第二次数学作业
11296224417(线性代数与概率统计第二次作业)
第二次网络作业:(一)单项选择题:1、设A ,B 为任意两个事件,则下列关系成立的是[ C ]。
()()()()()()()()A A B B AB A B B AC A B B AD A B B A +-=+-⊃+-⊂-+=2、如果A ,B 为两个事件,则下列条件中,[ C ]成立时,A 与B 为对立事件。
()()()()A AB B A B C AB A B D AB =Φ+=Ω=Φ+=Ω=Φ且3、一批产品的次品率为(01)p p <<,为发现一件次品至少要检查2件产品的概率是[ C ]。
2()()1()(1)()(1)A p B p C p p D p p --- 4、两封信随机投入4个邮筒,则前两个信筒都没有投入信的概率为[ C ]。
22244222!2!2()()()()4!4!44C C A B C D5、设A ,B 为随机事件,()0.7,()0.3P A P A B =-=,则()P A B =[ A]。
()0.6()0.5()0.4()0.35A B C D6、设事件A 与B 相互独立,则下列各式中成立的是[ A]。
()()()()()()0()()()()()()1()()A P A B P A P B B P AB C P A B P A P B D P A B P A P B +=+=-=-+=-7、某人射击时,中靶率为34,如果射击直到中靶为止,则射击次数为3的概率为[ C ]。
3223331131()()()()444444A B C D ⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭8、袋中装有5个大小相同的球,其中3个白球,2个黑球,甲先从袋中随机取出一球后,乙再从中随机地取一球,则乙取出的球的白球的概率为[ C ]。
1231()()()()5554A B C D9、每次试验成功的概率为(01)p p <<,则在3次重复试验中至少失败一次的概率为[ B ]。
国开电大-高等数学基础-第1-4次作业答案
高等数学基础第一次作业第1章 函数第2章 极限与连续(一) 单项选择题⒈下列各函数对中,(C )中的两个函数相等.A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g分析:判断函数相等的两个条件(1)对应法则相同(2)定义域相同A 、2()f x x ==,定义域{}|0x x ≥;x x g =)(,定义域为R定义域不同,所以函数不相等;B 、()f x x ==,x x g =)(对应法则不同,所以函数不相等;C 、3()ln 3ln f x x x ==,定义域为{}|0x x >,x x g ln 3)(=,定义域为{}|0x x > 所以两个函数相等D 、1)(+=x x f ,定义域为R ;21()11x g x x x -==+-,定义域为{}|,1x x R x ∈≠ 定义域不同,所以两函数不等。
故选C⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称. A. 坐标原点 B. x 轴 C. y 轴 D. x y = 分析:奇函数,()()f x f x -=-,关于原点对称偶函数,()()f x f x -=,关于y 轴对称()y f x =与它的反函数()1y f x -=关于y x =对称,奇函数与偶函数的前提是定义域关于原点对称设()()()g x f x f x =+-,则()()()()g x f x f x g x -=-+= 所以()()()g x f x f x =+-为偶函数,即图形关于y 轴对称故选C⒊下列函数中为奇函数是(B ).A. )1ln(2x y += B. x x y cos =C. 2xx a a y -+= D. )1ln(x y +=分析:A 、()()()()22ln(1)ln 1y x x xy x -=+-=+=,为偶函数B 、()()()cos cos y x x x x x y x -=--=-=-,为奇函数 或者x 为奇函数,cosx 为偶函数,奇偶函数乘积仍为奇函数C 、()()2x xa a y x y x -+-==,所以为偶函数 D 、()ln(1)y x x -=-,非奇非偶函数故选B⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -= C. 2xy = D. ⎩⎨⎧≥<-=0,10,1x x y 分析:六种基本初等函数(1) y c =(常值)———常值函数(2) ,y x αα=为常数——幂函数 (3) ()0,1x y a a a =>≠———指数函数 (4) ()log 0,1a y x a a =>≠———对数函数(5) sin ,cos ,tan ,cot y x y x y x y x ====——三角函数(6) [][]sin ,1,1,cos ,1,1,tan ,cot y arc x y arc x y arc x y arc x=-=-==——反三角函数分段函数不是基本初等函数,故D 选项不对 对照比较选C⒌下列极限存计算不正确的是(D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim =∞→x x x D. 01sin lim =∞→xx x分析:A 、已知()1lim 00n x n x→∞=>2222222211lim lim lim 1222101x x x x x x x x x x x →∞→∞→∞====++++ B 、0limln(1)ln(10)0x x →+=+=初等函数在期定义域内是连续的C 、sin 1limlim sin 0x x x x xx →∞→∞==x →∞时,1x是无穷小量,sin x 是有界函数,无穷小量×有界函数仍是无穷小量D 、1sin1lim sin lim1x x x x x x→∞→∞=,令10,t x x =→→∞,则原式0sin lim 1t t t →== 故选D⒍当0→x 时,变量(C )是无穷小量. A.x x sin B. x1C. xx 1sinD. 2)ln(+x 分析;()lim 0x af x →=,则称()f x 为x a →时的无穷小量A 、0sin lim1x xx →=,重要极限B 、01lim x x→=∞,无穷大量C 、01lim sin 0x x x →=,无穷小量x ×有界函数1sin x 仍为无穷小量D 、()0limln(2)=ln 0+2ln 2x x →+=故选C⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。
新课标版数学必修二(新高考新课程)作业15高考调研精讲精练
新课标版数学必修⼆(新⾼考新课程)作业15⾼考调研精讲精练课时作业(⼗五)(第⼀次作业)1.直线a是平⾯α的斜线,过a且和α垂直的平⾯有()A.0个B.1个C.2个D.⽆数个答案 B2.给定下列四个命题①若⼀个平⾯内的两条直线与另⼀个平⾯都平⾏,则这两个平⾯相互平⾏;②若⼀个平⾯经过另⼀个平⾯的垂线,则这两个平⾯相互垂直;③垂直于同⼀直线的两条直线相互平⾏;④若两个平⾯垂直,则⼀个平⾯内与它们的交线不垂直的直线与另⼀个平⾯也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④答案 D3.若m,n是两条不同的直线,α,β,γ是三个不同的平⾯,则下列命题中的真命题是() A.若m?β,α⊥β,则m⊥αB.若α∩γ=m,β∩γ=n,m∥n,则α∥βC.若m⊥β,m∥α,则α⊥βD.若α⊥γ,α⊥β,则β⊥γ答案 C解析若m?β,α⊥β,则m与α的关系可能平⾏也可能相交,则A为假命题;选项B中,α与β可以平⾏也可能相交,则B为假命题;选项D中β与γ也可能平⾏或相交(不⼀定垂直),则D为假命题.故选C.4.在如图所⽰的三棱锥中,AD⊥BC,CD⊥AD,则有()A.⾯ABC⊥⾯ADC B.⾯ABC⊥⾯ADBC.⾯ABC⊥⾯DBC D.⾯ADC⊥⾯DBC答案 D5.正⽅体ABCD-A1B1C1D1中,P为CC1的中点,则平⾯PBD垂直于()A.平⾯A1BD B.平⾯D1BDC.平⾯PBC D.平⾯CBD答案 A6.在空间四边形ABCD中,AB=BC,AD=CD,E为对⾓线AC的中点,下列判断正确的是()A.平⾯ABD⊥平⾯ADC B.平⾯ABC⊥平⾯ABDC.平⾯ABC⊥平⾯ADC D.平⾯ABC⊥平⾯BED答案 D7.(2016·浙江)已知互相垂直的平⾯α,β交于直线l,若直线m,n满⾜m∥α,n⊥β,则()A.m∥l B.m∥nC.n⊥l D.m⊥n答案 C解析因为α∩β=l,所以l?β,所以n⊥l.故选C.8.如图,正⽅体ABCD-A1B1C1D1中,O为底⾯ABCD的中⼼,M为棱BB1的中点,则下列结论中错误的是()A.D1O∥平⾯A1BC1B.MO⊥平⾯A1BC1C.异⾯直线BC1与AC所成的⾓等于60°D.⼆⾯⾓MACB等于90°答案 D解析对于选项A,连接B1D1,BO,交A1C1于E,则四边形D1OBE为平⾏四边形,所以D1O∥BE,因为D1O?平⾯A1BC1,BE?平⾯A1BC1,所以D1O∥平⾯A1BC1,故正确;对于选项B,连接B1D,因为O为底⾯ABCD的中⼼,M为棱BB1的中点,所以MO∥B1D,易证B1D⊥平⾯A1BC1,所以MO⊥平⾯A1BC1,故正确;对于选项C,因为AC∥A1C1,所以∠A1C1B为异⾯直线BC1与AC 所成的⾓,因为△A1C1B为等边三⾓形,所以∠A1C1B=60°,故正确;对于选项D,因为BO⊥AC,MO⊥AC,所以∠MOB为⼆⾯⾓MACB的平⾯⾓,显然不等于90°,故不正确.综上知,选D.9.如图,已知六棱锥P-ABCDEF的底⾯是正六边形,PA⊥平⾯ABC,PA=2AB,则下列结论正确的是________(填序号).①PB⊥AD;②平⾯PAB⊥平⾯PAE;③BC∥平⾯PAE;④直线PD与底⾯ABC所成的⾓为45°.答案②④解析由于AD与AB不垂直,因此得不到PB⊥AD,①不正确;由PA⊥AB,AE⊥AB,PA∩AE=A,得AB⊥平⾯PAE,因为AB?平⾯PAB,所以平⾯PAB⊥平⾯PAE,②正确;延长BC,EA,两者相交,因此BC与平⾯PAE相交,③不正确;由于PA⊥平⾯ABC,所以∠PDA就是直线PD与平⾯ABC所成的⾓,由PA=2AB,AD=2AB,得PA=AD,所以∠PDA=45°,④正确.10.如图,在直三棱柱ABC-A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C.求证:(1)EF∥平⾯ABC;(2)平⾯A1FD⊥平⾯BB1C1C.证明(1)因为E,F分别是A1B,A1C的中点,所以EF∥BC,⼜EF?⾯ABC,BC?⾯ABC,所以EF∥平⾯ABC.(2)因为直三棱柱ABC-A1B1C1,所以BB1⊥⾯A1B1C1,BB1⊥A1D.⼜A1D⊥B1C,BB1∩B1C=B1,所以A1D⊥⾯BB1C1C.⼜A1D?⾯A1FD,所以平⾯A1FD⊥平⾯BB1C1C.11.如图,四棱锥S-ABCD中,四边形ABCD为菱形,SD=SB.(1)求证:平⾯SAC⊥平⾯SBD;(2)求证:平⾯SAC⊥平⾯ABCD.证明(1)连接AC,BD,使AC∩BD=O.∵底⾯ABCD为菱形,∴BD⊥AC.∵SB=SD,O为BD中点,∴SO⊥BD,⼜SO∩AC=O,∴BD⊥平⾯SAC,⼜∵BD?平⾯SBD,∴平⾯SAC⊥平⾯SBD.(2)由(1)知BD⊥平⾯SAC,BD?平⾯ABCD,∴平⾯SAC⊥平⾯ABCD.12.如图,△ABC为正三⾓形,EC⊥平⾯ABC,BD∥CE,且CE=CA=2BD,M是EA的中点,求证:(1)DE=DA;(2)平⾯BDM⊥平⾯ECA;(3)平⾯DEA⊥平⾯ECA.证明(1)取AC中点N,连接MN,BN,则MN∥EC,∵EC⊥平⾯ABC,∴平⾯EAC⊥平⾯ABC.∴MN⊥平⾯ABC,⼜BN?平⾯ABC,∴MN⊥BN,且MN=BD,MN∥BD,∴四边形MNBD为矩形,∴DM∥BN,∵CN=AN,BC=AB,∴BN⊥CA,⼜CA ∩MN =N ,∴BN ⊥平⾯AEC ,∴DM ⊥⾯EAC ,∴DM ⊥AE.∴DE =DA. (2)由(1)知,DM ⊥⾯EAC ,DM ?⾯BDM ,∴平⾯BDM ⊥平⾯ECA.(3)由(1)知,DM ⊥⾯EAC ,DM ?⾯ADE ,∴平⾯DEA ⊥平⾯ECA.13.如图所⽰,在矩形ABCD 中,已知AB =12AD ,E 是AD 的中点,沿BE 将△ABE 折起⾄△A ′BE 的位置,使A ′C =A ′D ,求证:平⾯A ′BE ⊥平⾯BCDE.证明如图所⽰,取CD 的中点M ,BE 的中点N ,连接A ′M ,A ′N ,MN ,则MN ∥BC.∵AB =12AD ,E 是AD 的中点,∴AB =AE ,即A ′B =A ′E ,⼜BN =NE ,∴A ′N ⊥BE.∵A ′C =A ′D ,∴A ′M ⊥CD. 在四边形BCDE 中,CD ⊥MN ,⼜MN ∩A ′M =M ,∴CD ⊥平⾯A ′MN ,⼜A ′N ?平⾯A ′MN ,∴CD ⊥A ′N. ∵DE ∥BC 且DE =12BC ,∴BE 必与CD 相交.⼜A ′N ⊥BE ,A ′N ⊥CD ,∴A ′N ⊥平⾯BCDE. ⼜A ′N ?平⾯A′BE ,∴平⾯A ′BE ⊥平⾯BCDE.课时作业(⼗五)(第⼆次作业)1.(2015·浙江)设α,β是两个不同的平⾯,l ,m 是两条不同的直线,且l ?α,m ?β.( ) A .若l ⊥β,则α⊥β B .若α⊥β,则l ⊥m C .若l ∥β,则α∥βD .若α∥β,则l ∥m答案 A解析⾯⾯垂直的证明主要是找线⾯垂直,此题在选项中直接给出两个条件,便于考⽣根据判定定理进⾏直接选择,相对较为基础.如果采⽤排除法,思维量会增加.2.在正四⾯体P-ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下⾯四个结论不成⽴的是( )A .BC ∥平⾯PDFB .DF ⊥平⾯PAEC .