计量经济学线性回归模型
计量经济学-多元线性回归模型
Y=β0+β1X1+β2X2+...+βkXk+ε,其中Y为因变 量,X1, X2,..., Xk为自变量,β0, β1,..., βk为回归 系数,ε为随机误差项。
多元线性回归模型的假设条件
包括线性关系假设、误差项独立同分布假设、无 多重共线性假设等。
研究目的与意义
研究目的
政策与其他因素的交互作用
多元线性回归模型可以引入交互项,分析政策与其他因素(如技 术进步、国际贸易等)的交互作用,更全面地评估政策效应。
实例分析:基于多元线性回归模型的实证分析
实例一
预测某国GDP增长率:收集该国历史数据,包括GDP、投资、消费、出口等变量,建立 多元线性回归模型进行预测,并根据预测结果提出政策建议。
最小二乘法原理
最小二乘法是一种数学优化技术,用 于找到最佳函数匹配数据。
残差是观测值与预测值之间的差,即 e=y−(β0+β1x1+⋯+βkxk)e = y (beta_0 + beta_1 x_1 + cdots + beta_k x_k)e=y−(β0+β1x1+⋯+βkxk)。
在多元线性回归中,最小二乘法的目 标是使残差平方和最小。
t检验
用于检验单个解释变量对被解释变量的影响 是否显著。
F检验
用于检验所有解释变量对被解释变量的联合 影响是否显著。
拟合优度检验
通过计算可决系数(R-squared)等指标, 评估模型对数据的拟合程度。
残差诊断
检查残差是否满足独立同分布等假设,以验 证模型的合理性。
04
多元线性回归模型的检验与 诊断
计量经济学回归分析模型
表 2.1.1 某社区家庭每月收入与消费支出统计表 每月家庭可支配收入X(元)
800 1100 1400 1700 2000 2300 2600 2900 3200 3500 561 638 869 1023 1254 1408 1650 1969 2090 2299 594 748 913 1100 1309 1452 1738 1991 2134 2321 627 814 924 1144 1364 1551 1749 2046 2178 2530 638 847 979 1155 1397 1595 1804 2068 2266 2629
称i为观察值Yi围绕它旳期望值E(Y|Xi)旳离差
(deviation),是一种不可观察旳随机变量,又称 为随机干扰项(stochastic disturbance)或随机误 差项(stochastic error)。
例2.1中,个别家庭旳消费支出为:
(*)
即,给定收入水平Xi ,个别家庭旳支出可表达为两部分之和: (1)该收入水平下全部家庭旳平均消费支出E(Y|Xi),称为 系统性(systematic)或拟定性(deterministic)部分。
注意: 这里将样本回归线看成总体回归线旳近似替代
则
样本回归函数旳随机形式/样本回归模型:
一样地,样本回归函数也有如下旳随机形式:
Yi Yˆi ˆ i ˆ0 ˆ1 X i ei
式中, ei 称为(样本)残差(或剩余)项(residual),代表
了其他影响Yi 的随机因素的集合,可看成是 i 的估计量ˆ i 。
相应旳函数:
E(Y | X i ) f ( X i )
称为(双变量)总体回归函数(population regression function, PRF)。
计量经济学第2章 一元线性回归模型
15
~ ~ • 因为 2是β2的线性无偏估计,因此根据线性性, 2 ~ 可以写成下列形式: 2 CiYi
• 其中αi是线性组合的系数,为确定性的数值。则有
E ( 2 ) E[ Ci ( 1 2 X i ui )]
E[ 1 Ci 2 Ci X i Ci ui ]
6
ˆ ˆ X )2 ] ˆ , ˆ ) [ (Yi Q( 1 2 i 1 2 ˆ ˆ X 2 Yi 1 2 i ˆ ˆ 1 1 2 ˆ ˆ ˆ ˆ [ ( Y X ) ] 1 2 i Q( 1 , 2 ) i ˆ ˆ X X 2 Yi 1 2 i i ˆ ˆ 2 2
16
~
i
i
• 因此 ~ 2 CiYi 1 Ci 2 Ci X i Ci ui 2 Ci ui
• 再计算方差Var( ) 2 ,得 ~ ~ ~ 2 ~ Var ( 2 ) E[ 2 E ( 2 )] E ( 2 2 ) 2
C E (ui )
2 i 2 i
i
~
i
i
i
i
