即Q 到此直线的距离 ∴S min 5 535 | 1322|= -?+- 点评:此题也可用代入消元的方法转化为二次函数的最小值问题(注:可令根式内为t 消元后,它是一个一元二次函数)

圆锥曲线轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆: 1、 长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程; 2、 线段AB 的端点B 的坐标是(4,3),端点A 在圆1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 (2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 3如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 4在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. 5(2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8. (1) 求动圆圆心的轨迹C 的方程; (2) 已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点Q P ,,若x 轴是PBQ ∠的角平分线,证明 直线l 过定点。 二、椭圆类型: 3、 定义法:点M(x ,y )与定点F(2,0)的距离和它到定直线8=x 的距离之比为2 1 ,求点M 的轨迹方程.

圆锥曲线的综合问题-分题型整理

圆锥曲线的综合问题 ★知识梳理★ 1.直线与圆锥曲线C 的位置关系 将直线l 的方程代入曲线C 的方程,消去y 或者消去x ,得到一个关于x (或y )的方程20ax bx c ++= (1)交点个数 ①当 a=0或a ≠0,⊿=0 时,曲线和直线只有一个交点; ②当 a ≠0,⊿>0时,曲线和直线有两个交点; ③ 当⊿<0 时,曲线和直线没有交点; (2) 弦长公式: 2.对称问题: 曲线上存在两点关于已知直线对称的条件:①曲线上两点所在的直线与已知直线垂直(得出斜率)②曲线上两点所在的直线与曲线有两个公共点(⊿>0)③曲线上两点的中点在对称直线上 3.求动点轨迹方程 ①轨迹类型已确定的,一般用待定系数法 ②动点满足的条件在题目中有明确的表述且轨迹类型未知的,一般用直接法 ③一动点随另一动点的变化而变化,一般用代入转移法 ★重难点突破★ 重点:掌握直线与圆锥曲线的位置关系的判断方法及弦长公式;掌握弦中点轨迹的求法; 理解和掌握求曲线方程的方法与步骤,能利用方程求圆锥曲线的有关范围与最值 难点:轨迹方程的求法及圆锥曲线的有关范围与最值问题 重难点:综合运用方程、函数、不等式、轨迹等方面的知识解决相关问题 1.体会“设而不求”在解题中的简化运算功能 ①求弦长时用韦达定理设而不求 ②弦中点问题用“点差法”设而不求 2.体会数学思想方法(以方程思想、转化思想、数形结合思想为主)在解题中运用 问题1:已知点1F 为椭圆22195 x y +=的左焦点,点()1,1A ,动点P 在椭圆上,则1PA PF +的最 小值为 点拨:设2F 为椭圆的右焦点,利用定义将1PF 转化为2PF ,在结合图形,用平面几何的知识解决。 126PA PF PA PF +=+-,当2,,P A F 共线时最小,最小值为62- ★热点考点题型探析★ 考点1 直线与圆锥曲线的位置关系 题型1:交点个数问题 [例1 ] 设抛物线28y x =的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 4)(1 ||1||212212122x x x x k x x k AB ?-+?+=-?+=

解圆锥曲线问题常用方法及性质总结

解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+ 椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 椭圆与双曲线的对偶性质总结 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的 两个端点.

圆锥曲线的经典求法-设而不求

圆锥曲线 设而不求法典型试题 在求解直线与圆锥曲线相交问题,特别是涉及到相交弦问题,最值问题,定值问题的时候,采用“设点代入”(即“设而不求”)法可以避免求交点坐标所带来的繁琐计算,同时还要与韦达定理,中点公式结合起来,使得对问题的处理变得简单而自然,因而在 做圆锥曲线题时注意多加训练与积累. 1.通常情况下如果只有一条直线,设斜率相对容易想一些,或 者多条直线但是直线斜率之间存在垂直,互为相反数之类也可以设斜率需要注意的是设斜率的时候需要考虑: (1)斜率是否存在 (2)直线与曲线必须有交点也就是判别式必须大于等于0 这种设斜率最后利用韦达定理来计算并且最终消参法,思路清晰,计算量大,特别需要仔细,但是大多也是可以消去高次项,故不要怕大胆计算,最终一定能得到所需要的结果。 2.设点比较难思考在于参数多,计算起来容易信心不足,但是在对于定点定值问题上,只要按题目要求计算,将相应的参数互

