大学物理下册期末复习例题汇总
大学物理期末复习题及答案
j i r )()(t y t x +=大学物理期末复习题力学局部一、填空题:,则质点的速度为,加速度为。
2.一质点作直线运动,其运动方程为221)s m 1()s m 2(m 2t t x --⋅-⋅+=,则从0=t 到s 4=t 时间间隔内质点的位移大小质点的路程。
3.设质点沿x 轴作直线运动,加速度t a )s m 2(3-⋅=,在0=t 时刻,质点的位置坐标0=x 且00=v ,则在时刻t ,质点的速度,和位置。
4.一物体在外力作用下由静止沿直线开场运动。
第一阶段中速度从零增至v,第二阶段中速度从v 增至2v ,在这两个阶段中外力做功之比为。
5.一质点作斜上抛运动〔忽略空气阻力〕。
质点在运动过程中,切向加速度是,法向加速度是 ,合加速度是。
〔填变化的或不变的〕6.质量m =40 kg 的箱子放在卡车的车厢底板上,箱子与底板之间的静摩擦系数为s =,滑动摩擦系数为k =,试分别写出在以下情况下,作用在箱子上的摩擦力的大小和方向.(1)卡车以a = 2 m/s 2的加速度行驶,f =_________,方向_________.(2)卡车以a = -5 m/s 2的加速度急刹车,f =________,方向________.7.有一单摆,在小球摆动过程中,小球的动量;小球与地球组成的系统机械能;小球对细绳悬点的角动量〔不计空气阻力〕.〔填守恒或不守恒〕二、单项选择题:1.以下说法中哪一个是正确的〔〕〔A 〕加速度恒定不变时,质点运动方向也不变 〔B 〕平均速率等于平均速度的大小 〔C 〕当物体的速度为零时,其加速度必为零 〔D 〕质点作曲线运动时,质点速度大小的变化产生切向加速度,速度方向的变化产生法向加速度。
2.质点沿Ox 轴运动方程是m 5)s m 4()s m 1(122+⋅-⋅=--t t x ,则前s 3内它的〔〕 〔A 〕位移和路程都是m 3 〔B 〕位移和路程都是-m 3 〔C 〕位移为-m 3,路程为m 3〔D 〕位移为-m 3,路程为m 53. 以下哪一种说法是正确的〔〕〔A 〕运动物体加速度越大,速度越快〔B 〕作直线运动的物体,加速度越来越小,速度也越来越小〔C 〕切向加速度为正值时,质点运动加快〔D 〕法向加速度越大,质点运动的法向速度变化越快4.一质点在平面上运动,质点的位置矢量的表示式为j i r 22bt at +=〔其中a 、b 为常量〕,则该质点作〔〕〔A 〕匀速直线运动 〔B 〕变速直线运动〔C 〕抛物线运动〔D 〕一般曲线运动5. 用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时,它〔 〕 〔A 〕将受到重力,绳的拉力和向心力的作用〔B 〕将受到重力,绳的拉力和离心力的作用〔C 〕绳子的拉力可能为零〔D 〕小球可能处于受力平衡状态6.功的概念有以下几种说法〔1〕保守力作功时,系统内相应的势能增加〔2〕质点运动经一闭合路径,保守力对质点作的功为零〔3〕作用力和反作用力大小相等,方向相反,所以两者作功的代数和必为零以上论述中,哪些是正确的〔〕〔A 〕〔1〕〔2〕〔B 〕〔2〕〔3〕〔C 〕只有〔2〕〔D 〕只有〔3〕7.质量为m 的宇宙飞船返回地球时,将发动机关闭,可以认为它仅在地球引力场中运动,当它从与地球中心距离为1R 下降到距离地球中心2R 时,它的动能的增量为〔〕〔A 〕2E R mm G ⋅〔B 〕2121E R R R R m Gm -〔C 〕2121E R R R m Gm -〔D 〕222121E R R R R m Gm --8.以下说法中哪个或哪些是正确的〔〕〔1〕作用在定轴转动刚体上的力越大,刚体转动的角加速度应越大。
(完整word版)《大学物理》下册复习资料
《大学物理》(下) 复习资料一、电磁感应与电磁场1. 感应电动势——总规律:法拉第电磁感应定律 dtd m i Φ-=ε , 多匝线圈dt d i ψ-=ε, m N Φ=ψ。
i ε方向即感应电流的方向,在电源内由负极指向正极。
由此可以根据计算结果判断一段导体中哪一端的电势高(正极)。
①对闭合回路,i ε方向由楞次定律判断; ②对一段导体,可以构建一个假想的回路(使添加的导线部分不产生i ε)(1) 动生电动势(B 不随t 变化,回路或导体L运动) 一般式:() d B v b ai ⋅⨯=ε⎰; 直导线:()⋅⨯=εB v i动生电动势的方向:B v ⨯方向,即正电荷所受的洛仑兹力方向。
(注意)一般取B v⨯方向为 d 方向。
如果B v ⊥,但导线方向与B v⨯不在一直线上(如习题十一填空2.2题),则上式写成标量式计算时要考虑洛仑兹力与线元方向的夹角。
(2) 感生电动势(回路或导体L不动,已知t /B ∂∂的值):⎰⋅∂∂-=s i s d t Bε,B与回路平面垂直时S t B i ⋅∂∂=ε 磁场的时变在空间激发涡旋电场i E :⎰⎰⋅∂∂-=⋅L s i s d t B d E(B增大时t B ∂∂[解题要点] 对电磁感应中的电动势问题,尽量采用法拉第定律求解——先求出t 时刻穿过回路的磁通量⎰⋅=ΦSm S d B ,再用dtd m i Φ-=ε求电动势,最后指出电动势的方向。
(不用法拉弟定律:①直导线切割磁力线;②L不动且已知t /B ∂∂的值)[注] ①此方法尤其适用动生、感生兼有的情况;②求m Φ时沿B 相同的方向取dS ,积分时t 作为常量;③长直电流r π2I μ=B r /;④i ε的结果是函数式时,根据“i ε>0即m Φ减小,感应电流的磁场方向与回路中原磁场同向,而i ε与感应电流同向”来表述电动势的方向:i ε>0时,沿回路的顺(或逆)时针方向。
2. 自感电动势dtdI Li -=ε,阻碍电流的变化.单匝:LI m=Φ;多匝线圈LI N =Φ=ψ;自感系数I N I L m Φ=ψ= 互感电动势dt dI M212-=ε,dtdIM 121-=ε。
大学物理下册总复习汇总
(D)都小于 L / 2 。
[D ]
16
设两个半环式的螺线管的自感系数为L’,
I
I
1
(L d I dt
M
dI dt
)
(L
M)
dI dt
2
(L d I dt
M
dI dt
电磁学、相对论、量子物理总复习
教师: 李美姮
1
一、选择题:
1. 半径分别为 R,r 的两个金属球,相距很远。用一根细长
导线将两球连接在一起并使它们带电,在忽略导线的影响
下,两球表面的电荷面密度之比 R / r 为:
(A) R / r , (B)R2 / r2 ,
(C)r2 / R2 , (D)r / R .
并联: I p Rp IQ RQ IQ 2I p
Wp
L
p
I
2 p
1
WQ
LQ
I
2 Q
2
15
14. 已知圆环式螺线管的自感系数为 L ,若将该螺线管锯成 两个半环式的螺线管,则两个半环式的螺线管的自感系数为:
(A)都等于 L / 2 ;
(B)有一个大于 L / 2 ,另一个下于 L / 2 ;
(C)都大于 L / 2 ;
带电体产生的.
(A) 半径为R的均匀带电球面; (B) 半径为R的均匀带电球体;
E dS
1
S
0
i
q内
(C) 点电荷;
(D) 外半径为R,内半径为R / 2的均匀带电球壳体.
E Er 关系曲线
E
E 1/ r2
R
3 0
r2
OR
r
O
R
r
[A ]
大学物理下册期末复习计算题
大学物理下册期末复习计算题第7章真空中的静电场*1.一半径为R 的带电导体球,电荷为-Q 。
求:球内、外任意一点的电场强度。
1.解:由高斯定理可求出电场强度的分布(1分)∑⎰=⋅int q S d E(3分)(4分) (2分) (2分)解:由高斯定理可求出电场强度的分布(1分)∑⎰=⋅int q S d E(3分)(4分) (2分) (2分)*2.一半径为R 的带电导体球,电荷为Q 。
求:(1)球内、外任意一点的电场强度;(2)球内、外任意一点电势。
解:由高斯定理可求出电场强度的分布(3分) (2分)当r>R 时 (3分) 当r ≤R 时 (4分)⎪⎪⎩⎪⎪⎨⎧=-<>-R r R Q R r R r r Q E 4 042020πεπε=⎪⎩⎪⎨⎧<>R r R r r q E0 420πε=r qdr r q V r 02044πεπε=⎰∞=R qdr r q dr V RRr 020440πεπε=+⎰⎰∞=⎪⎪⎩⎪⎪⎨⎧=-<>-R r R Q R r R r r Q E 4 0 4202πεπε=*3. 如图所示,一长为L ,半径为R 的圆柱体,置于场强为E 的均匀电场中,圆柱体轴线与场强方向平行,求穿过圆柱体下列端面的电通量。
(1)左端面(2)右端面 (3)侧面 (4)整个表面解: 根据电通量定义 (1)左端面⎰⎰⎰-=-==⋅=121cos s s R E dS E EdS s d E ππφ(4分)(2)右端面⎰⎰===⋅=2030cos R E ES EdS s d E s πφ(4分) (3)侧面⎰⎰==⋅=02cos 2πφEdS s d E s (1分)(4)整个表面0321=++=s s s s φφφφ(3分)4. 三个点电荷1q 、2q 和3q -在一直线上,相距均为R 2,以1q 与2q 的中心O 作一半径为R 2的球面,A 为球面与直线的一个交点,如图。
大学物理期末考试复习
O
7.如图,导体棒AB在均匀磁场B中绕通过C点的垂 直于棒长且沿磁场方向的轴 OO’转动(角速度 与 B同 方向),BC的长度为棒长的1/3,则 (A) A点比B点电势高. (B) A点与B点电势相等. (C) A点比B点电势低. (D) 有稳恒电流从A点流向B点.