平⾯PDF ⊥平⾯ABCD .平⾯PAE ⊥平⾯ABC答案 C解析∵D ,E ,F 分别为AB ,BC ,AC 的中点,∴DF ∥BC.∴BC ∥平⾯PDF.故A 正确.连接AE ,PE ,则AE ⊥BC.PE ⊥BC ,∴BC ⊥平⾯PAE.∴DF ⊥平⾯PAE.故B 正确.⼜∵BC ?平⾯ABC ,∴平⾯PAE ⊥平⾯ABC.故D 正确.∴选C.3.把正⽅形ABCD 沿对⾓线BD 折成直⼆⾯⾓,则△ABC 是( ) A .正三⾓形 B .直⾓三⾓形 C .锐⾓三⾓形 D .钝⾓三⾓形答案 A4.在正⽅体ABCD-A 1B 1C 1D 1中,截⾯A 1BD 与底⾯ABCD 所成⼆⾯⾓A 1-BD-A 的正切值为( ) A.32B.22C. 2D. 3答案 C解析如图所⽰,连接AC 交BD 于点O ,连接A 1O ,O 为BD 中点,∵A 1D =A 1B ,∴在△A 1BD 中,A 1O ⊥BD.⼜∵在正⽅形ABCD 中,AC ⊥BD ,∴∠A 1OA 为⼆⾯⾓A 1-BD-A 的平⾯⾓.设AA 1=1,则AO =22,∴tan ∠A 1OA =AA 1AO =122= 2.故选C. 5.如图,在四棱锥P-ABCD 中,PA ⊥平⾯ABCD ,底⾯ABCD 是矩形,则图中互相垂直的平⾯有( )A.2对B.3对C.4对D.5对答案 D解析∵PA⊥平⾯ABCD,∴平⾯PAB⊥平⾯ABCD,平⾯PAD⊥平⾯ABCD.∵AB⊥AD,PA⊥AB,∴AB⊥平⾯PAD,∴平⾯PAB⊥平⾯PAD.同理,平⾯PCD⊥平⾯PAD,平⾯PAB⊥平⾯PBC.共有5对平⾯互相垂直.故选D.6.若⼀个⼆⾯⾓的两个半平⾯分别垂直于另⼀个⼆⾯⾓的两个半平⾯,那么这两个⼆⾯⾓()A.相等B.互补C.相等或互补D.关系⽆法确定答案 D解析如图所⽰,平⾯EFDG⊥平⾯ABC,当平⾯HDG绕DG转动时,平⾯HDG始终与平⾯BCD垂直,所以两个⼆⾯⾓的⼤⼩关系不确定,因为⼆⾯⾓H-DG-F的⼤⼩不确定.故选D.7.四边形ABCD是正⽅形,以BD为棱把它折成直⼆⾯⾓A-BD-C,E为CD的中点,则∠AED的⼤⼩为()A.45°B.30°C.60°D.90°答案 D解析设BD中点为F,则AF⊥BD,CF⊥BD,∴∠AFC=90°,∴AF⊥⾯BCD.∵E,F分别为CD,BD的中点,∴EF∥BC,⼜∵BC⊥CD,∴CD⊥EF,⼜AF⊥CD,∴CD⊥平⾯AEF,⼜AE?平⾯AEF,∴CD⊥AE.故选D.8.如图,在三棱锥P-ABC中,PA⊥平⾯ABC,∠BAC=90°,则⼆⾯⾓B-PA-C的⼤⼩为()A.30°B.45°C.60°D.90°答案 D解析∵PA⊥平⾯ABC,∴BA⊥PA,CA⊥PA,∴∠BAC为⼆⾯⾓BPAC的平⾯⾓.∵∠BAC=90°,∴⼆⾯⾓的⼤⼩为90°.9.如图,在四棱锥V-ABCD中,底⾯ABCD是这长为2的正⽅形,其他四个侧⾯都是侧棱长为5的等腰三⾓形,则⼆⾯⾓V-AB-C 的度数是________.答案60°解析如图,取AB的中点E,CD的中点F,连接VE,EF,VF,由题意知,AB⊥VE,AB⊥EF,所以∠VEF为⼆⾯⾓V ABC的平⾯⾓.易知△VEF为正三⾓形,所以∠VEF=60°.10.如图所⽰,在长⽅体ABCD-A1B1C1D1中,BC=2,AA1=1,E,F分别在AD和BC上,且EF∥AB,若⼆⾯⾓C1-EF-C等于45°,则BF=________.答案 1解析∵AB⊥平⾯BC1,C1F?平⾯BC1,CF?平⾯BC1,∴AB⊥C1F,AB⊥CF,⼜EF∥AB,∴C1F⊥EF,CF⊥EF,∴∠C1FC是⼆⾯⾓C1EFC的平⾯⾓,∴∠C1FC=45°,∴△FCC1是等腰直⾓三⾓形,∴CF=CC1=AA1=1.⼜BC=2,∴BF=BC-CF=2-1=1.11.如图,四边形ABCD是平⾏四边形,直线SC⊥平⾯ABCD,E是SA的中点,求证:平⾯EDB⊥平⾯ABCD.证明连接AC交BD于点F,连接EF.∴EF是△SAC的中位线,∴EF∥SC.∵SC⊥平⾯ABCD,∴EF⊥平⾯ABCD.⼜EF?平⾯BDE,∴平⾯BDE⊥平⾯ABCD.12.如图,四棱锥P-ABCD的底⾯是边长为a的正⽅形,PB⊥平⾯ABCD.(1)求证:平⾯PAD⊥平⾯PAB;(2)若平⾯PDA与平⾯ABCD成60°的⼆⾯⾓,求该四棱锥的体积.解析(1)证明:∵PB⊥平⾯ABCD,AD?平⾯ABCD,∴PB⊥AD.⼜∵AD⊥AB,且AB∩PB=B,∴AD⊥平⾯PAB.⼜∵AD?平⾯PAD,∴平⾯PAD⊥平⾯PAB.(2)由(1)的证明知,∠PAB为平⾯PDA与平⾯ABCD所成的⼆⾯⾓的平⾯⾓,即∠PAB=60°,∴PB=3a.∴V P-ABCD=13·a2·3a=3a33.13.如图所⽰,四棱锥P-ABCD的底⾯ABCD是边长为1的菱形,∠BCD=60°,E是CD 的中点,PA⊥底⾯ABCD,PA= 3.(1)求证:平⾯PBE⊥平⾯PAB;(2)求⼆⾯⾓A-BE-P的⼤⼩.解析(1)证明:如图所⽰,连接BD.由ABCD是菱形且∠BCD=60°知,△BCD是等边三⾓形.因为E是CD的中点,所以BE⊥CD,⼜AB∥CD,所以BE⊥AB,⼜因为PA⊥平⾯ABCD,BE?平⾯ABCD,所以PA⊥BE,⽽PA∩AB=A,因此BE⊥平⾯PAB.⼜BE ?平⾯PBE,所以平⾯PBE⊥平⾯PAB.(2)由(1)知,BE⊥平⾯PAB,PB?平⾯PAB,所以PB⊥BE.⼜AB⊥BE,所以∠PBA是⼆⾯⾓A-BE-P的平⾯⾓.在Rt△PAB中,tan∠PBA=PAAB=3,∠PBA=60°.故⼆⾯⾓A-BE-P 的⼤⼩为60°.1.如图,⼆⾯⾓αlβ的⼤⼩是60°,线段AB?α,B∈l,AB与l所成的⾓为30°,则AB与平⾯β所成的⾓的正弦值是________.答案3 4解析如图所⽰,过点A作平⾯β的垂线,垂⾜为C,在β内过C作l的垂线,垂⾜为D,连接AD,由线⾯垂直判定定理可知l⊥平⾯ACD,则l⊥AD,故∠ADC为⼆⾯⾓α-l-β的平⾯⾓,即∠ADC=60°.⼜∠ABD=30°,连接CB,则∠ABC为AB与平⾯β所成的⾓,设AD=2,则AC=3,CD=1,AB=ADsin30°=4,∴sin ∠ABC =AC AB =34.2.(2017·辽宁省育才学校阶段测试)如图,在⼏何体ABDCE 中,AB =AD ,M 是BD 的中点,AE ⊥平⾯ABD ,MC ∥AE,AE =MC.(1)求证:平⾯BCD ⊥平⾯CDE ;(2)若N 为线段DE 的中点,求证:平⾯AMN ∥平⾯BEC. 证明 (1)∵AB =AD ,M 为线段BD 的中点,∴AM ⊥BD.∵AE ⊥平⾯ABD ,MC ∥AE ,∴MC ⊥平⾯ABD. ∴MC ⊥AM.⼜MC ∩BD =M ,∴AM ⊥平⾯CBD.⼜MC ∥AE ,MC =AE ,∴四边形AMCE 为平⾏四边形,∴EC ∥AM ,∴EC ⊥平⾯CBD ,⼜EC ?平⾯CDE ,∴平⾯BCD ⊥平⾯CDE.(2)∵M 为BD 中点,N 为ED 中点,∴MN ∥BE. 由(1)知EC ∥AM 且AM ∩MN =M ,BE ∩EC =E ,∴平⾯AMN ∥平⾯BEC.3.在如图所⽰的⼏何体中,四边形ABCD 是正⽅形,MA ⊥平⾯ABCD ,PD ∥MA ,E ,G ,F 分别为MB ,PB ,PC 的中点,且AD =PD =2MA. (1)求证:平⾯EFG ⊥平⾯PDC ;(2)求三棱锥P-MAB 与四棱锥P-ABCD 的体积之⽐.解析 (1)证明:因为MA ⊥平⾯ABCD ,PD ∥MA. 所以PD ⊥平⾯ABCD.⼜BC ?平⾯ABCD ,所以PD ⊥BC. 因为四边形ABCD 为正⽅形,所以BC ⊥DC.⼜PD∩DC=D,所以BC⊥平⾯PDC.在△PBC中,因为G,F分别为PB,PC的中点,所以GF∥BC,所以GF⊥平⾯PDC.⼜GF?平⾯EFG,所以平⾯EFG⊥平⾯PDC.(2)因为PD⊥平⾯ABCD,四边形ABCD为正⽅形,不妨设MA=1,则PD=AD=2,所以V P-ABCD=13S正⽅形ABCD ·PD=83.由题意易知DA⊥平⾯MAB,且PD∥MA,所以DA即为点P到平⾯MAB的距离,所以V P-MAB=13×12×1×2×2=23.所以V P-MAB∶V P-ABCD=1∶4.。
离散数学第一第二次作业
第1部分命题逻辑一、单项选择题1. 下列哪个语句是真命题( )。
(A)我正在说谎(B)如果1+2 = 3,则雪是黑色的(C)如果1+2 = 5,则雪是黑色的(D)上网了吗2 .命题公式为P > (Q > P)( )。
(A)重言式(B)可满足式(C)矛盾式(D)等值式3. 设命题公式P (Q厂P),记作G,则使G的真值指派为1的P, Q 的取值是( )。
(A) (0,0) (B) (0,1) (C) (1,0) (D) (1,1)4. 与命题公式P > (Q > R)等值的公式是( )。
(A) (P Q) > R (B)(P Qp R (C)(P > Q) > R (D)P》(Q R)5 .命题公式(P Q) > P是( )。
(A)永真式(B)永假式(C)可满足式(D)合取范式二、填空题1. ____________________________________________ P, Q为两个命题,当且仅当 _________________________________________ 时,P Q的真值为1,当且仅当_______________________ 时,P Q的真值为0。
2. 给定两个命题公式A, B,若 ________________________________ 时,则称A和B是等值的,记为A= B。
3. ________________________________ 任意两个不同极小项的合取为_______ 式。
4 .设P:天下雨,Q:我们去郊游。
贝S⑴命题如果天不下雨,我们就去郊游”可符号化为_______ 。
第1页(共16页)⑵命题只有天不下雨,我们才去郊游”可符号化为_______ 。
⑶命题我们去郊游,仅当天不下雨”可符号化为_________ 。
5 .设命题公式G = P (-Q R),则使G取真值为1的指派6. 已知命题公式为G = (-P Q) > R,则命题公式G的析取范式是三、计算题1.将下列命题符号化:⑴ 李强不是不聪明,而是不用功;⑵ 如果天不下雨,我们就去郊游;⑶ 只有不下雨,我们才去郊游。
2024-2025学年鲁教版(五四制)数学七年级上册第二次作业诊断
2024-2025学年鲁教版(五四制)数学七年级上册第二次作业诊断一、单选题1.已知点(),3M a ,点()2,N b 关于y 轴对称,则()2018a b +的值()A .3-B .1-C .1D .32.在下列结论中,正确的有()个A 54=±B .4x 的算术平方根是2xC .2x -一定没有平方根D3.下表列出了一次实验的统计数据,表示皮球从高处落下时,弹跳高度b 与下落高度d 的关系,下列关系式中能表示这种关系的是()/cm d 5080100150…/cmb 25405075…A .2b d =B .2b d =-C .2db =D .25b d =+43的值,下列结论正确的是()A .0和1之间B .1和2之间C .2和3之间D .3和4之间5.象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点()2,1--的位置,则在同一坐标系下,棋子“马”所在的点的坐标为()A .()1,2B .()2,1-C .2,1D .()1,2-6.小明在劳动技术课中要制作一个周长为80cm 的等腰三角形,则底边长()cm y ,腰长()cm x 的函数表达式和自变量的取值范围是()A .2,40y x x =<B .802,40y x x =-<C .2,2040y x x =<<D .802,2040y x x =-<<7.下列各数中是无理数的是()AB .23-C .0D 8.下列有关一次函数36y x =-+的说法中,错误的是()A .y 的值随着x 的增大而减小B .函数图象经过第一、二、四象限C .函数图象与y 轴交点坐标为()0,6D .当0x >时,6y >9.如图,△ABC 是边长为4cm 的等边三角形,动点P 从点A 出发,以2cm/s 的速度沿A→C→B 运动,到达B 点即停止运动,过点P 作PD ⊥AB 于点D ,设运动时间为x (s ),△ADP 的面积为y (cm 2),则能够反映y 与x 之间函数关系的图象大致是()A .B .C .D .10.如图,1l ,2l 分别表示甲、乙两人在越野登山比赛整个过程中,所走的路程y (m )与甲出发时间x (min )的函数图像,下列说法正确的有()①越野登山比赛的全程为1000m ;②乙的速度为20m/min ;③a 的值为750;④乙到达终点时,甲离终点还有100mA .1个B .2个C .3个D .4个11.在平面直角坐标系中,若点()P m n ,在第二象限,那么一次函数y mx n =-的图象大致是()A .B .C .D .12.已知一次函数()21y m x m =++的图象与x 轴交于点A ,与y 轴交于点()0,4B ,且y 随着x 的增大而增大,则点A 的坐标为()A .4,03⎛⎫- ⎪⎝⎭B .3,04⎛⎫- ⎪⎝⎭C .()2,0D .4,03⎛⎫ ⎪⎝⎭二、填空题13.如图是一个数值转换器,当输入x 为64-时,输出y 的值是.14.将直线21y x =-向上平移2个单位得到的一次函数的关系式是:.15.某市新能源出租车的收费标准如下:3千米以内(包括3千米)收费12元,超过3千米后,每超1千米就加收2.2元.若某人乘出租车行驶的距离为x (3x >)千米,则需付费用y 与行驶距离x 之间的函数关系式是.16.已知AB y ∥轴,(1,2)A -,B 在第一象限且8AB =,则B 点的坐标为.17.如图,数轴上表示1的对应点分别点A 、点B ,若点A 是BC 的中点,则点C 所表示的数是.18.如图,一次函数y kx b =+的图象与x 轴的交点坐标为()2,0-,有以下结论:①y 随x 的增大而增大;②00k b ><,;③直线y kx b =+经过第一、二、三象限;④关于x 的方程0kx b +=的解为2x =-,正确的有.三、解答题19.计算:(1)()24--;(2)()2022111362-⎛⎫--+⨯ ⎪⎝⎭.20.已知点()2,31A a a +是平面直角坐标系中的点.(1)若点A 在第二象限的角平分线上,求a 的值;(2)若点A 在第三象限,且到两坐标轴的距离和为9,请确定点A 的坐标.21.已知关于x 的函数()13my m x n =++-(1)m 和n 取何值时,该函数是关于x 的一次函数?(2)m 和n 取何值时,该函数是关于x 的正比例函数?22.已知一次函数()2312y k x k =--+.(1)k 为何值时,函数图象经过点()0,9(2)k 为何值时,函数图象平行于直线2y x =-(3)直接写出k 的两个值,使一次函数()2312y k x k =--+的值都是随x 值的增大而减小?232=,正数b 的两个平方根分别是21c -和2c -+,求2a b c ++平方根.24.如图(1)所示,学校在小红家和图书馆之间,小红骑车从家出发经过学校匀速驶往图书馆.图(2)是小红骑车时离学校的路程y (米)与行驶时间x (分)之间的函数关系的图象.(1)小红骑车的速度为_______米/分,a =_______分;(2)求线段BC 所表示的y 与x 之间的函数表达式;(3)当x =_______分时,小红距离学校50米.25.如图,在平面直角坐标系中,一次函数132y x =-+的图象分别与x 轴、y 轴交于点A ,B ,点C 是线段OA 上的一个动点(不与点O ,点A 重合),过点C 作x 轴的垂线l 交直线AB 于点D ,在射线CD 上取点E ,使2CE OC =.设点C 的横坐标为m .(1)求A ,B 两点的坐标;(2)若点E 落在直线AB 上,求m 的值;(3)请从A ,B 两题中任选一题作答,我选择_____题.A .若线段DE 的长等于OB 的一半时,求m 的值;B .若ABE 的面积等于AOB V 面积的一半,求m 的值.。