E ( 2 Ci ui 2 ) 2 E ( Ci ui ) 2
i
2 u
C
i
2 i
i
~ ˆ)的大小,可以对上述表达式做一 • 为了比较Var( ) 和 Var( 2 2
些处理: ~ 2 2 2 2 Var ( 2 ) u C ( C b b ) i u i i i
8
• 2.几个常用的结果
• (1) • (2) • (3) • (4)
计量经济学第二章简单线性回归模型
例:100个家庭构成的总体 (单位:元)
1000 820 888 932
每 960 月 家 庭 消 费 支 出 Y
E (Y X i ) 900
1500 962 1024 1121 1210 1259 1324
1150
2000 1108 1201 1264 1310 1340 1400 1448 1489 1538 1600 1702
假定2:同方差假定 Var(Y Xi)2
假定3:无自相关假定 C ov(Y i,Yj)0 (ij)
假定5:正态性假定 Yi N(12Xi,2)
34
二、普通最小二乘法
法的选择
19
引入随机扰动项的原因
● 未知影响因素的代表 ● 无法取得数据的已知影响因素的代表 ● 众多细小影响因素的综合代表 ● 模型的设定误差 ● 变量的观测误差 ● 变量内在随机性
20
四、样本回归函数(SRF)
样本回归线:
对于 X 的一定值,取得Y 的样本观测值,可计算其条
件均值,样本观测值条件均值的轨迹称为样本回归线。 样本回归函数:
28
一、简单线性回归的基本假定
1. 为什么要作基本假定?
●模型中有随机扰动,估计的参数是随机变量, 只有对随机扰动的分布作出假定,才能确定 所估计参数的分布性质,也才可能进行假设 检验和区间估计
●只有具备一定的假定条件,所作出的估计才 具有较好的统计性质。
29
2、基本假定的内容
(1)对模型和变量的假定
计量经济学中: 线性回归模型主要指就参数而言是“线性”,因为
只要对参数而言是线性的,都可以用类似的方法估计1其8
三、随机扰动u 项
◆概念:
Y
各个 Y i 值与条件均值
计量经济学回归分析模型
计量经济学回归分析模型计量经济学是经济学中的一个分支,通过运用数理统计和经济理论的工具,研究经济现象。
其中回归分析模型是计量经济学中最为常见的分析方法之一、回归分析模型主要用于确定自变量与因变量之间的关系,并通过统计推断来解释这种关系。
回归分析模型中的关系可以是线性的,也可以是非线性的。
线性回归模型是回归分析中最为常见和基础的模型。
它可以表示为:Y=β0+β1X1+β2X2+...+βkXk+ε其中,Y代表因变量,X1,X2,...,Xk代表自变量,β0,β1,β2,...,βk代表回归系数,ε代表随机误差项。
回归模型的核心是确定回归系数。
通过最小二乘法估计回归系数,使得预测值与实际观测值之间的差异最小化。
最小二乘法通过使得误差的平方和最小化来估计回归系数。
通过对数据进行拟合,我们可以得到回归系数的估计值。
回归分析模型的应用范围非常广泛。
它可以用于解释和预测经济现象,比如价格与需求的关系、生产力与劳动力的关系等。
此外,回归分析模型还可以用于政策评估和决策制定。
通过分析回归系数的显著性,可以判断自变量对因变量的影响程度,并进行政策建议和决策制定。
在实施回归分析模型时,有几个重要的假设需要满足。
首先,线性回归模型要求因变量和自变量之间存在线性关系。
其次,回归模型要求自变量之间不存在多重共线性,即自变量之间没有高度相关性。
此外,回归模型要求误差项具有同方差性和独立性。
在解释回归分析模型的结果时,可以通过回归系数的显著性来判断自变量对因变量的影响程度。
显著性水平一般为0.05或0.01,如果回归系数的p值小于显著性水平,则说明该自变量对因变量具有显著影响。
此外,还可以通过确定系数R^2来评估模型的拟合程度。
R^2可以解释因变量变异的百分比,值越接近1,说明模型的拟合程度越好。
总之,回归分析模型是计量经济学中非常重要的工具之一、它通过分析自变量和因变量之间的关系,能够解释经济现象和预测未来走势。
在应用回归分析模型时,需要满足一定的假设条件,并通过回归系数和拟合优度来解释结果。
计量经济学 第二章 一元线性回归模型
第二章 一元线性回归模型2.1 一元线性回归模型的基本假定2.1.1一元线性回归模型有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。