边缘电势高于转轴所在 B F
e = Bl2/2
2、一运动电荷q,质量为m,进入均匀磁场中
(A) 其动能改变,动量不变. (C) 其动能不变,动量改变. (B) 其动能和动量都改变. (D) 其动能、动量都不变.
2
在均匀磁场中,有两个平面线圈,其面积 A1 =
2A2,通有电流 I1 = 2I2,它们所受到的最大磁力矩之比
M1 / M2等于
(A)1 (B)2 (C)4 (D)2 x y z (ct )
18、边长为a的的正方形薄板静止于惯性系K的XOY平 面内,且两边分别与X、Y轴平行,今有惯性系K’ 以0.8C(C为真空中光速)的速度相对于K系沿X轴 作匀速直线运动,则K’测得薄板面积: (A)a2;(B)0.6a2 ;(C)0.8a2 ;(D)a2/0.6 . 答案: 解释: a ' l
答案: 解释:
2
C 2 1 k (B) k C 2 k ( k 2) (D) k 1
2
即:
mc km0c m0 km0 2 2 1 v / c
m km0
解之得:
C 2 v k 1 k
二、填空题 1 .一质点带有电荷q,以速度u在半径为R的圆周 上作匀速圆周运动,该带电质点在轨道中心产生 2 u q / 4 R 的磁感应强度B = ;该带电质点轨道 运动的磁矩Pm= IS u qR / 2 。
大学物理2期末考试复习题
11章10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1)]ln [ln π2d π2d π2000d a d b a b Il r l r I r l r I ab ba d d m +-+=-=⎰⎰++μμμΦ(2)t Ib a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε10-7 如题10-7图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题10-7图解: AB 、CD 运动速度v ϖ方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεϖϖϖBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰μεϖϖϖ∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.10-9 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B ϖ的方向如题10-9图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0).解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题10-9图(a)题10-9图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题10-10图10-15 一无限长的直导线和一正方形的线圈如题10-15图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aI M μΦ==10-16 一矩形线圈长为a =20cm ,宽为b =10cm ,由100匝表面绝缘的导线绕成,放在一无限长导线的旁边且与线圈共面.求:题10-16图中(a)和(b)两种情况下,线圈与长直导线间的互感.解:(a)见题10-16图(a),设长直电流为I ,它产生的磁场通过矩形线圈的磁通为2ln π2d 2πd 020)(12Iar r Ia S B b b S μμΦ⎰⎰==⋅=ϖϖ∴ 6012108.22ln π2-⨯===a N I N M μΦ H (b)∵长直电流磁场通过矩形线圈的磁通012=Φ,见题10-16图(b) ∴ 0=M题10-16图题10-17图13章12-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.解: (1)由λk dDx =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm 12-11 白光垂直照射到空气中一厚度为3800 oA 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解: 由反射干涉相长公式有λλk ne =+22 ),2,1(⋅⋅⋅=k得 122021612380033.14124-=-⨯⨯=-=k k k ne λ 2=k , 67392=λo A (红色) 3=k , 40433=λ oA (紫色)所以肥皂膜正面呈现紫红色.由透射干涉相长公式 λk ne =2),2,1(⋅⋅⋅=k 所以 kk ne 101082==λ 当2=k 时, λ =5054oA (绿色) 故背面呈现绿色.14章13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ3102.4121-⨯⨯+=k mm 当 3=k ,得60003=λo A4=k ,得47004=λoA(2)若60003=λoA ,则P 点是第3级明纹;若47004=λoA ,则P 点是第4级明纹. (3)由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带; 当4=k 时,单缝处的波面可分成912=+k 个半波带.13-14 用5900=λoA 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?解:5001=+b a mm 3100.2-⨯= mm 4100.2-⨯=o A 由λϕk b a =+sin )(知,最多见到的条纹级数m ax k 对应的2πϕ=,所以有39.35900100.24max ≈⨯=+=λba k ,即实际见到的最高级次为3max =k .第五章5-7 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t5-8 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动; (3)过2Ax =处向负向运动; (4)过2A x -=处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t T A x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x5-11 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题5-11图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯=∴ πω65=故 m t x b )3565cos(1.0ππ+= 5-16 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。
大学物理(下)期末复习题
大学物理(下)期末复习题一、填空题1、 振幅为A 的简谐振动在 位置动能最大,在 位置势能最大, 位置势能与动能相等。
2.有一平面简谐波沿x 轴正方向传播,波速为6s m /,已知在0=x 处的质点的振动方程为))(23cos(1.0m t y ππ-=,则波动方程为 ;质点在x 轴上m x 3-=处的振动方程为 ,m x 3-=处的振动加速度为 。
3.一平面简谐波的表达式为 )37.0125cos(025.0x t y -= (SI),其角频率ω =______,波速u =________,波长λ = 。
4. 一列平面简谐波沿x 轴正向无衰减地传播,波的振幅为 2×10-3 m ,周期为0.01 s ,波速为400 m/s . 当t = 0时x 轴原点处的质元正通过平衡位置向y 轴正方向运动,则该简谐波的表达式为________________。
5. 已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为__________。
6. 如图所示,两个直径微小差别的彼此平行的滚珠之间的距离,夹在两块平晶的中间,形成空气劈尖,当单色光垂直入射时,产生等厚干涉条纹。
如果两滚珠之间的距离L 变大,则在L 范围内干涉条纹的数目 ,条纹间距 (填变化情况)。
7. 如图所示,波长为λ的平行单色光垂直入射在折射率为2n 的薄膜上,若薄膜厚度为e ,而且321n n n >>,则两束透射光的位相差为 。
8. 在复色光照射下的单缝衍射图样中,某一波长单色光的第3级明纹位置恰与波长λ=600nm 的单色光的第2级明纹位置重合,这光波的波长 。
9.在单缝衍射中,沿第二级明纹的衍射方向狭缝可分为 个半波带,沿第三级暗纹的衍射方向狭缝可分为 个半波带,若用波长为λ的单色光照射时沿衍射角为θ方向,宽度为b 的单缝可分为 个半波带。
大学物理2期末复习
(A) 4倍和 1 / 8 ,
(B) 4倍和 1 / 2 ,
(C) 2倍和 1 / 4 , (D) 2倍和 1 / 2 。
[B]
11
B 0I
2R
B1
0I
2R
, B2
2
0I
2r
.
R 2r
B2 2 R 4 B1 r
Pm IS Pm R2I , Pm 2r 2I.
Pm Pm
2
r2 R2
(A) 1 /(2a) (B) 1 / a (C) 1/ 2a (D) 1/ a
(x) 2 1 cos2 3x
a 2a
x 5a 6
(5 a) 2 1 6 2a
[A]
29
21.氢原子中处于2P态的电子,描述其量子态的四个 量子数(n,,m ,ms)可能取的值为:
(A) (3,2,1,-1/2) (B) (2,0,0,1/2) (C) (2,1,-1,-1/2)(D) (1,0,0,1/2)
(A) 7.96 102 , (B) 3.98 102 ,
(C) 1.99 102 , (D) 63.3 。
[B ]
B 0r nI
19
13. 如图,两个线圈 P 和 Q 并联地接到一电动势恒定 的电源上,线圈 P 的自感和电阻分别是线圈 Q 的两 倍。当达到稳定状态后,线圈 P 的磁场能量与 Q 的 磁场能量的比值是:
M
dI dt
)
(L
M
Hale Waihona Puke )dI dt1
2
(2L
2M
)
dI dt
比较: L dI
dt
17
11. 顺磁物质的磁导率:
(A)比真空的磁导率略小,
大学物理下册总复习(可拷)全篇
0
可见光波长范围 3900 ~ 7600 A
干涉
nr为介质中与路程 r 相应的光程。
位相差与光程差: 2
两相干光源同位相,干涉条件
a· b· n
r 介质
k ,
k 0,1,2…加强(明)
(2k 1)
2
杨氏干涉
k 0,1,2…减弱(暗)
分波阵面法
等倾干涉、等厚干涉 分振幅法
杨氏干涉
缺级
单缝衍射 a sin =n
极小条件 n=0,±1, ±2,···
即:
k nab a
光栅主极大 (a+b)sin =k k 就是所缺的级次
k=0,±1, ±2, ···
偏振
I I0 cos2
自然光透过偏振片
1 I 2 I0
起偏角
tgi0
n2 n1
i0
2
载流直导线的磁场:
B
0 I 4a
(cos1
cos2 )
无限长载流直导线:
B 0I 2a
直导线延长线上: 载流圆环 载流圆弧
B0
B 0I
2R B 0I
2R 2
B
R
I
无限长直螺线管内部的磁场
B 0nI
磁通量 磁场中的高斯定理
m
B
dS
B
cos
dS
B dS 0
安培环路定理
磁介质中安培 环路定理
M L1L2
自感磁能 磁场能量
磁场能量密度
W 1 LI 2 2
W 1 BHV 2
w W 1 B2 1 H 2 1 BH
V 2 2
2
任意磁场总能量
W
V
wdV
大学物理下学期期末总复习 (1)
r 2 (1 2
r1 r2
)
6. 三根长直同轴导体圆柱面A、B和C,半径分别为
Ra、Rb、Rc 圆柱面B 带电荷, A和C都接地(如下图)。
试求: 圆柱面B 的内表面上电荷线密度1和外表面上电荷
线密度2 之比。(08.1)
Rc
解:设圆柱面B 带正电荷,由于
Rb
A和C都接地。 所以, A和C上
Ra
(5). 环行载流螺线管
. 典型例题
1. 如图所示,两根导线沿半径方向引到铁环上的A、B 两点,并在很远处与电源相连,求环中心的磁感应强度.
