流体力学课件

合集下载

流体力学PPT课件

流体力学PPT课件

y1, y2...yn ——气体混合物中各组分的摩尔分率。
对于理想气体,其摩尔分率y与体积分率Φ相同。
9
第1节 流体静力学
五、比容
单位质量流体具有的体积,是密度的倒数,单位为m3/kg。
vV 1
m
10
第1节 流体静力学
1.1.2 流体的静压强
一、压强的定义
流体垂直作用在单位面积上的力(压应力)
在SI制单位中压强的单位是N/m2,称为帕斯卡, 以Pa表示。
注意:用液柱高度表示压强时,必须指明流体的 种类。
标准大气压有如下换算关系: 1atm = 1.013×105Pa =760mmHg
=10.33mH2O=1.033kg/cm2=1.013bar 1at=9.807×104Pa=735.6mmHg=10mH2O
为斜管压差计, 用以放大读数,提高测量精度。
R 与 R 的关系为 R' R
sin
式中α为倾斜角,其值越小,则读数放大倍数
越大。
19
第1节 流体静力学
(4) 双液体U管压差计(微差压差计) 内装密度接近但不互溶的两种指示液
A和C( A C),扩大室内径与U管内径 之比应大于10。
p1-p2≈(pA-pB)gR
16
第1节 流体静力学
三、流体静力学基本方程的应用
1.压强及压强差的测量 (1) U管压差计
p1p2(AB)gR
A-指示液 B-被测液体
A B
17
第1节 流体静力学
(2)倒U形压差计
p 1 p 2 R (B g A ) RB g
A-指示液 B-被测液体
A B
18
第1节 流体静力学
(3)斜管压差计 当所测量的流体压强差较小时,可将压差计倾斜放置,即

流体力学课件(全)

流体力学课件(全)
X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。

流体力学课件PPT课件

流体力学课件PPT课件

注意:恒定流中流线与迹线重合
第27页/共90页
四、流管、流束、元流、总流、过流断面
1.流管
在流场中通过任意不与流线重合的封闭曲线上各 点作流线而构成的管状面。
第28页/共90页
2.流束
流管内所有流线的总和。流束可大可小,视流管 封闭曲线而定。
•元流:流管封闭曲线无限小,故元流又称微元流束。 •总流:流管封闭曲线取在流场边界上,总流即为许
x
y方向:
my
(uy ) dxdydz
y
z方向:
mz
(uz ) dxdydz
z
据质量守恒定律:
第39页/共90页
单位时间内流进、流出控制体的流体质量差之总和
等于控制体内流体因密度发生变化所引起的质量增
量 即
mx
my
mz
t
dxdydz
将 mx、my、mz 代入上式,化简得:
(ux ) (u y ) (uz ) 0
第54页/共90页
1.伯努利方程的物理意义
• z mgz : 单位重量流体所具有的位能。 mg

p
mg
p
/
mg
:
单位重量流体所具有的压能。
•z p :
单位重量流体所具有的势能。

u2 2g
1 2
mu
2
/
mg
:
单位重量流体所具有的动能。
第55页/共90页
• z p u2 : 单位重量流体所具有的机械能。
第8页/共90页
§3-1 描述流体运动的方法
一、拉格朗日方法
1.方法概要
着眼于流体各质点的运动情况,研究各质点 的运动历程,并通过综合所有被研究流体质点的 运动情况来获得整个流体运动的规律。

流体力学ppt课件

流体力学ppt课件
6
三、特例 ❖ 火箭在高空非常稀薄的气体中飞行以及高真空技术中,如真空泵,其分子距与设备
尺寸可以比拟,不再是可以忽略不计了。这时不能再把流体看成是连续介质来研究。 ❖ 流体性质有局部突变时,如汽化。 ❖ 研究区域很小时。
7
第三节 作用在流体表面上的力 表面力 质量力
两类作用在流体上的力:表面力和质量力
M V d M V d d V 0
V dV d
E1 pd1V 1d d p0.0 1% 25 140 2.5 18P 0 a
Vdp
13
二、流体的膨胀性 当压强一定时,流体温度变化体积改变的性质称为流体的膨胀性,膨胀性的大小用
温度膨胀系数来表示。 1.膨胀系数
单位温度增加所引起的体积相对变化量
17
三种圆板的衰减时间均相等。 库仑得出结论:衰减的原因,不是圆板与液体之间的相互摩擦 ,而是液体内部的摩擦 。
18
2.牛顿内摩擦定律
(1) 牛顿平板实验
当h和u不是很大时,两平板间沿y方向的流速呈线性分布,
uUy 或duUdy
h
h
h
dy
y U
uu+du
y
dudt
Aa
Bb
o
dy
d
d(dud)/tdtdu
3
第二节 流体作为连续介质的假设 问题的引出:
微观:流体是由大量做无规则热运动的分子所组成, 分子间存有空隙,在空间是不连续的。 宏观:一般工程中,所研究流体的空间尺度要比分子 距离大得多。
4
一、流体的连续介质假设 定义:不考虑流体分子间的间隙,把流体视为由
无数连续分布的流体微团组成的连续介质。这就是1755年欧拉提出的“连续介质 假设模型”。