其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。
上模型可以分为两部分。
(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。
图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。
以收入与支出的关系为例。
假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。
但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。
所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。
“线性”一词在这里有两重含义。
它一方面指被解释变量Y 与解释变量X 之间为线性关系,即1tty x β∂=∂220tt y x β∂=∂另一方面也指被解释变量与参数0β、1β之间的线性关系,即。
1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。
所以在经济问题上“控制其他因素不变”是不可能的。
随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。
回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略, (2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。
庞浩计量经济学第二章简单线性回归模型
最小二乘法的应用
在统计学和计量经济学中,最 小二乘法广泛应用于估计线性 回归模型,以探索解释变量与 被解释变量之间的关系。
通过最小二乘法,可以估计出 解释变量的系数,从而了解各 解释变量对被解释变量的影响 程度。
最小二乘法还可以用于时间序 列分析、预测和数据拟合等场 景。
最小二乘法的局限性
最小二乘法假设误差项是独立同分布 的,且服从正态分布,这在实际应用 中可能不成立。
最小二乘法无法处理多重共线性问题, 当解释变量之间存在高度相关关系时, 最小二乘法的估计结果可能不准确。
最小二乘法对异常值比较敏感,异常 值的存在可能导致参数估计的不稳定。
04
模型的评估与选择
R-squared
总结词
衡量模型拟合优度的指标
详细描述
R-squared,也称为确定系数,用于衡量模型对数据的拟合程度。它的值在0到1之间,越接近1表示模型拟合越 好。R-squared的计算公式为(SSreg/SStot)=(y-ybar)2 / (y-ybar)2 + (y-ybar)2,其中SSreg是回归平方和, SStot是总平方和,y是因变量,ybar是因变量的均值。
数据来源
本案例的数据来源于某大型电商 平台的销售数据,包括商品的销 售量、价格、评价等。
数据处理
对原始数据进行清洗和预处理, 包括处理缺失值、异常值和重复 值,对分类变量进行编码,对连 续变量进行必要的缩放和转换。
模型建立与评估
模型建立
基于处理后的数据,使用简单线性回 归模型进行建模,以商品销售量作为 因变量,价格和评价作为自变量。
线性回归模型是一种数学模型, 用于描述因变量与一个或多个 自变量之间的线性关系。它通 常表示为:Y = β0 + β1X1 + β2X2 + ... + ε
第二章 一元线性回归模型(本科生计量经济学)
即:正规方程组揭示的是残差的性质。
26
普通最小二乘估计有关 的其他性质(课后习题)
Y Y
^
e Y e y
i ^ i
^
i
0 0
27
i
2、由普通最小二乘估计系数的性质可证
得普通最小二乘估计与参数的关系如下:
1 1 k i u i
^
0 0 wi ui
( 1) ( 2)
( 1)
0 Y 1 X
^
^
Y
1 n
Y , X X
i 1 i 1 n i 1
n
n
i
18
参数的普通最小二乘估计量
ˆ ˆ X )0 (Yi 0 1 i ˆ ˆ X )X 0 ( Y i 0 1 i i
^
33
三、一元线性回归模型参数的最大似 然法(Maximum Likehood,ML)估计
• 基本原理:似然原理
• 一元线性回归模型ML使用的条件:已知随机扰动 项的分布。
34
Y1 , Y2 ,...,Yn