解: 环中心的磁感应强度为 1、2、3、4、5段载流导线 在此点产生的磁感应强度 的矢量和.
O点在3和4的延长线上,5离O 点可看作无限远,故:
设1圆弧弧长l1,2圆弧弧长l2, 圆的周长为l
方向向上
4、 一长直导线通有电 流I1=20A , 其旁有一载流 直导线ab , 两线共面ab长 为L=9.010-2m , 通以电流 I2=10A , 线段ab垂直于长 直导线 , a端到长直导线
的距离为d=1 10-2m
d
L 9.0102 m
求 1)导线ab所受的力; 2)导线ab所受作用力对O点的力矩.
都将感应等量的负电荷。 由高斯定理分别求得A、B
ABC
E1 E2
和 B、C间场强分布:
B 、A 间的电势差: B 、C 间的电势差:
U BA U BC
Rc Rb
Ra
ABC
E1 E2
稳恒磁场(11-12)主要内容回顾
1. 几个重要的物理量
(1) 磁感应强度Bo (真空中) 有磁介质时的磁感应强度B (总磁场)
描述电磁波的波函数:
大学物理下期末试题及标准答案
大学物理下期末试题及答案————————————————————————————————作者:————————————————————————————————日期:一、选择题(共30分,每题3分) 1. 设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E随距平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ ]2. 如图所示,边长为a 的等边三角形的三个顶点上,分别放置着三个正的点电荷q 、2q 、3q .若将另一正点电荷Q 从无穷远处移到三角形的中心O 处,外力所作的功为: (A) 032qQa . (B)03qQ a.(C)0332qQ a. (D)023qQa. [ ]3. 一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的:(A) 2倍. (B) 22倍. (C)4倍.(D)42倍. [ ]4. 如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P 处的场强大小与电势(设无穷远处为电势零点)分别为:(A) E = 0,U > 0. (B) E = 0,U < 0.Ox E (A)Ox E (C)OxE (B)OxE (D)E ∝1/|x|E ∝xPq3q2qO aaa(C) E = 0,U = 0.(D) E > 0,U < 0.[]5. C1和C2两空气电容器并联以后接电源充C1C2 电.在电源保持联接的情况下,在C1中插入一电介质板,如图所示, 则(A) C1极板上电荷增加,C2极板上电荷减少.(B) C1极板上电荷减少,C2极板上电荷增加.(C) C1极板上电荷增加,C2极板上电荷不变.(D) C1极板上电荷减少,C2极板上电荷不变.[]6. 对位移电流,有下述四种说法,请指出哪一种说法正确.(A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产生的.(C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理.[]7. 有下列几种说法:(1) 所有惯性系对物理基本规律都是等价的.(2) 在真空中,光的速度与光的频率、光源的运动状态无关.(3)在任何惯性系中,光在真空中沿任何方向的传播速率都相同.若问其中哪些说法是正确的, 答案是 (A) 只有(1)、(2)是正确的. (B) 只有(1)、(3)是正确的. (C) 只有(2)、(3)是正确的. (D)三种说法都是正确的. [ ]8. 在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的 (A) 2倍. (B) 1.5倍.(C) 0.5倍. (D) 0.25倍. [ ]9. 已知粒子处于宽度为a 的一维无限深势阱中运动的波函数为 ax n a x nsin 2)( , n = 1, 2, 3, …则当n = 1时,在 x 1 = a /4 →x 2 = 3a /4 区间找到粒子的概率为(A) 0.091. (B) 0.182. (C) 1. . (D) 0.818. [ ]10. 氢原子中处于3d 量子态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为(A) (3,0,1,21 ). (B) (1,1,1,21 ). (C) (2,1,2,21). (D) (3,2,0,21). [ ]二、填空题(共30分)11.(本题3分)一个带电荷q 、半径为R 的金属球壳,壳内是真空,壳外是介电常量为 的无限大各向同性均匀电介质,则此球壳的电势U =________________.12. (本题3分)有一实心同轴电缆,其尺寸如图所示,它的内外两导体中的电流均为I ,且在横截面上均匀分布,但二者电流的流向正相反,则在r < R 1处磁感强度大小为________________. 13.(本题3分)磁场中某点处的磁感强度为)SI (20.040.0j i B,一电子以速度j i66100.11050.0 v(SI)通过该点,则作用于该电子上的磁场力F为__________________.(基本电荷e =1.6×10 19C)14.(本题6分,每空3分) 四根辐条的金属轮子在均匀磁场B 中转动,转轴与B平行,轮子和辐条都是导体,辐条长为R ,轮子转速为n ,则轮子中心O 与轮边缘b 之间的感应电动势为______________,电势最高点是在______________处.15. (本题3分) 有一根无限长直导线绝缘地紧贴在矩形线圈的中心轴OO ′上,则直导线与矩形线圈间的互感系数为_________________.R 1 R 3 R 2IIb B O ROO ′16.(本题3分)真空中两只长直螺线管1和2,长度相等,单层密绕匝数相同,直径之比d1 / d2 =1/4.当它们通以相同电流时,两螺线管贮存的磁能之比为W1 / W2=___________.17. (本题3分)静止时边长为50 cm的立方体,当它沿着与它的一个棱边平行的方向相对于地面以匀速度 2.4×108m·s-1运动时,在地面上测得它的体积是____________.18. (本题3分)以波长为 = 0.207 m的紫外光照射金属钯表面产生光电效应,已知钯的红限频率=1.21×1015赫兹,则其遏止电压|U a| =_______________________V.(普朗克常量h =6.63×10-34 J·s,基本电荷e =1.60×10-19 C) 19. (本题3分)如果电子被限制在边界x与x+ x之间, x=0.5 Å,则电子动量x分量的不确定量近似地为________________kg·m/s.(取 x· p≥h,普朗克常量h =6.63×10-34 J·s)20. (本题10分)电荷以相同的面密度 分布在半径为r1=10 cm和r2=20 cm 的两个同心球面上.设无限远处电势为零,球心处的电势为U0=300 V.(1) 求电荷面密度 .(2) 若要使球心处的电势也为零,外球面上电荷面密度应为多少,与原来的电荷相差多少?[电容率 0=8.85×10-12 C 2 /(N ·m 2)] 21. (本题10分)已知载流圆线圈中心处的磁感强度为B 0,此圆线圈的磁矩与一边长为a 通过电流为I 的正方形线圈的磁矩之比为2∶1,求载流圆线圈的半径. 22.(本题10分)如图所示,一磁感应强度为B 的均匀磁场充满在半径为R 的圆柱形体内,有一长为l 的金属棒放在磁场中,如果B 正在以速率dB/dt 增加,试求棒两端的电动势的大小,并确定其方向。
大学物理2期末考试复习,试卷原题与答案
L L0 1 (v / c)2 54m
则
t1 L / 2.25 107 s
3分
L (2) 宇航员测得飞船船身的长度为 0 ,则
t2 L0 / 3.75 10 7 s
2分
习题7:假定在实验室中测得静止在实验室中的 子(不稳定的粒子)的寿命为
2.2 106 s , 而 当 它 相 对 于 实 验 室 运 动 时 实 验 室 中 测 得 它 的 寿 命 为
1eV 1.61019 J
E0
81.9 10 15 1.6 10 19
51.19 104 eV
0.51MeV
习题3:某核电站年发电量为100 亿度,它等于 36 1015 J 的能量,如果这是由核材料
的全部静止能转化产生的,则需要消耗的核材料的质量为
(A) 0.4 kg.
(B) 0.8 kg.
(C) (1/12)×107 kg. (D) 12×107 kg.
12 3
例题3 一质点作简谐振动.其运动速度与时间的曲线如图所示.若质点的振动规律用余弦函 数描述,则其初相应为 (A) /6. (B) 5/6. (C) -5/6. (D) -/6. (E) -2/3.
答案:(C) -5/6
x Acost ; m cos t '
' 5
(C) 1 s 4
解:公式 ; 2
3
t 题意
2t
t 1s 2
ห้องสมุดไป่ตู้
(E)
例题2 一简谐振动的振动曲线如图所示.求振动方程.
