最新八年级下数学一元二次方程练习题
初二一元二次方程练习题
初二一元二次方程练习题一、选择题1. 下列哪个式子可以表示二次方程 x² + 4x + 3 = 0 的解?A) (x + 1)(x + 3) = 0B) (x + 2)(x + 5) = 0C) (x + 3)(x + 1) = 0D) (x + 4)(x + 2) = 02. 解一元二次方程 x² + 6x - 8 = 0,得到的解是:A) x = 4, x = 2B) x = -4, x = -2C) x = 2, x = -8D) x = -2, x = 83. 下列哪个方程不是一元二次方程?A) 2x² + 4x + 1 = 0B) 3x³ - 2x² + x + 1 = 0C) x - 1 = 0D) x² - 4 = 0二、填空题1. 解方程 x² + 8x + 15 = 0,得到的解是 ______ 和 ______。
2. 解方程 2x² - 7x + 3 = 0,得到的解是 ______ 和 ______。
三、解答题1. 解方程 3x² + 2x - 8 = 0,求出其解。
2. 解方程 x² + (a - 1)x + a = 0,其中 a 是常数。
如果此方程有两个相等的实数根,求 a 的值。
3. 解方程 4x² - 16x + 16 = 0,并说明此方程有什么特点。
解题方法参考答案:一、选择题1. A) (x + 1)(x + 3) = 02. B) x = -4, x = -23. B) 3x³ - 2x² + x + 1 = 0二、填空题1. 解:-3, -52. 解:1/2, 3三、解答题1. 解:首先,对方程进行因式分解:3x² + 2x - 8 = (3x - 2)(x + 4)因此,此方程的解为 x = 2/3 和 x = -4。
一元二次方程100道计算题练习附答案
一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x2)2)(113(=--x x x (x +1)-5x =0. 3x (x -3) =2(x -1) (x +1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
八年级数学下册《一元二次方程》练习题与答案(浙教版)
八年级数学下册《一元二次方程》练习题与答案(浙教版)一、选择题1.下列方程是一元二次方程的一般形式的是( )A.(x ﹣1)2=16B.3(x ﹣2)2=27C.5x 2﹣3x=0D.2x 2+2x=82.已知关于x 的方程x 2﹣kx ﹣6=0的一个根为x=3,则实数k 的值为( )A.1B.﹣1C.2D.﹣23.方程x(x+1)(x ﹣2)=0的根是( )A.﹣1,2B.1,﹣2C.0,﹣1,2D.0,1,24.下表是满足二次函数y=ax 2+bx+c 的五组数据,x 1是方程ax 2+bx+c=0的一个解,则下列选项的正确是( ) x1.6 1.82.0 2.2 2.4 y ﹣0.80 ﹣0.54 ﹣0.20 0.22 0.72 <x <2.45.用直接开平方的方法解方程(2x ﹣1)2=x 2做法正确的是( )A.2x ﹣1=xB.2x ﹣1=﹣xC.2x ﹣1=±xD.2x ﹣1=±x 26.用配方法解一元二次方程x 2﹣6x +4=0,下列变形正确的是( )A.(x ﹣6)2=﹣4+36B.(x ﹣6)2=4+36C.(x ﹣3)2=﹣4+9D.(x ﹣3)2=4+97.下列说法正确的是( )A.x 2+4=0,则x =±2B.x 2=x 的根为x =1C.x 2﹣2x =3没有实数根D.4x 2+9=12x 有两个相等的实数根8.方程(x ﹣2)(x ﹣4)=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为( )A.6B.8C.10D.8或109.已知关于x 的一元二次方程(m ﹣2)2x 2+(2m +1)x +1=0有两个不相等的实数根,则m 的取值范围是( )A.m >34B.m ≥34C.m >34且m ≠2D.m ≥34且m ≠210.已知x 1,x 2是关于x 的方程x 2+bx -3=0的两根,且满足x 1+x 2-3x 1x 2=5,那么b 的值为( )A.4B.-4C.3D.-311.如图,某小区计划在一块长为32 m ,宽为20 m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570 m 2.若设道路的宽为x m ,则下面所列方程正确的是( )A.(32-2x)(20-x)=570B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570D.32x+2×20x-2x2=57012.如图所示为两条互相垂直的街道,且A到B,C的距离都是7 km,现甲从B地走向A地,乙从A地走向C地,若两人同时出发且速度都是4 km/h,则两人之间的距离为5 km时是出发后( )A.1 hB.0.75 hC.1.2 h或0.75 hD.1 h或0.75 h二、填空题13.把方程 (x﹣1)(x+3)=1﹣x2化为一般形式为.14.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n= .15.若将方程x2+6x=7化为(x+m)2=16,则m=________.16.关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是____________(填序号).17.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x的方程为 .18.如图,在△ABC中,AB=6 cm,BC=4 cm,∠B=60°,动点P,Q分别从点A,B同时出发,分别沿AB,BC方向匀速移动,点P,Q的速度分别为2 cm/s和1 cm/s.当点P到达点B时,P,Q两点同时停止运动.设点P的运动时间为t(s),当t=时,△PBQ是直角三角形.三、解答题19.用配方法解方程:2x2+4x﹣1=0.20.用公式法解方程:2x2+3=7x.21.已知关于x的一元二次方程:x2﹣2x﹣k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)给k取一个负整数值,解这个方程.22.已知关于x的一元二次方程x2-6x+2m+1=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.23.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?24.如图所示,A,B,C,D是矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,一直到达点B为止,点Q以2 cm/s的速度向点D移动.(1)P,Q两点从出发开始到几秒时,四边形PBCQ的面积为33 cm2?(2)P,Q两点从出发开始到几秒时,点P和点Q的距离第一次是10 cm?25.市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m,宽为60m,按照规划将预留总面积为4536m2的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这4536m2的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了536m2的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?参考答案1.C2.A ;3.C4.C5.C6.C.7.D.8.C9.C.10.A11.A12.D13.答案为:2x 2+2x ﹣4=0.14.答案为:-2.15.答案为:316.答案为:①③.17.答案为:(9﹣2x)(5﹣2x)=12.18.答案为:32或125.19.解:x 2+2x ﹣12=0,x 2+2x =12x 2+2x +12=12+12∴(x +1)2=32,∴x +1=±62∴x 1=-2+62,x 2=-2-62.20.解:x 1=12,x 2=3. 21.解:(1)k >﹣3;(2)取k =﹣2,则方程变形为x 2﹣2x =0解得x 1=0,x 2=2.22.解:(1)根据题意得△=(-6)2-4(2m +1)≥0解得m ≤4;(2)根据题意得x 1+x 2=6,x 1x 2=2m +1而2x 1x 2+x 1+x 2≥20所以2(2m +1)+6≥20解得m ≥3,而m ≤4所以m 的范围为3≤m ≤4.23.解:设有x 家公司出席了这次交易会,根据题意得12x(x-1)=78. 解得x 1=13,x 2=-12(舍去).答:有13家公司出席了这次交易会.24.解:(1)设P,Q 两点从出发开始到xs 时,四边形PBCQ 的面积为33cm 2. 根据题意,得PB =AB ﹣AP =(16﹣3x)cm,CQ =2xcm,故12(2x +16﹣3x)×6=33,解得x =5.(2)设P,Q 两点从出发开始到ys 时,点P 和点Q 的距离第一次是10cm. 如图所示,过点Q 作QM ⊥AB 于点M,则BM =CQ =2ycm,故PM =(16﹣5y)cm.在Rt △PMQ 中,有PM 2+QM 2=PQ 2,∴(16﹣5y)2+62=102.=1.6,y 2=245. ∴y 1∵所求的是距离第一次为10cm 时所用的时间,∴y =1.6.25.解:(1)设各通道的宽度为x米根据题意得:(90﹣3x)(60﹣3x)=4536解得:x1=2,x2=48(不合题意,舍去).答:各通道的宽度为2米.(2)设该工程队原计划每天完成y平方米的绿化任务根据题意得:﹣=2,解得:y=400 经检验,y=400是原方程的解,且符合题意.答:该工程队原计划每天完成400平方米的绿化任务.。
八年级数学下册《一元二次方程》单元测试卷及答案解析
