运算放大器电路分析详解
运算放大器电路的分析
第五章 含运算放大器的电路的分析◆ 重点:1、运放的传输特性2、比例器、加法器、减法器、跟随器等运算电路3、含理想运放的运算电路的分析计算◆ 难点:1、熟练计算含理想运放的思路5.1 运放的电路模型5.1.1 运放的符号运放是具有高放大倍数的直接耦合放大电路组成的半导体多端实际元件。
而在本章中,所讲到“运放”,是指实际运放的电路模型——一种四端元件。
其符号为+u-_o+ _图5-1 运放的符号在新国标中,运放及理想运放的符号分别为图5-2 运放的新国标符号5.1.2 运放的简介一、同相与反相输入端运放符号中的“+”、“-”表示运放的同相输入端和反相输入端,即当输入电压加在同相输入端和公共端之间时,输出电压和输入电压两者的实际方向相对于公共端来说相同;反之,当输入电压加在反相输入端和公共端之间时,输出电压和输入电压两者的实际方向相对于公共端来说相反。
其意义并不是电压的参考方向。
二、公共端在运放中,公共端往往取定为接地端——电位为零,实际中,电子线路中的接地端常常取多条支路的汇合点、仪器的底座或机壳等,输入电压、输出电压都以之为参考点。
有时,电路中并不画出该接地端,但计算时要注意它始终存在。
5.1.3运放的输入输出关系一、运放输入输出关系曲线在运放的输入端分别同时加上输入电压+u和-u(即差动输入电压为du)时,则其输出电压u o为uouAuuAu=-=-+)(d图5-3 运放输入输出关系曲线实际上,运放是一种单向器件,即输出电压受输入电压的控制,而输入电压并不受输出电压的控制。
由其输入输出关系可以看出,运放的线性放大部分很窄,当输入电压很小时,运放的工作状态就已经进入了饱和区,输出值开始保持不变。
二、运放的模型au-uou+图5-4 运放的电路模型由运放的这一模型,我们可以通过将运放等效为一个含有受控源的电路,从而进行分析计算。
例:参见书中P140所示的反相比例器。
(学生自学)5.1.4有关的说明在电子技术中,运放可以用于1.信号的运算——如比例、加法、减法、积分、微分等2.信号的处理——如有源滤波、采样保持、电压比较等3.波形的产生——矩形波、锯齿波、三角波等4.信号的测量——主要用于测量信号的放大5.2 具理想运放的电路分析5.2.1 含理想运放的电路分析基础所谓“理想运放”,是指图中模型的电阻R in、R0为零,A为无穷大的情况。
运算放大器电路分析详解
透解放大器遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。
今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。
虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。
而运放的输出电压是有限的,一般在10 V~14 V。
因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。
开环电压放大倍数越大,两输入端的电位越接近相等。
“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。
显然不能将两输入端真正短路。
由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。
因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。
故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。
“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。
显然不能将两输入端真正断路。
在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。
集成运算放大器分析及反相比例运算电路叶旭飞.pptx
R2 = 10 100 (10 +100) = 9. 1 k
第13页/共14页
感谢您的观看!
第14页/共14页
if Rf
解:1. Auf = – Rf R1
ui i1 R1 i– – +
uo
+
R2 i+
= –50 10 = –5
2、 uo = Auf ui
= –5 *0.2 V = – 1V
2. 因 Auf = – RF / R1 = – RF 10 = –10
故得 RF = –Auf R1 = –(–10) 10 =100 k
所以 i1 = i– +if if
又因
i1
ui
u R1
if
u uo Rf
所以 ui u u uo
R1
Rf
注:(1)、R1为输入电阻; 因“虚短”, 所以u–=u+ 0, (2)、Rf为反馈电阻; 所以
(3)、 R2为平衡电阻;
所以
第6页/共14页
思考:“-”的含 义
3、结论
(1) Auf为负值,即 uo与 ui 极性相反。因为 ui 加 在反相输入端。(负反馈)
第3页/共14页
二、集成运算放大器的分析
1、分析理想化运放的特点:
(1)输入电阻 ri→∞ (2)电压放大倍数Auf→∞ (3)输出电阻 ro→0
注意:无特殊说明, 今后我们分析的集成 运算放大器均为理想 运算放大器!