带,,然后把点的坐标带入曲线方程最终必定能约分,消去参数。这种方法灵活性强,思考难度大,但是计算简单。 例1:已知双曲线x2-y2/2=1,过点M(1,1)作直线L,使L与已知双曲线交于Q1、Q2两点,且点M是线段Q1Q2的中点,问:这样的直线是否存在?若存在,求出L的方程;若不存在,说明理由。 解:假设存在满足题意的直线L,设Q1(X1,Y1),Q2(X2,Y2) 代人已知双曲线的方程,得x12-y12/2=1 ①, x22-y22/2=1 ② ②-①,得(x 2-x 1 )(x 2 +x 1 )-(y 2 -y 1 )(y 2 +y 1 )/2=0。 当x1=x2时,直线L的方程为x=1,此时L与双曲线只有一个交点(1,0)不满足题意; 当x1≠x2时,有(y2-y1)/(x2-x1)=2(x2+x1)/(y2+y1)=2. 故直线L的方程为y-1=2(x-1) 检验:由y-1=2(x-1),x2-y2/2=1,得2x2-4x+3=0,其判别式 ⊿=-8 ﹤0,此时L与双曲线无交点。 综上,不存在满足题意的直线

圆锥曲线之轨迹方程的求法

圆锥曲线之轨迹方程的求法(一) (制卷:周芳明) 【复习目标】 □1. 了解曲线与方程的对应关系,掌握求曲线方程的一般步骤; □2. 会用直接法、定义法、相关点法(坐标代换法)求方程。 【基础练习】 1.到两坐标轴的距离相等的动点的轨迹方程是( ) A .y x = B .||y x = C .22y x = D .220x y += 2.已知点(,)P x y 4,则动点P 的轨迹是 ( ) A .椭圆 B .双曲线 C .两条射线 D .以上都不对 3.设定点1(0,3)F -、2(0,3)F ,动点P 满足条件129(0)PF PF a a a +=+>,则点P 的轨迹( ) A .椭圆 B .线段 C. 不存在 D .椭圆或线段 4.动点P 与定点(1,0)A -、(1,0)B 的连线的斜率之积为1-,则P 点的轨迹方程为______________. 【例题精选】 一、直接法求曲线方程 根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(两点距离公式、点到直线距离公式、夹角公式等)进行整理、化简。即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。 例1.已知ABC ?中,2,AB BC m AC ==,试求A 点的轨迹方程,并说明轨迹是什么图形. 练习:已知两点M (-1,0)、N (1,0),且点P 使MP MN ,PM PN ,NM NP 成公差小于零的等差数列。点P 的轨迹是什么曲线?

二定义法 若动点轨迹满足已知曲线的定义,可先设定方程,再确定其中的基本量,求出动点的轨迹方程。 例1.⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 例2.设动点(,)(0)P x y x ≥到定点1(,0)2F 的距离比它到y 轴的距离大12 。记点P 的轨迹为 曲线C 求点P 的轨迹方程; 练习.若动圆与圆1)2(:2 21=++y x C 相外切,且与直线1=x 相切,则动圆圆心轨迹方程是 . 三代入法 有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的。如果相关点所满足的条件是明显的,或是可分析,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法叫做相关点法。这种方法是一种极常用的方法,连续好几年高考都考查。 例1、已知定点A ( 3, 0 ),P 是圆x 2 + y 2 = 1上的动点,∠AOP 的平分线交AP 于M , 求M 点的轨迹。