1 f (Yi ) e 2
1 2
1 2
2
Yi ~ N (0 1 X i , 2 )
w 1
i
22
普通最小二乘估计的例
年份
1991 1992 1993 1994
ED(X)
708 793 958 1278
FI(Y)
3149 3483 4349 5218
ed(x)
-551 -466 -301 19
fi(y)
-2351 -2017 -1151 -282
5、计量经济学【多元线性回归模型】
二、多元线性回归模型的参数估计
2、最小二乘估计量的性质 当 ˆ0, ˆ1, ˆ2, , ˆk 为表达式形式时,为随机变量, 这时最小二乘估计量 ˆ0, ˆ1, ˆ2, , ˆk 经过证明同样也 具有线性性、无偏性和最小方差性(有效性)。 也就是说,在模型满足那几条基本假定的前提 下,OLS估计量具有线性性、无偏性和最小方差性 (有效性)这样优良的性质, 即最小二乘估计量
用残差平方和 ei2 最小的准则: i
二、多元线性回归模型的参数估计
1、参数的普通最小二乘估计法(OLS) 即:
min ei2 min (Yi Yˆi )2 min Yi (ˆ0 ˆ1X1i ˆ2 X 2i ˆk X ki )2
同样的道理,根据微积分知识,要使上式最小,只 需求上式分别对 ˆj ( j 0,1, k) 的一阶偏导数,并令 一阶偏导数为 0,就可得到一个包含 k 1 个方程的正 规方程组,这个正规方程组中有 k 1个未知参数 ˆ0, ˆ1, ˆ2, , ˆk ;解这个正规方程组即可得到这 k 1 个参数 ˆ0, ˆ1, ˆ2, , ˆk 的表达式,即得到了参数的最小 二乘估计量;将样本数据代入到这些表达式中,即可 计算出参数的最小二乘估计值。
该样本回归模型与总体回归模型相对应,其中残差 ei Yi Yˆi 可看成是总体回归模型中随机误差项 i 的 估计值。
2、多元线性回归模型的几种形式: 上述几种形式的矩阵表达式: 将多元线性总体回归模型 (3.1) 式表示的 n 个随机方 程写成方程组的形式,有:
Y1 0 1 X11 2 X 21 .Y.2.........0.......1.X...1.2........2.X...2.2. Yn 0 1 X1n 2 X 2n
ˆ0, ˆ1, ˆ2, , ˆk 是总体参数真值的最佳线性无偏估计 量( BLUE );即高斯—马尔可夫定理 (GaussMarkov theorem)。
计量经济学一元线性回归模型总结
计量经济学⼀元线性回归模型总结第⼀节两变量线性回归模型⼀.模型的建⽴1.数理模型的基本形式y x αβ=+ (2.1)这⾥y 称为被解释变量(dependent variable),x 称为解释变量(independent variable)注意:(1)x 、y 选择的⽅法:主要是从所研究的问题的经济关系出发,根据已有的经济理论进⾏合理选择。
(2)变量之间是否是线性关系可先通过散点图来观察。
2.例如果在研究上海消费规律时,已经得到上海城市居民1981-1998年期间的⼈均可⽀配收⼊和⼈均消费性⽀出数据(见表1),能否⽤两变量线性函数进⾏分析?表1.上海居民收⼊消费情况年份可⽀配收⼊消费性⽀出年份可⽀配收⼊消费性⽀出 1981 636.82 585 1990 2181.65 1936 1982 659.25 576 1991 2485.46 2167 1983 685.92 615 1992 3008.97 2509 1984 834.15 726 1993 4277.38 3530 1985 1075.26 992 1994 5868.48 4669 19861293.24117019957171.91586819871437.09128219968158.746763 19881723.44164819978438.896820 19891975.64181219988773.168662.⼀些⾮线性模型向线性模型的转化⼀些双变量之间虽然不存在线性关系,但通过变量代换可化为线性形式,这些双变量关系包括对数关系、双曲线关系等。
例3-2 如果认为⼀个国家或地区总产出具有规模报酬不变的特征,那么采⽤⼈均产出y与⼈均资本k的形式,该国家或者说地区的总产出规律可以表⽰为下列C-D⽣产函数形式y Akα=(2.2)也就是⼈均产出是⼈均资本的函数。