八年级数学下册《一元二次方程》单元测试卷及答案解析一、选择题(共8题,每小题3分,共24分)1.在下列方程中,属于一元二次方程的是( )A.x2-√3=xB.x2+y2=4C.2-1=0 D.x(1-2x2)=5x2x22. 一元二次方程x2-9x=0的解为( )A.x=0B.x=3C.x=9D.x1=0,x2=93. 将方程2x2+7=4x改写成ax2+bx+c=0的形式,则a,b,c的值分别为( )A. 2,4,7B. 2,4,-7C. 2,-4,7D. 2,-4,-74. 关于x的方程(x+a)2=b能直接开平方求解的条件是( )A.a≥0,b≥0B.a≥0,b≤0C.a为任意实数且b<0D.a为任意实数且b≥05. 用配方法解方程x2-4x+1=0时,配方后所得的方程是( )A. (x-2)2=3B. (x+2)2=3C. (x-2)2=1D. (x-2)2=-16. 已知m、n是一元二次方程x2+2x-5=0的两个根,则m2+mn+2m的值为( )A. 0B. -10C. 3D. 107. 2022年北京冬奥会吉祥物“冰墩墩”意喻敦厚、健康、活泼、可爱,象征着冬奥会运动员强壮的身体、坚韧的意志和鼓舞人心的奥林匹克精神,据统计,某商店2021年第四季度的“冰墩墩”总销售量为9.93万件,其中10月的销量为3万件,设11,12月销量的平均增长率为x,则可列方程为( ) A. 3(1+x)2=9.93 B. 3+3(1+x)2=9.93C. 3+3x+3(1+x)2=9.93D. 3+3(1+x)+3(1+x)2=9.938. 下列关于x的一元二次方程ax2+bx+c=0(a≠0)的命题中,真命题有( )①若a-b+c=0,则b2-4ac≥0;②若方程ax2+bx+c=0(a≠0)的两根为1和-2,则a-b=0;③若方程ax2+bx+c=0(a≠0)有一个根是x=-c(c≠0),则b=ac+1.A.①②③B.①②C.②③D.①③二、填空题(共6题,每小题4分,共24分)9. 写出一个一元二次方程,使它以x为未知数,它的两个根为1和-2,则这个方程可以是.(只需写出一个符合条件的方程,要求化为一般式)10. 关于x的方程(a2-3)x2+ax+1=0是一元二次方程的条件是.11. 已知a是方程x2+3x-4=0的一个根,则代数式2a2+6a+4的值是.12. 已知-1是关于x的方程x2+bx-3=0的一个根,则另一个根是.13. 若关于x的一元二次方程x2+2x-k+3=0有两个不相等的实数根,则k的取值范围是.14. 如图,在一块长为40米,宽为30米的长方形荒地上,建造一个花园(阴影部分),使得花园的,小明设计出如图所示的方案,则图中x的值为.面积为荒地面积的34三、解答题(共6题,共52分)15. (6分)解方程:(1)(y-1)2-4=0; (2)x2+2x-1=0.16. (8分)三个连续的正奇数,最大数与最小数的积比中间数的6倍多3,求这三个正奇数.17. (8分)某电影自上映以来,全国票房连创佳绩.据统计,某市第一天票房收入约为2亿元,第三天票房收入约为4亿元,则票房收入每天的平均增长率为多少?(精确到1%,√2≈1.414)18. (8分)一个正方形的一边增加3 cm,相邻一边减少3 cm,所得长方形的面积与这个正方形的每边减去1 cm所得的正方形面积相等,求这个长方形的长和宽.19. (10分)已知关于x的方程x2+ax+a-2=0.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:无论a取何实数,该方程都有两个不相等的实数根.20. (12分)阅读下面的材料,回答问题:方程x4-5x2+4=0是一个一元四次方程,根据该方程的特点,它的解法通常如下:设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2.∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学中的转化思想;(2)解方程:(x2+x)2-4(x2+x)-12=0.参考答案与解析1. A x2-√3=x符合一元二次方程的定义,是一元二次方程,所以A符合题意;x2+y2=4含有两个未知数,不是一元二次方程,所以B不符合题意;2x2−1=0中等号左边2x2是分式,不是一元二次方程,所以C不符合题意;x(1-2x2)=5x2中等号左边的展开结果为三次多项式,不是一元二次方程,所以D不符合题意.故选A.2. D 方程左边分解因式,得x(x-9)=0,所以x=0或x-9=0,解得x1=0,x2=9.3. C 方程2x2+7=4x,移项,得2x2-4x+7=0,所以a=2,b=-4,c=7.4. D∵(x+a)2=b,∴b≥0.5. A x2-4x+1=0,移项,得x2-4x=-1,方程两边同时加上4,得x2-4x+4=3,即(x-2)2=3,故选A.6. A∵m、n是一元二次方程x2+2x-5=0的两个根,∴mn=-5,m2+2m-5=0,∴m2+2m=5,∴m2+mn+2m=m2+2m+mn=5-5=0.7. D因为10月销量为3万件,11月,12月销量的平均增长率为x,所以11月的销量为3(x+1)万件,12月的销量为3(x+1)2万件.因为第四季度为10月,11月,12月这三个月,根据“2021年第四季度的“冰墩墩”总销售量为9.93万件”可列方程为3+3(1+x)+3(1+x)2=9.93.8. A∵a-b+c=0,∴方程ax2+bx+c=0(a≠0)有一根为x=-1,所以b2-4ac≥0成立,所以①是真命题;因为方程ax2+bx+c=0(a≠0)的两根为1和-2,所以a+b+c=0,4a-2b+c=0,两式相减,得3a-3b=0,即a-b=0,所以②是真命题;因为方程ax2+bx+c=0(a≠0)有一个根是x=-c(c≠0),所以ac2-bc+c=0,因为c≠0,所以两边可同时除以c,得ac-b+1=0,即b=ac+1,所以③是真命题.9. x2+x-2=0(答案不唯一)解析要使这个一元二次方程以x为未知数,它的两个根为1和-2,则这个方程可以为(x-1)(x+2)=0,化为一般式为x2+x-2=0(答案不唯一).10. a≠±√3解析因为关于x的方程(a2-3)x2+ax+1=0是关于x的一元二次方程,所以a2-3≠0,解得a≠±√3.11. 12解析因为a是方程x2+3x-4=0的一个根,所以a2+3a-4=0,所以a2+3a=4,所以2a2+6a+4=2(a2+3a)+4=2×4+4=12.12. 3解析因为-1是关于x的方程x2+bx-3=0的一个根,所以(-1)2-b-3=0,解得b=-2.所以这个方程为x2-2x-3=0,解得x1=-1,x2=3.∴方程的另一个根为3.13. k>2解析∵关于x的一元二次方程x2+2x-k+3=0有两个不相等的实数根,∴b2-4ac>0,∴22-4×1×(-k+3)>0,解得k>2.14. 10解析题图中四块空白部分可合成长为(40-x)米,宽为(30-2x)米的长方形,),解得x1=10,x2=45(舍去).依题意得(40-x)(30-2x)=40×30×(1−3415. 解析(1)方程(y-1)2-4=0,左边分解因式,得(y-1+2)(y-1-2)=0,所以y-1+2=0或y-1-2=0,解得y1=-1,y2=3.(2)方程x2+2x-1=0,两边同时加上2,得x2+2x+1=2,即(x+1)2=2,所以x+1=±√2,解得x1=-1+√2,x2=-1-√2.16.解析设中间的正奇数为x,则(x+2)(x-2)=6x+3,解得x1=7,x2=-1.∵x为正奇数,∴x=7,∴这三个正奇数分别为5,7,9.17. 解析设票房收入每天的平均增长率为x,则第二天票房收入约为2(1+x)亿元,第三天票房收入约为2(1+x)2亿元,根据“第三天票房收入约为4亿元”,可得2(1+x)2=4,解得x=-√2-1(舍去),x2=√2-1≈1.414-1≈41%.1答:票房收入每天的平均增长率为41%.18.解析设原正方形的边长为x cm,依题意可列方程为(x+3)(x-3)=(x-1)2,∴x2-9=x2-2x+1,∴2x=10,∴x=5,故所得长方形的长为5+3=8(cm),宽为5-3=2(cm).19.解析(1)设方程的另一根为x1,则{x1+1=−a,1·x1=a−2,解得{a=12,x1=−32,故a的值为12,该方程的另一根为x=-32.(2)证明:∵a2-4×(a-2)=(a-2)2+4>0,∴无论a取何实数,该方程都有两个不相等的实数根.20.解析(1)换元;降次.(2)设x2+x=y,则原方程可化为y2-4y-12=0,解得y1=6,y2=-2.由x2+x=6得x1=-3,x2=2;由x2+x=-2得方程x2+x+2=0,∵b2-4ac=1-4×2=-7<0,∴此方程无解.∴原方程的解为x1=-3,x2=2.。
初中数学解一元二次方程经典练习题(含答案)
初中数学解一元二次方程经典练习题(含答案)解下列解一元二次方程:1、x2=121;2、(2x+3)2=9;3、3(4x+5)2-147=0;4、(2x−7)2+9 =6(2x-7);5、7x(x-6)=3(12-2x);6、(3x-5)(2x+5)= x+7;7、3(3x-4)+ x(4-3x)=0;8、x(2x+5)=4(2x-1)+3;9、(x−3)2+4=5(3-x);10、4x2+7x +1=0;11、512x2+ 13= x;12、(x−1)(x−2)2 -1 = (x+1)(x−3)3;13、14[12(x+1)+13(x+2)+2] =x2;14、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;15、x= 2(0.3x+21)3 - (0.2x−1)(x+2)2;16、x2+(1+ 2√5)x +( 4+√5)=0;参考答案1、x2=121;解:x2=121等式两边同时开平方x= 11故原方程的根是:x1=11,x2= -112、(2x +3)2=9;解:(2x +3)2=9等式两边同时开平方(2x +3)=±3令2x +3 = 3,即2x=0,解得x=0令2x +3 =-3,即2x=-6,解得x=-3故原方程的根是:x 1=0,x 2=-33、3(4x +5)2-147=0;解:3(4x +5)2-147=03(4x +5)2=147等式两边同时除以3(4x +5)2= 49等式两边同时开平方4x+5=±7令4x+5=7, 解得x= 12 令4x+5= -7,解得x=-3故原方程的根是:x 1= 12,x 2=-34、(2x −7)2+9 =6(2x-7);解:(2x −7)2 +9 =6(2x-7)右边的项移到等号左边(2x−7)2-6(2x-7)+9 =0(2x−7)2 -2・3・(2x-7)+32=0[(2x−7)−3 ]2=0令(2x−7)−3 =0,解得 x=5故原方程的根是:x1=x2=55、7x(x-6)=3(12-2x);解:7x(x-6)=3(12-2x)等号左边提取-27x(x-6)=-6(x-6)右边的项移到等号左边7x(x-6)+6(x-6)=0提取公因式(x-6)(x-6)(7x+6)=0令x-6=0,解得x=6令7x+6=0,解得x= - 67故原方程的根是:x1=6,x2=- 676、(3x-5)(2x+5)= x+7;解(3x-5)(2x+5)= x+7等号左边去括号6x2+15x-10x-25 =x+76x2+5x-25=x+76x2+4x-32=03x2+2x-16=0(3x+8)(x-2)=0令3x+8=0,解得x= - 83令x-2 =0,解得x=2故原方程的根是:x1=- 8,x2=237、3(3x-4)+ x(4-3x)=0;解:3(3x-4)+ x(4-3x)=0 3(3x-4)- x(3x-4)=0 提取公因式(3x-4)(3x-4)(3- x)=0令3x-4=0,解得x= 43令3- x =0,解得x=3,x2=3 故原方程的根是:x1= 438、x(2x+5)=4(2x-1)+3;解:x(2x+5)=4(2x-1)+3 2x2 +5x =8x-4+32x2 +5x =8x-12x2 -3x +1=0(2x-1)(x-1)=0令2x-1=0,解得x= 12 令x-1=0,解得x=1故原方程的根是:x 1= 12 ,x 2=19、(x −3)2 +4=5(3-x );解:(x −3)2 +4= 5(3-x )等号左边提取-1(x −3)2 +4= -5(x-3)右边的项移到等号左边(x −3)2 +5(x-3)+4=0[(x -3)+1][(x-3)+4]=0(x-2)(x+1)=0令x-2=0,解得x=2令x+1=0,解得x=-1故原方程的根是:x 