陕西省渭南市渭南初级中学2022-2023学年九年级上学期第二次阶段性数学作业
2022-2023学年度第一学期第二次阶段性作业九年级数学(建议完成时间,120分钟,满分120分)一、选择题(共8小题,每小题三分,计24分,每小题只有一个选项是符合题意的)1、下列图形中既是轴对称图形,又是中心对称图形的是()A B C D2、若⊙O的半径r=8,点O到直线l的距离为4,下列图中位置关系正确的是()A B C D3、用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°。
”时,应假设直角三角形中()A、两锐角都大于45°B、有一个锐角小于45°C、有一个锐角大于45°D、两锐角都小于45°4、一个圆的内接正多边形中,中心角为72°,则该正多边形的边数是()A、6B、5C、4D、35、如图,AB是⊙O的弦,半径OC⊥AB于点D,下列判断中错误..的是()A、OD=DCB、C、AD=BDD、∠AOC=21∠AOB6、一个扇形的半径为3cm,面积为πcm2,则此扇形的圆心角为()A、30°B、40°C、80°D、120°7、如图,已知⊙O的弦AB、DC的延长线相交于点E,∠AOD=128°,∠E=40°,则∠BDC的度数是()A、16°B、20°C、24°D、32°(第5题图)(第7题图)(第11题图)(第13题图)8.已知点A(a,3),B(b,3),C(c,5)都在抛物线y=(x-1)2+m(m<0)上点A在点B左侧,下列选项正确的是()A.若c<0,则a<b<cB.若c<0,则a<c<bC.若c>0,则a<c<bD.若c>0,则a<b<c二、填空题(共5小题,每小题3分,计15分)9、以平面直角坐标系原点O为圆心,半径为3的圆与直线x=3的位置关系是__(填“相切”、“相离”或“相交”)10、若圆内接正方形的边心距为8,则这个圆的半径为_____。
吉林大学作业及答案-高数A2作业答案
高等数学作业AⅡ答案吉林大学公共数学教学与研究中心2018年3月第一次作业学院 班级 姓名 学号一、单项选择题1.下列反常积分收敛的是( C ). (A )⎰∞+2d ln x xx; (B )⎰∞+2d ln 1x xx ; (C )⎰∞+22d )(ln 1x x x ;(D )⎰∞+2d ln 1x xx .2.下列反常积分收敛的是( D ) A .0cos d x x +∞⎰B .221d (1)x x -⎰C .01d 1x x +∞+⎰D .321d (21)x x +∞-∞+⎰3.设)(x f 、()g x 在],[b a 上连续,则由曲线)(x f y =,()y g x =,直线b x a x ==,所围成平面图形的面积为( C ).(A )[()()]d ba f x g x x -⎰;(B )[|()||()|]d baf xg x x -⎰;(C )|()()|d b af xg x x -⎰; (D )[()()]d b af xg x x -⎰.4.设曲线2y x =与直线4y =所围图形面积为S ,则下列各式中,错误的是 ( C ).(A )2202(4)d S x x =-⎰;(B )402d S y y =⎰; (C )2202(4)d S x y =-⎰;(D )402d S x x =⎰.5.设点(,sin )A x x 是曲线sin (0)y x x π=≤≤上一点,记()S x 是直线OA (O 为原点)与曲线sin y x =所围成图形的面积,则当0x +→时,()S x 与( D ).(A )x 为同阶无穷小; (B )2x 为同阶无穷小; (C )3x 为同阶无穷小; (D )4x 为同阶无穷小.6.设0()()g x f x m <<<(常数),则由(),(),,y f x y g x x a x b ====所围图形绕直线y m =旋转所形成的立体的体积等于( B ).(A )π(2()())(()())d ba m f x g x f x g x x -+-⎰;(B )π(2()())(()())d bam f x g x f x g x x ---⎰;(C )π(()())(()())d bam f x g x f x g x x -+-⎰;(D )π(()())(()())d bam f x g x f x g x x ---⎰.二、填空题 1.已知反常积分⎰∞+0d e 2x x ax 收敛,且值为1,则=a 12-.2.摆线1cos sin x ty t t =-⎧⎨=-⎩一拱(02π)t ≤≤的弧长 8 .3.2d 25x x +∞-∞=+⎰π5. 4.反常积分0d (0,0)1mnx x m n x+∞>>+⎰,当,m n 满足条件1n m ->时收敛. 5.由曲线22,y x x y ==围成图形绕x 轴旋转一周所形成的旋转体体积为 3π10. 三、计算题1.用定义判断无穷积分0e d 1e xxx -∞+⎰的收敛性,如果收敛则计算积分值.解: 000e d(1e )d 1e 1e [ln(1e )]ln 2xxx x x x -∞-∞-∞+=++=+=⎰⎰ 则该无穷积分收敛. 2.判断反常积分的收敛性:13sin d x x x+∞⎰解:33sin 1x xx≤Q而131x +∞⎰收敛. 13sin d xx x+∞∴⎰收敛.3.已知22lim 4e d xx a x x a x x x a +∞-→∞-⎛⎫= ⎪+⎝⎭⎰,求a 的值. 解:()21e lim lim e e1xa ax a a x a x x a a a x a x x a a x ----→∞→∞⋅⎛⎫- ⎪-⎛⎫⎝⎭=== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭. 222222222222222222224e d 2de 2e 4e d 2e 2de 2e 2e 2e d 2e 2e e (221)e .x xaaxx aaa xaa xx aaa a x aa x x x x x xa x a x xa a a a +∞+∞--+∞+∞--+∞--+∞+∞---+∞----=-=-+=-=-+=+-=++⎰⎰⎰⎰⎰由已知222e (221)e a a a a --=++,即(1)0a a +=.所以0a =或1a =-.4.求连续曲线π2cos d x y t t -=⎰的弧长.解:由cos 0x ≥可知ππ22x -≤≤. 因此所求弧长为 π22π21d s y x -'=+⎰()π22021cos d x x =+⎰π2022cos d 42xx ==⎰.5.计算由x 轴,曲线1-=x y 及其经过原点的切线围成的平面图形绕x 轴旋转所生成立体体积.解:设切点为00(,)x y ,则过切点的切线方程为0001()21Y y X x x -=--令0,0X Y ==,得002,1x y ==.2212211π12π(1)d 32πππ.362x V x xx x =⨯⨯--⎛⎫=-=- ⎪⎝⎭⎰6.在第一象限内求曲线21y x =-+上的一点,使该点处的切线与所给曲线及两坐标轴所围成的图形面积为最小,并求此最小面积.解:设所求点为(,)x y ,则过此点的切线方程为2()Y y x X x -=-.由此得切线的x 轴截距为212x a x+=,y 轴截距为21b x =+.于是,所求面积为12031()(1)d 21112.4243S x ab x xx x x =--+=++-⎰令2211()32411130,4S x x x x x x x ⎛⎫'=+- ⎪⎝⎭⎛⎫⎛⎫=-+= ⎪⎪⎝⎭⎝⎭解得驻点13x =.又因为3131126043x S x x =⎛⎫⎛⎫''=+> ⎪ ⎪⎝⎭⎝⎭,所以13x =为极小值点,也是最小值点.故所求点为12,33⎛⎫ ⎪⎝⎭,而所求面积为12(233)93S ⎛⎫=- ⎪⎝⎭.7.在曲线2(0)y x x =≥上某点A 处作一切线,使之与曲线以x 轴所围图形的面积为112,试求: (1)切点A 的坐标;(2)过切点A 的切线方程;(3)由上述所围平面图形绕x 轴旋转一周所围成旋转体体积. 解:设切点00(,)A x y ,则切线方程为:20002()y x x x x -=-,得切线与x 轴交点为0,02x ⎛⎫⎪⎝⎭.由02200011d 2212x x x x x -⋅⋅=⎰,得01x =.∴切点为(1,1)A ,切线方程:21y x =-1222011()d 13230V x x πππ=⋅-⋅⋅⋅=⎰.8.半径为r 的球沉入水中,球的顶部与水面相切,球的密度与水相同,现将球从水中提出,问需作多少功?解:取球浮出水面后球心为原点建立坐标系,则22d ()d ()r y y g r y ωπρ=-⋅⋅+224()()d 43rr g r y r y ygr ωπρπρ-=⋅-+=⎰第二次作业学院 班级 姓名 学号一、单项选择题1. 平面10x y z +--=与22230x y z +-+=的关系( A ). (A )平行,但不重合; (B )重合;(C )垂直;(D )斜交.2.平面1=z 与曲面14222=++z y x ( B ). (A )不相交;(B )交于一点; (C )交线为一个椭圆;(D )交线为一个圆.3.方程z y x =-4222所表示的曲面为( C ). (A )椭球面; (B )柱面; (C )双曲抛物面; (D )旋转抛物面.4.曲面2222x y z a ++=与22(0)x y zax a +=>的交线在xoy 平面上的投影曲线是( D ).(A )抛物线;(B )双曲线;(C )椭圆;(D )圆.5.设有直线182511:1+=--=-z y x L 与⎩⎨⎧=+=-326:2z y y x L ,则L 1与L 2的夹角为( C ).(A )π6; (B )π4; (C )π3; (D )π2. 6.设有直线⎩⎨⎧=+--=+++031020123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( C ).(A )平行于π; (B )在π上; (C )垂直于π; (D )与π斜交.二、填空题1.设,a b 均为非零向量,且||||+=-a b a b ,则a 与b 的夹角为π2. 2.设向量x 与向量2=-+a i j k 共线,且满足18⋅=-a x ,则=x (6,3,3)-- .3.过点(1,2,1)M -且与直线2,34,1x t y t z t =-+⎧⎪=-⎨⎪=-⎩垂直的平面是 340x y z --+= .4.若||3=a ,||2=b ,且a ,b 间夹角为34θπ=,则||+=a b 5,||⨯=a b 3 .5.xoz 平面上的曲线1x =绕z 轴旋转一周所形成的旋转曲面方程为221x y +=. 6.曲线⎩⎨⎧=-+--=032622z y y x z 在xoy 面上的投影曲线方程为222300x y y z ⎧+--=⎨=⎩.7.若直线L 平行于平面π:3260x y z +-+=,且与已知直线132:241x y zL -+==垂直,则L 的方向余弦(cos ,cos ,cos )αβγ为 65585,,25525⎛⎫- ⎪⎝⎭ .三、计算题 1.求过直线1212:102x y z L --+==-,且平行于直线221:212x y zL +-==--的平面π的方程.解:过L 的平面束为:22(1)0x z y λ+-+-=即(2,,1)λ=n ,由n 与(2,1,2)=--S 垂直,有420,2λλ--== ∴ 所求平面为2240x y z ++-=.2.求点(2,1,3)到直线11321x y z+-==-的距离. 解:(3,2,1)=-s 设0(2,1,3),(1,1,0)M M - 则00(3,0,3)6126i =⨯=--MM S MM j k ∴ 0||621||7d ⨯==S MM S3.求曲面220x y z +-=与平面10x z -+=的交线在Oxy 平面上的投影曲线. 解:因为曲线220,10x y z x z ⎧+-=⎨-+=⎩ 在Oxy 平面上投影就是通过曲线且垂直于Oxy 平面的柱面与Oxy 平面的交线,所以,只要从曲线的两个曲面方程中消去含有z 的项,则可得到垂直于Oxy 平面的柱面方程.