能不能⽤两变量线性回归模型分析这种总量⽣产规律?3.计量模型的设定(1)基本形式:y x αβε=++ (2.3)这⾥ε是⼀个随机变量,它的数学期望为0,即(2.3)中的变量y 、x 之间的关系已经是不确定的了。
计量经济学多元线性回归
Yˆi ˆ0 ˆ1 X1i ˆ2 X 2i ˆki X Ki
i=1,2…n
• 根据最 小二乘原 理,参数 估计值应
该是右列
方程组的 解
ˆ
0
Q
0
ˆ1
Q
0
ˆ
2
Q
0
ˆ k
Q
0
n
n
其
Q ei2 (Yi Yˆi )2
i 1
i 1
中n
2
(Yi (ˆ0 ˆ1 X1i ˆ2 X 2i ˆk X ki ))
可以证明,随机误差项u的方差的无偏估 计量为:
ˆ 2
e
2 i
e e
n k 1 n k 1
2、极大似然估计
• 对于多元线性回归模型
易知 Yi ~ N (Xiβ , 2 )
• Y的随机抽取的n组样本观测值的联合概率
L(βˆ , 2 ) Y1,Y2 ,,Yn )
1
e
1 2
2
(Yi
(
ˆ0
ˆ1
i1
• 于是得到关于待估参数估计值的正规方程组:
((ˆˆ00(ˆ0ˆˆ11XX1ˆ1i1i X1ˆiˆ22i XXˆ222ii
X 2i ˆk ˆk X ki ˆk X ki
X ki) ) X 1i )X 2i
Yi Yi Yi
X 1i X 2i
(ˆ0 ˆ1 X 1i ˆ2 X 2i ˆk X ki ) X ki Yi X ki
ei称为残差或剩余项(residuals),可看成是 总体回归函数中随机扰动项ui的近似替代。
样本回归函数的矩阵表达:
Yˆ Xβˆ
其中:
ˆ0
βˆ
ˆ1
ˆ k
计量经济学1
计量经济学1、一元线性回归模型:建立两个变量的数学模型:Yi=β₁+β₂Xi +μi ,Yi 为被解释变量。
Xi 为解释变量。
μi 为随机误差项(随机扰动项或随机项、误差项)。
β₁,β₂为回归系数(待定系数、待定参数),这样的模型含有一个解释变量,而且变量之间的关系又是线性的,所以上式称为一元线性回归模型。
2、线性回归模型的基本假设:假设1、解释变量X 是确定性变量,不是随机变量;假设2、随机误差项μi 具有零均值、同方差和不序列相关性:E(μi )=0 i=1,2, …,n 。
V ar(μi )= δu² i=1,2, …,n 。
Cov(μi ,μj)=0,i≠j i,j= 1,2, …n,假设3、随机误差项μi 与解释变量X之间不相关:Cov(Xi,μi)=0 i=1,2, …,n,假设4、μi 服从零均值、同方差、零协方差的正态分布: μi -N(0,δu²)i=1,2, …,n 。
注意:1、如果假设1、2满足,则假设3也满足;2、如果假设4满足,则假设2也满足。
3、普通最小二乘法(OLS ):为了研究总体回归模型中变量X 和Y 之间的线性关系,需要求一条拟合直线,一条好的拟合直线应该是使残差平方和达到最小,以此为准则,确定X 与Y之间的线性关系。
4、回归系数:β₁=1/n ﹙∑Yi -β₂∑Xi ﹚,β₂=n∑XiYi -∑Xi∑Yi /n∑Xi²-﹙∑Xi ﹚²5、常用结果:1、∑ei=0即残差项ei 的均值为0,2、∑eiXi=0即残差项ei 与解释变量Xi 不相关。
3、样本回归方程可以写成Yi º-¯Y¯=β₂(Xi-¯X¯)即样本回归直线过点(¯X¯, ¯Y¯)4、¯Yi º¯=¯Y¯即被解释变量的样本平均值等于其估计值的平均值6、样本可决系数:对样本回归直线与样本观测值之间拟合程度的检验。
计量经济学第二章经典线性回归模型
Yˆ
Xβ
1.β 的均值
β ( X X )1 X Y
( X X )1 X ( Xβ u)
( X X )1 X Xβ ( X X )1 X u
β ( X X ) 1 X u
27
E(β) β ( X X )1 X E(u) (由假设3)
β
(由假设1)
即
E
β
β
0 1
...
β K
Yi = α+ β +Xiui , i = 1, 2, ...,n (2.4) 即模型对X和Y的n对观测值(i=1,2,…,n)成立。
(2.3)式一般用于观测值为时间序列的情形,在横截 面数据的情形,通常采用(2.4) 式。
5
二、 多元线性回归模型
在许多实际问题中,我们所研究的因变量的变动 可能不仅与一个解释变量有关。因此,有必要考虑线 性模型的更一般形式,即多元线性回归模型:
...... ......
u1un
u2un
.................................