流体力学基础讲解PPT课件

流体力学基础讲解PPT课件
措施。
05
流体流动的湍流与噪声
湍流的定义与特性
湍流定义
湍流是一种高度复杂的三维非稳态、带旋转的不规则流动。 在湍流中,流体的各种物理参数,如速度、压力、温度等都 随时间与空间发生随机的变化。
湍流特性
湍流具有随机性、不规则性、非线性和非稳定性等特性。在 湍流中,流体的速度、方向和压力等都随时间和空间发生变 化,形成复杂的涡旋结构。
环境流体流动与环境保护
要点一
环境流体流动
环境中的流体流动对环境保护具有重要影响。例如,大气 中的气流会影响污染物的扩散和迁移,水流会影响水体中 的污染物迁移和沉积等。
要点二
环境保护
通过对环境中的流体流动进行研究和模拟,可以更好地了 解污染物扩散和迁移规律,为环境保护提供科学依据。同 时,通过合理规划和设计流体流动系统,可以有效降低污 染物对环境的影响,保护生态环境。
04
流体流动的能量转换
能量的定义与分类
总结词
能量是物体做功的能力,可以分为机械能、热能、电能等。在流体力学中,主要关注的是机械能中的 动能和势能。
详细描述
能量是物体做功的能力,它有多种表现形式,如机械能、热能、电能等。在流体力学中,我们主要关 注的是机械能,它包括动能和势能两种形式。动能是流体运动所具有的能量,与流体的速度和质量有 关;势能则是由于流体所处位置而具有的能量。
流体流动噪声
流体流动过程中产生的噪声主要包括 机械噪声和流体动力噪声。机械噪声 主要由机械振动和摩擦引起,而流体 动力噪声主要由湍流和流体动力振动 引起。
噪声控制
为了减小流体流动产生的噪声,研究 者们提出了各种噪声控制方法,如改 变管道结构、添加消音器和改变流体 动力特性等。这些方法可以有效降低 流体流动产生的噪声。

流体力学(共64张PPT)

流体力学(共64张PPT)

1) 柏努利方程式说明理想流体在管内做稳定流动,没有
外功参加时,任意截面上单位质量流体的总机械能即动能、
位能、静压能之和为一常数,用E表示。
即:1kg理想流体在各截面上的总机械能相等,但各种形式的机
械能却不一定相等,可以相互转换。
2) 对于实际流体,在管路内流动时,应满足:上游截面处的总机械能大于下游截面
p g 1z12 u 1 g 2W g ep g 2z22 u g 2 2g hf
JJ
kgm/s2
m N
流体输送机械对每牛顿流体所做的功

HeW ge,
Hf ghf
p g 1z12 u 1 g 2H ep g 2z22 ug 2 2 H f
静压头
位压头
动压头 泵的扬程( 有效压头) 总压头
处的总机械能。
22
3)g式中z各、项 的2u 2物、理 意p 义处于g 某Z 个1 截u 2 1 面2上的p 1流 W 体e本 身g Z 所2具u 有2 22 的 能p 量2 ; hf
We和Σhf: 流体流动过程中所获得或消耗的能量〔能量损失〕;
We:输送设备对单位质量流体所做的有效功;
Ne:单位时间输送设备对流体所做的有效功,即有效功率;
u2 2
u22 2
u12 2
p v p 2 v 2 p 1 v 1
Ug Z 2 u2 pQ eW e
——稳定流动过程的总能量衡算式 18
UgZ 2 u2pQ eW e
2、流动系统的机械能衡算式——柏努利方程
1) 流动系统的机械能衡算式〔消去△U和Qe 〕
UQ'e vv12pdv热力学第一定律
26
五、柏努利方程应用
三种衡算基准