由220,10x y z x z ⎧+-=⎨-+=⎩消去z ,得到关于Oxy 平面的投影柱面2210x y x +--=,于是得到在Oxy 平面上的投影曲线为2210,0.x y x z ⎧+--=⎨=⎩4.求过平面02=+y x 和平面6324=++z y x 的交线,并切于球面4222=++z y x 的平面方程.解:过L 平面束为4236(2)0x y z x y λ++-++=. 即(42)(2)360x y z λλ++++-=. 由222|6|2(42)(2)3λλ-=++++得2λ=-则所求平面为2z =.5.设有直线210:210x y z L x y z ++-=⎧⎨-++=⎩,平面π:0x y +=,求直线L 与平面π的夹角;如果L 与π相交,求交点.解:L 的方向向量(1,2,1)(1,2,1)(4,0,4)=⨯-=-S而(1,1,0)=n ∴ ||41sin ||||2422θ⋅===⋅S n S n ,∴ 6πθ=将y x =-代入L 方程.解得111,,222x y z =-==∴ 交点111,,222⎛⎫- ⎪⎝⎭.6.向量a 与x 轴的负向及y 轴、z 轴的正向构成相等的锐角,求向量a 的方向余弦. 解:依题意知ππ,,02αθβθγθθ⎛⎫=-==<< ⎪⎝⎭, 因为222cos cos cos 1αβγ++=,即222cos ()cos cos 1πθθθ-++=, 所以23cos 1θ= 或 3cos 3θ=. 故333cos ,cos ,cos 333αβγ=-==.第三次作业学院 班级 姓名 学号一、单项选择题1.()220lim ln x y xy x y →→+=( B ).(A )1; (B )0; (C )12; (D )不存在.2.二元函数()()()()()22,,0,0,,0,,0,0xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点)0,0(处( D ).(A )不连续,偏导数不存在; (B )连续,偏导数不存在; (C )不连续,偏导数存在;(D )连续,偏导数存在.3.设22(,)(1)(2)f x y y x x y =-+-,在下列求(1,2)x f 的方法中,不正确的一种是( B ).(A )因2(,2)2(1),(,2)4(1)x f x x f x x =-=-,故1(1,2)4(1)|0x x f x ==-=; (B )因(1,2)0f =,故(1,2)00x f '==;(C )因2(,)2(1)(2)x f x y y x y =-+-,故12(1,2)(,)0x x x y f f x y ====;(D )211(,2)(1,2)2(1)0(1,2)lim lim 011x x x f x f x f x x →→---===--.4.设函数(,)f x y 在点00(,)P x y 的两个偏导数x f '和y f '都存在,则( B ). (A)00(,)(,)lim(,)x y x y f x y →存在; (B) 00lim (,)x x f x y →和00lim (,)y y f x y →都存在;(C) (,)f x y 在P 点必连续; (D) (,)f x y 在P 点必可微.5.设22(,),2zz f x y y∂==∂,且(,0)1,(,0)y f x f x x ==,则(,)f x y 为( B ).(A )21xy x -+; (B )21xy y ++; (C )221x y y -+; (D )221x y y ++. 二、填空题1.0011limx y xyxy →→--= 1/2 .2. 设函数44z x y =+,则(0,0)x z '= 0 .3.设22),(y x y x y x f +-+=,则=')4,3(x f 2/5,=')4,3(y f 1/5 . 4.设xz xy y=+,则d z = 21d d x y x x y y y ⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭. 5.设函数(,)()()()d x yx y u x y f x y f x y g t t +-=++-+⎰,其中f 具有二阶导数,g 具有一阶导数,则2222u ux y∂∂-=∂∂ 0 .三、计算题1.设()0,1y z x x x =>≠,证明12ln x z zz y x x y∂∂+=∂∂. 证明:因为1,ln y y z zyx x x x y-∂∂==∂∂,所以 12ln y y x z zx x z y x x y∂∂+=+=∂∂. 2.讨论函数2222222,0,(,)0,0x xyx y f x y x y x y ⎧++≠⎪=+⎨⎪+=⎩的连续性..解一:当(),p x y 沿y 轴(x=0)趋于0(0,0)时, 2222limlim0x y y x xyx y y →→→+==+ 当(),p x y 沿y x =,趋于0(0,0)时,222220002lim lim 12x x y x x xy x x y x→→=→+==+∴()00lim,x y f x y →→不存在 ∴不连续解二:当(),p x y 沿y kx =趋于0(0,0)时,()()222222200011lim lim11x x y kx k x x xyk x y k k x →→=→+++==+++ 与k 有关,∴不连续 3.设(1)y z xy =+,求d z .()()11211y y z y xy y y xy x--∂=⋅+⋅=+∂ 解一:取对数()ln ln 1z y xy =+()1ln 11z x xy y z y xy ∂⋅=++⋅∂+,∴()()1ln 11y z xy xy xy y xy ⎡⎤∂=+++⎢⎥∂+⎣⎦ 解二:()()()()ln 1ln 1e,e ln 111yy xy y xy z x xy y xy y xy ++⎡⎤∂∂==⋅++⋅=+⎢⎥∂+⎣⎦ ∴()()()12d 1d 1ln 1+xy d 1y y x z y xy x xy y xy -⎡⎤=++++⎢⎥+⎣⎦ 4.求2e d yzt xz u t =⎰的偏导数.t220e d e d xz yzt u t t =-+⎰⎰22x z e uz x∂=-⋅∂ 22y e z uz y∂=⋅∂ 2222x y e e z z ux y z∂=-⋅+⋅∂ 5.设222r x y z =++,验证:当0r ≠时,有2222222r r r x y z r∂∂∂++=∂∂∂.证明:22222r x xx rx y z ∂==∂++ 222223xr x rr x r x r r -⋅∂-==∂,同理:2222222323,r r y r r z y r z r ∂-∂-==∂∂∴()2222222222233322r x y x r r r r x y z r r r-++∂∂∂++===∂∂∂ 6.设222222221()sin ,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩,问在点(0,0)处,(1)偏导数是否存在? (2)偏导数是否连续? (3)是否可微?解:(1)2201()sin(0,0)(0,0)()(0,0)limlim 0x x x x f x f x f xx∆→∆→∆+∆-∆'===∆∆,2201()sin(0,0)(0,0)()(0,0)limlim 0y y y y f y f y f yy∆→∆→∆+∆-∆'===∆∆,故函数在点(0,0)处偏导数存在. (2)当 (,)(0,0)x y ≠时, 222222222112(,)2sin()cos ()x x f x y x x y x y x y x y -'=++⋅+++2222221212sincos x x x y x y x y=-+++, 又 22222200121lim (,)lim(2sincos )x x x y y x f x y x x y x y x y→→→→'=-+++, 当(,)x y 沿x 轴趋于(0,0)时,上式222121lim(2sincos )x y x x x x y →==-+ 不存在, 故偏导数(,)x f x y '在点(0,0)不连续.由函数关于变量,x y 的对称性可知,(,)y f x y '在点(0,0)不连续。
新区二中2022-2023学年第一学期初三数学第二次作业反馈(含答案)
新区二中2022-2023学年第一学期初三数学第二次作业反馈一、选择题(本大题共8小题,每小题3分,共24分.)1. 如图,点A ,B ,C 均在⊙O 上,∠BOC =100°,则∠BAC 的度数为( ) A. 70°B. 60°C. 50°D. 40°2. 在Rt ABC △中,90C ∠=︒,若4AC =,3BC =,则cos B 等于( ) A.34B.35C.45D.433. 二次函数()2214y x =-+-,下列说法正确的是( ) A. 开口向下 B. 对称轴为直线1x =C. 顶点坐标为()1,4D. 当1x <-时,y 随x 的增大而减小4. 已知点123(1,),(4,),(5,)A y B y C y -抛物线2241y x x =-+上,下列说法中正确的是( ) A. 321y y y <<B. 213y y y <<C. 312y y y <<D. 123y y y <<5. 如图,一个圆形飞镖板被分为四个圆心角相等的扇形,若大圆半径为2,小圆半径为1,则阴影部分的面积为( )A. πB. 32πC. 3πD. 52π第1题 第5题 第6题6.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1,筒车盛水桶的运行轨道是以轴心O 为圆心的圆,如图2.已知圆心O 在水面上方,且⊙O 被水面截得的弦AB 长为6米,⊙O 半径长为4米.若点C 为运行轨道的最低点,则点C 到弦AB 所在直线的距离是( )A.1米B.(7-4)米C.2米D.(74+)米7. 已知二次函数2y ax bx c =++的图像如图所示,有下列结论:①0a >;②24b ac -<0;③40a b +=;④不等式21ax b x c +-+()<0的解集为1≤x <3,正确的结论个数是( )A. 1B. 2C. 3D. 4 8.设P (x ,y 1),Q (x ,y 2)分别是函数C 1,C 2图象上的点,当a ≤x ≤b 时,总有﹣1≤y 1﹣y 2≤1恒成立,则称函数C 1,C 2在a ≤x ≤b 上是“逼近函数”,a ≤x ≤b 为“逼近区间”.则下列结论: ①函数y =x ﹣5,y =3x +2在1≤x ≤2上是“逼近函数”;②函数y =x ﹣5,y =x 2﹣4x 在3≤x ≤4上是“逼近函数”; ③0≤x ≤1是函数y =x 2﹣1,y =2x 2﹣x 的“逼近区间”; ④2≤x ≤3是函数y =x ﹣5,y =x 2﹣4x 的“逼近区间”. 其中,正确的有( ) A .②③ B .①④C .①③D .②④二、填空题(本大题共8小题,每小题3分,共24分.)9. 一条上山直道的坡度为1:7,沿这条直道上山,每前进100米所上升的高度为 米. 10.二次函数254x y x -=+的最小值为______ .11.将抛物线的解析式243y x -+=()向上平移3个单位长度,在向右平移1个单位长度后,得到的抛物线的解析式是______ .12.已知圆锥的母线长为13cm ,底面圆的半径为5cm ,则圆锥的表面积为 _____ cm 2.第7题 第13题 第14题 第15题13. 如图,AB 是⊙O 的直径,弦CD 交AB 于点E ,连接AC ,A D .若∠BAC =28°,则∠D = . 14. 如图,△ABC 是⊙O 的内接三角形.若∠ABC =45°,AC =,则⊙O 的半径是 .15. 在如图所示88⨯的网格中,小正方形的边长为1,点A B C D 、、、都在格点上,AB 与CD 相交于点,E 则AED ∠的正切值是 .16. 如图1,△ABC 中,∠A =30°,点P 从点A 出发以2cm /s 的速度沿折线A →C →B 运动,点Q 从点A 出发以a (cm /s )的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示,下列结论中,错误的是 .(请填入编号)①α=1 ②sin B =③△APQ 面积的最大值为2 ④图2中图象C 2段的函数表达式为y =﹣x 2+x三、解答题(本大题共11小题,共82分.)17.(本题满分5分)计算 2cos30tan 6013︒+︒--18.(本题满分5分) 在△ABC 中,∠A =120°,AB =12,AC =6.求tan B 的值.19. (本题满分6分) 如图,在平面直角坐标系中,过格点A 、B 、C 作一圆弧. (1)直接写出该圆弧所在圆的圆心D 的坐标 ; (2)求弧AC 的长(结果保留π);120.(本题满分6分)若二次函数22y x x =--的图像与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于C 点.(1)求,A B 两点的坐标;(2)若(,2)P m -为二次函数22y x x =--图像上一点,求m 的值.21.(本题满分6分) 如图,AB 为O 的弦,OC OA ⊥交AB 于点P ,交过点B 的直线于点C ,且CB CP =.(1)试判断直线BC 与O 圆的位置关系,并说明理由; (2)若5sin 8A OA ==,求CB 的长.22. (本题满分8分)如图,直线y =﹣x +3与x 轴、y 轴分别交于B 、C 两点,抛物线y =﹣x 2+bx +c 经过B 、C 两点,与x 轴另一交点为A ,顶点为D . (1)求抛物线的解析式;(2)点P 在抛物线第一象限内的点,连接PB ,PC , 求PBC ∆的面积S 的最大值。
2014年9月份考试高等数学(II-1)第二次作业
错
20. 设,则与相同.