unu1 unu2 ...... un2
显然, E(uu) 2In 仅当
E(ui uj)=0 , i≠j E(ut2) = σ2, t=1,2,…,n 这两个条件成立时才成立,因此, 此条件相当前面条件 (2), (3)两条,即各期扰动项互不相关,并具有常数方差。 14
P
食品价格平减指数 总消费支出价格平减指数
100,(1972
100)
7
多元线性回归模型中斜率系数的含义
上例中斜率系数的含义说明如下: 价格不变的情况下,个人可支配收入每上升10
亿美元(1个billion),食品消费支出增加1.12亿 元(0.112个 billion)。
一元线性回归模型(计量经济学)
回归分析是一种统计方法,用于研究变量之间的关系。它基于最小二乘法,寻找最合适的直线来描述变 量间的线性关系。通过回归分析,我们可以理解变量之间的因果关系和预测未知数据。
一元线性回归模型的假设
1 线性关系
2 独立误差
一元线性回归模型假设自变量和因变量之 间存在线性关系。
模型的残差项是独立的,不受其他因素的 影响。
3 常数方差
4 正态分布
模型的残差项具有恒定的方差,即方差齐 性。
模型的残差项服从正态分布。
一元线性回归模型的估计和推断
1
模型估计
使用最小二乘法估计模型的回归系数。
2
参数推断
进行参数估计的显著性检验和置信区间估计。
3
模型拟合程度
使用残差分析和R平方评估模型的拟合程度。
模型评估和解释结果
通过残差分析和R平方等指标评估模型的拟合程度,并解释模型中回归系数的 含义。了解如何正确使用模型的结果,并识别异常值和离群点对模型的影响。
一元线性回归模型(计量 经济学)
在本节中,我们将介绍一元线性回归模型,探讨回归分析的基本概念和原理, 了解一元线性回归模型所做的假设,并学习模型的估计和推断方法。我们还 将探讨模型评估和解释结果的技巧,并通过实例应用和案例分析进一步加深 对该模型的理解。最后,我们将总结和得出结论。
回归分析的基本概念和原理
实例应用和案例分析
汽车价格预测Байду номын сангаас
使用一元线性回归模型预 测汽车价格,考虑车龄、 里程等因素。
销售趋势分析
通过一元线性回归模型分 析产品销售的趋势,并预 测未来销售。
学术成绩预测
应用一元线性回归模型预 测学生的学术成绩,考虑 学习时间、背景等因素。
计量经济学4种常用模型
计量经济学4种常用模型计量经济学是经济学的一个重要分支,主要研究经济现象的数量关系及其解释。
在计量经济学中,常用的模型有四种,分别是线性回归模型、时间序列模型、面板数据模型和离散选择模型。
下面将对这四种模型进行详细介绍。
第一种模型是线性回归模型,也是计量经济学中最常用的模型之一。
线性回归模型是通过建立自变量与因变量之间的线性关系来解释经济现象的模型。
在线性回归模型中,自变量通常包括经济学理论认为与因变量相关的变量,通过最小二乘法估计模型参数,得到经济现象的解释。
线性回归模型的优点是简单易懂,计算方便,但其前提是自变量与因变量之间存在线性关系。
第二种模型是时间序列模型,它主要用于分析时间序列数据的模型。
时间序列模型假设经济现象的变化是随时间演变的,通过分析时间序列的趋势、周期性和随机性,可以对经济现象进行预测和解释。
时间序列模型的常用方法包括自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)等。
时间序列模型的优点是能够捕捉到时间的动态变化,但其局限性是对数据的要求较高,需要足够的时间序列观测样本。
第三种模型是面板数据模型,也称为横截面时间序列数据模型。
面板数据模型是将横截面数据和时间序列数据结合起来进行分析的模型。
面板数据模型可以同时考虑个体间的差异和时间的变化,因此能够更全面地解释经济现象。
面板数据模型的常用方法包括固定效应模型、随机效应模型等。
面板数据模型的优点是能够控制个体间的异质性,但其需要对个体间的相关性进行假设。
第四种模型是离散选择模型,它主要用于分析离散选择行为的模型。
离散选择模型假设个体在面临多种选择时,会根据一定的规则进行选择,通过建立选择概率与个体特征之间的关系,可以预测和解释个体的选择行为。
离散选择模型的常用方法包括二项Logit模型、多项Logit模型等。
离散选择模型的优点是能够分析个体的选择行为,但其局限性是对选择行为的假设较强。
综上所述,计量经济学中常用的模型有线性回归模型、时间序列模型、面板数据模型和离散选择模型。
计量经济学实验简单线性回归模型
计量经济学实验简单线性回归模型引言计量经济学是经济学中的一个分支,致力于通过经验分析和实证方法来研究经济问题。
实验是计量经济学中的重要方法之一,能够帮助我们理解和解释经济现象。
简单线性回归模型是实验中常用的工具之一,它能够通过建立两个变量之间的数学关系,预测一个变量对另一个变量的影响。