第4页/共14页
鼠标点击 控制
二、集成运算放大器的分析
2、两条重要的规律
虚短
(1) 两个输入端的电压约等于 0
即 u+= u– 0 ,称“虚短”
史上最全的运放典型应用电路及分析
史上最全的运放典型应用电路及分析运放(Operational Amplifier,简称OP-AMP)是一种非常重要的电子元件,被广泛应用于各种电路中。
它具有高增益、输入阻抗高、输出阻抗低和大动态范围等特点,适用于信号放大、滤波、求和、差分运算等各种应用。
下面将介绍几个常见的运放典型应用电路。
1. 基本运算放大器(Inverting amplifier)电路:该电路是运放最基本的应用之一,用于放大信号。
它的输入信号通过一个电阻连接到运放的一个输入引脚(负输入端),另一个输入引脚通过一个反馈电阻与输出端相连。
这样,在负输入端和输出端之间形成一个负反馈回路。
根据负反馈原理,输入信号被放大后反馈到负输入端,并与输入信号相位反向,达到放大输入信号的效果。
2. 非反转放大器(Non-inverting amplifier)电路:与基本运算放大器相比,非反转放大器电路在输入信号的反馈上有所不同。
在该电路中,输入信号直接连接到运放的一个输入引脚(正输入端),另一个输入引脚通过一个电阻与负电源端相连。
输出信号通过一个反馈电阻连接到正输入端。
这样,输出信号经过反馈后加入到正输入端,与输入信号相位相同,实现了对输入信号的放大。
3.滤波电路:运放可用于构建各种滤波电路,如低通滤波器、高通滤波器和带通滤波器等。
滤波器根据频率的不同选择性地削弱或放大信号的不同频段。
例如,低通滤波器能够削弱高频信号,使得输出信号更加接近原始信号的低频部分。
4.增益控制电路:运放可以用于实现可变增益放大器。
通过调节输入信号与反馈电阻之间的比例关系,可以实现对输出信号的不同放大倍数的控制。
这种电路广泛应用于音频设备、通信系统等领域。
5.比较器电路:利用运放的比较特性,可以将其应用为比较器。
比较器通过将待测信号与参考电压进行比较,并给出一个高低电平作为输出信号。
这种电路广泛应用于电压比较、开关控制、实现零点检测等场景。
总而言之,运放的应用非常广泛,可以根据不同的需求设计出各种典型电路。
运算放大器7大经典电路实图分析!
运算放大器7大经典电路实图分析!运放的基本分析方法:虚断,虚短。
对于不熟悉的运放应用电路,就使用该基本分析方法。
运放是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。
8号线攻城狮1运放在有源滤波中的应用上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。
有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。
该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。
其中电阻R280是防止输入悬空会导致运放输出异常。
滤波最常用二阶有源低通滤波电路为巴特沃兹低通滤波,单调下降,曲线平坦最平滑;●巴特沃兹低通滤波中用的最多的是赛伦凯乐电路,即仿真的该电路。
一个滤波器,要知道其截至频率是多少,或者能写出传递函数和频率响应也可以。
如果该滤波器还有放大功能,要知道该滤波器的增益是多少。
当两级RC电路的电阻、电容值相等时,叫赛伦凯电路,在二阶有源电路中引入一个负反馈,目的是使输出电压在高频率段迅速下降。
二阶有源低通滤波电路的通带放大倍数为 1+Rf /R1 ,与一阶低通滤波电路相同;截止频率为:注明,m的单位为欧姆, N 的单位为 u。
所以计算得出截止频率为:●切比雪夫,迅速衰减,但通带中有纹波;●贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。
8号线攻城狮2运放在电压比较器中的应用上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相让软件处理一下就可以),该电路在交流信号测频中广泛使用。
该电路实际上是过零比较器和深度放大电路的结合。
将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。
运算放大器电路分析
运算放大器电路分析运算放大器是一种非常常用的电子电路,用于放大输入信号并输出放大后的信号。
它由一个差动放大器和一个输出级组成。
差动放大器负责放大输入信号,而输出级负责放大差动放大器的输出。
在本篇文章中,我们将对运算放大器电路进行详细的分析。
差动放大器由两个输入端口和一个输出端口组成。
输入端口是一个非反相输入和一个反相输入。
反相输入端口将输入信号的电压通过一个电阻器连接到负电源。
非反相输入端口将输入信号的电压连接到反相输入端口。
差动放大器的输出是通过一个电阻器连接到一个负电源。
输出级由一个输入端口和一个输出端口组成。
输入端口将差动放大器的输出信号连接到负电源,并通过一个电阻和一个电容将信号输出到输出端口。
那么,运算放大器电路的工作原理是怎样的呢?当有输入信号时,差动放大器将不同的输入信号放大并输出一个差分信号。
输出级将差分信号放大并输出放大后的信号。
下面,我们来详细讨论差动放大器的工作原理。
差动放大器的输入信号通过一个电阻分流器连接到非反相输入端口和反相输入端口。
当非反相输入端口的电压高于反相输入端口的电压时,差动放大器将放大输入信号。