1=2,x 2=-110、4x 2+7x +1=0;解:4x 2+7x +1=0判别式△=72 -4×4×1 =33x= −7 ±√332×4 = −7 ±√338故原方程的根是:x 1=−7 +√338,x 2=−7 −√33811、512x 2 + 13 = x ; 解:512x 2 + 13 = x等式两边同时乘以125x 2 +4 =12x5x 2 +4 -12x =0(5x-2)(x-2)=0令5x-2=0,解得x= 25 令x-2=0,解得x=2故原方程的根是:x 1= 25,x 2=212、(x−1)(x−2)2-1 = (x+1)(x−3)3 ; 解:(x−1)(x−2)2 -1 = (x+1)(x−3)3 等式两边分子去括号x 2−3x+22 -1 = x 2−2x−33等式两边同时乘以63(x 2−3x +2)-6 =2(x 2−2x −3) 3x 2 -9x+6 -6= 2x 2 -4x −6x 2 -5x +6=0(x-2)(x-3)=0令x-2=0,解得x=2令x-3=0,解得x=3故原方程的根是:x 1=2,x 2=313、 14[12(x+1)+13(x+2)+2] =x 2;解:14[12(x+1)+13(x+2)+2] =x 2等号两边同时乘以412(x+1)+13(x+2)+2 =4x 2等号两边同时乘以63(x+1)+2(x+2)+12 =24x 23x+3+2x+4+12=24x 224x 2-5x-19=0(24x+19)(x-1)=0令24x+19=0,解得x= −1924令x-1=0,解得x= 1故原方程的根是:x 1=−1924,x 2= 114、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;解:(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32 等号两边去括号x 2+3x+2+x 2+7x+12 =x 2+5x+6+32整理得x 2+5x-24=0(x+8)(x-3)=0令x+8=0,解得x= -8令x-3=0,解得x= 3故原方程的根是:x 1=-8,x 2= 315、x=2(0.3x+21)3 - (0.2x−1)(x+2)2 ; 解:x= 2(0.3x+21)3 - (0.2x−1)(x+2)2等号两边同时乘以66x=4(0.3x+21)-3(0.2x-1)(x+2) 去括号6x=1.2x+84-0.6x 2+1.8x+6整理得0.6x 2+3x-90=0等号两边同时乘以10,然后再除以6 x 2+5x-150=0(x+15)(x-10)=0令x+15=0,解得x= -15令x-10=0,解得x= 10故原方程的根是:x 1= -15,x 2= 1016、x 2+(1+ 2√5)x +( 4+√5)=0; 解:x 2+(1+ 2√5)x +( 4+√5)=0 判别式△=(1+ 2√5)2-4・1・( 4+√5)=1+4√5+20-16-4√5=5x= −(1+ 2√5)±√52∙1即x= −(1+ 2√5)+√52=−(1+ √5)2或 x= −(1+ 2√5)−√52=−(1+3 √5)2故原方程的根是:x1=−(1+ √5)2,x2= −(1+3 √5)2。
数学 八年级下 一元二次方程练习题
数学 八年级下 一元二次方程一、选择题1.关于x 的一元二次方程()22120a x x -+-=是一元二次方程,则a 满足( )A.1a ≠B.1a ≠-C.1a ≠±D.为任意实数2.配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=3.解方程()()251351x x -=-的适当方法是( )A .开平方法B .配方法C .公式法D .因式分解法4.一元二次方程22(1)230m x x m m -+++-=的一个根为0,则m 的值为( )A .-3B .1C .1或-3D .-4或25.关于x 的一元二次方程210x kx +-=的根的情况是( )A .有两个不相等的同号实数根B .有两个不相等的异号实数根C .有两个相等的实数根D .没有实数根6.关于x 的方程()25410a x x ---=有实数根....,则a 满足( )A .1a ≥B .15a a >≠且C .15a a ≥≠且D .5a ≠7.以3和1-为两根的一元二次方程是 ( );A .0322=-+x xB .0322=++x xC .0322=--x xD .0322=+-x x8.已知2x =是方程(3)(3)0x m x -+=的一个根,则m 的值为( )A .6B .-6C .2D .-29.等腰三角形的底和腰分别是方程2680x x -+=的两个根,则这个三角形的周长是( )A .8B .10C .8或10D . 不能确定10.对于任意实数x ,多项式2610x x -+的值是一个( )A .非负数B .正数C .负数D .无法确定二、填空题11.方程()()31211x x -+=化为一元二次方程的一般形式是_____________,它的一次项系数是______12.方程)34(342-=x x 中,=∆_______,根的情况是_________________13.一元二次方程2560x x -+=的两根分别是1x ,2x , 则12x x +=_______14.已知一元二次方程032=++px x 的一个根为3-,则p =_________.15.已知关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则实数k 的取值范围是______________.16.某工厂计划从2008年到2010年间,把某种产品的利润由100元提高到121元,设平均每年提高的百分率是x ,则可列方程__________________,求得每年提高的百分率是______.三、解答题17.(每小题4分,共24分) 用合适的方法解下列方程:⑴ ()214x -= ⑵ 2420x x ++=⑶ 2450x x +-= ⑷ 23610x x -+=⑸ 23740x x -+= ⑹ (1)(3)8x x --=18.(6分)方程0132=--x x 的两根是1x ,2x 求下列式子的值(1)2111x x + (2))1)(1(21--x x19.(6分)已知方程240x x m -+=的一个根是2m 的值。
浙教版数学八年级下册第二章《一元二次方程》计算练习题(含答案)
浙教版数学八年级下册第二章《一元二次方程》计算练习题(含答案)1. x2=2x 2. x2=3x; 3. 2x2−4x−1=0 4. x2−2x=15. x2+3x+1=06. (x−3)2+4x(x−3)=0.7. 4x2−8x−1=08.(x+3)2=2x+6)10. x2−2x−24=011.x(x-2)=5(x-2) 12.x2-2x-3=0 9. x2=3(x+4313.x(3x-5)=6x-10 14.x2-4x-12=0; 15.x2+15=8x,16. x2−4x−1=0 17. x2−x−12=018. x2−3x+1=019. (x+1)2=2x+220.x2+2x−399=0 21. x2−4x−2=022. −3x2−4x+4=023. 3(x−5)2=10−2x24. (3x−1)2=(x+1)2 25.3x2-8x=3 26.3x(x-2)=4-2x 27.5x2-4x-1=0 28.4x(x-3)=x2-9 29.3(x+2)2=x(2+x)30.2x2+3x﹣2=0 31. 2(x+1)=x(x+1)32. x2+6x−27=0 33.x2-2x-3=0 34.x2-2x-1=0 35. 2x(x−2)=x2−336. x2−5x+1=037. (x−3)(x−1)=338. 2x2−2√2x−5=039. 2(x−3)2=x2−9.40.解关于x的方程:(a−1)x2=(2a−1)x−a(a是已知数)参考答案1.【答案】解:x2=2xx2−2x=0x(x−2)=0解得:x1=0,x2=22.【答案】(1)解:x2−3x=0,x(x-3)=0,x=0,x-3=0,∴x1=0,x2=3;(2)解:2x2−4x−1=0,∵a=2,b=-4,c=-1,∴b2-4ac=(-4)2-4×2×(-1)=24>0,∴x= −(−4)±√242×5,∴x1=2+√65,x2=2−√65.3.【答案】解:x2−2x=1,配方得:x2−2x+1=2,即(x−1)2=2,开方得:x−1=±√2,解得:x1=√2+1,x2=−√2+1.4.【答案】(1)解:x2+3x+1=0 a=1,b=3,c=1∵b2−4ac=32−4×1×1=5,∴x1=−b+√Δ2a =−3+√52;x2=−b−√Δ2a=−3−√52.(2)解:(x−3)(x−3+4x)=0,x−3+4x=0,x−3=0,x1=35,x2=3.5.【答案】(1)解:4x2−8x−1=0∵a=4,b=−8,c=−1∴Δ=b2−4ac=(−8)2−4×4×(−1)=80>0∴x=−b±√b2−4ac2a =−(−8)±√802×4=8±4√58∴x1=1+√52,x2=1−√52.(2)解:(x+3)2=2x+6 (x+3)2−2(x+3)=0(x+3)(x+1)=0x+3=0,x+1=0x1=−3,x1=−1.6.【答案】(1)解:x2=3(x+43),整理得:x2−3x−4=0,因式分解得:(x−4)(x+1)=0,∴x−4=0或x+1=0,∴x1=4,x2=−1;(2)解:x2−2x−24=0,因式分解得:(x−6)(x+4)=0,∴x−6=0或x+4=0,∴x1=6,x2=−4.7.【答案】解:x(x-2)-5(x-2)=0∴(x-5) (x-2) =0∴x1=5,x2=2.8.【答案】(1)解:(x-3)(x+1)=0 解得,x1=3,x2=-1(2)解:3x2-5x=6x-103x2-11x+10=0解得,x1=2,x2=539.【答案】(1)解:∵x2-4x-12=0.∴(x-6)(x+2)=0则x-6=0或x+2=0解得x1=6,x2=-1(2)解:∵x2-8x+15=0∴(x-3)(x-5)=0。
八年级下一元二次方程测试题