本文将介绍计量经济学实验中的简单线性回归模型及其应用。
简单线性回归模型模型定义简单线性回归模型是一种用于描述自变量(X)与因变量(Y)之间关系的线性模型。
其数学表达式为:Y = β0 + β1X + ε其中,Y表示因变量,X表示自变量,β0和β1为未知参数,ε表示误差项。
参数估计在实际应用中,我们需要通过数据来估计模型中的参数。
最常用的估计方法是最小二乘法(OLS)。
最小二乘法的目标是通过最小化观测值与拟合值之间的平方差来估计参数。
具体而言,我们需要求解以下两个方程来得到参数的估计值:∂(Y - β0 - β1X)^2 / ∂β0 = 0∂(Y - β0 - β1X)^2 / ∂β1 = 0解释变量与被解释变量在简单线性回归模型中,解释变量(X)用来解释或预测被解释变量(Y)。
例如,我们可以使用房屋的面积(X)来预测房屋的价格(Y)。
在实验中,我们可以根据收集到的数据来建立回归模型,并利用该模型进行预测和分析。
应用实例数据收集为了说明简单线性回归模型的应用,我们假设收集了一些关于学生学习时间与考试成绩的数据。
下面是收集到的数据:学习时间(小时)考试成绩(百分制)2 723 784 805 856 88模型建立根据收集到的数据,我们可以建立简单线性回归模型来分析学生学习时间与考试成绩之间的关系。
首先,我们需要确定自变量和因变量的符号。
在这个例子中,我们可以将学习时间作为自变量(X),考试成绩作为因变量(Y)。
然后,我们使用最小二乘法来估计模型中的参数。
通过计算,可以得到如下参数估计值:β0 = 69.85β1 = 2.95最终的回归方程为:Y = 69.85 + 2.95X预测与分析通过建立的回归模型,我们可以进行预测和分析。
常用计量经济模型
常用计量经济模型引言计量经济学是经济学中的一个重要分支,研究经济现象的数理模型和定量分析方法。
在实际经济研究中,常用计量经济模型能够帮助经济学家和研究者更好地理解和解释经济现象。
本文将介绍一些常用的计量经济模型,并对其原理及应用进行解析。
一、线性回归模型线性回归模型是计量经济学中最基本、最常用的模型之一。
其基本形式为:\[ y = \beta_0 + \beta_1x_1 + \beta_2x_2 + … + \beta_kx_k +\varepsilon \]其中,y表示被解释变量,x1,x2,...,x k表示解释变量,$\\varepsilon$表示误差项。
线性回归模型假设被解释变量和解释变量之间存在线性关系,并通过最小二乘法来估计模型参数。
线性回归模型的应用非常广泛,例如在市场营销中,可以使用线性回归模型来分析广告投放对销售额的影响;在金融学中,线性回归模型可以用于股票价格预测等。
二、时间序列模型时间序列模型用于分析时间序列数据,这种数据通常表示某个指标随时间的变化情况。
常见的时间序列模型包括AR(自回归模型)、MA(移动平均模型)、ARMA(自回归移动平均模型)和ARIMA(差分自回归移动平均模型)等。
时间序列模型的应用非常广泛,例如经济学中的季节性调整和趋势预测、气象学中的天气预测等。
三、面板数据模型面板数据模型,也被称为固定效应模型或混合效应模型,主要用于分析具有面板数据结构的经济问题。
面板数据包括横截面数据和时间序列数据,通过对面板数据进行分析可以得到更加准确和丰富的经济结论。
面板数据模型的应用非常广泛,例如在国际贸易中,可以利用面板数据模型来研究贸易对GDP的影响;在劳动经济学中,可以使用面板数据模型来研究教育对收入的影响。
四、计量经济模型的评价指标在使用计量经济模型进行分析时,我们需要对模型的拟合程度和统计显著性进行评价。
常见的评价指标包括确定系数(R^2)、均方根误差(RMSE)和F统计量等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ls Qmg c car pmg pop rgnp
2.预测
菜单命令是对方程对象操作proc/forecast ,或 直接从工具栏中选Forecast,Eviews会产生 一个新的对话框,可以生成名为原自变量名 加f名的新序列,也可自己命名。
RMSE 均方根误差; MAE平均绝对误差 MAPE即平均绝对百分误差 Theil inequality coefficient 希尔不等系数 Bias proportion 偏差率 Variance proportion 方差率 Covariance proportion 协变率
R-squared(可决系数) : 表示拟合优度的好坏, 可决系数越大,方程拟合得越好。
S. E. of regression (回归的标准误差):这是一 个对预测误差大小的总体度量,是对残差大 小的度量。