解:由图 A 0.1m ; t 2s
由图 旋转矢量 2
26 3
旋转矢量 t 5
6
5
12
x A cost 0.1cos 5 t 2 (SI )
大学物理(下)期末复习题
练习 一一、选择题:1. 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( D )(A) (B) (C) (D)2. 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S面内的P 点移到T 点,且OP =OT ,那么(A) 穿过S 面的电通量改变,O 点的场强大小不变; (B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变; (D) 穿过S 面的电通量不变,O 点的场强大小不变。
3. 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 ( )12121221(A) q /ε0 ; (B) q /2ε0 ; (C) q /4ε0 ; (D) q /6ε0。
4. 如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( ) (A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。
5. 关于高斯定理的理解有下面几种说法,其中正确的是 ( )(A) 如果高斯面内无电荷,则高斯面上E处处为零;(B) 如果高斯面上E处处不为零,则该面内必无电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E处处为零,则该面内必无电荷。
二、填空题:1. 如图所示,边长分别为a 和b 的矩形,其A 、B 、C 三个顶点上分别放置三个电量均为q 的点电荷,则中心O 点的场强为 方向 。
2. 内、外半径分别为R 1、R 2的均匀带电厚球壳,电荷体密度为ρ。
则,在r <R 1的区域内场强大小为 ,在R 1<r <R 2的区域内场强大小为 ,在r >R 2的区域内场强大小为 。
大学物理下期末试题及答案
大学物理下期末试题及答案一、大学物理期末选择题复习 1.运动质点在某瞬时位于位矢r 的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)dt r d ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确答案D2.一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变答案B3.无限长直圆柱体,半径为R ,沿轴向均匀流有电流.设圆柱体内( r < R )的磁感强度为B i ,圆柱体外( r > R )的磁感强度为B e ,则有 ( )(A) B i 、B e 均与r 成正比(B) B i 、B e 均与r 成反比(C) B i 与r 成反比,B e 与r 成正比(D) B i 与r 成正比,B e 与r 成反比答案D4.人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的( )(A) 动量不守恒,动能守恒(B) 动量守恒,动能不守恒(C) 对地心的角动量守恒,动能不守恒1、(D) 对地心的角动量不守恒,动能守恒答案C5.如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为: ( )(A) 00,4QE U rπε== (B) 00,4Q E U R πε== (C) 200,44QQ E U rr πεπε== (D)200,44QQ E U r R πεπε==答案B6.下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零答案B7. 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即(1)dr dt ;(2)dr dt ;(3)ds dt;(422()()dx dy dt dt +下列判断正确的是:(A)只有(1)(2)正确(B)只有(2)正确(C)只有(2)(3)正确(D)只有(3)(4)正确答案 D8.一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率()(A)不得小于gRμ(B)必须等于gRμ(C)不得大于gRμ(D)还应由汽车的质量m决定答案 C9.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同、速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有()(A)L不变,ω增大(B)两者均不变(C)L不变,ω减小(D)两者均不确定答案 C10.将一带负电的物体M靠近一不带电的导体N,在N的左端感应出正电荷,右端感应出负电荷。
大学物理下册复习题
大学物理下册复习题# 大学物理下册复习题一、经典力学1. 牛顿运动定律:阐述牛顿的三个运动定律,并给出每个定律在实际问题中的应用实例。
2. 功和能:解释功的概念,以及如何计算一个力对物体做的功。
讨论动能定理和势能的概念。
3. 动量守恒:解释动量守恒定律,并给出一个涉及碰撞问题的实例,说明如何应用动量守恒定律解决问题。
4. 角动量守恒:介绍角动量守恒定律及其在天体物理和旋转系统中的重要性。
5. 刚体的转动:解释刚体转动的基本原理,包括转动惯量、角速度和角动量的概念。
二、热力学与统计物理1. 热力学第一定律:解释能量守恒原理在热力学中的应用,并给出一个系统能量转换的实例。
2. 理想气体定律:推导理想气体状态方程,并讨论其在不同条件下的应用。
3. 熵和热力学第二定律:解释熵的概念,以及热力学第二定律的含义和应用。
4. 相变:讨论物质在不同温度和压力下的相变过程,包括相图的解读。
5. 统计物理基础:介绍统计物理的基本概念,如微观状态、宏观状态和玻尔兹曼分布。
三、电磁学1. 电场和电势:解释电场强度和电势的概念,以及它们之间的关系。
2. 高斯定律:推导高斯定律,并用它来解决电场分布问题。
3. 电容器和电介质:讨论电容器的工作原理,以及电介质对电容器电容的影响。
4. 磁场和磁感应强度:介绍磁场的基本概念,包括磁感应强度和磁通量。
5. 安培环路定律:推导安培环路定律,并用它来分析电流产生的磁场。
四、波动学与光学1. 机械波:解释机械波的传播原理,包括纵波和横波的区别。
2. 波的干涉和衍射:讨论波的干涉条件,以及衍射现象的物理意义。
3. 光的波动性:介绍光的波动性质,包括光的干涉、衍射和偏振。
4. 光的粒子性:讨论光的粒子性,包括光电效应和康普顿散射。
5. 相对论基础:简要介绍狭义相对论的基本概念,如时间膨胀和长度收缩。
结语通过本复习题的练习,同学们应该能够对大学物理下册的主要内容有一个全面而深入的理解。
希望这些复习题能够帮助大家在考试中取得优异的成绩。
(完整版)大学物理下册考题大全
真空中的静电场1、一均匀带电球面,电荷面密度为,球面内电场强度到处为零,球面上边元dS的一个带电量为 ds 的电荷元,在球面内各点产生的电场强度(A)到处为零.(B)不必定都为零.(C)到处不为零.(D)没法判断.2、在边长为a的正方体中心处搁置一电量为Q的点电荷,则正方体顶角处的电场强度的大小为:Q Q(A)120a 2.(B)60 a 2.Q Q(C)30 a2.(D)0 a2.3、如图示,直线MN长为2l,弧OCD是以N点为中心,l 为半径的半圆弧,N点有正电荷+q,M点有负电荷q.今将一试验电荷q0从O点出发沿路径OCDP移到无量远处,设无量远处电势为零,则电场力作功(A)A<0且为有限常量.(B)A>0且为有限常量.(C)A=∞.(D)A=0.第3题图第4题图4、图中实线为某电场中的电力线,虚线表示等势(位)面,由图可看出:(A)E A>E B>E C,U A>U B>U C.(B)E A<E B<E C,U A<U B<U C.(C)E A>E B>E C,U A<U B<U C.(D)E A <E B<E C,U A>U B>U C.5、真空中有两个点电荷M、N,相互间作用力为 F ,当另一点电荷Q移近这两个点电荷时,M、N两点电荷之间的作用力F(A)大小不变,方向改变.(B)大小改变,方向不变.(C)大小和方向都不变.(D)大小和方向都改变.6、电量之比为1∶3∶5的三个带同号电荷的小球A、B、C,保持在一条直线上,相互间距离比小球直径大得多.若固定A、C不动,改变B的地点使B所受电场力为零时,AB 与BC 的比值为(A)5.(B)1/5.(C) 5 .(D)1 5 .7、关于电场强度与电势之间的关系,以下说法中,哪一种是正确的?(A)在电场中,场强为零的点,电必定为零.(B)在电场中,电势为零的点,电场强度必为零.(C)在电势不变的空间,场强到处为零.(D)在场强不变的空间,电势到处相等8、在空间有一非均匀电场,其电力线分布以以下图.在电场中作一半径为R的闭合球面S,已 知经过球面上某一面元 S 的电场强度通量为ΔΦ e ,则经过该球面其他部分的电场强度通量为4 R 2(B)Se(A)e..4R 2S(C)Se.(D) 0第8题图第9题图9、 一电量为-q的点电荷位于圆心O处,A、B、C、D为同一圆周上的四点,以以下图.现将一试验电荷从A点分别挪动到B、C、D各点,则(A)从A到B,电场力作功最大.(B)从A到C,电场力作功最大.(C)从A到D,电场力作功最大.(D)从A到各点,电场力作功相等.10、 在边长为a的正方体中心处搁置一电量为Q的点电荷,设无量远处为电势零点,则在一个侧面的中心处的电势为:Q Q(A)4a.(B)2 0a.QQ(C)0 a . (D) 2 20 a. 11、在边长为a的正方体中心处搁置一点电荷Q,设无量远处为电势零点,则在正方体顶角处的电势为:QQ (A)430a.(B)230a.QQ(C)6a .(D) 12 0 a12. 以以下图,O点是两个相同的点电荷所在处连线的中点,P点为中垂线上的一点,则O、P两点的电势和场强盛小有以下关系:(A) U 0 U P ,E 0 E p . (B)U 0 U P ,E 0E p . (C) U 0U P , E 0 E p . (D)U 0U P , E 0E p .