放大的程度取决于输入端口之间的电压差。
差动放大器的输出信号通过一个电阻连接到负电源。
负电源提供给差动放大器一个参考电平,以便放大器能够正常工作。
输出级将差动放大器的输出信号放大并输出。
它通过一个电阻和一个电容将信号输出到输出端口。
电阻用于调节输出信号的幅度,电容用于滤除高频噪声。
输出级的工作原理与差动放大器类似,但是它放大的是差分信号而不是单一的输入信号。
在实际应用中,运算放大器电路有很多变种。
它可以通过选择合适的电阻和电容值来调整放大倍数和频率响应。
此外,它还可以与其他电路组合使用,以满足不同的应用需求。
总结起来,运算放大器电路是一种常用的电子电路,它通过差动放大器和输出级来放大输入信号。
差动放大器将输入信号放大并输出一个差分信号,输出级将差分信号放大并输出放大后的信号。
几种运算放大器比较器及电路的简单分析
几种运算放大器比较器及电路的简单分析运算放大器和比较器是两种常见的电子元件,它们在电路中具有不同的功能。
本文将对这两种电子元件进行简单的分析和比较。
一、运算放大器运算放大器是一种用于放大电压信号的电子设备。
它具有高放大倍数和低失真的特点,常被用于放大微弱的输入信号。
运算放大器一般由多级放大电路组成,其中包括差动输入级、差动放大级、共射放大级和输出级。
运算放大器具有以下几个特点:1.高放大倍数:运算放大器通常具有很高的开环放大倍数,可以放大微小的输入信号。
2.低失真:运算放大器的差分输入电阻和输入容量很低,从而减小了输入信号的失真。
3.稳定性好:运算放大器具有很好的直流稳定性和交流稳定性,使其能够在不同的负载条件下稳定工作。
4.大信号驱动能力:运算放大器能够输出较大的电流和电压,可以驱动各种负载。
5.可调增益:运算放大器通常具有可调的增益,可以通过调节电阻、电容或反馈电阻等元件来改变放大倍数。
运算放大器常被应用于放大、滤波、积分、微分和开关等电路中,常见的应用有示波器、滤波器和反馈电路等。
二、比较器比较器是一种用于比较两个电压的电子元件。
它具有高增益和快速响应的特点,常被用于判断输入信号的大小关系。
比较器通常由不同类型的放大电路和判决电路组成,常见的比较器有有限增益比较器、开环比较器和比率比较器等。
比较器具有以下几个特点:1.高增益:比较器通常具有很高的增益,可以放大微小的输入差异。
2.快速响应:比较器的响应时间很短,可以快速判断输入信号的大小关系。
3.可调阈值:比较器可以通过调节电阻、电容或反馈电阻等元件,改变阈值的位置。
4.高输入阻抗:比较器的输入阻抗很高,可以减小输入电路对比较器的影响。
比较器常被应用于开关、报警、触发器和AD转换等电路中,常见的应用有电压比较器、窗口比较器等。
三、运算放大器与比较器的比较虽然运算放大器和比较器都是电路中常用的电子元件,但它们在功能和特性上有一些不同之处。
1.功能:运算放大器的主要功能是放大信号,而比较器的主要功能是比较电压。
电路基础原理中的运算放大器解析
电路基础原理中的运算放大器解析电路基础原理是电子工程学习的重要基础,掌握其中的关键概念和原理对于理解更复杂的电路设计和工作原理至关重要。
其中一个重要的组成部分就是运算放大器(Operational Amplifier,简称Op-Amp),它在电路中扮演着重要的角色。
一、什么是运算放大器?运算放大器是一种用于放大电路信号的集成电路元件。
它具有两个输入端(非反相输入端和反相输入端)和一个输出端。
运算放大器本身有非常高的增益,因此可以将微弱的输入信号放大到可用的幅度,在电路设计中起到重要作用。
二、运算放大器的基本原理1. 差分放大器运算放大器的非反相输入端和反相输入端构成了差分放大器,它通过比较两个输入端的电压差来产生输出信号。
差分放大器可以将输入信号在幅度上放大,并且可以通过外部电阻的调整来控制放大倍数。
2. 输入阻抗和输出阻抗运算放大器的输入阻抗非常高,说明它几乎不吸收输入信号的电流,而输出阻抗很低,能够在输出信号不受外界干扰的情况下提供准确的电压输出。
3. 开环增益和反馈运算放大器的开环增益非常高,一般可以达到10^5至10^6之间。
为了使运算放大器能够工作在稳定状态并有预期的放大效果,需要进行反馈控制。
反馈电路通过将一部分输出信号反馈到输入端,达到稳定放大的作用。
4. 负反馈在运算放大器的反馈中,负反馈是最常用的形式。
负反馈通过将一部分输出信号反向加在输入端,从而使运算放大器的输入信号与期望输出信号之间的差异减小,提高了电路的稳定性和准确性。
三、运算放大器的应用1. 比较器运算放大器可以作为比较器使用,比较两个输入信号的大小,输出高电平或低电平,用于触发其他电路的动作。
2. 滤波器运算放大器可以与电容和电感等元件结合,构成滤波器电路,对不同频率的信号进行滤波处理。
3. 仪器放大运算放大器可以作为仪器放大电路的核心部件,将微小的信号放大到可测量的幅度,如放大心电图仪的心电信号。
4. 信号发生器运放可以构成简单的信号发生器电路,通过正弦波、方波等信号的输入,产生不同频率和幅度的输出信号。
运算放大器详细的应用电路(很详细)
积分电路的其它用途:
去除高频干扰
将方波变为三角波
移相
在模数转换中将电压量变为时间量
§8.3?积分电路和微分电路
8.3.2?微分电路
微分实验电路
把三角波变为方波
(Vi:三角波,频率 1KHz,幅度 0.2V)
输入正弦波
(Vi:正弦波,频率 1KHz,幅度 0.2V)
思考:输入信号与输出信号间的相位关系?