流体力学ppt课件-流体动力学

流体力学ppt课件-流体动力学

g
g
2g
水头

z
p
g
v2
2g
总水头, hw 水头损失
第二节 热力学第一定律——能量方程
水头线的绘制
总水头线
hw
对于理想流体,总水
1
v12 2g
2
v22 2g
头线是沿程不变的,
测压管水头线
p2
为一水平直线,对于
g
实际流体,总水头沿 程降低,但测压管水
p1 g
头线沿程有可能降低、
z2
不变或者升高。
z1
v2 A2 e2
u22 2
gz2
p2
v1A1 e1
u12 2
gz1
p1
微元流管即为流线,如果不 可压缩理想流体与外界无热 交换,热力学能为常数,则
u2 gz p 常数
2
这个方程是伯努利于1738年首先提出来的,命名为伯努利 方程。伯努利方程的物理意义是沿流线机械能守恒。
第二节 热力学第一定律——能量方程
皮托在1773年用一根弯成直角的玻璃管,测量了法国塞纳河 的流速。原理如图所示,在液体管道某截面装一个测压管和 一个两端开口弯成直角的玻璃管(皮托管),皮托管一端正 对来流,一端垂直向上,此时皮托管内液柱比测压管内液柱 高h,这是因为流体流到皮托管入口A点受到阻滞,速度降为 零,流体的动能变化为压强势能,形成驻点A,A处的压强称 为总压,与A位于同一流线且在A上游的B点未受测压管的影 响,其压强与A点测压管测得的压强相等,称为静压。
第四章 流体动力学
基本内容
• 雷诺输运公式 • 能量方程 • 动量方程 • 流体力学方程应用
第一节 雷诺输运方程
• 前面解决了流体运动的表示方法,但要在流 体上应用物理定律还有困难.

流体力学基本知识 ppt课件

流体力学基本知识 ppt课件
〈1〉温度升高,液体的粘度减小(因为T上 升,液体的内聚力变小,分子间吸引力减 小;)
〈2〉温度升高,气体的粘度增大(气体的内 聚力很小,它的粘滞性主要是分子间动量 交换的结果。当T上升,作相对运动的相邻 流层间的分子的动量交换加剧,使得气体 的粘度增大。)
流体力学基本知识
6
三、流体的压缩性和热胀性
一、流体运动的基本概念
(一)压力流与无压流 1.压力流:流体在压差作用下流动时,流体 整个周围都和固体壁相接触,没有自由表 面。 2.无压流:液体在重力作用下流动时,液体 的部分周界与固体壁相接触,部分周界与 气体接触,形成自由表面。
流体力学基本知识
14
(三)流线与迹线
1.流线:流体运动时,在流速场中画出某时 刻的这样的一条空间曲线,它上面所有流 体质点在该时刻的流速矢量都与这条曲线 相切,这条曲线就称为该时刻的一条流线。
流体力学基本知识
26
四、沿程阻力系数λ和流速系数C的确定
沿程阻力系数λ 是反映边界粗糙情况和流态 对水头损失影响的一个系数。1933年尼古 拉兹表发表了其反映圆管流运情况的实验 结果,得出了一些结论:
1.层流区 2.层流转变为紊流的过渡区 3.紊流区
流体力学基本知识
27
(一)沿程阻力系数λ的经验公式 1.水力光滑区 2.水力过渡区 3.粗糙管区
2.迹线:流体运动时,流体中某一个质点在 连续时间内的运动轨迹称为迹线。流线与 迹线是两个完全不同的概念。非恒定流时 流线与迹线不相重合,在恒定流时流线与 迹线相重合。
流体力学基本知识
15
(二)恒定流与非恒定流
1.恒定流:流体运动时,流体中任一位置的 压强,流速等运动要素不随时间变化的流 动称为恒定流动。

《流体力学》课件

《流体力学》课件

流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。

古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。

流体力学的萌芽:距今约2200年前,希腊学者阿基米德写的“论浮体”一文,他对静止时的液体力学性质作了第一次科学总结。

建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。

此后千余年间,流体力学没有重大发展。

15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。

但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。

流体力学的主要发展:17世纪,力学奠基人牛顿(英)在名著《自然哲学的数学原理》(1687年)中讨论了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。