第 12题图第 14题图13、 依据高斯定理的数学表达式 E ds q 0可知下述各种说法中,正确的选项是: S(A)闭合面内的电荷代数和为零时,闭合面上各点场强必定为零.(B)闭合面内的电荷代数和不为零时,闭合面上各点场强必定到处不为零. (C)闭合面内的电荷代数和为零时,闭合面上各点场强不必定到处为零.(D)闭合面上各点场强均为零时,闭合面内必定到处无电荷.14、 一带电量为-q的质点垂直射入开有小孔的两带电平行板之间,以以下图.两平行板之间的电势差为U,距离为d,则此带电质点经过电场后它的动能增量等于(A)-qU /d .(B)+qU.(C)-qU.(D)qU /d15、 真空中有一电量为Q的点电荷,在与它相距为r的a点处有一试验电荷q.现使试验电荷q从a点沿半圆弧轨道运动到b点,以以下图.则电场力作功为Qqr 2 Qq2r(A)40 r 22 .(B)40 r 2.Qq2r(C)40 r.(D) 0.第 15题图第16题图16、一电场强度为 E 的均匀电场, E 的方向与X轴正向平行,以以下图.则经过图中一半径为R的半球面的电场强度通量为(A) R 2E .1 R2 E(B) 2 .(C)2 R 2E . (D)0.17、 关于电场强度定义式E F q 0,以下说法中哪个是正确的? (A)场强 E 的大小与尝试电荷 q 0 的大小成反比.(B)对场中某点,尝试电荷受力 F 与 q 0 的比值不因 q 0 而变.(C)尝试电荷受力F 的方向就是场强 E 的方向.(D)若场中某点不放尝试电荷q 0 ,则 F =0,从而 E =0.18、一带电体可作为点电荷办理的条件是(A)电荷一定呈球形分布. (B)带电体的线度很小.(C)带电体的线度与其他有关长度对比可忽视不计.(D)电量很小.E dsVdV19、高斯定理s(A)合用于任何静电场.(B)只合用于真空中的静电场.(C)只合用于拥有球对称性、轴对称性和平面对称性的静电场.(D)只合用于固然不拥有(C)中所述的对称性、但可以找到适合的高斯面的静电场. 和R (R <R ) 所带电量分别为Q20、两个齐心均匀带电球面,半径分别为Ra a和Q .设某babb点与球心相距r,当Ra <r<Rb 时,该点的电场强度的大小为:1Q aQ b1 Q aQ b(A)4r 2 .(B)4r2.1Q a Q b )1Q a4 0( 224 0 2(C) rb. (D)r .R21、半径为r的均匀带电球面1,带电量为q;其外有一齐心的半径为R的均匀带电球面2,带电量为Q,则此两球面之间的电势差U-U2为:1q(11 ) q(11 ) (A)40 rR .(B)4Rr .4 1 ( qQ )q(C) 0 rR .(D) 4 0 r .22、已知一高斯面所包围的体积内电量代数和∑qi =0,则可必定:(A)高斯面上各点场强均为零.(B)穿过高斯面上每一面元的电通量均为零.(C)穿过整个高斯面的电通量为零.(D)以上说法都不对.23、 有四个等量点电荷在OXY平面上的四种不一样组态,全部点电荷均与原点等距.设无量远处电势为零 , 则原点O处电场强度和电势均为零的组态是 (D)24. 在静电场中,有关静电场的电场强度与电势之间的关系,以下说法中正确的选项是:(A)场强盛的地方电势必定高.(B)场强相等的各点电势必定相等.(C)场强为零的点电势不必定为零.(D)场强为零的点电必定定是零.25、 正方形的两对角上,各置电荷Q,在其他两对角上各置电荷q,若Q所受合力为零,则Q与q的大小关系为(A)Q22q . (B) Q 2q .(C) Q4q .(D) Q2q .有导体和介质的静电场1. 关于高斯定理,以下说法中哪一个是正确的?(A)高斯面内不包围自由电荷,则面上各点电位移矢量 D 为零.(B)高斯面上到处D 为零,则面内必不存在自由电荷.(C)高斯面的 D 通量仅与面内自由电荷有关.(D)以上说法都不正确.2. 关于静电场中的电位移线,以下说法中,哪一种是正确的?(A)起自正电荷,止于负电荷,不形成闭合线,不中断.(B)任何两条电位移线相互平行.(C)起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不订交.(D)电位移线只出此刻有电介质的空间.3.两个半径相同的金属球,一为空心,一为实心,把二者各自孤即刻的电容值加以比较,则(A)空心球电容值大.(B)实心球电容值大.(C)两球电容值相等.(D)大小关系没法确立.4. C1和C2两空气电容器串通此后接电源充电.在电源保持联接的状况下,在C 2 中插入一电介质板,则(A)C 1 极板上电量增添,C 2 极板上电量增添.(B)C 1 极板上电量减少,C 2 极板上电量增添.(C)C 1 极板上电量增添,C 2 极板上电量减少.(D)C 1 极板上电量减少,C 2 极板上电量减少.第4题图第5题图5. C1和C 2 两空气电容器串通起来接上电源充电.而后将电源断开,再把一电介质板插入C1中,则(A)C 1 上电势差减小,C 2 上电势差增大.(B)C 1 上电势差减小,C 2 上电势差不变.(C)C 1 上电势差增大,C 2 上电势差减小.(D)C 1 上电势差增大,C 2 上电势差不变.6. C1和C2两空气电容器并联此后接电源充电.在电源保持联接的状况下,在C质板,则1 中插入一电介(A)C 1 极板上电量增添,C 2 极板上电量减少.(B)C 1 极板上电量减少,C 2 极板上电量增添.(C)C 1 极板上电量增添,C 2 极板上电量不变.(D)C 1 极板上电量减少,C 2 极板上电量不变.第6题图第7题图7. C1和C2两空气电容器,把它们串通成一电容器组.若在C(A)C 1 的电容增大,电容器组总电容减小.(B)C 1 的电容增大,电容器组总电容增大.(C)C 1 的电容减小,电容器组总电容减小.(D)C 1 的电容减小,电容器组总电容增大.1 中插入一电介质板,则8.有两个带电不等的金属球,直径相等,但一个是空心,一个是实心的.现使它们相互接触,则这两个金属球上的电荷(A)不变化.(C)空心球电量多.(B)均匀分配.(D)实心球电量多.9.在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,以以下图.当电容器充电后,若忽视边沿效应,则电介质中的场强 E 与空气中的场强E0对比较,应有(A)E E0,二者方向相同.(B) E E0,二者方向相同.(C) E E0,二者方向相同.(D) E E0,二者方向相反.第9题图10.两个半径不一样带电量相同的导体球,相距很远.今用一修长导线将它们连接起来,则:(A)各球所带电量不变.(B)半径大的球带电量多.(C)半径大的球带电量少.(D)没法确立哪一个导体球带电量多.真空中的稳固磁场1.一铜条置于均匀磁场中,铜条中电子流的方向以以下图.试问下述哪一种状况将会发生?(A)在铜条上a、b两点产生一小电势差,且U a >U b . (B)在铜条上a、b两点产生一小电势差,且U a <U b .(C)在铜条上产生涡流.(D)电子遇到洛仑兹力而减速.第1题图第2题图2. 边长为 l 的正方形线圈,分别用图示两种方式通以电流I(此中ab、cd与正方形共面),在这两种状况下,线圈在此中心产生的磁感觉强度的大小分别为(A) B 1 0,B 2 0 .(B)B 1 0,B 2 22 0 I / l.(C)B12 2 0 I / l ,B 2 0 .(D)B 1 2 2 0 I / l ,B 2 2 2 0 I / l .3. 一电荷量为q的粒子在均匀磁场中运动,以下哪一种说法是正确的?(A)只要速度大小相同,粒子所受的洛仑兹力就相同.(B)在速度不变的前提下,若电荷q变成-q,则粒子受力反向,数值不变. (C)粒子进入磁场后,其动能和动量都不变.(D)洛仑兹力与速度方向垂直,所以带电粒子运动的轨迹必定是圆.4. 两个齐心圆线圈,大圆半径为R,通有电流I 1;小圆半径为r,通有电流I 图.若 r<<R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线 圈所受磁力矩的大小为2,方向如I1I 2 r 20 I 1I 2 r 2(A)2R.(B)2R.0 I 1I 2R 2(C) 2r. (D)0第 4题图第5题图5. 以以下图,在磁感觉强度为B 的均匀磁场中,有一圆形载流导线,a、b、c是其上三个长度相等的电流元,则它们所受安培力大小的关系为(A)F a >F b >F c .(B)F a <F b <F c .(C)F b >F c >F a .(D)F a >F c >F b .6. 电流由长直导线1沿切向经a点流入一个电阻均匀分布的圆环,再由b点沿切向从圆环流出,经长直导线2返回电源 (如图) .已知直导线上电流强度为I,圆环的半径为R,且a、b和圆心O在同向来线上.设长直载流导线1、 2 和圆环分别在O点产生的磁感觉强度为B1 ,B 2 ,B 3,则圆心处磁感觉强度的大小(A)B=0,因为B=B =B =0.123 (B)B=0,因为固然B 1≠0,B 2≠0,但 B 1B 2 0 , B 3=0.(C)B≠0,因为B1≠0,B 2≠0,B 3≠0.(D)B≠0,因为固然B3=0,但B 1 B 2 0 .第6题图 第 7题图7. 在图(a)和(b)中各有一半径相同的圆形回路L、L 2,圆周内有电流I1、I ,其分布12相同,且均在真空中,但在(b)图中L2回路外有电流I,P 1、P2为两圆形回路上的对应3点,则:(A) L 1B dlL 2 B dl , B P 1B P 2(B) L 1 B dl L 2B dl , B P 1 B P 2 .(C) L 1 BdlL 2B dl , B P 1B P 2 .B dlB dl , B P 1BP 2(D)L 1L 2.8. 一电子以速度v 垂直地进入磁感觉强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将(A)正比于B,反比于v 2 .(B)反比于B,正比于v 2 .(C)正比于B,反比于v .(D)反比于B,反比于v .第 8 题图第 9题图9.把轻的正方形线圈用细线挂在载流直导线AB的周边,二者在同一平面内,直导线AB固定,线圈可以活动.当正方形线圈通以以以下图的电流时线圈将(A)不动.(B)发生转动,同时凑近导线AB. (C)发生转动,同时走开导线AB. (D)凑近导线AB.(E)走开导线AB.10. 两根载流直导线相互正交搁置,以以下图.I1 沿Y轴的正方向流动,I2 沿Z轴负方向流动.