一元二次方程综合测试题班级: 姓名:一、填空题1.方程12x (x -3)=5(x -3)的根是 ___. 2.下列方程中,是关于x 的一元二次方程的有 .(1)2y 2+y -1=0;(2)x (2x -1)=2x 2;(3)21x -2x=1;(4)ax 2+bx+c=0;(5)12x 2=0. 3.把方程(1-2x )(1+2x )=2x 2-1化为一元二次方程的一般形式为 .4.如果21x -2x -8=0,则1x 的值是________. 5.关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是 .6.关于x 的一元二次方程x 2-x -3m=0有两个不相等的实数根,则m 的取值范围是_____ .7.x 2-5│x│+4=0的所有实数根的和是________.8.方程x 4-5x 2+6=0,设y=x 2,则原方程变形为 ,原方程的根为 .9.以-1,2为根的一元二次方程可为_____________(写一个即可).10.代数式12x 2+8x+5的最小值是_________. 二、选择题11.若方程(a -b )x 2+(b -c )x+(c -a )=0是关于x 的一元二次方程,则必有( )A .a=b=cB .一根为1C .一根为-1D .以上都不对12.若分式22632x x x x ---+的值为0,则x 的值为( ) A .3或-2 B .3 C .-2 D .-3或213.已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值为( )A .-5或1B .1C .5D .5或-114.已知方程x 2+px+q=0的两个根分别是2和-3,则x 2-px+q 可分解为( )A .(x+2)(x+3)B .(x -2)(x -3)C .(x -2)(x+3)D .(x+2)(x -3)15.已知α,β是方程x2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为()A.1 B.2 C.3 D.416.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,则这个三角形的周长是()A.8 B.8或10 C.10 D.8和10三、用适当的方法解方程:-17.(1)2(x+2)2-8=0;(2)x(x-3)=x;(3)3x2=6x-3;(4)(x+3)2+3(x+3)-4=0.四、解答题18.如果x2-10x+y2-16y+89=0,求xy的值.19.阅读下面的材料,回答问题:解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,体现了数学的转化思想.(2)解方程(x2+x)2-4(x2+x)-12=0.20.如图,是丽水市统计局公布的2000~2003年全社会用电量的折线统计图.(1)填写统计表:2000~2003年丽水市全社会用电量统计表:年份2000 2001 2002 2003全社会用电量13.33(单位:亿kW·h)(2)根据丽水市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率(保留两个有效数字).21.已知关于x的方程a2x2+(2a-1)x+1=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)是否存在实数a,使方程的两个实数根互为相反数?如果存在,求出a的值;如果不存在,说明理由.解:(1)根据题意,得△=(2a-1)2-4a2>0,解得a<14.∴当a<0时,方程有两个不相等的实数根.(2)存在,如果方程的两个实数根x1,x2互为相反数,则x1+x2=-21aa=0 ①,解得a=12,经检验,a=12是方程①的根.∴当a=12时,方程的两个实数根x1与x2互为相反数.上述解答过程是否有错误?如果有,请指出错误之处,并解答.22.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.23.设a ,b ,c 是△ABC 的三条边,关于x 的方程12x 2+b x+c -12a=0有两个相等的实数根,方程3cx+2b=2a 的根为x=0.(1)试判断△ABC 的形状. (2)若a ,b 为方程x 2+mx -3m=0的两个根,求m 的值.24.如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达点B 为止;点Q 以2cm/s 的速度向点B 移动,经过多长时间P 、Q 两点之间的距离是10cm?Q P B D A C。
八年级下一元二次方程练习题及答案
一元二次方程习题一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。
每题3分,共24分):1.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( )A.11B.17C.17或19D.192.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )A 、、3 C 、6 D 、93.使分式2561x x x --+ 的值等于零的x 是( )A.6B.-1或6C.-1D.-64.若关于y 的一元二次方程ky 2-4y-3=3y+4有实根,则k 的取值范围是( )A.k>-74B.k ≥-74 且k ≠0C.k ≥-74D.k>74且k ≠05.已知方程22=+x x ,则下列说中,正确的是( ) (A )方程两根和是1 (B )方程两根积是2(C )方程两根和是1- (D )方程两根积比两根和大26.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000 7.下列方程中不一定是一元二次方程的是( ) A.(a-3)x 2=8 (a ≠3) B.ax 2+bx+c=0232057x +-=8下列方程中,常数项为零的是( )A.x 2+x=1B.2x 2-x-12=12;C.2(x 2-1)=3(x-1)D.2(x 2+1)=x+2 9.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C. 231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对10.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 值为( ) A 、1 B 、1- C 、1或1- D 、12二、填空题:(每小题4分,共20分)11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________. 13.22____)(_____3-=+-x x x14.若一元二次方程ax 2+bx+c=0(a ≠0)有一个根为-1,则a 、b 、c 的关系是______. 15.已知方程3ax 2-bx-1=0和ax 2+2bx-5=0,有共同的根-1, 则a= ______, b=______. 16.一元二次方程x 2-3x-1=0与x 2-x+3=0的所有实数根的和等于____.17.已知x 2+mx+7=0的一个根,则m=________,另一根为_______. 三、用适当方法解方程:(每小题5分,共10分)21.22(3)5x x -+= 22.230x ++=四、列方程解应用题:(每小题7分,共21分)23.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.24.如图所示,在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m 2,道路应为多宽?25.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
八年级数学下册《第二章 一元二次方程》练习题-附答案(浙教版)
八年级数学下册《第二章一元二次方程》练习题-附答案(浙教版)一、选择题1.下列关于x的方程中,一定是一元二次方程的为( )A.ax2+bx+c=0B.x2﹣2=(x+3)2C.x2+3x﹣5=0D.x﹣1=02.一元二次方程4x2﹣3x﹣5=0的一次项系数是( )A.﹣5B.4C.﹣3D.33.若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是( )A.5B.5mC.1D.﹣14.根据下表判断方程x2+x﹣3=0的一个根的近似值(精确到0.1)是( )x 1.2 1.3 1.4 1.5x2+x﹣3 ﹣0.36 ﹣0.01 0.36 0.75A.1.3B.1.2C.1.5D.1.45.下列方程中,不能用直接开平方法的是( )A.x2﹣3=0B.(x﹣1)2﹣4=0C.x2+2x=0D.(x﹣1)2=(2x+1)26.用配方法解方程x2﹣6x﹣8=0时,配方正确的是( )A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=17.三角形两边的长是2和5,第三边的长是方程x2﹣12x+35=0的根,则第三边的长为( )A.2B.5C.7D.5或78.关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是( )A.m≤12B.m≤12且m≠0 C.m<1 D.m<1且m≠09.在一幅长80厘米,宽50厘米的矩形风景画的四周镶一条金色的纸边,制成一幅矩形挂图,如图,如果要使整个挂图的面积是5400平方厘米,设金色纸边的宽为x厘米,那么满足的方程是( )A.x2+130x﹣1400=0B.x2+65x﹣350=0C.x2﹣130x﹣1400=0D.x2﹣65x﹣350=010.定义新运算“※”:对于实数m,n,p,q,有[m,p]⊙[q,n]=mn+pq,其中等式右边是通常的加法和乘法运算,如:[2,3]⊙[4,5]=2×5+3×4=22.若关于x的方程[x2+1,x]⊙[5﹣2k,k]=0有两个实数根,则k的取值范围是( )A.k<54且k≠0 B.k≤54C.k≤54且k≠0 D.k≥54二、填空题11.一元二次方程3x2+2x﹣5=0的一次项系数是______.12.若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为________.13.用配方法将方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n为常数),则m+n= .14.关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则实数a的取值范围是 .15.篮球联赛实行单循环赛制,即每两个球队之间进行一场比赛,计划一共打36场比赛,设一共有x个球队参赛,根据题意,所列方程为 .16.对于实数 m,n 定义运算“※”:m※n=mn(m+n),例如:4※2=4×2(4+2)=48,若x1、x 2是关于 x 的一元二次方程x2﹣5x+3=0的两个实数根,则x1※x2=.三、解答题17.解方程:x2﹣6x+4=0(用配方法)18.解方程:﹣3x=1﹣x2(公式法)19.先化简,再求值:(x -1)÷(112-+x ),其中x 为方程x 2+3x +2=0的根.20.已知关于x 的方程x 2+ax +a ﹣2=0(1)求证:不论a 取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a 的值及该方程的另一个根.21.已知关于x 的一元二次方程x 2﹣(2m ﹣2)x +(m 2﹣2m)=0.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实数根为x 1,x 2,且x 12+x 22=10,求m 的值.22.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分枝,主干,支干和小分枝的总数是73,每个支干长出多少分枝?23.如图,在Rt△ABC中,AC=24 cm,BC=7 cm,P点在BC上,从B点到C点运动(不包括C 点),点P运动的速度为2 cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5 cm/s.