(本题分数:2 分,本题得分:0 分。)
A、正确 B、错误
题目信息
难度: 2
正确答案: B
解题方案: 定义域不同
错
难度: 4
正确答案: B
解题方案: 分别求一阶导数和二阶导数,然后根据这些信息解题
选B
13. 函数在[-2,2]上的最大值为( )
(本题分数:3 分,本题得分:0 分。)
A、 0
B、 1
C、 2
D、 -2
题目信息
难度: 4
正确答案: C
解题方案: 先求极值,再求端点的函数值,将极值和端点的函数值进行比较,大的为最大值,小的为最小值
选C
14. 满足的x的取值范围是( )
(本题分数:3 分,本题得分:0 分。)
A、
B、
C、
D、
题目信息
难度: 4
正确答案: D
解题方案: 利用反三角函数定义解题
B、
C、
D、
题目信息
难度: 4
正确答案: C
解题方案: 无穷大的倒数是无穷小
选 C
12. 曲线( )
(本题分数:3 分,本题得分:0 分。)
A、有四个极值
B、有两个极值
C、有三个拐点
D、对称原点
题目信息
难度: 5
正确答案: D
解题方案:
19. 函数的反函数是( )
(本题分数:3 分,本题得分:0 分。)
A、
B、
C、
D、
七年级数学第二次作业
七年级数学第二次作业班级: 姓名:1.若|1﹣a|=a ﹣1,则a 的取值范围是( )A .a >1B .a ≥1C .a <1D .a ≤12.一个数的绝对值是正数,这个数一定是( )A .正数B .非零数C .任何数D .以上都不是3、两个数相加,如果和为负数,则这两个数( )A .必定都为负B .总是一正一负C .可以都为正D .至少有一个负数4.绝对值最小的数是 ;绝对值等于本身的数是 ;最大的负整数是 .5.﹣|﹣3|= ,+﹣|0.27|= ,﹣|+26|= ,﹣(+24)= .6.比较大小①0.01 ﹣2015;②0.01 0;③﹣ ﹣.4、[-(-0.3)]_______-∣-31∣ 7.如果|x|=|y|,那么x 与y 的关系是 .8.若|x ﹣6|+|y ﹣3|=0,求的值.9、计算:(1)23+(-17)+6+(-22) (2)(-2)+3+1+(-3)+2+(-4)(1))1713(134)174()134(-++-+-(2))412(216)313()324(-++-+-10、若1<a <3,求a a -+-31的值。
11、计算:(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100)12、10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+0.5,+0.3,0,-0.2,-0.3,+1.1,-0.7,-0.2,+0.6,+0.7.10袋大米共超重或不足多少千克?总重量是多少千克?13、出租车司机小石某天下午营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,-3,+14,-11,+10,-12,+4,-15,+16,-18.(1)将最后一名乘客送到目的地时,小石距下午出发地点的距离是多少千米?(2)若汽车耗油量为a升/千米,这天下午汽车耗油共多少升?教师批语:。
新区二中2022-2023学年第一学期初一数学第二次作业反馈(含答案)
新区二中2022-2023学年第一学期初一数学第二次作业反馈一、选择题(本大题共8小题,每小题2分,满分16分.在每小题所给出的四个选项中,恰有一项是正确的,请将正确选项的字母代号涂在答题卡相应位置.......上) 1.长城总长约为6700000米,用科学计数法表示为 ( )A .6.7510⨯米B .6.7610⨯米C .6.7710⨯米D .6.7810⨯米2.下列图形中,能将其中一个图形平移得到另一个图形的是( ).A. B. C. D.3.下列计算正确的是( )A .4a ﹣2a =2B .2x 2+2x 2=4x 4C .﹣2x 2y ﹣3yx 2=﹣5x 2yD .2a 2b ﹣3a 2b =a 2b4.若a >b ,则下列不等式中成立的是( )A .a +2<b +2B . a ﹣2<b ﹣2C .2a <2bD .﹣2a <﹣2b 5.若关于x 的方程2x-a +5b =0的解是x =﹣3,则代数式6+2a ﹣10b 的值为( )A .﹣6B .0C .6D .186. 一件毛衣先按成本提高50%标价,再以8折出售,获利70元,求这件毛衣的成本是多少元,若设成本是x 元,可列方程为( )A .0.8x +70=(1+50%)xB .0.8 x -70=(1+50%)xC . x +70=0.8×(1+50%)xD .x -70=0.8×(1+50%)x7.已知关于x 的不等式()11a x ->,可化为11x a <-,试化简12a a ---,正确的结果是( ). A .21a -- B .1- C .23a -+ D .18.如图所示,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2022次相遇在边( )上.A .ABB .BCC .CDD .DA(第15题图)二、填空题(本大题共10小题,每小题2分,满分16分,将答案写在答题卡相应位置.......上) 9. 3-2x y π的系数是________. 10. 三个正整数的比是1:2:4,它们的和是84,那么这三个数中最大的数是_____.11. 关于x 的方程(2m ﹣6)x |m ﹣2|﹣2=0是一元一次方程,则m =_____.12. 已知关于x 的方程5x-3k =24与方程x +3=0的解互为相反数,则k 的值为 ___.13. 已知一个棱柱有10个顶点,且每条侧棱长都相等,若这个棱柱所有侧棱长的和为45cm ,则每条侧棱长为_____.14. 不等式1322x x +≥的非负整数解是 _______.15. 用边长为1的正方形纸板,制成一个七巧板(如图①),将它拼成“小天鹅”图案(如图②),其中阴影部分的面积为______________________.(第15题图)(第16题图)16. 把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②)盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A.4mB. 4nC. 2(m +n )D. 4( m -n)三、解答题(本大题共11小题,满分68分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、演算步骤)17.(每题3分,共6分)计算下列各式:(1)1515158124292929⎛⎫⎛⎫⎛⎫-⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)32323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦18. (本题4分)先化简再求值:222(2)3(4)a ab a ab ---,其中22(3)0a b ++-=19. (每题4分,共8分)解方程:(1)2121236x x -+=- (2)2531100.60.2x x -+-=20. (本题5分) 解下列不等式322)4(1)7x x +≥-+(,并把解集在数轴上表示出来:21. (本题6分) 已知A =2x 2-5xy -7y +3,B =x 2-xy +1.(1)求4A -(2A +B )的值;(2)若A -2B 的值与y 的取值无关,求x 的值.22.(本题6分)如图是由8个棱长为1的小正方体搭成的几何体.(1)请分别画出这个几何体的主视图、左视图和俯视图;(2)这个几何体的表面积为__________(包括底面积);(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在(1)中所画的图形一致,则搭这样的几何体最少要__________个小正方体.主视图 左视图 俯视图23. (本题6分)已知关于x 的方程3x +ax =-2的解是不等式511132x x -++>-的最大整数解,求代数式a 3的值.24. (本题6分) 疫情防控期间,为了大家的安全和健康着想,学校必须对每一位进校学生的体温进行测试,而且必须严格认真.某校在校门口开设两个测温通道,一个是值班老师用测温枪测试学生温度,另一个通道使用红外线测温仪进行测试.已知该校有学生2700人,每分钟红外线测温仪平均测试人数是老师用测温枪平均测试人数5倍,某天该校早晨全部学生通过测温通道进入学校一共用了15分钟(两边通道同时开始,同时结束),问该天早上老师用测温枪平均每分钟测试多少名学生?25. (本题6分) 我们规定,若关于x 的一元一次方程ax b =的解为b a -,则称该方程为“差解方程”,例如:24=x 的解为2,且242=-,则该方程24=x 是差解方程.请根据上述规定解答下列问题: (1)判断3 4.5x =是否是差解方程;(2)若关于x 的一元一次方程51x m =+是差解方程,求m 的值.26. (本题7分)甲乙两地相距2000米,小明从甲地出发,10分钟后到达乙地,休息4分钟后从乙地原路原速返回.在小明从甲地出发的同时,小红从乙地以80m /min 的速度步行至甲地,到甲地停止,设小红步行的时间为x 分钟.甲乙两地相距2000米,小明从甲地出发,10分钟后到达乙地,休息4分钟后从乙地原路原速返回.在小明从甲地出发的同时,小红从乙地以80m/min的速度步行至甲地,到甲地停止,设小红步行的时间为x分钟.(1)①0≤x≤10时,小明距离甲地的路程为米;小红距离甲地的路程为米;②14≤x≤24时,小明距离甲地的路程为米;(用含x的代数式表示)(2)小红从乙地到甲地步行过程中,当x为何值,他们相距40米?27. (本题8分)【操作感知】如图1,长方形透明纸上有一条数轴,AB是周长为4的圆的直径,点A与数轴原点重合,将圆从原点出发沿数轴正方向滚动1周,点A落在数轴上的点A'处;将圆从原点出发沿数轴负方向滚动半周,点B落在数轴上的点B′处,折叠长方形透明纸,使数轴上的点A′与点B′重合,此时折痕与数轴交点表示的数为.【建立模型】折叠长方形透明纸,使得数轴上表示数a的点C与表示数b的点D重合,则折痕与数轴交点表示的数为(用含a,b的代数式表示).【问题解决】如图2,点P表示的数为﹣10,点Q表示的数为20,如果点M从点P的位置出发,以每秒2个单位的速度向点Q运动,当点M到达点Q时停止运动,设运动时间为t秒(t>0) .(1)若点M到P,Q两点中一点的距离为到另一点距离的两倍,求t值.(2)若点M从点P出发,同时点N从点Q开始运动,以每秒1个单位的速度向点P运动,并与点M同时停止,请求出当点M,N,P中其中一点到另外两点距离相等时t的值。
(0554)《儿童数学教育》网上作业题及答案
(0554)《儿童数学教育》网上作业题及答案1:第一次作业2:第二次作业3:第三次作业4:第四次作业5:第五次作业1:[单选题]儿童数概念的产生是在其模糊认识的基础上,逐渐地产生了对物体整个数目的知觉,最后才能进行逐一点数。
这说明儿童数概念的发生开始于( )A:数数B:认数C:逐一点数D:对集合的笼统感知参考答案:D1、答、(1)学习加法比减法容易;(2)学习加小数、减小数的问题容易,学习加大数、减大数问题难;(3)幼儿理解和应用题比算式题容易。
2、答:运用操作法应注意以下问题:(1)明确操作目的(2)创设操作条件:第一,为每个儿童提供人手一份的操作材料,可以选择、利用自然物或廉价的实物,亦可发动儿童自己动手自制一些简单的材料,以便做到每个儿童都保证有足够的操作材料。
第二,给予儿童充分的操作空间和时间。
三,允许儿童有同伴间的交流机会。
(3)交代操作规则:在正式的数学教育活动中运用操作法,教师可以在儿童动手操作之前,先向儿童说明操作的目的、要求及具体的操作方法(4)评价操作结果:一方面,教师要对儿童零散的操作经验进行归纳、评价,帮助儿童形成比较完整的、正确的数学概念。
另一方面,教师必须重视对个别儿童的操作进行评价。
(5)体现年龄差异(6)与其它方法想结合。
2:[单选题]数的守恒标志着儿童概念发展水平,也是儿童()的一种表现A:思维过程结果B:概括能力C:分析能力D:比较能力参考答案:A1、答、(1)学习加法比减法容易;(2)学习加小数、减小数的问题容易,学习加大数、减大数问题难;(3)幼儿理解和应用题比算式题容易。
2、答:运用操作法应注意以下问题:(1)明确操作目的(2)创设操作条件:第一,为每个儿童提供人手一份的操作材料,可以选择、利用自然物或廉价的实物,亦可发动儿童自己动手自制一些简单的材料,以便做到每个儿童都保证有足够的操作材料。
第二,给予儿童充分的操作空间和时间。