若载流I 1 的导线不可以动,载流I 2 的导线可以自由运动,则载流I 2 的导线开始运动的趋向是(A)沿X方向平动.(B)以X为轴转动.(C)以Y为轴转动.(D)没法判断.第 10题图第 11题图11. 在匀强磁场中,有两个平面线圈,其面积A1=2A 2,通有电流I1=2I 2,它们所受的最大磁力矩之比M1/M 2 等于(A)1.(B)2.(C)4.(D)1/4.12. 如图,无穷长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将(A)向着长直导线平移.(B)走开长直导线平移.(C)转动.(D)不动.13. 取一闭合积分回路L,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A)回路L内的∑I不变,L上各点的 B 不变. (B)回路L内的∑I不变,L上各点的 B 改变. (C)回路L内的∑I改变,L上各点的B 不变.(D)回路L内的∑I改变,L上各点的B 改变.14. 四条平行的无穷长直导线,垂直经过边长为a= 20cm的正方形极点,每条导线中的电流都是I= 20A,这四条导线在正方形中心O点产生的磁感觉强度为-(A) B 0.(B) (C) B 0.8 104T .(D)B104T .B104T .第 14题图 第 15题图15. 如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是(A)ab边转入纸内,cd边转出纸外.(B)ab边转出纸外,cd边转入纸内.(C)ad边转入纸内,bc边转出纸外.(D)ad边转出纸外,bc边转入纸内.16. 一个电流元idl位于直角坐标系原点,电流沿Z轴方向,空间点P(x,y,z)的磁感应强度沿x轴的重量是:(A)0;(B)(4 )i y dl (x 2 y 2z 2 )3 2 ;(C)(4 )i x dl (x 2 y 2z 2 ) 3 2 ;222(D) ( 0 4 )i y dl (x y z ) .17. 图为四个带电粒子在O点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片 . 磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电量大小也相等,则此中动能最大的带负电的粒子的轨迹是(A)Oa.(B)Ob.(C)Oc.(D)Od.第 17题图第 18题图18. 把轻的导线圈用线挂在磁铁N极周边,磁铁的轴线穿过线圈中心,且与线圈在同一平面内,以以下图.当线圈内通以以以下图方向的电流时,线圈将(A)不动.(B)发生转动,同时凑近磁铁. (C)发生转动,同时走开磁铁. (D)不发生转动,只凑近磁铁.(E)不发生转动,只走开磁铁.19. 磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R,x坐标轴垂直圆筒轴线,原点在中心轴线上,图(A)~(E)哪一条曲线表示B-x的关系? (B)20. 有一由N匝细导线绕成的平面正三角形线圈,边长为a,通有电流I,置于均匀外磁场中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩Mm 值为:B(A)3Na 2IB 2 .(B)3Na 2IB 4 . (C) 3Na 2IB sin 60 0. (D)0.21. 如图,两根直导线ab和cd沿半径方向被接到一个截面到处相等的铁环上,稳恒电流I从a端流入而从d端流出,则磁感觉强度B dlB 沿图中闭合路径L的积分L等于(A) I . (B) I/3 .(C) I/4 .(D) 2 I /3.第 21题图第23题图22. 若要使半径为4 10 -3m 的裸铜线表面的磁感觉强度为 7.5 10- 5T ,则铜线中需要经过的电流为(A) A. (B)A. (C) 14A.(D) A.23. 以以下图带负电的粒子束垂直地射入两磁铁之间的水平磁场,则:(A)粒子以原有速度在本来的方向上连续运动.(B)粒子向N极挪动.(C)粒子向S极挪动.(D)粒子向上偏转.(E)粒子向下偏转.24. 若空间存在两根无穷长直载流导线,空间的磁场分布就不拥有简单的对称性,则该磁场分布(A)不可以用安培环路定理来计算. (B)可以直接用安培环路定理求出.(C)只好用毕奥-萨伐尔-拉普拉斯定律求出.(D)可以用安培环路定理和磁感觉强度的叠加原理求出.25. 图示一测定水平方向匀强磁场的磁感觉强度 B (方向见图) 的实验装置.位于竖直面内且横边水平的矩形线框是一个多匝的线圈.线框挂在天平的右盘下,框的下端横边位于待测磁场中.线框没有通电时,将天平调理均衡;通电后,因为磁场对线框的作用力而破坏了天平的均衡,须在天平左盘中加砝码m才能使天平重新均衡.若待测磁场的磁感觉强度增为本来的3倍,而经过线圈的电流减为本来的 1/2,磁场和电流方向保持不变,则要使天平重新均衡,其左盘中加的砝码质量应为(A)6m.(C)2m/3.(B)3m/2.(D)m/6.(E)9m/2.第 25题图有介质时的稳恒磁场1. 关于稳恒磁场的磁场强度 H 的以下几种说法中哪个是正确的?(A) H 仅与传导电流有关.(B)若闭合曲线内没有包围传导电流,则曲线上各点的 H 必为零.(C)若闭合曲线上各点H 均为零,则该曲线所包围传导电流的代数和为零.(D)以闭合曲线L为边沿的任意曲面的H 通量均相等.2. 图示为载流铁芯螺线管,此中哪个图画得正确?(即电源的正负极,铁芯的磁性,磁力 线方向相互不矛盾.)(C)第3题图3. 附图中,M、P、O由软磁资料制成的棒,三者在同一平面内,当K闭合后,(A)M的左端出现N极.(B)P的左端出现N极.(C)O的右端出现N极.(D)P的右端出现N极.4. 磁介质有三种,用相对磁导率 r 表征它们各自的特征时,(A)顺磁质 >0,抗磁质 r <0,铁磁质 r >>1 .r (B)顺磁质 r >1,抗磁质 r =1,铁磁质 r >>1 .(C)顺磁质r >1,抗磁质 r <1,铁磁质r >>1 .(D)顺磁质r >0,抗磁质r <0,铁磁质 r >1.5. 用细导线均匀密绕成长为l 、半径为 a(l>> a)、总匝数为N的螺线管,管内充满相对磁导率为r 的均匀磁介质.若线圈中载有稳恒电流I,则管中任意一点的(A)磁感觉强度大小为 B= 0 r NI .(B)磁感觉强度大小为B= rNI /l(C)磁场强度大小为H=NI /l .(D)磁场强度大小为H=NI /l .电磁感觉1. 在一中空圆柱面上绕有两个完整相同的线圈aa'和bb',当线圈aa'和bb'如图(1)绕制及联系时,ab间自感系数为L1;如图(2)相互重叠绕制及联系时,ab间自感系数为L2.则(A)L 1=L 2=0.(B)L1=L2≠ 0.(C)L 1=0,L 2≠0.(D)L1≠ 0,L2=0.第1题图第2题图2.面积为S和2S的两圆线圈1、2如图搁置,通有相同的电流I.线圈1的电流所产生的经过线圈2的磁通用Φ21 表示,线圈2的电流所产生的经过线圈1的磁通用Φ12 表示,则Φ21和Φ 12 的大小关系为:/2.(A)Φ 21=2Φ 12 .(B)Φ 21 =Φ 12(C)Φ 21 =Φ 12.(D)Φ 21>Φ 12.3. 一根长度为L的铜棒,在均匀磁场 B 中以匀角速度旋转着, B 的方向垂直铜棒转动的平面,如图.设t=0时,铜棒与Ob成角,则在任一时辰t这根铜棒两端之间的感觉电动势是:(A)L2 Bcos(t+).(B) [ L2Bcost ]/2.(C)2L2Bcos(t+).(D)L2 B.(E)L2B /2.第3题图第5题图4.用线圈的自感系数L来表示载流线圈磁场能量的公式W m=LI 2/2(A)只合用于无穷长密绕螺线管.(B)只合用于单匝圆线圈.(C)只合用于一个匝数很多,且密绕的螺线环.(D)合用于自感系数L必定的任意线圈.5. 有甲乙两个带铁芯的线圈以以下图.欲使乙线圈中产生图示方向的感生电流i ,可以采纳下列哪一种方法?(A)接通甲线圈电源.(B)接通甲线圈电源后,减少变阻器的阻值.(C)接通甲线圈电源后,甲乙相互凑近.(D)接通甲线圈电源后,抽出甲中铁芯.旋转(如图所6. 一矩形线框长为a宽为b,置于均匀磁场中,线框绕OO 轴,以匀角速度示).设t=0时,线框平面处于纸面内,则任一时辰感觉电动势的大小为(A) 2abBcos t(B)abB .1abB cos t(C)2.(D)abBcos t(E)abBsin t第 6题图第 7题图7. 以以下图的电路中,A、B是两个完整相同的小灯泡,其内阻r>> R,L是一个自感系数相当大的线圈,其电阻与R相等.当开关K接通和断开时,关于灯泡A和B的状况下边哪一种说法正确?(A)K接通时,I A >I B . (B)K接通时,I (C)K断开时,两灯同时熄灭.(D)K断开时,I8. 两根无穷长平行直导线载有大小相等方向相反的电流I,I以一矩形线圈位于导线平面内(如图),则:A =IB .A =IB .dI/dt的变化率增添,(A)线圈中无感觉电流.(B)线圈中感觉电流为顺时针方向. (C)线圈中感觉电流为逆时针方向.(D)线圈中感觉电流方向不确立.第8题图第9题图9. 如图,两个线圈P和Q并联地接到一电动势恒定的电源上.线圈P的自感和电阻分别是线圈Q的两倍,线圈P和Q之间的互感可忽视不计.当达到稳固状态后,线圈P的磁场能量与Q的磁场能量的比值是(A)4.(B)2.(C)1.(D) 1/2 .10. 如图,M、N为水平面内两根平行金属导轨,ab与cd为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab向右平移时,cd(A)不动.(B)转动. (C)向左挪动.(D)向右挪动.第10题图第 11题图11. 如图,矩形地域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O作逆时针方向匀角速转动,O点是圆心且恰好落在磁场的边沿上,半圆形闭合导线完整在磁场外时开始计 时.图(A)─(D)的-t函数图象中哪一条属于半圆形导线回路中产生的感觉电动势?12. 在以以下图的装置中,把静止的条形磁铁从螺线管中按图示状况抽出时(A)螺线管线圈中感生电流方向如A点处箭头所示.(B)螺线管右端感觉呈S极.(C)线框EFGH从图下方粗箭头方向看去将逆时针旋转.(D)线框EFGH从图下方粗箭头方向看去将顺时针旋转.第 12题图第 13题图13. 如图,导体棒AB在均匀磁场B中绕经过C点的垂直于棒长且沿磁场方向的轴OO'转动(角速度与 B 同方向),BC的长度为棒长的1/3 .