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型 总论:常用的八种方法 1、定义法 2、韦达定理法 3、设而不求点差法 4、弦长公式法 5、数形结合法 6、参数法(点参数、K 参数、角参数) 7、代入法中的顺序 8、充分利用曲线系方程法 七种常规题型 (1)中点弦问题 (2)焦点三角形问题 (3)直线与圆锥曲线位置关系问题 (4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题 1.曲线的形状已知--------这类问题一般可用待定系数法解决。 2.曲线的形状未知-----求轨迹方程 (6) 存在两点关于直线对称问题 (7)两线段垂直问题 常用的八种方法 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、设而不求法 解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 02 20=+k b y a x 。(其中K 是直线AB 的斜率) (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有 020 20=-k b y a x (其中K 是直线AB 的斜率) (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. (其中K 是直线AB 的斜率) 4、弦长公式法 弦长公式:一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 2 0++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=12·| |12a k △ ·+,若直接用结论,能减少配方、开方等运算过程。 5、数形结合法 解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来

2021高考数学圆锥曲线轨迹方程问题解法指导

2021高考数学圆锥曲线轨迹方程问题解法指导 纵观近几年高考轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高,主要注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度.有的学生看到就头疼的题目.分析原因除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理。圆锥曲线问题是山东卷高考压轴大题,解题的关键往往是第一问能否求出轨迹方程。 圆锥曲线问题轨迹方程,解答题中以待定系数法为多,一旦变换考法,往往会造成学生心理负担,为了更好的解决这一问题,本专题针对轨迹方程的常见考法做出了系统总结。 一、考法解法 命题特点分析 求曲线的轨迹方程是解析几何的基本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的已知条件,用“坐标化”将其转化为寻求变量间的关系问题,解决这类问题不但对圆锥曲线的定义、性质等基础知识要熟练掌握,还要利用各种数学思想方法,同时具备一定的推理能力和运算能力。 高考考查轨迹问题通常是以下两类:一类是容易题,以定义法、相关点法、待定系数法等为主,另一类是高难度的纯轨迹问题,综合考查各种方法.“轨迹”、“方程”要区分求轨迹方程,求得方程就可

以了;若是求轨迹,求得方程还不够,还应指出方程所表示的曲线类型(定形、定位、定量).处理轨迹问题成败在于:对各种方法的领悟与解题经验的积累.所以在处理轨迹问题时,一定要善于根据题目的特点选择恰当的方法,确定轨迹的范围是处理轨迹问题的难点,也是学生容易出现错误的地方,在确定轨迹范围时,应注意以下几个方面:①准确理解题意,挖掘隐含条件;②列式不改变题意,并且要全面考虑各种情形;③推理要严密,方程化简要等价;④消参时要保持范围的等价性;⑤数形结合,查“漏”补“缺”。在处理轨迹问题时,要特别注意运用平面几何知识,其作用主要有:①题中没有给出明显的条件式时,可帮助列式;②简化条件式;③转化化归。 解题方法荟萃 1.直接法:根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(如两点间距离公式、点到直线距离公式、夹角公式等)进行整理、化简。这种求轨迹方程的过程不需要特殊的技巧,它是求轨迹方程的基本方法。 直接法一般有下列几种情况: 1)代入题设中的已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用直接将数量关系代数化的方法求其轨迹。2)列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条件列出等式,得出其轨迹方程。 3)运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程。

圆锥曲线中轨迹方程的求法

圆锥曲线中轨迹方程的求法 临沂——李宝峰 求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点. 一:直接法: 是求轨迹方程最基本的方法,如果动点P 满足的等量关系易于建立,可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,构成F (x ,y )=0,即可得到轨迹方程。一般有设点,列式,代换,化简,证明(可省略)五个步骤。但要注意“挖”与“补”。 直接根据等量关系式建立方程. 例1已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x = ·,则点P 的轨迹是() A.圆 B.椭圆 C.双曲线 D.抛物线 解析:由题知(2)PA x y =--- ,,(3)PB x y =-- ,, 由2PA PB x = ·,得22(2)(3)x x y x ---+=,即26y x =+, P ∴点轨迹为抛物线.故选D. 例1:两个定点的距离为6,点M 到两个定点的距离的平方和为26,求点M 的轨迹。 分析:根据题意建立合适的坐标系,列出等量关系即可。 二:定义法(待定系数法):适用于根据条件可直接判断轨迹是什么曲线,且知道其方程形式的情形(如圆、椭圆、双曲线、抛物线),运用解析几何中定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 ,例2在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有2 39263 BM CM +=?=. M ∴点的轨迹是以B C ,为焦点的椭圆, 其中1213c a ==, .5b ∴. ∴所求ABC △的重心的轨迹方程为22 1(0)16925 x y y +=≠. 注意:求轨迹方程时要注意轨迹的纯粹性与完备性. 例2:已知:⊙c 1(x+3)2+y 2=1和⊙c 2(x-3)2+y 2=9,动圆M 与⊙c 1,⊙c 2相外切,求动圆 圆心M 的轨迹方程。 三:相关点法(代入法):若所求动点随另一动点(称为相关点,该点坐标满足某已知曲线方程)有规律运动,根据条件找出它们坐标间的关系,用动点坐标表示相关点坐标,由相关点坐标满足的方程可求得动点轨迹方程。本法关键找出动点与相关点间的坐标关系。 即设出