三,允许儿童有同伴间的交流机会。
离散数学作业 (2)
离散数学作业布置第1次作业(P15)1.16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
解:(1)p∨(q∧r)=0∨(0∧1)=0(2)(p↔r)∧(﹁q∨s)=(0↔1)∧(1∨1)=0∧1 =0(3)(﹁p∧﹁q∧r)↔(p∧q∧﹁r)=(1∧1∧1)↔ (0∧0∧0)=0(4)(r∧s)→(p∧q)=(0∧1)→(1∧0)=0→0=11.17 判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外只有6能被2整除,6才能被4整除。
”解:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
1.19 用真值表判断下列公式的类型:(4)(p→q) →(﹁q→﹁p)(5)(p∧r) ↔ (﹁p∧﹁q)(6)((p→q) ∧(q→r)) →(p→r)解:(4)p q p→q q p q→p (p→q)→( q→p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式,最后一列全为1(5)公式类型为可满足式(方法如上例),最后一列至少有一个1(6)公式类型为永真式(方法如上例,最后一列全为1)。
第2次作业(P38)2.3 用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ﹁(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)解:(1) ﹁(p∧q→q) ⇔﹁(﹁(p∧q) ∨q) ⇔(p∧q) ∧﹁q⇔p∧(q ∧﹁q) ⇔ p∧0 ⇔0所以公式类型为矛盾式(2)(p→(p∨q))∨(p→r) ⇔ (﹁p∨(p∨q))∨(﹁p∨r) ⇔﹁p∨p∨q∨r⇔1所以公式类型为永真式(3) (p∨q) → (p∧r) ⇔¬(p∨q) ∨ (p∧r) ⇔ (¬p∧¬q) ∨(p∧r)易见, 是可满足式, 但不是重言式. 成真赋值为: 000,001, 101, 111P q r ¬p∧¬q p∧r (¬p∧¬q) ∨(p∧r)0 0 0 1 0 10 0 1 1 0 10 1 0 0 0 00 1 1 0 0 01 0 0 0 0 01 0 1 0 1 11 1 0 0 0 01 1 1 0 1 1所以公式类型为可满足式2.4 用等值演算法证明下面等值式:(2) ( (p→q)∧(p→r) ) ⇔ (p→(q∧r))(4)(p∧﹁q)∨(﹁p∧q) ⇔ (p∨q)∧﹁(p∧q)证明(2)(p→q)∧(p→r)⇔( ﹁p∨q)∧(﹁p∨r)⇔﹁p∨(q∧r))⇔p→(q∧r)(4)(p∧﹁q)∨(﹁p∧q) ⇔(p∨(﹁p∧q)) ∧(﹁q∨(﹁p∧q) )⇔ (p∨﹁p)∧(p∨q)∧(﹁q∨﹁p) ∧(﹁q∨q)⇔1∧(p∨q)∧(﹁p∨﹁q)∧1⇔ (p∨q)∧﹁(p∧q)第3次作业(P38)2.5 求下列公式的主析取范式, 并求成真赋值:(1)( ¬p→q) →(¬q∨p)(2) (¬p→q) ∧q∧r(3)(p∨(q∧r)) →(p∨q∨r)(4) ¬(p→q) ∧q∧r解:(1)(¬p→q) →(¬q∨p)⇔¬(p∨q) ∨(¬q∨p)⇔¬p∧¬q ∨¬q ∨p⇔¬q ∨p (吸收律)⇔ (¬p∨p)∧¬q ∨p∧(¬q∨q)⇔¬p∧¬q∨p∧¬q ∨p∧¬q ∨p∧q⇔m0∨m2∨m2∨m3⇔m0∨m2∨m3成真赋值为00, 10, 11.(2) (¬p→q) ∧q∧r⇔ (p∨q) ∧q∧r⇔ (p∧q∧r) ∨q∧r⇔ (p∧q∧r) ∨(¬p ∨p) ∧q∧r⇔p∧q∧r∨¬p ∧q∧r∨p∧q∧r⇔m3∨m7成真赋值为011,111.(3) (p∨(q∧r)) →(p∨q∨r)⇔¬(p∨(q∧r)) ∨(p∨q∨r)⇔¬p∧¬(q∧r) ∨(p∨q∨r)⇔¬p∧(¬q∨¬r)∨(p∨q∨r)⇔¬p∧¬q∨¬p∧¬r∨p∨q∨r⇔¬p∧¬q∧(r∨¬r)∨¬p∧(q∨¬q)∧¬r∨p∧(q∨¬q) ∧(r∨¬r) ∨ (p∨¬p) ∧q∧(r∨¬r)∨(p∨¬p) ∧(q∨¬q) ∧r⇔m0∨m1∨m2∨m3∨m4∨m5∨m6∨m7, 为重言式.(4) ¬(p→q) ∧q∧r⇔¬(¬p∨q) ∧q∧r⇔ (p∧¬q) ∧q∧r⇔ p∧(¬q ∧q)∧r⇔0主析取范式为0, 无成真赋值, 为矛盾式.第4次作业(P38)2.6 求下列公式的主合取范式, 并求成假赋值:(1) ¬(q→¬p) ∧¬p(2)(p∧q) ∨ (¬p∨r)(3)(p→(p∨q)) ∨r解:(1) ¬(q→¬p) ∧¬p⇔¬(¬q∨¬p) ∧¬p⇔q∧p ∧¬p⇔q∧0⇔0⇔M0∧M1∧M2∧M3这是矛盾式. 成假赋值为00, 01, 10, 11.(2)(p∧q) ∨ (¬p∨r)⇔(p∧q) ∨¬p∨r⇔(p∨¬p)∧(¬p ∨q)∨r⇔ (¬p ∨q)∨r⇔¬p ∨q∨r⇔M4, 成假赋值为100.(3)(p→(p∨q)) ∨r⇔(¬p∨(p∨q)) ∨r⇔(¬p∨p)∨q ∨r⇔1主合取范式为1, 为重言式.2.32 用消解原理证明下述公式是矛盾式:(1) (¬p∨q) ∧ (¬p∨r) ∧ (¬q∨¬r) ∧ (p∨¬r) ∧r(2) ¬((p∨q) ∧¬p→q)解:(1) (¬p∨q) ∧ (¬p∨r) ∧ (¬q∨¬r) ∧ (p∨¬r) ∧r第一次循环S0=Φ, S1={¬p∨q,¬p∨r,¬q∨¬r,p∨¬r,r}, S2=Φ由¬p∨r, p∨¬r消解得到λ输出“no”,计算结束(2) ¬((p∨q) ∧¬p→q)⇔¬(¬((p∨q) ∧¬p) ∨q)⇔((p∨q) ∧¬p) ∧¬q⇔ (p∨q) ∧¬p ∧¬q第一次循环S0=Φ, S1={p∨q,¬p, ¬q}, S2=Φ由p∨q,¬p消解得到q,由q, ¬q消解得到λ,输出“no”,计算结束2.33 用消解法判断下述公式是否可满足的:(1) p∧ (¬p∨¬q) ∧q(2) (p∨q) ∧(p∨¬q) ∧(¬p∨ r)解:(1) p∧ (¬p∨¬q) ∧q第一次循环S0=Φ, S1={p, ¬p∨¬q, q}, S2=Φ由p, ¬p∨¬q消解得到¬q,由q, ¬q消解得到λ,输出“no”,计算结束(2) (p∨q) ∧(p∨¬q) ∧(¬p∨ r)第一次循环S0=Φ, S1={p∨q, p∨¬q, ¬p∨ r}, S2=Φ由p∨q, p∨¬q消解得到p,由p∨q, ¬p∨ r消解得到q ∨r,由p∨¬q, ¬p∨ r消解得到¬q ∨r,由p, ¬p∨ r消解得到r,S2={p, q ∨r, ¬q ∨r, r}第二次循环S0={p∨q, p∨¬q, ¬p∨ r}, S1={p, q ∨r, ¬q ∨r, r}, S2=Φ由p∨q, ¬q ∨r消解得到p∨r,由p∨¬q, q ∨r消解得到p∨r,由p∨¬q, q ∨r消解得到p∨r,由¬p∨ r, p 消解得到r,S2={p∨r}第三次循环S0={p, q ∨r, ¬q ∨r, r}, S1={p∨r}, S2=ΦS2=Φ输出“yes”,计算结束3.6 判断下面推理是否正确. 先将简单命题符号化, 再写出前提, 结论, 推理的形式结构(以蕴涵式的形式给出)和判断过程(至少给出两种判断方法):(1)若今天是星期一, 则明天是星期三;今天是星期一. 所以明天是星期三.(2)若今天是星期一, 则明天是星期二;明天是星期二. 所以今天是星期一.(3)若今天是星期一, 则明天是星期三;明天不是星期三. 所以今天不是星期一.(4)若今天是星期一, 则明天是星期二;今天不是星期一. 所以明天不是星期二.(5)若今天是星期一, 则明天是星期二或星期三. 今天是星期一. 所以明天是星期二.(6)今天是星期一当且仅当明天是星期三;今天不是星期一. 所以明天不是星期三.设p: 今天是星期一, q: 明天是星期二, r: 明天是星期三.(1)推理的形式结构为(p→r) ∧p→r此形式结构为重言式, 即(p→r) ∧p⇒r所以推理正确.(2)推理的形式结构为(p→q) ∧q→p此形式结构不是重言式, 故推理不正确.(3)推理形式结构为(p→r) ∧¬r→¬p此形式结构为重言式, 即(p→r) ∧¬r⇒¬p故推理正确.(4)推理形式结构为(p→q) ∧¬p→¬q此形式结构不是重言式, 故推理不正确.(5)推理形式结构为(p→(q∨r) )∧p →q它不是重言式, 故推理不正确.(6)推理形式结构为(p↔r) ∧¬p→¬r此形式结构为重言式, 即(p↔r) ∧¬p⇒¬r故推理正确.推理是否正确, 可用多种方法证明. 证明的方法有真值表法, 等值演算法. 证明推理正确还可用构造证明法.下面用等值演算法和构造证明法证明(6)推理正确.1. 等值演算法(p↔r) ∧¬p→¬r⇔(p→r) ∧(r→p)∧¬p→¬r⇔¬((¬p∨r) ∧(¬r∨p)∧¬p) ∨¬r⇔¬(¬p∨r) ∨¬(¬r∨p) ∨p ∨¬r⇔(p∧¬r)∨(r∧¬p)∨p ∨¬r⇔ (r∧¬p)∨p ∨¬r 吸收律⇔ (r∧¬p)∨¬(¬p ∨r)德摩根律⇔1即(p↔r) ∧¬p⇒¬r故推理正确2.构造证明法前提: (p↔r), ¬p结论: ¬r证明:①p↔r 前提引入②(p→r) ∧(r→p) ①置换③r→p ②化简律④¬p 前提引入⑤¬r ③④拒取式所以, 推理正确.第7次作业(P53-54)3.15 在自然推理系统P中用附加前提法证明下面各推理: (1)前提: p→(q→r), s→p, q结论: s→r(2)前提: (p∨q) →(r∧s), (s∨t) →u结论: p→u(1)证明:①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理(2)证明:①P 附加前提引入②p∨q ①附加③(p∨q) →(r∧s) 前提引入④r∧s ②③假言推理⑤S ④化简⑥s∨t ⑤附加⑦(s∨t) →u 前提引入⑧u ⑥⑦假言推理3.16 在自然推理系统P中用归谬法证明下面推理:(1)前提: p→¬q, ¬r∨q, r∧¬s结论: ¬p(2)前提: p∨q, p→r, q→s结论: r∨s(1)证明:①P 结论否定引入②p→¬q 前提引入③¬q ①②假言推理④¬r∨q 前提引入⑤¬r ③④析取三段论⑥r∧¬s 前提引入⑦r ⑥化简规则⑧¬r∧r ⑤⑦合取引入规则⑧为矛盾式, 由归谬法可知, 推理正确.(2)证明:①¬(r∨s) 结论否定引入②p∨q 前提引入③p→r 前提引入④q→s 前提引入⑤(p→r) ∧(q→s) ∧(p∨q) ②③④合取引入规则⑥r∨s ⑤构造性二难⑦(r∨s) ∧¬(r∨s) ④⑤合取引入规则⑦为矛盾式, 所以推理正确.第8次作业(P65-66)4.5 在一阶逻辑中将下列命题符号化:(1)火车都比轮船快.(2)有的火车比有的汽车快.(3)不存在比所有火车都快的汽车.(4)“凡是汽车就比火车慢”是不对的.解:因为没指明个体域, 因而使用全总个体域(1) ∀x∀y(F(x) ∧G(y) →H(x,y))其中, F(x): x 是火车, G(y): y 是轮船, H(x,y):x 比y 快.(2) ∃x∃y(F(x) ∧G(y) ∧H(x,y))其中, F(x): x 是火车, G(y): y 是汽车, H(x,y):x 比y 快.(3) ¬∃x(F(x) ∧∀y(G(y) →H(x,y)))或∀x(F(x) →∃y(G(y) ∧¬H(x,y)))其中, F(x): x 是汽车, G(y): y 是火车, H(x,y):x 比y 快.(4) ¬∀x∀y(F(x) ∧G(y) →H(x,y))或∃x∃y(F(x) ∧G(y) ∧¬H(x,y) )其中, F(x): x 是汽车, G(y): y 是火车, H(x,y):x 比y 慢.4.9 给定解释I 如下:(a)个体域为实数集合R.(b)特定元素a=0.(c)特定函数-f(x,y)=x-y, x,y∈R.(d)谓词-F(x,y): x=y,-G(x,y): x<y, x,y∈R.给出下列公式在I 下的解释, 并指出它们的真值:(1) ∀x∀y(G(x,y) →¬F(x,y))(2) ∀x∀y(F(f(x,y),a) →G(x,y))(3) ∀x∀y(G(x,y) →¬F(f(x,y),a))(4) ∀x∀y(G(f(x,y),a) →F(x,y))解:(1) ∀x∀y(x<y→x≠y), 真值为1.(2) ∀x∀y((x-y=0) →(x<y)), 真值为0.(3) ∀x∀y((x<y) → (x-y≠0)), 真值为1.(4) ∀x∀y((x-y<0) → (x=y)), 真值为0.