squared resid(残差平方和):是残差的平 方和,可以用做一些检验的输入值。
Actual, Fitted, Residua/Actual, Fitted, Residual Table功能,可以得到图形,用来进行残差分析。
Presentation,可以得到输出结果的代数表达式 Stats键,可以还原回第一种显示方式。 Name键,可以为此输出结果命名 Estimate键,可以随时改变估计模型的数学形式、
X=20条件下模型的样本外预测方法
把工作文件范围从原来的1~16改为1 ~17。
打开x的数据窗口,利用Edit +/-键给x的第17 个观测值赋值为20。
输出结果窗口中点击Forecast键,随即弹出 一个关于预测(Forecast)的对话框。yf 在 Forecast name选择区自动生成, yf是保存预 测值的变量。
利用极大似然法估计模型参数
这就是变量Y的似然函数。对似 然函数求极大值和对对数似然函 数求极大值是等价的。
EViews编程
以case1为例。 先在object中打开logl对象 在logl对象窗口输入: @logl logl1 @param c(1) -0.7 c(2) 0.4 c(3) 4 Res=y-c(1)-c(2)*x Var=c(3) Logl1=log(@dnorm(res/@sqrt(var)))-log(var)/2
样本范围以及估计方法。
输出结果中,
Std. Error (标准误差) :主要用来衡量回归系 数的统计可靠性。标准误差越大,回归系数 估计值越不可靠。
t - Statistic (t统计量) :检验的是某个系数是否 为零(该变量是否不存在于回归模型中) 。 prob (概率),此列显示在服从t分布条件下, 对应其左侧一列t统计量值的概率。通过这一 信息可以方便地分辨出是拒绝还是接受系数 真值为零的假设。正常情况下,概率低于 0.05即可认为对应系数显著不为零。
Z1 x
y a bZ
Z ln x y a bZ
lnylnaxb lnablnx Tlny Zlnx clna T cbZ
Log likelihood (对数似然估计值) :是在系数估 计值的基础上对对数似然函数的估计值(假定 误差服从正态分布)。可以通过观察方程的约 束式和非约束式的对数似然估计值的差异; 进 行似然比检验。
Durbin-Watson stat(DW统计量) :这是对序列 相关性进行检验的统计量。如果它比2小很多, 则证明这个序列正相关
线性化方法
在某些情形下,可以将这些非线性模型,通 过一定的变换线性化,作为线性模型处理。 这类模型称为可线性化的非线性模型。
例3
case3是某企业在16个月度的某产品产量(X) 和单位成本(Y)资料,研究二者关系 。
为了明确产量和单位成本是何种关系,先绘 制散点图。
三个备选模型:
1、建立模型 菜单方式:选object/new object,在新建对象对话
框中选对象为Equation,并命名,点击OK 或选Quick/estimate equation. 命令方式: 在主窗口命令行输入:
Ls qmg=c(1) +c(2)*car+c(3)*pmg+c(4)*pop+c(5)*rgnp
多元线性回归模型的极大似然估计
用对数极大似然估计来估计一个模型,主要的工作 是建立用来求解似然函数的说明文本。
EViews中似然函数的说明只是一系列对序列的赋值 语句,这些语句在极大化的过程中被反复的计算。
我们要做的是写下一组语句,在计算时,这些语句 将描述一个包含每个观测值对似然函数贡献的序列。
在Forecast sample选择区把预测范围从1 ~ 17改为17 ~ 17,即只预测x =20时的y的值。
多元线性回归模型案例
case2是1950-1987年间美国机动汽油消费量 和影响消费量的变量数值。其中各变量表示: QMG-机动车汽油消费量;MOB-汽车保有量; PMG-机动汽油零售价格;POP-人口数; GNP-按照1982年美元计算的GNP;以汽油 消费量为因变量,其它变量为自变量,建立 一个回归模型。
计量经济学线性回归模型
一元线性回归模型 多元线性回归模型 可线性化模型 虚拟变量
一元线性回归模型案例
Case1是黑龙江省伊春林区1999年16个林业 局的年木材采伐量和相应伐木剩余物数据。
下面利用该数据介绍怎样利用EViews软件进 行OLS回归
4、结果显示 点击方程对象窗口中的View键:
Mean Dependent Var (被解释变量的均值) : 被解释变量的样本均值。
F-Statistic (F统计量) :这是对回归方程中的所 有系数均为0(除了常数项)的假设检验。Prob (F-Statistic) (F统计量对应的概率) :该项是由 上面F统计量的值计算出的概率。