根据与 R1?、Rf?的关系,集成运放两输入端外接电阻的对称条件。
计算出:R=3979Ω?取 R=3.9KΩ 2.根据Q值求和,因为时,根据与、的关系,集成运放两输入端外接电阻的对称条件
例题 1 仿真结果 例题与习题 2 LPF 例题与习题 2 仿真结果 例题与习题 3 HPF 例题与习题 3 仿真结果 例题与习题 4 例题与习题 4 仿真结果 vo1:红色 vo?:蓝色
、
e.?全通滤波器(APF)?
4.?按频率特性在截止频率 fp 附近形状的不同可分为 Butterworth,?Chebyshev?和?Bessel 等。 理想有源滤波器的频响: 滤波器的用途 滤波器主要用来滤除信号中无用的频率成分,例如,有一个较低频率的信号,其中包含一些较高频率成分的
干扰。滤波过程如图所示。 §8.6?有源滤波电路 8.6.2?低通滤波电路?(LPF) 低通滤波器的主要技术指标
组成:简单 RC 滤波器同相放大器特点:│Avp?│>0,带负载能力强缺点:阻带衰减太慢,选择性较差。 二.?性能分析
有源滤波电路的分析方法: 1.电路图→电路的传递函数 Av(s)→频率特性 Av(jω) 2.?根据定义求出主要参数 3.?画出电路的幅频特性 一阶 LPF 的幅频特性: 8.6.2.2?简单二阶?LPF
运算放大器电压、电流检测电路分析
运算放大器电压、电流信号检测电路分析作者:linxiyiran 日期:09.09.13/ARM-A VR嵌入式开发论坛1、运放实现电流检测:原理:将电流信号转化为电压信号,然后送ADC处理。
很多控制器接受来自各种检测仪表的0~20mA或4~20mA电流,电路将此电流转换成电压后再送ADC转换成数字信号,图九就是这样一个典型电路。
如图4~20mA电流流过采样100Ω电阻R1,在R1上会产生0.4~2V的电压差。
由虚断知,运放输入端没有电流流过,则流过R3和R5的电流相等,流过R2和R4的电流相等。
故:(V2-Vy)/R3 = Vy/R5 ……a(V1-Vx)/R2 = (Vx-Vout)/R4 ……b由虚短知: Vx = Vy ……c电流从0~20mA变化,则V1 = V2 + (0.4~2) ……d由cd式代入b式得(V2 + (0.4~2)-Vy)/R2 = (Vy-Vout)/R4 ……e如果R3=R2,R4=R5,则由e-a得Vout = -(0.4~2)R4/R2 ……f图九中R4/R2=22k/10k=2.2,则f式Vout = -(0.88~4.4)V,即是说,将4~20mA电流转换成了-0.88 ~ -4.4V电压,此电压可以送ADC去处理。
2、运放实现电压检测:原理:电压信号转化为电流信息,此处的运放没有比较器的功能。
电流可以转换成电压,电压也可以转换成电流。
图十就是这样一个电路。
上图的负反馈没有通过电阻直接反馈,而是串联了三极管Q1的发射结,大家可不要以为是一个比较器就是了。
只要是放大电路,虚短虚断的规律仍然是符合的!由虚断知,运放输入端没有电流流过,则 (Vi – V1)/R2 = (V1 – V4)/R6 ……a同理 (V3 – V2)/R5 = V2/R4 ……b由虚短知 V1 = V2 ……c如果R2=R6,R4=R5,则由abc式得V3-V4=Vi上式说明R7两端的电压和输入电压Vi相等,则通过R7的电流I=Vi/R7,如果负载RL<<100KΩ,则通过Rl和通过R7的电流基本相同。
运算放大器电路分析
第五章 含运算放大器的电路的分析◆ 重点:1、运放的传输特性2、比例器、加法器、减法器、跟随器等运算电路3、含理想运放的运算电路的分析计算◆ 难点:1、熟练计算含理想运放的思路5.1 运放的电路模型5.1.1 运放的符号运放是具有高放大倍数的直接耦合放大电路组成的半导体多端实际元件。
而在本章中,所讲到“运放”,是指实际运放的电路模型——一种四端元件。
其符号为+u-_o+ _图5-1 运放的符号在新国标中,运放及理想运放的符号分别为图5-2 运放的新国标符号5.1.2 运放的简介一、同相与反相输入端运放符号中的“+”、“-”表示运放的同相输入端和反相输入端,即当输入电压加在同相输入端和公共端之间时,输出电压和输入电压两者的实际方向相对于公共端来说相同;反之,当输入电压加在反相输入端和公共端之间时,输出电压和输入电压两者的实际方向相对于公共端来说相反。
其意义并不是电压的参考方向。
二、公共端在运放中,公共端往往取定为接地端——电位为零,实际中,电子线路中的接地端常常取多条支路的汇合点、仪器的底座或机壳等,输入电压、输出电压都以之为参考点。
有时,电路中并不画出该接地端,但计算时要注意它始终存在。