第9次作业(P79-80)5.5 给定解释I如下:(a) 个体域D={3,4};(b)-f(x):-f(3)=4,-f(4)=3;(c)-F(x,y):-F(3,3)=-F(4,4)=0,-F(3,4)=-F(4,3)=1.试求下列公式在I下的真值:(1) ∀x∃yF(x,y)(2) ∃x∀yF(x,y)(3)∀x∀y(F(x,y)→F(f(x),f(y)))解:(1)∀x∃yF(x,y)⇔ (F(3,3)∨F(3,4))∧(F(4,3)∨F(4,4))⇔ (0∨1)∧(1∨0) ⇔ 1(2)∃x∀yF(x,y)⇔ (F(3,3)∧F(3,4))∨(F(4,3)∧F(4,4))⇔ (0∧1)∨(1∧0) ⇔ 0(3)∀x∀y(F(x,y)→F(f(x),f(y)))⇔ (F(3,3)→F(f(3),f(3)))∧(F(4,3)→F(f(4),f(3)))∧(F(3,4)→F(f(3),f(4)))∧(F(4,4)→F(f(4),f(4)))⇔ (0→0)∧(1→1)∧(1→1)∧(0→0) ⇔15.12 求下列各式的前束范式.(1)∀xF(x)→∀yG(x, y)(3)∀xF(x, y) ↔∃xG(x, y)(5) ∃x1F(x1, x2)→(F(x1)→¬∃x2G(x1, x2)).解:前束范式不是唯一的.(1) ∀xF(x)→∀yG(x, y)⇔∃x (F(x)→∀yG(t, y))⇔∃x∀y(F(x)→G(t, y)).(3) ∀xF(x, y) ↔∃xG(x, y)⇔ (∀xF(x, y)→∃xG(x, y))∧(∃xG(x, y)→∀xF(x, y))⇔ (∀xF(x, y)→∃uG(u, y))∧(∃xG(x, y)→∀vF(v, y)) ⇔∃x∃u(F(x, y)→G(u, y))∧∀x∀v(G(x, y)→F(v, y))⇔∃x∃u(F(x, y)→G(u, y))∧∀w∀v(G(w, y)→F(v, y)) ⇔∃x∃u∀w∀v ((F(x, y)→G(u, y))∧(G(w, y)→F(v, y))) (5)∃x1F(x1, x2)→(F(x1)→¬∃x2G(x1, x2))⇔∃x1F(x1, x2)→(F(x1)→∀x2¬G(x1, x2))⇔∃x1F(x1, x2)→∀x2(F(x1)→¬G(x1, x2))⇔∃x1F(x1, x3)→∀x2(F(x4)→¬G(x4, x2))⇔∀x1(F(x1, x3)→∀x2(F(x4)→¬G(x4, x2)))⇔∀x1∀x2 (F(x1, x3)→(F(x4)→¬G(x4, x2)))第10次作业(P79-80)5.15 在自然推理系统F L中,构造下面推理的证明:(1) 前提: ∃xF(x) →∀y((F(y)∨G(y))→R(y)),∃xF(x) 结论:∃xR(x).(2) 前提:∀x(F(x)→(G(a)∧R(x))),∃xF(x)结论:∃x(F(x)∧R(x))(3) 前提:∀x(F(x)∨G(x)),¬∃xG(x)结论:∃xF(x)(4) 前提:∀x(F(x)∨G(x)),∀x(¬G(x)∨¬R(x)),∀xR(x)结论: ∃xF(x)(1)证明:①∃xF(x) →∀y((F(y)∨G(y))→R(y)) 前提引入②∃xF(x) 前提引入③∀y((F(y)∨G(y))→R(y)) ①②假言推理④(F(c)∨G(c))→R(c) ③全称量词消去规则⑤F(c) ①存在量词消去规则⑥F(c) ∨G(c) ⑤附加⑦R(c) ④⑥假言推理⑧∃xR(x) ⑦存在量词引入规则(2) 证明:①∃xF(x) 前提引入②F(c) ①存在量词消去规则③∀x(F(x)→(G(a)∧R(x))) 前提引入④F(c)→(G(a)∧R(c)) ④全称量词消去规则⑤G(a)∧R(c) ②④假言推理⑥R(c) ⑤化简⑦F(c)∧R(c) ②⑥合取引入⑧∃x(F(x)∧R(x)) ⑦存在量词引入规则(3) 证明:①¬∃xG(x) 前提引入②∀x¬G(x) ①置换③¬G(c) ②全称量词消去规则④∀x(F(x)∨G(x)) 前提引入⑤F(c)∨G(c) ④全称量词消去规则⑥F(c) ③⑤析取三段论⑦∃xF(x) ⑥存在量词引入规则(4) 证明:①∀x(F(x)∨G(x)) 前提引入②F(y)∨G(y) ①全称量词消去规则③∀x(¬G(x)∨¬R(x)) 前提引入④¬G(y) ∨¬R(y) ③全称量词消去规则⑤∀xR(x) 前提引入⑥R(y) ⑤全称量词消去规则⑦¬G(y) ④⑥析取三段论⑧F(y) ②⑦析取三段论⑥∃xF(x) ⑧存在量词引入规则第11次作业(P96)6.4. 设F 表示一年级大学生的集合, S 表示二年级大学生的集合, M表示数学专业学生的集合, R 表示计算机专业学生的集合, T表示听离散数学课学生的集合, G 表示星期一晚上参加音乐会的学生的集合, H 表示星期一晚上很迟才睡觉的学生的集合. 问下列各句子所对应的集合表达式分别是什么? 请从备选的答案中挑出来.(1)所有计算机专业二年级的学生在学离散数学课.(2)这些且只有这些学离散数学课的学生或者星期一晚上去听音乐会的学生在星期一晚上很迟才睡觉.(3)听离散数学课的学生都没参加星期一晚上的音乐会.(4)这个音乐会只有大学一, 二年级的学生参加.(5)除去数学专业和计算机专业以外的二年级学生都去参加了音乐会.备选答案:①T⊆G∪H ②G∪H⊆T ③S∩R⊆T④H=G∪T ⑤T∩G=∅⑥F∪S⊆G⑦G⊆F∪S ⑧S-(R∪M) ⊆G ⑥G⊆S-(R∩M)解:(1) ③S∩R⊆T(2) ④H=G∪T(3) ⑤T∩G=∅(4) ⑦G⊆F∪S(5) ⑧S-(R∪M)⊆G6.5. 确定下列命题是否为真:(1) ∅⊆∅(2) ∅∈∅(3) ∅⊆{∅}(4)∅∈{∅}(5){a, b}⊆{a, b, c, {a, b, c}}(6){a, b}∈{a, b, c, {a, b }}(7){a, b}⊆{a, b, {{a, b}}}(8){a, b}∈{a, b, {{a, b}}}解:(1) 真(2)假(3) 真(4) 真(5) 真(6) 真(7) 真(8) 假第12次作业(P130-131)7.1. 已知A={∅,{∅}},求A×P(A).解:A×P(A)= {∅,{∅}}×{∅,{∅},{{∅}},{∅,{∅}}}={<∅, ∅>,<∅,{∅}>,<∅,{{∅}}>,<∅,{∅,{∅}}>,<{∅},∅>,<{∅},{∅}>,<{∅},{{∅}}>, <{∅},{∅,{∅}}>}7.7. 列出集合A={2, 3, 4}上的恒等关系I A, 全域关系E A, 小于或等于关系L A, 整除关系D A.解:I A={<2,2>,<3,3>,<4,4>}E A=A×A={<2,2>,<2,3>,<2,4>,<3,2>,<3,3>,<3,4>,<4,2>,<4,3>,<4,4>}L A={<2,2>,<2,3>,<2,4>,<3,3>,<3,4>,<4,4>}D A={<2,2>,<2,4>,<3,3>,<4,4>}7.12.设A={0, 1, 2, 3}, R 是A 上的关系, 且R={〈0, 0〉, 〈0, 3〉, 〈2, 0〉, 〈2, 1〉, 〈2, 3〉, 〈3, 2〉}给出R 的关系矩阵和关系图.解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0010110100001001第13次作业(P131)7.13.设A = {〈1, 2〉, 〈2, 4〉, 〈3, 3〉}B = {〈1, 3〉, 〈2, 4〉, 〈4, 2〉}求A ∪B , A ∩B , dom A , dom(A ∪B ), ran A , ran B , ran(A ∩B ), fld(A −B ).解:A ∪B={〈1,2〉, 〈1,3〉, 〈2,4〉, 〈3,3〉, 〈4,2〉} A∩B={〈2,4〉} domA={1,2,3}dom(A ∪B)={1,2,3,4} ranA={2,3,4} ranB={3,4,2}ran(A∩B)={4}fld(A−B)={1,2,3}7.15.设A={〈∅,{∅,{∅}}〉,〈{∅},∅〉}求A −1,A 2,A 3,A ↾{∅},A[∅],A↾∅,A ↾{{∅}},A[{{∅}}].解:A −1={〈{∅,{∅}},∅〉,〈∅,{∅}〉},A 2={〈{∅},{∅,{∅}}〉},A 3=∅,A ↾{∅}={〈∅,{∅,{∅}}〉},A[∅]={∅,{∅}},A ↾∅=∅,A ↾{{∅}}={〈{∅},∅〉},A[{{∅}}]=∅7.16.设A={a,b,c,d}, R1,R2 为A 上的关系, 其中R 1={〈a,a〉,〈a,b〉,〈b,d〉}R 2={〈a,d〉,〈b,c〉,〈b,d〉,〈c,b〉}求R 1○R 2, R 2○R 1,R 12,R 23.解:R 1○R 2={〈a,a〉,〈a,c〉,〈a,d〉},R 2○R 1={〈c,d〉},R 12={〈a,a〉,〈a,b〉,〈a,d〉},R 23={〈b,c〉,〈b,d〉,〈c,b〉} 0 1 237.17.设A={a,b,c}, 试给出A 上两个不同的关系R 1和R 2,使得 R 12=R 1, R 23=R 2.解:R 1={〈a,a〉,〈b,b〉},R 2={〈b,c〉,〈c,b〉}第14次作业(P131-133)7.21. 设A={1,2,…,10},定义A 上的关系R={<x,y>|x,y ∈A ∧x+y=10}说明R 具有哪些性质并说明理由。
小学数学新课程标准(2011版)作业
数学课程标准(2011版)》培训作业第一次作业1、简述《标准》中总体目标四个方面的关系?答:总体目标的四个方面,不是互相独立和割裂的,而是一个密切联系、相互交融的有机整体。
课程设计和教学活动组织中,应同时兼顾这四个方面的目标。
这些目标的整体实现,是学生受到良好数学教育的标志,它对学生的全面、持续、和谐发展,有着重要的意义。
数学思考、问题解决、情感态度的发展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现。
2、学生的数感主要表现在哪些方面?答:理解数的意义;能用多种方法来表示数与数量;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性做出解释。
第二次作业3、在学生的学习活动中,教师的“组织”作用主要体现在哪些方面?答:主要体现在:1、教师应当准确把握教学内容的数学本质和学生的实际情况,确定合理的教学目标,设计一个好的教学方案。
2、在教学活动中,教师要选择适当的教学方式,因势利导、适时调控、努力营造师生互动、生动活泼的课堂氛围,形成有效的学习活动。
4、怎样理解学生主体地位和教师主导作用的关系,如何使学生成为学习的主体?答:好的教学活动,应是学生主体地位和教师主导作用的和谐统一。
一方面,学生主体地位的真正落实,依赖于教师主导作用的有效发挥;另一方面,有效发挥教师主导作用的标志,是学生能够真正成为学习的主体,得到全面的发展。
启发式教学是处理好学生主体地位和教师主导作用关系的有效途径。
教师富有启发性的讲授,创设情境、设计问题,引导学生自主探索、合作交流,组织学生操作实验、观察现象、提出猜想、推理论证等,都能有效地启发学生的思考,使学生成为学习的主体。
第三次作业5、新课程小学数学教学评价的具体要求是什么?答:(1)、注重对学生数学学习过程的评价;(2)、恰当评价学生基础知识和基本技能的理解和掌握;(3)、重视对学生发现问题和解决问题能力的评价;(4)、重视评价结果的处理和呈现。
中职对口单招班学生数学作业二次批改的意义与策略
2018年第24期教学实践作业二次批改是在第一次批改的基础上,根据学生正误批改情况,筛选出需要二次批改的作业所进行的第二次批改。
作业的二次批改是一种科学、有效的学生作业评价方式,对学生的学习具有监督、激励和促进作用,能有效地促进学生学业水平的提升,尤其可以帮助后进生有针对性地解决学习中的困难,从而提高班级整体的教学成绩。
本文针对中职对口单招班学生的数学学情,分析了数学作业二次批改的意义,并探讨了实际教学中作业二次批改的策略与技巧。
一、中职对口单招班学生数学作业二次批改的必要性中职对口单招班是职业学校为培养高技能型人才所设立的班级,其培养目的是向高等职业技术学校输送本、专科技能型人才。
因此,中职对口单招班学生相对于普通中专班级学生而言,整体学习能力和学习目标要略高一点。
但这部分学生的中考成绩仍然是未达普通高中分数线,或勉强够上普通高中分数线的水平,学生在学习习惯和学习能力上还存在较多不足,尤其是在作业环节,往往问题较多。
笔者曾随机对某校对口单招班学生某次数学作业(一张练习卷)的第一次批改订正情况进行了调查。
调查发现,在该班级的32名学生中,作业第一次批改出现的典型性的错误较多,其中,计算错误、解题方法错误等屡见不鲜。