则 (A)A点比B点电势高. (B)A点与B点电势相等.(C)A点比B点电势低.(D)有稳恒电流从A点流向B点.14. 一个圆形线环,它的一半放在一分布在方形地域的匀强磁场B 中,另一半位于磁场以外,以以下图.磁场 B 的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感觉电流,应使(A)线环向右平移.(B)线环向上平移.(C)线环向左平移.(D)磁场强度减弱.第14题图第 17题图15. 在真空中一个通有电流的线圈a 所产生的磁场内有另一个线圈b,a 和b相对地点固定.若线圈b中没有电流经过,则线圈b与a 间的互感系数:(A)必定为零.(B)必定不为零.(C)可以不为零.(D)是不行能确立的.16. 一块铜板放在磁感觉强度正在增大的磁场中时,铜板中出现涡流(感觉电流),则涡流将(A)加快铜板中磁场的增添. (B)减缓铜板中磁场的增添.(C)对磁场不起作用.(D)使铜板中磁场反向.17. 如图,长度为 l 的直导线ab在均匀磁场B 中以速度 v挪动,直导线ab中的电动势为(A) Blv .(B) Blv sin .(C) Blv cos .(D)0.18. 尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,环中:(A) 感觉电动势不一样.(B) 感觉电动势相同,感觉电流相同. (C) 感觉电动势不一样,感觉电流相同.(D) 感觉电动势相同,感觉电流不一样.19. 在无穷长的载流直导线周边搁置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作以以下图的三种不一样方向的平动时,线圈中的感觉电流(A)以状况Ⅰ中为最大.(B)以状况Ⅱ中为最大.(C)以状况Ⅲ中为最大.(D)在状况Ⅰ和Ⅱ中相同. 第19题图第22题图20. 一导体圆线圈在均匀磁场中运动,能使此中产生感觉电流的一种状况是(A)线圈绕自己直径轴转动,轴与磁场方向平行.(B)线圈绕自己直径轴转动,轴与磁场方向垂直. (C)线圈平面垂直于磁场并沿垂直磁场方向平移.(D)线圈平面平行于磁场并沿垂直磁场方向平移.21. 自感为 0.25 H的线圈中,当电流在( 1/ 16)s内由2A均匀减小到零时,线圈中自感电动势的大小为:(A) 7.8 × 10-3V.(B) 2.0 V.(C) 8.0 V.(D)× 10-2V.22. 以以下图,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感觉电流 i ,以下哪一种状况可以做到?(A)载流螺线管向线圈凑近.(B)载流螺线管走开线圈.(C)载流螺线管中电流增大.(D)载流螺线管中插入铁芯.23. 真空中一根无穷长直细导线上通有电流强度为I的电流,则距导线垂直距离为a的空间某点处的磁能密度为1(0 I) 21(0 I)2(B)202 a(A) 22 a1 2 a21( 0 I22 ()2)(C)0 I(D)2a24. 以以下图,闭合电路由带铁芯的螺线管,电源,滑线变阻器构成.问在以下哪一种状况下可使线圈中产生的感觉电动势与原电流I的方向相反.(A)滑线变阻器的触点A向左滑动.(B)滑线变阻器的触点A向右滑动.(C)螺线管上接点B向左挪动(忽视长螺线管的电阻).(D)把铁芯从螺线管中抽出.25. 将形状完整相同的铜环和木环静止搁置,并使经过两环面的磁通量随时间的变化率相等,则(A)铜环中有感觉电动势,木环中无感觉电动势. (B)铜环中感觉电动势大,木环中感觉电动势小. (C)铜环中感觉电动势小,木环中感觉电动势大.(D)两环中感觉电动势相等.光的干涉1. 在真空中波长为λ的单色光,在折射率为n的透明介质中从A沿某路径流传到B,若A、B两点位相差为3 ,则此路径AB的光程为(A)λ. (B) nλ. (C) 3λ.(D) λ/n2. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A)流传的行程相等,走过的光程相等.(B)流传的行程相等,走过的光程不相等.(C)流传的行程不相等,走过的光程相等.(D)流传的行程不相等,走过的光程不相等.3.用白光光源进行双缝实验,若用一个纯红色的滤光片掩饰一条缝,用一个纯蓝色的滤光片掩饰另一条缝,则(A)干涉条纹的宽度将发生改变.(B)产生红光和蓝光的两套彩色干涉条纹.(C)干涉条纹的亮度将发生改变.(D)不产生干涉条纹.4.在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采纳的方法是(A)使屏凑近双缝.(B)使两缝的间距变小.(C)把两个缝的宽度略微调窄.(D)改用波长较小的单色光源5.在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为d的透明薄片,放入后,这条光路的光程改变了(A)2(n-1)d.(B)2nd.(C)2(n-1)d+λ/2.(D)nd.(E)(n-1)d.6. 在双缝干涉实验中,光的波长为600 nm( 1nm= 10-9m),双缝间距为2mm,双缝与屏的间距为 300cm.在屏上形成的干涉图样的明条纹间距为(A)mm.(B)mm.(C) 3.1 mm(D) 1.2 mm.7.在迈克尔逊干涉仪的一支光路中,放入一片折射率为n的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是(A)λ/2.(B)λ/(2n).(C)λ/n.(D)λ /2( n -1)8. 如图,S1、S2是两个相关光源,它们到P点的距离分别为r 1 和r 2.路径S1P垂直穿过一块厚度为t 1,折射率为n 1 的介质板,路径S2P垂直穿过厚度为t 2,折射率为n 2 的另一介质板,其他部分可看作真空,这两条路径的光程差等于(A)(r 2+n 2t 2)-(r 1+n 1t 1)(B) [r2+ (n2- 1)t2]- [r1+ (n1- 1)] t1(C)(r 2-n 2t 2)-(r 1-n 1t 1)(D)n 2t 2-n 1t 1第8题图第9题图9. 在双缝干涉实验中,若单色光源S到两缝SS 1、S 2 距离相等,则观察屏上中央明条纹位于图中O处.现将光源S向下挪动到表示图中的地点,则(A)中央明条纹也向下挪动,且条纹间距不变.(B)中央明条纹向上挪动,且条纹间距不变.(C)中央明条纹向下挪动,且条纹间距增大.(D)中央明条纹向上挪动,且条纹间距增大10.真空中波长为λ的单色光,在折射率为n的均匀透明媒质中,从A点沿某一路径流传到B点,路径的长度为 L .A、B两点光振动位相差记为Δφ,则(A) L=3λ/2,Δφ=3π.(B) L=3λ/(2n),Δφ=3nπ.(C) L=3λ/(2n),Δφ=3π.(D) L =3nλ/2,Δφ=3nπ光的衍射1.丈量单色光的波长时,以下方法中哪一种方法最为正确?。
大学物理II期末复习
大学物理II 期末复习1、图示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为1R ,外表面半径为2R .设无穷远处为电势零点,求空腔内任一点的电势.解法1: 由高斯定理可知空腔内E =0,故带电球层的空腔是等势区,各点电势均 为U . 在球层内取半径为r r dr →+的薄球层.其电荷为24dq r dr ρπ=该薄层电荷在球心处产生的电势为()00/d 4/d d ερεr r r q U =π= 整个带电球层在球心处产生的电势为()21220002d d 21R R r r U U R R -===⎰⎰ερερ 因为空腔内为等势区所以空腔内任一点的电势U 为()2122002R R U U -==ερ 解法2:由高斯定理可知1r R <,10E =, 2分12R r R <<,331220()r R E r ρε-=, 2r R >,3321320()R R E rρε-= 若根据电势定义⎰⋅=l E Ud空腔内任一点电势为:12121230R R R R U E dr E dr E dr ∞=++⎰⎰⎰()222102R R ρε=- 2、如图所示,两个共面的平面带电圆环,其内外半径分别为1R 、2R 和2R 、3R ,外面的圆环以每秒钟2n 转的转速顺时针转动,里面的圆环以每秒钟1n 转的转速反时针转动.若电荷面密度都是σ,求1n 和2n 的比值多大时,圆心处的磁感强度为零.解:(1) 在内圆环上取半径为r 宽度为dr 的细圆环,其电荷为σr r q d 2d π= 由于转动而形成的电流 r rn q n i d 2d d 11σπ==di 在O 点产生的磁感强度为r n r i B d )2/(d d 1001σμμπ==其方向垂直纸面向外.(2) 整个内圆环在O 点产生的磁感强度为==⎰11d B B ⎰π21d 10R R r n σμ)(121R R n -π=0σμ其方向垂直纸面向外.(3) 同理得外圆环在O 点产生的磁感强度)(23203R R n B -π=σμ 其方向垂直纸面向里. (4) 为使O 点的磁感应强度为零,B 1和B 2的量值必须相等, 即 )(121R R n -π0σμ)(232R R n -π=0σμ于是求得n 1和n 2之比122312R R R R n n --=3、一电子以0.99v c =(c 为真空中光速)的速率运动.试求: (1) 电子的总能量是多少焦耳?(2) 电子的相对论动能是多少焦耳?(电子静止质量319.1110kg e m -=⨯)解:(1) 222)/(1/c c m mc E e v -===5.8×10-13 J(2) 22k e E mc m c =-= 4.99×10-13 J4、两根平行无限长直导线相距为d ,载有大小相等方向相反的电流I ,电流变化率0dI dt a =>.一个边长为d 的正方形线圈位于导线平面内与一根导线相距d ,如图所示.求线圈中的感应电动势ε,并指出线圈中的感应电流是顺时针还是逆时针方向.解:(1) 载流为I 的无限长直导线在与其相距为r 处产生的磁感强度为:)2/(0r I B π=μ以顺时针绕向为线圈回路的正方向,与线圈相距较远的导线在线圈中产生的磁通量为:300123d ln222ddIIdd r rμμφ=⋅=⎰ππ与线圈相距较近的导线对线圈的磁通量为:2002d ln 222ddIIdd r r μμφ=-⋅=-ππ⎰总磁通量 0124ln 23Id μφφφ=+=-π 2分感应电动势为: 00d 4d 4(ln )ln d 23d 23d d I a t t μμφε=-==ππ (2) 线圈中的感应电流是顺时针方向.5、用波长00.1nm λ=的光子做康普顿散射实验.