5.1.3运放的输入输出关系一、运放输入输出关系曲线在运放的输入端分别同时加上输入电压+u和-u(即差动输入电压为du)时,则其输出电压u o为uouAuuAu=-=-+)(d图5-3 运放输入输出关系曲线实际上,运放是一种单向器件,即输出电压受输入电压的控制,而输入电压并不受输出电压的控制。
由其输入输出关系可以看出,运放的线性放大部分很窄,当输入电压很小时,运放的工作状态就已经进入了饱和区,输出值开始保持不变。
二、运放的模型au-u ou图5-4 运放的电路模型由运放的这一模型,我们可以通过将运放等效为一个含有受控源的电路,从而进行分析计算。
例:参见书中P140所示的反相比例器。
(学生自学)5.1.4有关的说明在电子技术中,运放可以用于1.信号的运算——如比例、加法、减法、积分、微分等2.信号的处理——如有源滤波、采样保持、电压比较等3.波形的产生——矩形波、锯齿波、三角波等4.信号的测量——主要用于测量信号的放大5.2 具理想运放的电路分析5.2.1 含理想运放的电路分析基础所谓“理想运放”,是指图中模型的电阻R in、R0为零,A为无穷大的情况。
含有运算放大器电路分析
(15.2)低运功算放耗大型器运的算电放路大组器成及其分类 随着便携式仪器应用范围的扩大,必须使用低电源电压供 电、低功率消耗的运算放大器。常用的运算放大器有TL022C、TL-060C等,其工作电压为±2~±18V,消耗电流 为50~250A。目前,有的产品功耗已达W级,例如 ,ICL7600的供电电源为1.5V,功耗为10mW,可采用单节 电池供电。 (6)高压大功率型运算放大器 普通的运算放大器若要提高输出电压或增大输出电流,集 成运放外部必须要加辅助电路。高压大电流集成运算放大器 外部不需附加任何电路,即可输出高电压和大电流。例如, D41集成运放的电源电压可达±150V,A791集成运放的输 出电流可达1A。
1 Rf
ua
1 Rf
uo
ui1 R1
ui2 R2
ui3 R3
根据虚短路性质 ua u u 0
所以有
ui1 ui2 ui3 uo
即
R1 R2 R3 Rf
uo =
Rf R1
ui1
Rf R2
ui2
Rf R3
ui3
由上式可知,输出信号的大小是输入信号的加权和,
因此,该电路实现了加权加法运算。式中的系数为对应
uo A(u u ) Aud
当同相输入端接地时,即
u 0 有
uo Au
当反相输入端接地时,
u 0 有
uo Au
1.5 理想运算放大器 在线性放大区分析运算放大器时,一般可将它看成一个
理想运算放大器,把运放电路做如下的理想化处理。 (1)放大倍数A→∞ 若输出电压uo为有限值,则当放大倍数A→∞时,必须满
1.2 运算放大器的电路组成及其分类
集成运算放大器的分类方法很多,按照运算放大器的参数 来分可分为如下7种类型。
集成运算放大器(压控电流源)运用电路及详细解析
微分器的电路结构与积分器类似,包括集成运算放大器、 电容和反馈电阻。
微分器在信号处理、控制系统和电子测量等领域有广泛 的应用。
06 结论与展望
结论总结
01
集成运算放大器(压控电流源)在电路中具有重要作用,能够实现信号的放大、运 算和处理等功能。
02
通过对不同类型集成运算放大器(压控电流源)的特性、应用和电路设计进行比较 ,可以更好地选择适合特定需求的集成运算放大器(压控电流源)。
差分输入电路
总结词
差分输入电路是一种较为特殊的集成运算放大器应用电路,其输出电压与两个输 入电压的差值呈线性关系。
详细描述
差分输入电路的输出电压与两个输入电压的差值呈线性关系,适用于信号比较、 差分信号放大等应用。这种电路具有高输入阻抗和低输出阻抗的特点,能够有效 地减小外界干扰对信号的影响。
03 压控电流源的应用电路
详细描述
反相输入电路的输出电压与输入电压呈反相关系,即当输入 电压增加时,输出电压减小,反之亦然。这种电路具有高输 入阻抗和低输出阻抗的特点,适用于信号放大、减法运算等 应用。
同相输入电路
总结词
同相输入电路是一种较为简单的集成运算放大器应用电路,其输出电压与输入 电压呈同相关系。
详细描述
同相输入电路的输出电压与输入电压保持一致,适用于信号跟随、缓冲等应用。 这种电路具有低输入阻抗和低输出阻抗的特点,能够提高信号的驱动能力。
积分器可以将输入的电压信号 转换成电流信号,再通过负载 电阻转换成电压信号,实现信 号的积分运算。
案例三:微分器的应用
微分器是集成运算放大器的另一种应用可以将输入的电压信号转换成电流信号,再通过 负载电阻转换成电压信号,实现信号的微分运算。
运放基本电路全解析!