更值得关注的是,作业在教师讲评之后,虽进行了订正,但没有订正到位的学生有12名之多,这其中仍然有计算错误、解题方法错误等出现;此外,有一些学生态度不认真,出现订正不全面、漏订正的情况;还有的学生不会订正,也不寻求教师或同学的帮助,干脆不订正。
通过这次调查可以发现,中职对口单招班学生在作业及订正方面存在诸多问题,有学习能力方面的问题,也有学习自觉性方面的问题。
如果不解决这些问题,将会直接影响学生学业成绩的提高。
因此,针对学生存在的问题,在中职对口单招班数学作业批改中,应积极开展二次批改。
通过多种形式的二次批改,将对学生的学习起到监督、激励和促进作用,从而能够有效提高对口单招班级整体的数学学业成绩。
第二次作业饮酒驾车问题数学建模
dw = − kw dt w(0) = w0
其中 k 为吸收速率常数,解得: w( t) = w0 e− kT 时,由于经过时间间隔 T,又第二次饮酒,饮入量为 w0 ,所以 t=T 时
w(T ) = w0 + w0 e − kt
同理:当 t=2T 时,前两次酒精残余为: ( w0 + w0 e − kT )e − kT 并且当 t = 2T 时,又第三次饮酒,饮酒量仍为 w0 ,所以,
在前面就设好喝酒瓶数 n 比较方便)
问题一: (喝一瓶酒故参数 f/V 应代为 51.35) 下午六点检时测, t=6 时代入: w(6)= 19(mg/100ml) w(6)<20,即下午六点时没有检测出为饮酒驾车。 再次喝酒时,体内有酒精残余,有一个值为 19 的初始值, 凌晨两点再次检测时, t=8 代入: y(8)=27(mq/ml) 酒精含量 y(8)>20,因此大李被认定为饮酒驾车。
数学建模作业二:
饮酒驾车问题分析
一、 一次性饮酒的模型:
假设: 1 .酒精转移的速率与出发处酒精浓度成正比; 2 .过程为酒精从胃到体液到体外; 3. 酒精在血液与体液中含量相同; 4 在很短时间内饮酒,认为是一次性饮入,中间的时间差不计; 5.不考虑个体差异。
t为饮酒时间, y1 (t ) 为 t 时刻人体消化的酒精量, y2 (t ) 为 t 时刻人体的酒精
这样考虑 1.假设饮酒周期固定; 2.假设每次饮酒量也一定; 3.假设为一次性饮入; 4. 酒精浓度消除率为常数; 5.不考虑个体差异。 设 w(t ) 表式 t 时刻酒精在人体内的浓度, w(0) 表示 t=0 时饮入酒精量在体 内浓度, y (0) 表示饮入酒精量,T 表示周期,V 为体液体积,k 为酒精浓度消除 率。 饮酒后体内酒精的浓度逐渐降低, 酒精浓度消除率与饮酒量成线性比, 则有:
八年级数学第二次定时作业试题
2013年下半学期数学半期试题(全卷160分,120分钟完卷)姓名________ 考号_______ 班级_______ 得分________基础卷(100分)一、选择题(每小题3分,共36分)1、9的算术平方根是( )A 、3±B 、3C 、3-D 、3 2、如图,小强利用全等三角形的知识测量池塘两端 M 、N 的距离,如果△PQO ≌△NMO ,则只需测出其 长度的线段是( ) A 、PQ B 、PO C 、MQ D 、MO34、如图,已知点A 、D 、C 、F 在同一条直线上,DE AB =,EF BC =,要使ABC ∆≌DEF ∆,还需要添加的一个 条件是( )A 、F BCA ∠=∠B 、E B ∠=∠C 、BC ∥EFD 、EDF A ∠=∠5、若42++kx x 是完全平方式,则=k ( )A 、2-B 、2±C 、4D 、4±6、如图,某个同学把一块三角形玻璃打成三块,现在要到 玻璃店去配一块完全一样的玻璃,那么最好的办法是带 第( )块去 A 、○1 B 、○2 C 、○1和○2 D 、○3 7、下列等式成立的是( )A 、525±=B 、n m n m a a a -=÷C 、624842m m m =⋅D 、()()22222b a b a b a -=-+ 8、下列命题中是真命题的是( )○1内错角相等 ○2278的立方根是32±○3有两组边分别对应相等的两个直角三角形全等 ○4若b a >,则22b a >○5两个无理数之和仍然是无理数 A 、○2○1 B 、○2○4 C 、○3○4○5 D 、○3C AD EF12CAD BE FMN O9、已知12)3(2--b a 与互为相反数,则ab 的平方根是( ) A 、36±B 、36C 、6±D 、610、已知等腰三角形两边长分别为3和6,那么这个等腰三角形的周长是( ) A 、15 B 、12 C 、15或12 D 、以上都不对11、磁悬浮列车是一种科技含量很高的新型交通工具,它有速度快,爬坡能力强,能耗低等优点.它每个座位的平均能耗仅为飞机每个座位平均能耗的三分之一,是汽车每个座位平均能耗的70%.那么,汽车每个座位的平均能耗是飞机每个座位平均能耗的( )A 、73B 、37C 、2110D 、102112、如图3,在边长为a 的正方形中,剪去一个边长 为b 的小正方形(a >b ),将余下部分拼成一个 梯形,根据两个图形阴影部分面积的关系,可以 得到一个关于a 、b 的恒等式为( )A 、()2222b ab a b a +-=- B 、()()b a b a b a -+=-22C 、()2222b ab a b a ++=+ D 、()b a a ab a +=+2二、填空题(每小题5分,共20分)13、如图所示,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度 DF 相等,则△ABC ≌△DEF ,理由是______.14、已知实数x 、y 满足`133----=x x y ,则=x ___ ,=y ___15、如图所示,AD ∥BC ,AB ∥DC ,点O 为线段AC的中点,过点O 作一条直线分别与AB 、DC 交于 点M 、N .点E 、F 在直线MN 上,且OE =OF . 图中全等的三角形共有____对.16、在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式44y x -,因式分解 的结果是()()()22y x y x y x ++-,若取9=x ,9=y 时,则各个因式的值是:0=-y x ,18=+y x ,16222=+y x ,于是就可以把“018162” 作为一个六位数的密码.对于多项式234xy x -,取10=x ,10=y 时, 用上述方法产生的密码是:______(写出一个即可)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明:记1(,
,)T n x x =x ,根据向量范数的定义有:
1x =1
n
i i x =∑ , ∞x =1max i i n
x ≤≤
设i x 中的最大值为k x ,其值为a (1≤k ≤n ),即∞
x
=a . 则有:
1x =1
n
i i x =∑=1
n
i i i k
a x =≠+∑≥a
所以1x ≥∞
x
.根据k x ≥i x 有:
n ∞x =n k x ≥1
n
i i x =∑
所以n ∞
x ≥1x .因此1n ∞
∞≤≤x
x x 得证。
2. 证明:
证明:(1)先证2∞
∞≤≤x
x .
记1(,
,)T n x x =x ,∞x =1max i i n
x ≤≤=k x .
2
2x =21
n
i i x =∑≥2k x =2
∞x
2n ∞x =n 2
k x =2
1
n
k
i x =∑≥21
n
i i x =
∑=2
2x
所以: 2∞
∞≤≤x x (※)
1)根据矩阵范数的定义:
2A =2
2
max
≠x Ax x
因此存在x ≠0,使2A =
2
2
Ax x
.根据(※)式:
2A =
2
2
Ax x
≤∞
⋅
1∞
x
≤∞∞
A x
⋅
1∞
x
=∞A
2A ≤∞A . 2)同理,存在x ≠0,使∞A =
∞∞
Ax x
.根据(※)式:
∞A =
∞∞
Ax x
≤2
Ax
⋅
≤2
2
A
x
⋅
2A
2A ≤∞A
≤2A 得证。
(2)设非负的对称阵T
A A 的特征值从大到小排列为1λ,2λ,
n λ,则其均为非负实数。
F A =1
2
2
11
()n n
ij i j a ==∑∑
2
112
21
21n
j j n
j
T j n
nj j a a a ===⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢
⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣
⎦
∑∑
∑AA 则tr(T
AA )=2
F A =
2
11
n n
ij i j a ==∑∑
1)根据矩阵的迹等于所有特征值之和有:
tr(T AA )=tr(T
A A )=
1
n
i i λ=∑≤n 1λ= n ()T ρA A 2F A =1
n
i i λ=∑≤n ()T ρA A = n 2
2A
因此F
A
≤2A .
2)
2
F A =1
n
i i λ=∑≥1λ=()T ρA A =2
2A
因此2
A
≤F A 。
2A ≤F A
≤2A 得证。
3)2A 与2x 相容,因此:
2Ax ≤2A ⋅2x ≤F A 2x
则F A 与2x 相容。
A
为n R 上一种范数,若正定则如何? 解:(一)证明:
1)由于A 对称正定,则A
x
=12
()Ax x ,>0, ∀≠∈0,n
x x R . 当且仅当0x =时,1
2
()Ax x ,
=0.即A
x =0⇔≠0x
则范数的正定性可证。
2)
αA x αA x
则范数的齐次性可证。
3)由A 为对称阵有:
2
A x +y =()A(x +y)x +y ,=()()()()Ax,x +Ax,y +Ay,x +Ay,y
=+2()()()Ax,x Ax,y +Ay,y
构造以下二次型内积:
2+20t t t t ≥()()()()=A(x +y)x +y Ay,y Ax,y +Ax,x ,,t R ∀∈成立
因此:
2=44∆≤()()()0Ax,y -Ax,x Ay,y
即: 2
≤()()()Ax,y Ax,x Ay,y (※)
根据(※)式有:
2A
x +y
=+2()()()Ax,x Ax,y +Ay,
y
≤+()()Ax,x Ay,y
=2
=2
()+A A
x
y 即A x +y
≤+A
A x
y 。
范数的三角不等式可证。
根据(1)、(2)、(3)证明A
为n
R 上一种范数。
(二)若A 非正定,根据A
x
= 1/2
Ax x ,()的定义有:
()Ax x ,≥0, ∀≠∈0,
n x x R 当0x =时,A x
=12
()Ax x ,=0,而反过来不一定成立,即≠0x 不是A
x
=0成立的充
要条件。
因此不满足正定性,不能证明
A
为n R 上一种范数。
但是A 虽非正定,仍满足齐次性与三角不等式。
证明:根据定理1.6,设
为⨯n n R 上任一种矩阵范数,对于⨯∀∈n n A R 有:
()ρ≤A A (※)
1)对于单位矩阵I ,其特征值为1,即()ρA =1,根据式(※):
I ≥()1ρ=I
因此不等式I ≥1恒成立。
2)当A 为非奇异矩阵时,其逆矩阵存在。
此时:
1-=AA I
由于(1)中已证明I ≥1恒成立,且根据矩阵范数的相容性有:
1-11-≤=≤I AA A A
即-1
1≤A A。
当-1A ≠0时:
1-A ≥
1A
=1
-A 因此当A 非奇异,且不为0时,1-A ≥1
-A
一定成立。
5. 设⨯∈n n A R ,∈n x R ,定义为:
11111111
11---⎡⎤⎢⎥--⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣
⎦A ,111/21/41/2n -⎡⎤
⎢⎥⎢⎥
⎢⎥=⎢⎥⎢⎥
⎢⎥⎣⎦
x 计算2x ,Ax 和2Ax ,并证明2
A ≥1.
解:
1)
2x =12
2
1
()n
i i x =∑
=12
22
11
1+++
+
)416
2n -(1
由于i x 各项之间为等比数列,公比为q ,q =
1
4。
按照等比数列求和公式: 2x =12
1
14()114
n --=1
21(1)34n - 2)Ax =1
(
)n
ij
j n n j a
x ⨯=∑
11
11
11(1)112212212
n
n
i n i ij j i j i n j j i a x x x ---==+-=-=-=-∑∑ 则:
Ax =T
1
11
111112
222n n n n ----⎛⎫ ⎪⎝⎭
2Ax =2
1
211
()2
n n -=12
n -
3)
F A =1
12
2
2
11
()(1+2+
+)n n
ij i j
a n ====
∑∑由第
2题中结论有:
2A ≥
F 1≥ 所以2
A
≥1。