若点P,Q分别从B,C同时运动,且运动时间记为t秒,请解答下面的问题,并写出探索的主要过程.(1)当t为何值时,P,Q两点的距离为5 2 cm?(2)当t为何值时,△PCQ的面积为15 cm2?24.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果的利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲.乙两种苹果的进价分别是每千克多少元;(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价均提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.参考答案1.C.2.C3.A4.A5.C6.A7.B8.B.9.B.10.C11.答案为:2.12.答案为:1213.答案为:41.14.答案为a ≥1且a ≠5.15.答案为:12x(x ﹣1)=36. 16.答案为:15.17.解:由原方程移项,得x 2﹣6x =﹣4等式的两边同时加上一次项系数的一半的平方,得x 2﹣6x +9=﹣4+9即(x ﹣3)2=5∴x =±5+3∴x 1=5+3,x 2=﹣5+3.18.解:﹣3x =1﹣x 2x 2﹣3x =1(x﹣)2=x﹣=±解得x1=,x2=;19.解:原式=(x-1)÷2-x-1 x+1=(x-1)÷1-x x+1=(x-1)·x+11-x=-x-1.解x2+3x+2=0,得x1=-1,x2=-2.∵1-x≠0,x+1≠0∴x≠±1,∴x=-2.当x=-2时,原式=-(-2)-1=2-1=1.20.解:(1)∵△=a2﹣4×1×(a﹣2)=a2﹣4a+8=(a﹣2)2+4>0 ∴不论a取何实数,该方程都有两个不相等的实数根;(2)将x=1代入方程,得:1+a+a﹣2=0解得a=12,将a=12代入方程,整理可得:2x2+x﹣3=0即(x﹣1)(2x+3)=0解得x=1或x=﹣3 2∴该方程的另一个根﹣3 2.21.(1)证明:由题意可知Δ=[﹣(2m﹣2)]2﹣4(m2﹣2m)=4>0 ∴方程有两个不相等的实数根.(2)解:∵x1+x2=2m﹣2,x1x2=m2﹣2m∴x12+x22=(x1+x2)2﹣2x1x2=10即(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0 解得m=﹣1或m=3.22.解:由题意得1+x+x•x=73即x2+x﹣72=0∴(x+9)(x﹣8)=0,解得x1=8,x2=﹣9(舍去)答:每个支干长出8个小分支.23.解:(1)经过t s后,P,Q两点的距离为5 2 cm,则PC=(7﹣2t)cm,CQ=5t cm 根据勾股定理,得PC2+CQ2=PQ2,即(7﹣2t)2+(5t)2=(52)2.解得t1=1,t2=﹣(不合题意,舍去).所以,经过1 s后,P,Q两点的距离为5 2 cm.(2)经过t s后,△PCQ的面积为15 cm2,则PC=(7﹣2t)cm,CQ=5t cm由题意,得12×(7﹣2t)×5t=15.解得t1=2,t2=1.5.所以经过2 s或1.5 s后,△PCQ的面积为15 cm2.24.解:(1)设甲种苹果的进价为a元/千克,乙种苹果的进价为b元/千克根据题意得解得答:甲种苹果的进价为10元/千克,乙种苹果的进价为8元/千克. (2)根据题意得(4+x)(100﹣10x)+(2+x)(140﹣10x)=960整理得x2﹣9x+14=0解得x1=2,x2=7,经检验,x1=2,x2=7均符合题意.答:x的值为2或7.。
人教版数学2022-2023学年八年级下册第二十一章一元二次方程练习题含答案
人教版数学2022-2023学年八年级下册第二十一章一元二次方程练习题学校:___________姓名:___________班级:______________一、填空题1.若一元二次方程26||20x m +-=的常数项为0,则m =______.2.把一元二次方程2244169x x x x -+=++化成一般形式是_________.3.已知方程1(3)320k k xx --++=||.当k =_____时,为一元二次方程. 4.已知m 是一元二次方程2250x x --=的一个根,则223-+=m m _________; 5.若a 是方程210x x +-=的根,则代数式12022a a-+的值是_________. 6.关于x 的方程(m 2﹣4)x 2+(m ﹣2)x ﹣2=0,当m 满足______时,方程为一元二次方程,当m 满足______时,方程为一元一次方程.二、单选题7.下列方程中,是关于x 的一元二次方程的是( )A .20ax bx c ++=B .210x y --=C .2210x x +=D .()()121x x -+=8.已知关于x 的一元二次方程(m -1)x 2-2x +1=0,要使该方程有实数根,则m 必须满足( )A .m <2B .m ≤2C .m <2且m ≠1D .m ≤2且m ≠1 9.关于x 的一元二次方程21410k x x k -++-=()有两个相等的实数根,则k 的值为( ) A .1 B .1- C .3或1- D .3-10.若对于任意实数a ,b ,c ,d ,定义a b c d=ad -b c ,按照定义,若11x x +- 23x x -=0,则x 的值为( )AB .C .3D .11.若α和β是关于x 的方程210x bx +-=的两根,且2211αβαβ--=-,则b 的值是( )12.已知x =a 是一元二次方程2230x x --=的解,则代数式224a a -的值为( )A .3B .6C .﹣3D .﹣6三、解答题13.先化简,后求值:2422(2)(2)(2)(64)(2)a b a b a b a a a +---+-÷-,其中12a =,1b =-. 14.若等腰△ABC 的一边长a =5,另两边b ,c 的长度恰好是关于x 的一元二次方程x 2﹣(m +3)x +4m ﹣4=0的两个实数根,求△ABC 的周长.15.已知关于x 的一元二次方程()()121x x m --=+(m 为常数).(1)若它的一个实数根是关于x 的方程()240x m --=的根,求m 的值;(2)若它的一个实数根是关于x 的方程()240x n --=的根,求证:2m n +≥-.参考答案:1.2±【分析】根据常数项为0,可得出20m -=,即可得解. 【详解】解:根据题意得20m -=,解得2m =±.故答案为:2±.【点睛】本题主要考查了一元二次方程的定义,绝对值,解题的关键在于能够熟练掌握相关知识进行求解.2.231080x x --=【分析】移项,合并同类项,整理为一般形式即可.【详解】解:移项,得4x 2-4x +1-x 2-6x -9=0,合并同类项,得3x 2-10x -8=0故答案为:3x 2-10x -8=0.【点睛】此题考查了一元二次方程的一般形式,其一般形式为ax 2+bx +c =0(a ≠0).3.-1【分析】根据一元二次方程的定义得到30k -≠且12k -=,解得即可.【详解】根据题意得,30k -≠且12k -=,解得k =-1,故答案为:-1.【点睛】本题考查一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程,熟知定义是解题的关键.4.8【分析】把x m =代入原方程可得:225,m m -= 从而可得答案. 【详解】解: m 是一元二次方程2250x x --=的一个根,2250,m m ∴--=225,m m ∴-=2238.m m ∴-+=故答案为:8.【点睛】本题考查的是一元二次方程的解的含义,求代数式的值,掌握方程的解使方程的左右两边相等是解题的关键.5.2023【分析】利用一元二次方程解的定义得到210a a +-=,可得11a a-=-,然后利用整体代入的方法计算代数式的值.【详解】解:a 是方程210x x +-=的根, 210a a ∴+-=,11a a∴-=-, 12022a a ∴-+ 12022()a a=-- 20221=+2023=.故答案为:2023.【点睛】本题考查了一元二次方程的解、求代数式的值,解题的关键是掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6. 2m ≠±2m =-【分析】分别根据一元二次方程和一元一次方程的定义列式求解即可.【详解】解:由题意得:m 2﹣4≠0,解得:2m ≠±,即当2m ≠±时,方程为一元二次方程;由题意得:m 2﹣4=0,且m ﹣2≠0,解得:m =﹣2,即当m =﹣2时,方程为一元一次方程. 故答案为:2m ≠±;m =﹣2.【点睛】此题主要考查了一元二次方程和一元一次方程的定义,解题的关键是掌握一元二次方程是通过化简后,只含有一个未知数,并且未知数的最高次数是2的整式方程;一元一次方程是只含有一个未知数、未知数的最高次数为1且两边都为整式的等式.7.D【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A 、当a =0时,不是一元二次方程,故本选项不符合题意;B 、含有两个未知数,不是一元二次方程,故本不选项符合题意;C 、不是整式方程,不是一元二次方程,故本选项不符合题意;D 、原方程整理得x 2+x -3=0是一元二次方程,故本选项符合题意;故选:D .【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是2的整式方程,叫一元二次方程.8.D【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围.【详解】解:△关于x 的一元二次方程(m -1)x 2+2x +1=0有实数根,△m -1≠0,且Δ=22-4×(m -1)×1≥0,解得:m ≤2且m ≠1.故选:D .【点睛】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式△≥0,找出关于m 的一元一次不等式组是解题的关键.9.C【分析】利用一元二次方程的定义和判别式的意义得到10k -≠且224410k ∆=--=(),然后求出k 的值后对各选项进行判断. 【详解】解:关于x 的一元二次方程21410k x x k -++-=()有两个相等的实数根,10k ∴-≠且224410k ∆=--=(),解得3k =或1-.故选:C .【点睛】本题考查了根的判别式:一元二次方程200ax bx c a ++=≠()的根与24Δb ac =-有如下关系:当Δ0>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.10.D【分析】根据新定义可得方程(x +1)(2x -3)=x (x -1),然后再整理可得x 2=3,再利用直接开平方法解方程即可.【详解】解:由题意得:(x +1)(2x -3)=x (x -1),整理得:x 2=3,两边直接开平方得:x故选:D .【点睛】此题主要考查了新定义,一元二次方程的解法--直接开平方法,关键是正确理解题意,列出方程.11.C【分析】根据一元二次方程根与系数的关系得出+=,1b αβαβ-=-,代入2211αβαβ--=-得到关于b 的方程,求出b 的值即可.