圆锥曲线问题通法通解

解圆锥曲线问题常用方法 【学习要点】 解圆锥曲线问题常用以下方法: 1、数形结合法 解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将某些代数式子利用其结构特征,想象为某些图形的几何意义而构图,用图形的性质来说明代数性质。 如“2x+y ”,令2x+y=b ,则b 表示斜率为-2的直线在y 轴上的截距;如“x 2+y 2 ”,令d y x =+22,则d 表示点P (x ,y )到原点的距离;又如“ 23+-x y ”,令2 3 +-x y =k ,则k 表示点P (x 、y )与点A (-2,3)这两点连线的斜率…… 2、参数法 (1)点参数利用点在某曲线上设点(常设“主动点”),以此点为参数,依次求出其他相关量,再列式求解。如x 轴上一动点P ,常设P (t ,0);直线x-2y+1=0上一动点P 。除设P (x 1,y 1)外,也可直接设P (2y,-1,y 1) (2)斜率为参数 当直线过某一定点P(x 0,y 0)时,常设此直线为y-y 0=k(x-x 0),即以k 为参数,再按命题要求依次列式求解等。 (3)角参数 当研究有关转动的问题时,常设某一个角为参数,尤其是圆与椭圆上的动点问题。 3、代入法 这里所讲的“代入法”,主要是指条件的不同顺序的代入方法,如对于命题:“已知条件P 1,P 2求(或求证)目标Q ”,方法1是将条件P 1代入条件P 2,方法2可将条件P 2代入条件P 1,方法3可将目标Q 以待定的形式进行假设,代入P 1,P 2,这就是待定法。不同的代入方法常会影响解题的难易程度,因此要学会分析,选择简易的代入法。 【典型例题】 例1:已知P(a,b)是直线x+2y-1=0上任一点,求S=136422+-++b a b a 的最小值。 分析:由此根式结构联想到距离公式, 解:S=2 2)3()2(-++b a 设Q(-2,3), 则S=|PQ|,它的最小值即Q 到此直线的距离 ∴S min 5 5 35 | 1322|= -?+- 点评:此题也可用代入消元的方法转化为二次函数的最小值问题(注:可令根式内为t 消元后,它是一个一元二次函数)

圆锥曲线轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆的例题: 1、 必修2课本P 124B 组2:长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 必修2课本P 124B 组:已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程;(一般地:必修2课本P 144B 组2:已知点M(x ,y )与两个定点21,M M 的距离之比为一个常数m ;讨论点M(x ,y )的轨迹方程(分m =1,与m ≠1进行讨论) 2、 必修2课本P 122例5:线段AB 的端点B 的坐标是(4,3),端点A 在圆 1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 (2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1= 2 ,241+= +y y x ,代入方程x 2+y 2-4x -10=0,得24 4)2()24( 22+? -++x y x -10=0整理得:x 2+y 2=56,这就是所求的轨迹方程. 在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. (2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8.

圆锥曲线问题常用方法技巧归纳总结(有答案)

常见圆锥曲线问题解题方法技巧 【知识点回顾】 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典例精讲】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42) (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,分析:(1)A 在抛物线外,如图,连PF ,则PF PH =共线时,距离和最小。 (2)B 在抛物线内,如图,作QR ⊥l 交于R ,则当B 、Q 、R 解:(1)(2,2)

相关文档
最新文档