运放基本电路全解析!我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh 和Vol 。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V 也或者会更低。
运放电路分析
5-21
§5.3 含理想运放的电路分析
负载电阻 RL与输出电 压u2 的关系为
R 2 // R L u2 = u1 R 1 + R 2 // R L ≠ R2 u1 R1 + R 2
加入电压跟随器后,
R2 u2 = u1 R1 + R 2
输出电压u2不受负载电阻的影响 即负载电阻的作用被“隔离”
5-22
5-5
§5.1 运算放大器的电路模型
3. 运算放大器的外特性
在直流和低频信号的条件下,运放输出电压uo 与差动输入电压ud的特性曲线 其传输特性可分三个区域: ①线性工作区:
ud<|ε|,uo=Aud
②正向饱和区:
ud >ε,uo=Usat
③反向饱和区:
ud <-ε,uo=Usat
5-6
§5.1 运算放大器的电路模型
ui1 − u − u− − uo i1 = i f ⇒ = R1 Rf
u+
+
Rf ⎛ Rf ⎞ − Rf ⎛ R f ⎞ R3 uo = ⎜1 + ui1 = ⎜1 + ui 2 − ui1 ⎟u − ⎟ R1 ⎠ R1 R1 ⎠ R2 + R3 R1 ⎝ ⎝
5-23
§5.3 含理想运放的电路分析
运算放大器可以完成比例、加减、积分与微分以及 乘除等运算,下面给出其中几种运算电路。
5-17
§5.3 含理想运放的电路分析
1. 加法运算
(a)根据“虚短”:
u− = u+ = 0
所以,电流为
ui1 , i1 = R1 ui 2 , i2 = R2 ui 3 , i3 = R3 uo if = − Rf
运放电路详解
运放电路详解
运放电路是一种基于运算放大器的电路,主要由运算放大器、电阻、电容等元件组成。
运算放大器是运放电路的核心,具有高增益、高输入阻抗、低输出阻抗等特点。
根据运放电路的输入和输出关系,可以将其分为反向放大器、同向放大器和加法器等类型。
反向放大器是一种常见的运放电路,其输入端与反向输入端相连,输出端与接地端相连,通过反馈电阻实现放大。
同向放大器是一种输入端与输出端同向的运放电路,其放大倍数为同向端与反向端之间的差值。
加法器是一种将两个或多个输入信号相加并输出的运放电路。
运放电路可以用于信号放大、滤波、振荡、电压比较、模拟计算等应用中。
在信号放大和滤波中,运放电路可以对信号进行放大和滤波,实现信号的平滑输出。
在振荡电路中,运放电路可以与反馈网络一起构成振荡器,实现信号的振荡。
在电压比较中,运放电路可以将一个输入信号与另一个参考信号进行比较,并输出一个高低电平信号。
在模拟计算中,运放电路可以组合实现加减法、乘法、除法等运算。
总之,运放电路是一种非常常见的电子电路,可以用于各种应用,包括信号处理、滤波、振荡、电压比较、模拟计算等。
运放电路分析
运放电路分析运放电路简介运放电路(Operational Amplifier Circuit)是一种常见的电子电路,由运算放大器(Operational Amplifier)和其他组件组成。
运放电路具有很高的增益、低输出阻抗和很大的输入阻抗,可广泛应用于各种电子设备中。
本文将对运放电路的原理、特性以及一些常见应用进行详细分析。
一、运放电路的原理与特性1. 基本结构与工作原理运放电路的基本结构由输入端、输出端和电源供电端组成。
其中,输入端包括一个非反相输入端(+)和一个反相输入端(-),输出端连接一个相对于地的负载电阻,电源供电端为正负双电源。
运放器通过输入端接收信号,经过放大处理后输出到负载上。
运放电路的工作原理主要依靠基本的放大运算原理和反馈机制。
具体而言,运放器的输入端电压差会引起输出电压的变化,通过适当的反馈电路连接将输出电压进行调整,使输出电压与输入电压之间保持稳定的比例关系。
2. 主要特性(1)增益:运放电路的主要特点是具有很高的电压增益。
通常情况下,运放器的增益可达到几十至几百倍,甚至更高。
这种高增益使得运放器能够有效放大微弱的输入信号。
(2)输入/输出阻抗:运放电路的输入阻抗非常高,输入电流非常小,可以看做无穷大。
而输出阻抗则较低,通常在几十欧姆至几百欧姆之间,这使得运放器能够有效驱动负载。
(3)频率响应:运放电路的频率响应非常宽,通常在几赫兹至数百赫兹之间。
这使得运放电路能够处理较高频率的信号。
(4)运放器的输入/输出电压范围:运放器的输入和输出电压范围通常由电源电压决定,一般假设电源电压为正负15伏。
二、运放电路的常见应用1. 比较器比较器是一种广泛应用的运放电路,其主要作用是将输入信号与参考电平进行比较,并输出高或低电平。
在实际应用中,比较器常用于电压检测、开关控制、触发器等电路中。
2. 放大器运放器最常见的应用就是作为放大器使用。