他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。

使流体力学开始成为力学中的一个独立分支。

但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。

之后,皮托(法)发明了测量流速的皮托管;达朗贝尔(法)对运动中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利(瑞士)从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。

欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。

《流体力学基础知识》课件

《流体力学基础知识》课件
流体粘性
流体抵抗剪切力的性质,粘性大小与流体的种类和温度有关。
流动模型
根据流体的粘性和流动特性,建立各种流动模型,如层流、湍流等。
06
流体力学在工程中的应用
流体输送与管道设计
总结词
流体输送与管道设计是流体力学在工程 中的重要应用之一,主要涉及流体在管 道中的流动规律和设计原则。
VS
详细描述
在工业生产和城市供水中,需要利用流体 力学的原理进行管道设计和流体输送,以 实现高效、低能耗的流体传输。管道设计 需要考虑流体的流速、压力、粘度等参数 ,以及管道的材质、直径、长度等因素, 以确保流体输送的稳定性和可靠性。
流体力学的发展历程
要点一
总结词
流体力学的发展历程及重要事件
要点二
详细描述
流体力学的发展历程可以追溯到古代,但直到17世纪才真 正开始形成独立的学科。在17世纪到20世纪期间,许多科 学家和工程师为流体力学的发展做出了重要贡献,如伯努 利、欧拉、斯托克斯等。随着科技的发展,流体力学在理 论和实践方面都取得了巨大的进步,为人类社会的进步和 发展做出了重要贡献。
3
流体流动的连续性原理
在流场中任取一元流管,流进和流出该元流的流 量相等。
流体流动的能量传递与转换
压力能传递
流体在流动过程中,压力能可以传递给其他流体 或转化为其他形式的能量。
动能转换
流体的动能可以转换为其他形式的能量,如压能 、热能等。
热能传递
流体在流动过程中,可以与周围介质进行热能交 换,实现热量的传递。
流体流动的阻力与损失
摩擦阻力
流体在管道中流动时,由于流体的粘性和管壁的粗糙度,会产生 摩擦阻力。
局部阻力
流体在通过管道中的阀门、弯头等局部构件时,会产生局部阻力。

流体力学课件

流体力学课件

du 试验结果写成表达式: A T dy
T du 单位面积上内摩擦力(切应力): A dy
y U U+du u 0 x
பைடு நூலகம்
h dy y
式中: —动力黏滞系数(动力黏度) 单位:pa·s
du —流速在流层法线方向的变化率,称流速梯度。 dy
当u和h较小情况下,该值为常数。
即流速呈线性分布
H O s 1000 0.92 920 kg / m3) (
2
动力黏度为
920 5.6 104 0.5152 Pa s) (
由牛顿内摩擦定律
du F A dy
F A u 0 1 0.5152 3.14 0.2 1 103 107.8 Dd 206 200 2 2
上式两边分别乘以dx、dy、dz,然后相加得:
5、流体力学的工程应用
由于空气动力学的发展,人类研制出3倍声速的战斗机。
由于空气动力学的发展,人类研制出3倍声速的战斗机。
使重量超过3百吨,面积达半个足球场的大型民航客机, 靠空气的支托象鸟一样飞行成为可能,创造了人类技术 史上的奇迹。
时速达200公里的新型地效艇等,它们的设计都建立在 水动力学,船舶流体力学的基础之上。
用翼栅及高温,化学,多相流动理论设计制造成功大型 气轮机,水轮机,涡喷发动机等动力机械,为人类提供 单机达百万千瓦的强大动力。
大型水利枢纽工程,超高层建筑,大跨度桥梁等的设 计和建造离不开水力学和风工程。
环境工程
灾害预报与控制;
发展更快更安全更舒适的交通工具;
流体力学需要与其他学科交叉,如工程学,地学,天 文学,物理学,材料科学,生命科学等,在学科交叉 中开拓新领域,建立新理论,创造新方法。