(1) 散射角o 90ϕ=的康普顿散射波长是多少? (2) 反冲电子获得的动能是多少焦耳? (普朗克常量346.6310h -=⨯J ·s ,电子静止质量319.1110kg e m -=⨯)解:(1) 康普顿散射光子波长改变: ()(1cos )e hm cλϕ∆=-=0.024×10-10 m =+=∆λλλ0 1.024×10-10 m(2)根据能量守恒: 220e h m c h mc νν+=+即 220k e E mc m c h h νν=-=-0//k E hc hc λλ=-故k E =4.66×10-17 J =291 eV6、电荷Q (Q >0)均匀分布在长为L 的细棒上,在细棒的延长线上距细棒中心O 距离为a 的P 点处放一电荷为q (q >0 )的点电荷,求带电细棒对该点电荷的静电力.解:沿棒方向取坐标Ox ,原点O 在棒中心处.求P 点场强:()()20204d 4d d x a xx a q E -π=-π=ελε ()⎰--π=2/2/204d L L x a xE ελ()2202/2/0414L a Qx a L L -π=-⋅π=-εελ 方向沿x 轴正向. 点电荷受力:==qE F ()2204πL a qQ-ε方向沿x 轴正方向.7、图所示为两条穿过y 轴且垂直于x -y 平面的平行长直导线的正视图,两条导线皆通有电流I ,但方向相反,它们到x 轴的距离皆为a .(1) 推导出x 轴上P 点处的磁感强度)(x B 的表达式.(2) 求P 点在x 轴上何处时,该点的B 取得最大值.解:(1) 利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为:r I B π=201μ2/1220)(12x a I +⋅π=μ 2导线在P 点产生的磁感强度的大小为: r I B π=202μ2/1220)(12x a I +⋅π=μ 1B 、2B 的方向如图所示. P 点总场 θθcos cos 2121B B B B B x x x +=+= 021=+=y y y B B B )()(220x a Iax B +π=μ,i x a Iax B)()(220+π=μ(2) 当 0d )(d =x x B ,0d )(d 22=<xx B 时,B (x )最大. 由此可得:x = 0处,B 有最大值.8、如图所示,一电荷线密度为λ的长直带电线(与一正方形线圈共面并与其一对边平行)以变速率v =v (t )沿着其长度方向运动,正方形线圈中的总电阻为R ,求t 时刻方形线圈中感应电流i (t )的大小(不计线圈自身的自感).解:长直带电线运动相当于电流λ⋅=)(t I v . 正方形线圈内的磁通量可如下求出d d 2Ia x a x μφ=⋅π+000d ln 222ax Ia Ia a x μμφ==⋅π+π⎰0d d ln 2d 2d i a It tμφε=-=π2ln d )(d 20t t a v λμπ=d ()()ln 22d it i t aRRtεμλ==πv9、一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少?(2) 宇航员测得船身通过观测站的时间间隔是多少?解:(1) 观测站测得飞船船身的长度为=-=20)/(1c L L v 54 m则 ∆t 1 = L /v =2.25×10-7 s(2) 宇航员测得飞船船身的长度为L 0,则∆t 2 = L 0/v =3.75×10-7s10、已知粒子在无限深势阱中运动,其波函数为)/sin(/2)(a x a x π=ψ (0 ≤x ≤a )求发现粒子的概率为最大的位置.解:先求粒子的位置概率密度)/(sin )/2()(22a x a x π=ψ)]/2cos(1)[2/2(a x a π-=当 1)/2c o s(-=πa x 时, 2)(x ψ有最大值.在0≤x ≤a 范围内可得 π=πa x /2 ∴ a x 21=.a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(b)所示为该波t 时刻的波形图. (1) 试分别在两图上
注明a,b,c,d 四点此时的运动速度(设横波). (2) 求两
种情况下a-b?
ab
u
ab
0
0
c
dx
c
dx
(a) 驻波
(b) 行波
解:
ab
0
c
d
(a) 驻波
x0
u
ab
c
dx
(b) 行波
(1) 对于驻波a,b,c,d 点此 时的运动速度为零.
因此介质在振动中,驻波的动能和势能不断地转换,由 波腹附近不断转换到波节附近,再由波节附近不断转换 到波腹附近。即驻波进行中没有能量的定向传播。
驻波不传播能量,它是媒质的一种特殊运动状态。
鱼洗之谜
用手摩擦“洗耳”时,“鱼洗”会随着摩擦的频率 产生振动。当摩擦力引起的振动频率和“鱼洗”壁振动 的固有频率相等或接近时,“鱼洗”壁产生共振,振动 幅度急剧增大。但由于“鱼洗”盆的限制,使它所产生 的波动不能向外传播,于是在“鱼洗”壁上入射波与反 射波相互叠加而形成驻波。用手摩擦一个圆盆形的物体, 最容易产生一个数值较低的共振频率,也就是由四个波 腹和四个波节组成的振动形态,“鱼洗壁”上振幅最大 处会立即激荡水面,将附近的水激出而形成水花。当四 个波腹同时作用时,就会出现水花四溅。有意识地在 “鱼洗壁”上的四个振幅最大处铸上四条鱼,水花就像 从鱼口里喷出的一样。
例题4:边长l 0.25、m密度 木 8木00块kg浮 m3
在大水槽的表面上,今把木块完全压入水中,然后放手, 如不计水对木块的阻力,问木块将如何运动?
解:选水面上一点O为坐标原点;平衡时,木块浮在水 面,木块上Q点与O重合。其顶部至水面距离为a。
木块的运动是平动,所 以可用它上面任一点来描 述,现在我们选Q点来描述 木块的运动。Q不一定是质 心,但整体的平动可用Q 作代表点。
例5 : 设杆的质量可忽略不计,杆的一端用铰链连接,
使杆可绕垂直纸面的轴在铅垂面内摆动,杆的另一端固 定有质量为m的摆球。当摆在铅垂位置时,与摆连接的 两根水平放置的轻弹簧都处于没有变形的状态,假定摆
在小角度摆动时, 角按余弦函数规律随时间变化。试
求摆在小摆角摆动时的固有频率。两根弹簧的劲度系数 均为k。
Sb水 g Sx水 g Sl木 g
Sx水 g
Q
bx O x
d2x
m dt 2 S水gx
木块简谐振动的动力学方程:
mx S水 gx
m Sl木
d2 x dt 2
S水 gx
m
S水 gx Sl木
水 g 木l
x
g b
x
b 木l 水
x (g / b)x
x ( g / b)x
得木块的运动方程: x(t ) A cos(0t 0 )
解: 建立坐标
A.
P.
.B x
O
L
A
A c os [2
(
t
x
)
A]
B
Acos[2 (
t
L
x)
B ]
A
B
2
u
(L
2x)
2 100 (L 2x)
400
(L 2x)
2
(L 2x)
2
由干涉静止的条件 (2k 1)
(L 2x) (2k 1)
2 x L 2k 15 2k (k是整数)
Q
QO
b
a bx O
x
由题意:l a 设b木块横截面积为S,
根据阿基米德定律,平衡时: Sl木 g Sb水 g
b l木 0.25 800 0.20m
水
1000
a l b 0.05m
任一时刻 OQ =x,木块受力有重力
和浮力不相等,其合力为做简谐振动的 恢复力,称为准弹性力。
浮 力 重 力 S(b x)水 g Sl木 g
1 2
mglm2
ax
k
a
2
2 m
ax
(1)
按题意设小角度摆动为谐振动,以表示其振动频率。
max cos(2 t )
max 2 sin(2 t )
max 2 max (2)
(2)式代入(1)式
1
2
mgl 2ka2 ml 2
或写出系统任意时刻的能量 l
k k a
1 m(l)2 1 mgl 2 ka2 2 C
解:用机械能守恒定律 l
取水平面MN为重力零势能面,
k k a
摆在最低位置时:
E1
1 2
m(lmax)2
M
mg
N
摆在最大偏离位置时
E2
Ep2
E p1
mgl(1 cosmax) 2
1 2
mgl
2 m
ax
k
a2m2 ax
1 2
k (a m ax) 2
1 2
m(lmax)2
2
0 x 30
7 k 7
干涉静止点为: x 1, 3, 5, ,29(m)
当介质中各质点的位移都达到最大值时,驻波上的 质点的全部能量都是势能,且集中在波节附近,在波节 处相对形变最大,势能最大;在波腹处相对形变最小, 势能最小。
当介质中各质点的位移都达到平衡位置时,驻波上的质 点的全部能量都是动能,且集中在波腹附近。
ab
0
c
d
(a) 驻波
x0
u
ab
c
dx
(b) 行波
(1) 对于驻波a,b,c,d 点此 时的运动速度为零.
对于行波a,b,c,d 点此 时的运动方向如图。
(2) 对于驻波a –b = 0 ;
对于行波
a –b
=
2
( xa
xb )
2
x
例2 :已知一驻波在t时刻各点振动到最大位移处,其波
形图如(a)所示,有一平面简谐行波,沿x正方向传播,图
其中固有角频率: 0
g b
9.8 7.0 s1 0.20
由初始条件:将木块完全压入水中
t 0 ; x0 0.05 m ; v0 0.
所以:A
x02
v
2 0
2 0
0.052 0 0.05 m
x0 Acos0 ; cos 0 1
0 x(t) 0.05cos(7.0t ) m
例2 :已知一驻波在t时刻各点振动到最大位移处,其波
形图如(a)所示,有一平面简谐行波,沿x正方向传播,图
(b)所示为该波t 时刻的波形图. (1) 试分别在两图上
注明a,b,c,d 四点此时的运动速度(设横波). (2) 求两
种情况下a-b?
ab
u
ab
0
0
c
dx
c
dx
(a) 驻波
(b) 行波
解:
2
2
1 m(l)2 (1 mgl k a2 ) 2 C
2
2
1 ml2 2 d (1 mgl ka2 )2 d 0
2
dt 2
dt
d 2
dt 2
mgl 2ka2 ml 2
0
例:位于A,B两点的两个波源,振幅相等,频率都是
100Hz,相位差为,若A,B 相距30m,波速为400ms。
求:AB连线之间叠加(干涉)而静止的各点位置