运放电路可以起到放大信号的作用,将微弱信号放大为可以驱动负载的信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
透解放大器遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。
今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。
虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。
而运放的输出电压是有限的,一般在 10 V~14 V。
因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。
开环电压放大倍数越大,两输入端的电位越接近相等。
“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。
显然不能将两输入端真正短路。
由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。
因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。
故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。
“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。
显然不能将两输入端真正断路。
在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。
我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。
好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。
(原文件名:图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。
流过R1的电流I1 = (Vi - V-)/R1 ……a流过R2的电流I2 = (V - - Vout)/R2 ……b V- = V+ = 0 ……c I1 = I2 ……d求解上面的初中代数方程得Vout = (-R2/R1)*Vi 这就是传说中的反向放大器的输入输出关系式了。
(原文件名:图二中Vi与V-虚短,则 Vi = V- ……a因为虚断,反向输入端没有电流输入输出,通过R1和R2 的电流相等,设此电流为I,由欧姆定律得: I = Vout/(R1+R2) ……b Vi等于R2上的分压,即:Vi = I*R2 ……c由abc 式得Vout=Vi*(R1+R2)/R2 这就是传说中的同向放大器的公式了。
(原文件名:图三中,由虚短知: V- = V+ = 0 ……a由虚断及基尔霍夫定律知,通过R2与R1的电流之和等于通过R3的电流,故 (V1 – V-)/R1 + (V2 – V-)/R2 = (Vout – V-)/R3 ……b代入a式,b式变为V1/R1 + V2/R2 = Vout/R3 如果取R1=R2=R3,则上式变为Vout=V1+V2,这就是传说中的加法器了。
(原文件名:请看图四。
因为虚断,运放同向端没有电流流过,则流过R1和R2的电流相等,同理流过R4和R3的电流也相等。
故 (V1 – V+)/R1 = (V+ - V2)/R2 ……a (Vout – V-)/R3 = V-/R4 ……b由虚短知: V+ = V- ……c如果R1= R2,R3=R4,则由以上式子可以推导出 V+ = (V1 + V2)/2 V- = Vout/2 故 Vout = V1 + V2 也是一个加法器,呵呵!(原文件名:图五由虚断知,通过R1的电流等于通过R2的电流,同理通过R4的电流等于R3的电流,故有 (V2 – V +)/R1 = V+/R2 ……a (V1 – V-)/R4 = (V- - Vout)/R3 ……b如果R1=R2,则V+ = V2/2 ……c如果R3=R4,则V- = (Vo ut + V1)/2 ……d由虚短知 V+ = V- ……e所以 Vout=V2-V1 这就是传说中的减法器了。
(原文件名:图六电路中,由虚短知,反向输入端的电压与同向端相等,由虚断知,通过R1的电流与通过C1的电流相等。
通过R1的电流 i=V1/R1 通过C1的电流i=C*dUc/dt=-C*dVout/dt 所以 Vout=((-1/(R1*C1))∫V1dt输出电压与输入电压对时间的积分成正比,这就是传说中的积分电路了。
若V1为恒定电压U,则上式变换为Vo ut = -U*t/(R1*C1) t 是时间,则Vout输出电压是一条从0至负电源电压按时间变化的直线。