流体力学课件 ppt

流体力学课件 ppt

流体阻力计算
利用流体动力学方程,可以计算 流体在管道中流动时的阻力,为 管道设计提供依据。
管道优化设计
通过分析流体动力学方程,可以 对管道设计进行优化,提高流体 输送效率,减少能量损失。
流体动力学方程在流体机械中的应用
泵和压缩机性能分析
流体动力学方程用于分析泵和压缩机的性能 ,预测其流量、扬程、功率等参数,为机械 设计和优化提供依据。
适用于不可压缩的流体。
方程意义
描述了流体压强与密度、重力加速度和深度之间的 关系。
Part
03
流体动力学基础
流体运动的基本概念
01
02
03
流体
流体是气体和液体的总称 ,具有流动性和不可压缩 性。
流场
流场是指流体在其中运动 的区域,可以用空间坐标 和时间描述。
流线
流线是表示流体运动方向 的曲线,在同一时间内, 流线上各点的速度矢量相 等。
能量损失的形式
流体流动的能量损失可以分为沿程损失和局部损失两种形式。沿程损失是指流体在流动过程中克服摩擦阻力而损 失的能量,局部损失是指流体在通过管道或槽道的局部障碍物时损失的能量。
Part
05
流体动力学方程的应用
流体动力学方程在管道流动中的应用
稳态流动和非稳态
流动
流体动力学方程在管道流动中可 用于描述稳态流动和非稳态流动 ,包括流速、压力、密度等参数 的变化规律。
变化的流动。
流体动力学基本方程
1 2
质量守恒方程
表示流体质量随时间变化的规律,即质量守恒原 理。
动量守恒方程
表示流体动量随时间变化的规律,即牛顿第二定 律。
3
能量守恒方程
表示流体能量随时间变化的规律,即热力学第一 定律。

流体力学完整版课件全套ppt教程最新

流体力学完整版课件全套ppt教程最新

取一微元正交六面体。
左侧面压力: 右侧面压力:
( p 1 p dx)dydz 2 x
( p 1 p dx)dydz 2 x
y
p 1 p dx 2 x
z
p 1 p dx 2 x
x
再考虑 x 轴方向的质量力,可列出 x 轴方向的平衡方程:
(p
1 2
p x
dx)dydz ( p
1 2
p x
ν× 106/ m2/s
1.792 1.007 0.661 0.477 0.367 0.296
空气
μ × 106/ Pa·s
ν× 106/ m2/s
17.09 18.08 19.04 19.97 20.88 21.75
13.20 15.00 16.90 18.80 20.90 23.00
§1.3 流体的物理性质
➢ 牛顿流体与非牛顿流体
牛顿流体; 塑性体; 伪塑性体; 宾汉体。
du dy
(du)n dy
du dy
(du)n
dy
0
du dy
➢ 粘性流体与理想流体
实际流体都具有粘性。理想流体就是忽略流体的粘性。
§1.3 流体的物理性质
1.3.4 液体的表面张力
➢ 表面ห้องสมุดไป่ตู้力现象演示
肥皂薄膜对棉线作用一个拉力。
温度/ K
291 291 293
σ× 103/ N/m
73 490 472
§1.3 流体的物理性质
➢ 表面张力产生的压差
由表面张力引起的液体自由表面两边 的附加压力差为:
p ( 1 1 ) R1 R2
➢ 毛细现象
当液体与固体接触时,如果液体分子 间的吸引力(内聚力)大于液体分子 和固体分子间的引力(附着力),则 液体抱成团与固体不浸润;当液体分 子内聚力小于附着力时,则液体就能 浸润固体表面。

第一章 流体力学基础ppt课件(共105张PPT)

第一章 流体力学基础ppt课件(共105张PPT)


力〔垂直于作用面,记为 ii〕和两个切向 应力〔又称为剪应力,平行于作用面,记为

ij,i j),例如图中与z轴垂直的面上受
到的应力为 zz〔法向)、 zx和 zy〔切
电 向),它们的矢量和为:


件 τ zzix zjy zkz
返回
前页
后页
主题
西
1.1 概述

交 • 3 作用在流体上的力
大 化
子 课 件
返回
前页
后页
主题
西
1.2.3 静力学原理在压力和压力差测量上的应用


大 思索:若U形压差计安装在倾斜管路中,此时读数 R反
化 映了什么?
工 原
理 p1p2
p2
p1 z2
电 子
(0)gR(z2z1)g z1

R

A A’
返回
前页
后页
主题
西 1.2.3 静力学原理在压力和压力差测量上的应用

交 大

2.压差计
化 • (2〕双液柱压差计
p1
p2
工•
原•

电•
子•


又称微差压差计适用于压差较小的场合。
z1
1
z1
密度接近但不互溶的两种指示
液1和2 , 1略小于 2 ;
R
扩p 大1 室p 内2 径与2 U 管1 内g 径之R 比应大于10 。 2
图 1-8 双 液 柱 压 差 计
返回