【详解】解:△α和β是关于x 的方程210x bx +-=的两根,△+=,1b αβαβ-=-,△222()1211b αβαβαβαβ--=-+=-+=-△5b =-故选:C【点睛】本题考查了根与系数的关系,熟练掌握两根之和为-b a ,两根之积为c a 是解题的关键.12.B【分析】把x =a 代入一元二次方程2230x x --=,得a 2-2a -3=0,再变形,得a 2-2a =3,然后方程两边同乘以2,即可求解.【详解】解:把x =a 代入一元二次方程2230x x --=,得a 2-2a -3=0,△a 2-2a =3,△2a 2-4a =6,故选:B .【点睛】本题考查一元二次方程的解,代数式求值,熟练掌握方程的解是使方程左右两边相等的未知数值是解题的关键.13.4ab ﹣5b 2+2,﹣5【分析】原式利用平方差公式,完全平方公式,以及多项式除以单项式法则计算得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:2422(2)(2)(2)(64)(2)a b a b a b a a a +---+-÷-=4a 2﹣b 2﹣a 2+4ab ﹣4b 2﹣3a 2+2=4ab ﹣5b 2+2,当a 12=,b =﹣1时,原式=﹣2﹣5+2=﹣5. 【点睛】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键. 14.13或14【分析】根据题意ABC 为等腰三角形,则b c =或者,b c 之中有一个为5,分情况讨论,求得m 的值,进而得出一元二次方程,解一元二次方程,进而求得△ABC 的周长.【详解】ABC 为等腰三角形,b c ∴=或者,b c 之中有一个为5,△当b c =时,b ,c 的长度恰好是关于x 的一元二次方程 x 2﹣(m +3)x +4m ﹣4=0的两个实数根, 24b ac ∴∆=-()()()22344450m m m =+--=-=, 解得5m =,∴原方程为28160x x -+=,解得124x x ==,即4b c ==,4485b c +=+=>,4,4,5∴能构成三角形,该三角形的周长为445=13++,△当b 或c 之中一个为5,将5x =代入原方程,得,25515440m m --+-=,解得6m =,∴原方程为29200x x -+=,解得124,5x x ==,455,,能组成三角形,∴该三角形的周长为455=14++.综上所述,ABC 的周长为13或14.【点睛】本题考查了等腰三角形的定义,解一元二次方程,一元二次方程根的判别式,分类讨论是解题的关键.15.(1)m 的值为-1或1(2)见解析【分析】(1)由()240x m --=得到2x m =+,代入()()121x x m --=+求解m 即可; (2)由()240x n --=得到2x n =+,代入()()121x x m --=+得到m 、n 的关系式,进而利用配方法和平方式的非负性求解即可.(1)解:由()240x m --=得到2x m =+,将2x m =+代入()()121x x m --=+中,得:(21)(22)1m m m +-+-=+,即(1)(1)0m m +-=,解得:m =-1或m =1,故m 的值为-1或1; (2)证明:由()240x n --=得到2x n =+,将2x n =+代入()()121x x m --=+中,得:(21)(22)1n n m +-+-=+,整理得:21m n n =+-,△221m n n n +=+-=2(1)22n +-≥-,即2m n +≥-.【点睛】本题考查含参数的一元二次方程的解、一元一次方程的解、配方法和平方式的非负性,利用消元思想,将问题转化为学过的一元二次方程是解答的关键.。
初二数学一元二次方程计算题
初二数学一元二次方程计算题一、直接开平方法1. 解方程:(x - 3)^2=16- 解析:- 对于方程(x - 3)^2 = 16,根据直接开平方法,可得x - 3=±4。
- 当x - 3 = 4时,解得x=4 + 3=7。
- 当x - 3=-4时,解得x=-4+3=-1。
- 所以方程的解为x_1 = 7,x_2=-1。
2. 解方程:4(x + 1)^2-9 = 0- 解析:- 首先将方程变形为(x + 1)^2=(9)/(4)。
- 然后根据直接开平方法,得到x + 1=±(3)/(2)。
- 当x+1=(3)/(2)时,x=(3)/(2)-1=(1)/(2)。
- 当x + 1=-(3)/(2)时,x=-(3)/(2)-1=-(5)/(2)。
- 所以方程的解为x_1=(1)/(2),x_2 =-(5)/(2)。
二、配方法- 解析:- 首先在方程两边加上一次项系数一半的平方,即x^2+6x+9 - 9 - 7 = 0。
- 变形为(x + 3)^2-16 = 0,即(x + 3)^2=16。
- 然后根据直接开平方法,x+3=±4。
- 当x + 3 = 4时,x = 1;当x+3=-4时,x=-7。
- 所以方程的解为x_1 = 1,x_2=-7。
4. 解方程:2x^2 - 5x+2 = 0- 解析:- 方程两边同时除以2得x^2-(5)/(2)x + 1 = 0。
- 配方:x^2-(5)/(2)x+(25)/(16)-(25)/(16)+1 = 0。
- 变形为(x-(5)/(4))^2=(9)/(16)。
- 根据直接开平方法,x-(5)/(4)=±(3)/(4)。
- 当x-(5)/(4)=(3)/(4)时,x = 2;当x-(5)/(4)=-(3)/(4)时,x=(1)/(2)。
- 所以方程的解为x_1 = 2,x_2=(1)/(2)。
三、公式法- 解析:- 对于一元二次方程ax^2+bx + c = 0(这里a = 1,b=-3,c=-1)。
八年级下数学一元二次方程练习题
艾迪教育《一元二次方程》练习题一元二次方程的概念1、下列各方程中,不是一元二次方程的是( )A 、01232=++y yB 、 m m 31212-=C 、032611012=+-p pD 、0312=+-x x2、若01322=-+-p x px 是关于x 的一元二次方程则( ) A 、p=1 B 、p 〉0 C 、p ≠0 D 、p 为任意实数3、把一元二次方程)(5))((22x a a x a x a ax -=--+化成关于x 的一般形式是 。
4、一元二次方程6275)3(2-=+--mx m mx x m 中,二次项系数为 ;一次项为 ;常数项为 ;5、把方程)2(5)2(-=+x x x 化成一般式,则a 、b 、c 的值分别是( )A 10,3,1-B 10,7,1-C 12,5,1-D 2,3,16、若(b — 1)2+a 2= 0 下列方程中是一元二次方程的只有( )(A) ax 2+5x – b=0(B ) (b 2– 1)x 2+(a+4)x+ab=0 (C )(a+1)x – b=0 (D)(a+1)x 2– bx+a=07、下列方程中,不含一次项的是( )(A )3x 2– 5=2x (B) 16x=9x 2(C )x(x –7)=0 (D)(x+5)(x —5)=08、一元二次方程12)3)(31(2+=-+x x x 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。
9、关于x 的方程023)1()1(2=++++-m x m x m ,当m 时为一元一次方程;当m 时为一元二次方程。
10、当m 时,方程()05122=+--mx x m 不是一元二次方程,当m 时,上述方程是一元二次方程。
11、若方程mx 2+3x -4=3x 2是关于x 的一元二次方程,则m 的取值范围是 。
12、关于x 的一元二次方程4)7(3)3(2-+=-y y y 的一般形式是 ;二次项系数是 ,一次项系数是 ,常数项是 ;13、下列方程中,属于一元二次方程的是( )14、方程()()223210x x x --++=的一般形式是( )2222x -5x+5=0 x +5x-5=0 x +5x+5=0 x +5=0 A B C D 、、、、一元二次方程的解法1、已知x=2是一元二次方程02232=-a x 的一个解,则12-a 的值( ) A 、3 B 、4 C 、5 D 、62、一元二次方程)1(5)1(-=-x x x 的解是( ) A 、1 B 、5 C 、1或5 D 、无解22221320 B 2x +y-1=0 C x 00 D x xA x -+==、、、、3、方程0)2)(1(=-+x x x 的解是( )A 、—1,2B 、1,—2C 、0,-1,2D 、0,1,—24、如果x 2+2(m -2)x +9是完全平方式,那么m 的值等于( )A.5B.5或-1 C 。
八年级数学下册《一元二次方程》单元测试卷(附带答案)
八年级数学下册《一元二次方程》单元测试卷(附带答案)一.选择题1.若关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,则k的取值范围是()A.k<且k≠﹣2B.k C.k≤且k≠﹣2D.k2.已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足+=﹣1,则m的值是()A.3B.1C.3或﹣1D.﹣3或13.已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2﹣4ac>0;②若方程两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④4.把一元二次方程2x(x﹣1)=(x﹣3)+4化成一般式之后,其二次项系数与一次项分别是()A.2,﹣3B.﹣2,﹣3C.2,﹣3x D.﹣2,﹣3x5.若a满足不等式组,则关于x的方程(a﹣2)x2﹣(2a﹣1)x+a+=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.以上三种情况都有可能6.关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有两个实数根x1,x2,若(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,则k的值()A.0或2B.﹣2或2C.﹣2D.27.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c8.下面关于x的方程中:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x+3=;④(a2+a+1)x2﹣a =0;(5)=x﹣1,一元二次方程的个数是()A.1B.2C.3D.49.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠010.设α,β是方程x2+2021x+1=0的两根,则(α2+2022α+1)(β2+2022β+1)的值是()A.0B.1C.2022D.4 000 000二.填空题11.如果方程(x﹣1)(x2﹣2x+)=0的三根可以作为一个三角形的三边之长,那么实数k的取值范围是.12.