(原文件名:图七中由虚断知,通过电容C1和电阻R2的电流是相等的,由虚短知,运放同向端与反向端电压是相等的。
则: Vout = -i * R2 = -(R2*C1)dV1/dt 这是一个微分电路。
如果V1是一个突然加入的直流电压,则输出Vout对应一个方向与V1相反的脉冲。
(原文件名:图八.由虚短知 Vx = V1 ……a Vy = V2 ……b由虚断知,运放输入端没有电流流过,则R1、R2、R3可视为串联,通过每一个电阻的电流是相同的,电流I=(Vx-Vy)/R2 ……c则: Vo1-Vo2=I*(R1+R2+R3) = (Vx-Vy)(R1+R2 +R3)/R2 ……d由虚断知,流过R6与流过R7的电流相等,若R6=R7,则Vw = Vo2/2 ……e同理若R4=R5,则V out – Vu = Vu – Vo1,故Vu = (Vout+Vo1)/2 ……f由虚短知,Vu = Vw ……g由efg得 Vout = Vo2 – Vo1 ……h由dh 得 Vout = (Vy –Vx)(R1+R2+R3)/R2 上式中(R1+R2+R3)/R2是定值,此值确定了差值(Vy –Vx)的放大倍数。
这个电路就是传说中的差分放大电路了。
(原文件名:分析一个大家接触得较多的电路。
很多控制器接受来自各种检测仪表的0~20mA或4~20mA电流,电路将此电流转换成电压后再送ADC转换成数字信号,图九就是这样一个典型电路。
如图4~20mA电流流过采样100Ω电阻R1,在R1上会产生~2V的电压差。
由虚断知,运放输入端没有电流流过,则流过R3和R5的电流相等,流过R2和R4的电流相等。
故: (V2-Vy)/R3 = Vy/R5 ……a (V1-Vx)/R2 = (Vx-Vout)/R4 ……b由虚短知: Vx = Vy ……c电流从0~20mA变化,则V1 = V2 + ~2) ……d由cd式代入b式得(V2 + ~2)-Vy)/R2 = (Vy-Vout) /R4 ……e如果R3=R2,R4=R5,则由e-a得Vout = -~2)R4/R2 ……f图九中R4/R2=22k/10k=,则f式Vout = -~V,即是说,将4~20mA电流转换成了 ~ 电压,此电压可以送ADC去处理。
(原文件名:电流可以转换成电压,电压也可以转换成电流。
图十就是这样一个电路。
上图的负反馈没有通过电阻直接反馈,而是串联了三极管Q1的发射结,大家可不要以为是一个比较器就是了。
只要是放大电路,虚短虚断的规律仍然是符合的!由虚断知,运放输入端没有电流流过,则 (Vi – V1)/R2 = (V1 – V4)/R6 ……a同理 (V3 – V2)/R5 = V2/R4 ……b由虚短知 V1 = V2 ……c如果R2=R6,R4=R5,则由abc式得V3-V4=Vi上式说明R7两端的电压和输入电压Vi相等,则通过R7的电流I=Vi/R7,如果负载RL<<100KΩ,则通过Rl和通过R7的电流基本相同。
(原文件名:来一个复杂的,呵呵!图十一是一个三线制PT100前置放大电路。
PT100传感器引出三根材质、线径、长度完全相同的线,接法如图所示。
有2V的电压加在由R14、R20、R15、Z1、PT100及其线电阻组成的桥电路上。
Z1、Z2、Z3、D11、D12、D83及各电容在电路中起滤波和保护作用,静态分析时可不予理会,Z1、Z2、Z3可视为短路,D11、D12、D83及各电容可视为开路。
由电阻分压知, V3=2*R20/(R14+20)=200/1100=2/11 ……a由虚短知,U8B第6、7脚电压和第5脚电压相等 V4=V3 ……b由虚断知,U8A第2脚没有电流流过,则流过R18和R19上的电流相等。
(V2-V4)/R19=(V5-V2)/R18 ……c由虚断知,U8A第3脚没有电流流过, V1=V7 ……d在桥电路中R15和Z1、PT100及线电阻串联,PT100与线电阻串联分得的电压通过电阻R17加至U8A的第3脚, V7=2*(Rx+2R0)/(R15+Rx+2R0) …..e由虚短知,U8A第3脚和第2脚电压相等, V1=V2 ……f由abcdef得, (V5-V7)/100=(V7-V3)/ 化简得 V5=*V7-100V3)/ 即 V5=(Rx+2R0)/(1000+Rx+2R0) – 200/11 ……g上式输出电压V5是Rx的函数我们再看线电阻的影响。
Pt100最下端线电阻上产生的电压降经过中间的线电阻、Z2、R22,加至U8C的第10脚,由虚断知, V5=V8=V9=2*R0/(R15+Rx+2R0) ……a (V6-V10)/R25=V10/R26 ……b由虚短知, V10=V5 ……c由式abc得 V6=V5=[(1000+Rx+2R0)] ……h由式gh组成的方程组知,如果测出V5、V6的值,就可算出Rx及R0,知道Rx,查pt100分度表就知道温度的大小了。