交 大

1.压力计
化 • (2〕U形压力计
pa
工 • 设U形管中指示液液面高度差为RA,1 指• 示液

《流体力学》课件

《流体力学》课件

流体力学的应用领域
总结词
流体力学的应用领域与实例
详细描述
流体力学在日常生活、工程技术和科学研究中有广学、石油和天然气工业中的流体输送等。
流体力学的发展历程
总结词
流体力学的发展历程与重要事件
详细描述
流体力学的发展经历了多个阶段,从 早期的水力学研究到近代的流体动力 学和计算流体力学的兴起。历史上, 牛顿、伯努利等科学家对流体力学的 发展做出了重要贡献。
损失计算
根据流体流动的阻力和能量损失,计算流体流动的总损失。
流体流动阻力和能量损失的减小措施
优化管道设计
采用流线型设计,减少流体与 管壁的摩擦。
合理配置局部障碍物
减少不必要的弯头、阀门等, 或优化其设计以减小局部阻力 。
选择合适的管材
选用内壁光滑、摩擦系数小的 管材。
提高流体流速
适当提高流体的流速,可以减 小沿程损失和局部损失。
流体动力学基本方程
连续性方程
表示质量守恒的方程,即单位时间内流出的质量等于单位 时间内流入的质量。
01
动量方程
表示动量守恒的方程,即单位时间内流 出的动量等于单位时间内流入的动量。
02
03
能量方程
表示能量守恒的方程,即单位时间内 流出的能量等于单位时间内流入的能 量。
流体动力学应用实例
航空航天
飞机、火箭、卫星等的设计与制造需要应用 流体动力学知识。
流动方程
描述非牛顿流体的流动规律,包括连续性方程 、动量方程等。
热力学方程
描述非牛顿流体在流动过程中的热力学状态变化。
非牛顿流体的应用实例
食品工业
01
非牛顿流体在食品工业中广泛应用于番茄酱、巧克力、奶昔等
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x t 1
y t 1
x y 2 ——迹线方程(直线)
(3)若恒定流:ux=x,uy=-y
流线 xy 1 迹线 xy 1
注意:恒定流中流线与迹线重合
四、流管、流束、元流、总流、过流断面
1.流管
在流场中通过任意不与流线重合的封闭曲线上各 点作流线而构成的管状面。
2.流束
流管内所有流线的总和。流束可大可小,视流管 封闭曲线而定。
2.研究对象
运动流体质点或质点系。
y
3.运动描述
z
t
(x,y,z)
t0
O M (a,b,c) x
•位置:
x x(a,b,c,t)
y
y(a, b, c, t )
z z(a,b,c,t)
•流速:
ux
x t ,u y
y t ,uz
z t
•加速度:
ax
a y
a
z
2x
t 2 2 y
t 2 2z
Q AudA
•常用单位: m3/s或L/s •换算关系: 1m3=1000L
2.断面平均流速
•过流断面上实际的点流速分布都是不均匀的
•在工程流体力学中,为简化研究,通常引入断面平 均流速概念
v Q AudA
AA
六、均匀流与非均匀流、渐变流
1.均匀流 (u )u 0
即迁移加速度等于零。各流线为彼此平行的直线。
三、流线与迹线
•迹线:同一流体质点在不同时刻的运动轨迹。
时间为变量。
•流线:流场中同一时刻与许多流体质点的流速
矢量相切的空间曲线。
•时间为参变量。
u1
u2
12 3
u6
u3
6 u5
5
u4
4
2.基本方程
•流线:
u ds 0或 dx dy dz ux uy uz
•迹线:
dx dy dz dt ux uy uz
t 2
式中:a,b,c为运动流体质点的起点坐标
a,b,c,t称为拉格朗日变量
固体运动常采用拉格朗日法研究,但流体运动一般较固体 运动复杂,通常采用欧拉法研究。
二、欧拉法
1.方法概要
着眼于流体经过流场中各空间点时的运动情况,并 通过综合流场中所有被研究空间点上流体质点的运动要 素及其变化规律,来获得整个流场的运动特性。
• (u )u :迁移加速度或位变加速度,表示
流体质点所在空间位置的变化所引起的速度变 化率。