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的解,则此三角形的周长是.13.若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.14.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程.15.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=.16.已知一元二次方程x2+2x﹣8=0的两根为x1、x2,则+2x1x2+=.三.解答题17.已知关于x的方程x2+mx+m﹣2=0.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.18.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.19.已知关于x的一元二次方程x2﹣(m﹣3)x﹣m=0(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为x1、x2,且x12+x22﹣x1x2=7,求m的值.20.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1•x2,求k的值.21.解下列方程:(1)x2﹣2x﹣2=0;(2)(x﹣1)(x﹣3)=8.22.用配方法解方程:2x2﹣3x﹣3=0.23.先化简,再求值:,其中a是方程的解.24.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?25.已知关于x的一元二次方程有两个不相等的实数根.(1)求m的取值范围;(2)当时,求的值.26.解方程:(x﹣3)(x﹣1)=3.27.如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:(1)经过6秒后,BP=cm,BQ=cm;(2)经过几秒后,△BPQ是直角三角形?(3)经过几秒△BPQ的面积等于cm2?28.为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本).该阅览室在2020年图书借阅总量是7500本,2022年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2020年至2022年的年平均增增长率(2)预计2023年达到1440人.如果2022年至2023年图书借阅总量的增长率不低于2020年至2022年的年平均增长率,那么2023年的人均借阅量比2022年增长a%,求a的值至少是多少?参考答案一.选择题1.解:∵关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根∴k+2≠0且Δ=(﹣3)2﹣4(k+2)•1≥0解得:k且k≠﹣2故选:C.2.解:根据条件知:α+β=﹣(2m+3),αβ=m2∴=﹣1即m2﹣2m﹣3=0所以,得解得m=3.故选:A.3.解:①若a+b+c=0,那么x=1为一个实数根.如果原方程另一个实数根也是1,那么b2﹣4ac=0因此①错误;②把x=﹣1代入方程得到:a﹣b+c=0 (1)把x=2代入方程得到:4a+2b+c=0 (2)把(2)式加(1)式×2得到:6a+3c=0即:2a+c=0,故正确;③方程ax2+c=0有两个不相等的实数根则它的Δ=﹣4ac>0∴b2﹣4ac>0而方程ax2+bx+c=0的Δ=b2﹣4ac>0∴必有两个不相等的实数根.故正确;④若b=2a+c则Δ=b2﹣4ac=(2a+c)2﹣4ac=4a2+c2∵a≠0∴4a2+c2>0故正确.②③④都正确故选:C.4.解:一元二次方程2x(x﹣1)=(x﹣3)+4去括号得:2x2﹣2x=x﹣3+4移项,合并同类项得:2x2﹣3x﹣1=0其二次项系数与一次项分别是2,﹣3x.故选:C.5.解:解不等式组得a<﹣3∵Δ=(2a﹣1)2﹣4(a﹣2)(a+)=2a+5∵a<﹣3∴Δ=2a+5<0∴方程(a﹣2)x2﹣(2a﹣1)x+a+=0没有实数根故选:C.6.解:∵关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0的两个实数根为x1,x2∴x1+x2=k﹣1,x1x2=﹣k+2.∵(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,即(x1+x2)2﹣2x1x2﹣4=﹣3∴(k﹣1)2+2k﹣4﹣4=﹣3解得:k=±2.当k=2时,原方程为x2﹣x=0∴Δ=(﹣1)2﹣4×1×0=1>0∴该方程有两个不相等的实数根,k=2符合题意;当k=﹣2时,原方程为x2+3x+4=0∴Δ=32﹣4×1×4=﹣7<0∴该方程无解,k=﹣2不合题意,舍去.∴k=2.故选:D.7.解:∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根∴Δ=b2﹣4ac=0又a+b+c=0,即b=﹣a﹣c代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0即(a+c)2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=(a﹣c)2=0∴a=c.故选:A.8.解:①ax2+bx+c=0的二次项系数可能为0;②3(x﹣9)2﹣(x+1)2=1是一元二次方程;③x+3=不是整式方程;④(a2+a+1)x2﹣a=0整理得[(a+)2+]x2﹣a=0,由于[(a+)2+]>0,故(a2+a+1)x2﹣a=0是一元二次方程;⑤=x﹣1不是整式方程.故选:B.9.解:由题意知:2k+1≥0,k≠0,Δ=2k+1﹣4k>0∴≤k<,且k≠0.故选:D.10.解:∵α,β是方程x2+2021x+1=0的两个实数根∴α+β=﹣2021,α•β=1.(α2+2022α+1)(β2+2022β+1)=(α2+2021α+1+α)(β2+2021β+1+β)又∵α,β是方程x2+20212021β+1=0.∴(α2+2021α+1+α)(β2+2021β+1+β)=αβ而α•β=1故选:B.二.填空题11.解:由题意,得:x﹣1=0,x2﹣2x+=0设x2﹣2x+=0的两根分别是m、n(m≥n);则m+n=2,mn=m﹣n==根据三角形三边关系定理,得:m﹣n<1<m+n,即<1<2∴,解得3<k≤412.解:x2﹣6x+8=0(x﹣2)(x﹣4)=0x﹣2=0,x﹣4=0x1=2,x2=4当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13故答案为:13.13.解:由题意知,方程x2+2mx+m2+3m﹣2=0有两个实数根则Δ=b2﹣4ac=4m2﹣4(m2+3m﹣2)=8﹣12m≥0∴m≤∵x1(x2+x1)+x22=(x2+x1)2﹣x1x2=(﹣2m)2﹣(m2+3m﹣2)=3m2﹣3m+2=3(m2﹣m+﹣)+2=3(m﹣)2+;∴当m=时,有最小值;∵<∴m=成立;∴最小值为;故答案为:.14.解:设道路的宽为xm,由题意得:(30﹣2x)(20﹣x)=6×78故答案为:(30﹣2x)(20﹣x)=6×78.15.解:∵2(n≠0)是关于x的一元二次方程x2+mx+2n=0的一个根∴4+2m+2n=0∴n+m=﹣2故答案为:﹣2.16.解:∵一元二次方程x2+2x﹣8=0的两根为x1、x2∴x1+x2=﹣2,x1•x2=﹣8∴+2x1x2+=2x1x2+=2×(﹣8)+=﹣16+=﹣故答案为:﹣.三.解答题17.解:(1)根据题意,将x=1代入方程x2+mx+m﹣2=0得:1+m+m﹣2=0解得:m=;(2)∵Δ=m2﹣4×1×(m﹣2)=m2﹣4m+8=(m﹣2)2+4>0∴不论m取何实数,该方程都有两个不相等的实数根.18.解:(1)∵原方程有两个实数根∴[﹣(2k+1)]2﹣4(k2+2k)≥0∴4k2+4k+1﹣4k2﹣8k≥0∴1﹣4k≥0∴k≤.∴当k≤时,原方程有两个实数根.(2)假设存在实数k使得≥0成立.∵x1,x2是原方程的两根∴.由≥0得≥0.∴3(k2+2k)﹣(2k+1)2≥0,整理得:﹣(k﹣1)2≥0∴只有当k=1时,上式才能成立.又∵由(1)知k≤∴不存在实数k使得≥0成立.19.(1)证明:∵x2﹣(m﹣3)x﹣m=0∴Δ=[﹣(m﹣3)]2﹣4×1×(﹣m)=m2﹣2m+9=(m﹣1)2+8>0∴方程有两个不相等的实数根;(2)∵x2﹣(m﹣3)x﹣m=0,方程的两实根为x1、x2,且x12+x22﹣x1x2=7∴∴(m﹣3)2﹣3×(﹣m)=7解得,m1=1,m2=2即m的值是1或2.20.解:(1)∵原方程有两个不相等的实数根∴Δ=(2k+1)2﹣4(k2+1)=4k2+4k+1﹣4k2﹣4=4k﹣3>0解得:k>;(2)∵k>∴x1+x2=﹣(2k+1)<0又∵x1•x2=k2+1>0∴x1<0,x2<0∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=2k+1∵|x1|+|x2|=x1•x2∴2k+1=k2+1∴k1=0,k2=2又∵k>∴k=2.21.解:(1)x2﹣2x﹣2=0x2﹣2x+1=3(x﹣1)2=3x﹣1=±x1=+1,x2=﹣+1;(2)原方程变形为:x2﹣4x﹣5=0(x﹣5)(x+1)=0x1=5,x2=﹣1.22.解:2x2﹣3x﹣3=0x2﹣x﹣=0x2﹣x+=+(x﹣)2=x﹣=±解得:x1=,x2=.23.解:∵a是方程的解∴a2﹣a﹣=0∴a﹣a2=﹣={}÷﹣a2=÷﹣a2=×﹣a2=a﹣a2∴代数式的值为﹣.24.解:(1)设一次函数解析式为:y=kx+b当x=2,y=120;当x=4,y=140;∴解得:∴y与x之间的函数关系式为y=10x+100;(2)由题意得:(60﹣40﹣x)(10 x+100)=2090整理得:x2﹣10x+9=0解得:x1=1.x2=9∵让顾客得到更大的实惠∴x=9答:商贸公司要想获利2090元,则这种干果每千克应降价9元.25.解:(1)根据题意列出方程组解得0≤m<1且m≠.(2)∵∴==11﹣2=9∴=±3又由(1)得0≤m<1且m≠所以<0因此应舍去3所以=﹣326.解:方程化为x2﹣4x=0x(x﹣4)=0所以x1=0,x2=4.27.解:(1)由题意,得AP=6cm,BQ=12cm.∵△ABC是等边三角形∴AB=BC=12cm∴BP=12﹣6=6cm.故答案为:6、12.(2)∵△ABC是等边三角形∴AB=BC=12cm,∠A=∠B=∠C=60°当∠PQB=90°时∴∠BPQ=30°∴BP=2BQ.∵BP=12﹣x,BQ=2x∴12﹣x=2×2x∴x=当∠QPB=90°时∴∠PQB=30°∴BQ=2PB∴2x=2(12﹣x)x=6答6秒或秒时,△BPQ是直角三角形;(3)作QD⊥AB于D∴∠QDB=90°∴∠DQB=30°∴DB=BQ=x在Rt△DBQ中,由勾股定理,得DQ=x∴解得;x1=10,x2=2∵x=10时,2x>12,故舍去∴x=2.答:经过2秒△BPQ的面积等于cm2.28.解:(1)设该社区的图书借阅总量从2020年至2022年的年平均增长率为x,根据题意得7500(1+x)2=10800即(1+x)2=1.44解得:x1=0.2,x2=﹣2.2(舍去)答:该社区的图书借阅总量从2020年至2022年的年平均增长率为20%;(2)10800×(1+0.2)=12960(本)10800÷1350=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.5%故a的值至少是12.5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
艾迪教育《一元二次方程》练习题一元二次方程的概念1、下列各方程中,不是一元二次方程的是( )A 、01232=++y yB 、 m m 31212-=C 、032611012=+-p pD 、0312=+-x x2、若01322=-+-p x px 是关于x 的一元二次方程则( ) A 、p=1 B 、p>0 C 、p ≠0 D 、p 为任意实数3、把一元二次方程)(5))((22x a a x a x a ax -=--+化成关于x 的一般形式是 。
4、一元二次方程6275)3(2-=+--mx m mx x m 中,二次项系数为 ;一次项为 ;常数项为 ;5、把方程)2(5)2(-=+x x x 化成一般式,则a 、b 、c 的值分别是( )A 10,3,1-B 10,7,1-C 12,5,1-D 2,3,16、若(b - 1)2+a 2= 0 下列方程中是一元二次方程的只有( )(A ) ax 2+5x – b=0(B ) (b 2– 1)x 2+(a+4)x+ab=0 (C )(a+1)x – b=0 (D )(a+1)x 2– bx+a=07、下列方程中,不含一次项的是( )(A )3x 2– 5=2x (B ) 16x=9x 2(C )x(x –7)=0 (D )(x+5)(x-5)=08、一元二次方程12)3)(31(2+=-+x x x 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。
9、关于x 的方程023)1()1(2=++++-m x m x m ,当m 时为一元一次方程;当m 时为一元二次方程。
10、当m 时,方程()05122=+--mx x m 不是一元二次方程,当m 时,上述方程是一元二次方程。
11、若方程mx 2+3x -4=3x 2是关于x 的一元二次方程,则m 的取值范围是 .12、关于x 的一元二次方程4)7(3)3(2-+=-y y y 的一般形式是 ;二次项系数是 ,一次项系数是 ,常数项是 ;13、下列方程中,属于一元二次方程的是( )14、方程()()223210x x x --++=的一般形式是( )2222x -5x+5=0 x +5x-5=0 x +5x+5=0 x +5=0 A B C D 、、、、一元二次方程的解法1、已知x=2是一元二次方程02232=-a x 的一个解,则12-a 的值( ) A 、3 B 、4 C 、5 D 、62、一元二次方程)1(5)1(-=-x x x 的解是( ) A 、1 B 、5 C 、1或5 D 、无解22221320 B 2x +y-1=0 C x 00 D x xA x -+==、、、、3、方程0)2)(1(=-+x x x 的解是( )A 、—1,2B 、1,—2C 、0,—1,2D 、0,1,—24、如果x 2+2(m -2)x +9是完全平方式,那么m 的值等于( )A.5B.5或-1C.-1D.-5或-1 5、若关于x 的方程m mx x -=-122有一个根为—1,则x= 。
6、若代数式(x -2)(x+1)的值为0,则x= 。
7、一元二次方程2x(x -3)=5(x -3)的根为 ( ) A .x =52 B .x =3 C .x 1=3,x 2=52 D .x =-528、已知方程3ax 2-bx-1=0和ax 2+2bx-5=0,有共同的根-1, 则a= , b= . 9、若一元二次方程ax 2+bx+c=0(a ≠0)有一个根为1,则a+b+c= ;若有一个根为-1,则b 与a 、c 之间的关系为 ;若有一个根为零,则c= .10、关于x 的一元二次方程12)1(2=-+mx x m 的一个根是3,则________=m ;11、当_______=x 时,代数式21212--x x 的值为0; 12、关于x 的一元二次方程032)1(22=-+++-m m x x m 有一个根为0,则m 的值为( )A 、1或-3B 、1C 、-3D 、其它值13、的值为则的解为方程10522++=-+a a ,x x aA 、12B 、6C 、9D 、1614、关于x 的方程012)13(22=-++mx x m 的一个根是1,则m 的值是------------------( )A 0B 、 32-C 、 32D 、 0或32- 15、已知一元二次方程()002≠=+m n mx ,若方程有解,则必须( )A 、0=nB 、同号mnC 、的整数倍是m nD 、异号mn16、若方程02=++n mx x 中有一个根为0,另一个根非0,则m 、n 的值是---------------( )A 0,0==n mB 0,0=≠n mC 0,0≠=n mD 0≠mn17、 方程0222=+-x x 的根是( )A 31±=xB 31±-=xC 无实根D 231±=x 18、将方程()n m x x x =-=--22032化为的形式,指出n m ,分别是( )A 、31和B 、31和-C 、41和D 、41和-19、方程()()24330x x x -+-=的根为( );(A )3x = (B )125x = (C )12123,5x x =-= (D )12123,5x x ==20、()22416-=++x bx x 如果,则的值为b ( )A 、4-B 、4C 、8-D 、821、方程5)3)(1(=-+x x 的解是 ( ); A. 3,121-==x x B. 2,421-==x x C. 3,121=-=x x D. 2,421=-=x x 22、下面是某同学在一次数学测验中解答的填空题,其中答错的是( ) A 、若2,42==x x 则;B 、2,632==x x x 则若;C 、2102==-+k ,k x x 则的一个根是;D 、2322+--x x x 若分式的值为零,则2=x 。
23、选择适当的方法解一元二次方程1)0242=-+-x x 2)05422=--x x 3)()()x x x =+-23234)()()22132-=+y y 5)0562=+-x x24、①()()229121x x -=+(用因式分解法) ②2520x x -+=(用公式法)③210100y y --=(用配方法)④()22211x x -=-(用适当方法)25、用适当方法解一元二次方程(每小题8分)(1).095162=-+)(x (2) 2x(x +3)=6(x +3)(3)3x 2+2x+4=O (4)012222=--x x(5)8)32)(2(=++y y (6)(2y +1)2+2(2y +1)-3=0;26、选用合适的方法解下列方程(1))4(5)4(2+=+x x (2)x x 4)1(2=+(3)22)21()3(x x -=+ (4)31022=-x x一元二次方程的应用1、某厂今年一月份的总产量为500吨,三月份的总产量达到为720吨。
若平均每月增 率是x ,则可以列方程( );(A )720)21(500=+x (B )720)1(5002=+x (C )720)1(5002=+x (D )500)1(7202=+x2、一商店1月份的利润是2500元,3月份的利润达到3025元,这两个月的利润平均月增长的百分率是多少?3、如图,折叠直角梯形纸片的上底AD ,点D 落在底边BC 上点F 处,已知DC=8㎝,FC = 4㎝,则EC 长 ㎝4、某商场在“五一节”的假日里实行让利销售,全部商品一律按九销售,这样每天所获得的利润恰是销售收入的20%,如果第一天的销售收入4万元,且每天的销售收入都有增长,第三天的利润是1.25万元, 求第三天的销售收入是多少万元?求第二天和第三天销售收入平均每天的增长率是多少?5、阅读下面的例题:解方程022=--x x解:(1)当x ≥0时,原方程化为x 2– x –2=0,解得:x 1=2,x 2= - 1(不合题意,舍去) (2)当x <0时,原方程化为x 2+ x –2=0,解得:x 1=1,(不合题意,舍去)x 2= -2∴原方程的根是x 1=2, x 2= - 2(3)请参照例题解方程0112=---x x6、已知等腰三角形底边长为8,腰长是方程02092=+-x x 的一个根,求这个三角形的面积。
7、党的十六大提出全面建设小康社会,加快推进社会主义现代化,力争国民生产总值到2020年比2000年翻两番。
在本世纪的头二十年(2001年~2020年),要实现这一目标,以十年为单位计算,设每个十年的国民生产总值的增长率都是x,那么x满足的方程为()A.(1+x)2=2B.(1+x)2=4C.1+2x=2D.(1+x)+2(1+x)=48、从正方形的铁皮上,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁皮的面积是()A.9cm2B.68cm2C.8cm2D.64cm29、若两数和为-7,积为12,则这两个数是.10、合肥百货大搂服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十·一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,那么每件童装因应降价多少元?11、国家为了加强对香烟产销的宏观管理,对销售香烟实行征收附加税政策. 现在知道某种品牌的香烟每条的市场价格为70元,不加收附加税时, 每年产销100万条,若国家征收附加税,每销售100元征税x元(叫做税率x%), 则每年的产销量将减少10x万条.要使每年对此项经营所收取附加税金为168万元,并使香烟的产销量得到宏观控制,年产销量不超过50万条,问税率应确定为多少?12、利用墙为一边,再用13米长的铁丝当三边,围成一个面积为20m 2的长方形,求这个长方形的长和宽。
13、如图,在scm B AB A p ,B ,ABC 190以向点开始沿边从点点中︒=∠∆的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以scm 2的速度移动。
如果P 、Q 分别从A 、B 同时出发,经过几秒,PBQ ∆的面积等于28cm ?14、如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)设铺设地面所用瓷砖的总块数为y ,请写出y 与n (表示第n 个图形)的关系式;n=1 n=2n=3QPCBA(2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;(3)黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需要花多少钱购买瓷砖?(4)否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明。