§3-2 研究流体运动的若干基本概念
一、恒定流与非恒定流
1.定义 •恒定流:() 0 ,即运动要素不随时间变化,当
t
地加速度为零,如枯水季节的河流。
•非恒定流:() 0 ,如洪水季节的河流。 t
二、一元流、二元流和三元流
2.非均匀流 (u )u 0
3.流线的主要性质
•一般情况下,流线不能相交,且只能是一条 光滑曲线;
•流场中每一点都有流线通过,流线充满整个流场, 这些流线构成某时刻流场内的流谱;
•恒定流动时,流线的形状、位置均不随时间发生变 化,且流线与迹线重合;
•对于不可压缩流体,流线簇的疏密程度反映了该时刻 流场中各点的速度大小。
[例2]已知速度ux=x+t,uy=-y+t 求:在t=0时过(-1,-1)点的流线和迹线方程。
•元流:流管封闭曲线无限小,故元流又称微元流束。 •总流:流管封闭曲线取在流场边界上,总流即为许
多元流的有限集合体。
3.过流断面
与流束中所有流线正交的横断面。
过流断面一般为曲面,在特殊情况下才是平面。
五、流量、断面平均流速
1.流量
单位时间内通过过流断面的流体量。 元量之和,即
解:(1)流线: dx dy
xt yt
积分: ln(x t)(y t) c
t=0时,x=-1,y=-1 c=0
xy 1
——流线方程(双曲线)
(2)迹线:
dx dt
xt
dy dt
yt
dx x t dt dy y t
x c1et t 1 y c2et t 1
dt
由t=0时,x=-1,y=-1 得 c1=c2=0
工程流体力学
第三章 流体动力学理论基础
第三章 流体动力学理论基础
§3-1 描述流体运动的方法 §3-2 研究流体运动的若干基本概念 §3-3 流体运动的连续性方程
第三章 流体动力学理论基础
§3-4 理想流体的运动微分方程及其积分 §3-5 伯努利方程 §3-6 动量方程
第三章 流体动力学理论基础 (6学时)
•流场:充满运动流体的空间(流体运动所有物理量场的总体)。
•运动要素:表征流体运动状态的物理量,如流速、加速度、
压强等。
2.研究对象
流场
z
t时刻
M (x,y,z) O
x
y
3.运动描述 ux ux (x, y, z,t)
•流速场: uy uy (x, y, z,t) uz uz (x, y, z,t)
若x,y,z为常数,t为变数 若t 为常数, x,y,z为变数
•压强场: p p(x, y, z,t)
•加速度场:
ax
ux t
ux
ux x
uy
ux y
uz
ux z
ay
u y t
ux
u y x
uy
u y y
uz
u y z
az
uz t
ux
uz x
uy
uz y
uz
uz z
即 a du u (u )u dt t
一、本章学习要点:
•研究流体运动的若干基本概念
•流体的连续性方程 •流体运动微分方程 •伯努利方程及其应用 •动量方程及其应用
二、本章研究思路
理想流体( 0 )
三、基本理论
质量守恒定律 牛顿第二定律 动量定理
实际流体( 0)
§3-1 描述流体运动的方法
一、拉格朗日方法
1.方法概要
着眼于流体各质点的运动情况,研究各质点 的运动历程,并通过综合所有被研究流体质点的 运动情况来获得整个流体运动的规律。
式中: x,y,z为流场中空间点的坐标 x,y,z,t称为欧拉变量
u uxi uy j uzk i j k 为哈密顿算子符
x y z
说明:
用欧拉法描述流体运动时,流体质点的 加速度由两部分组成:
• u :当地加速度或时变加速度,表示通过固 t
定空间点的流体质点速度随时间的变化率;
1.定义
运动要素是几个坐标的函数,就称为几元流动。
如: u f (x)或u f (s) 为一元流动
u f (x, y) 为二元流动 u f (x, y, z) 为三元流动
2.实际流体力学问题均为三元流动.但三元 流动问题研究较为困难,工程中一般根据具 体情况加以简化
3.工程流体力学主要研究一元流动
相关文档
最新文档