2011年高考数学考前必做训练二平面向量 立体几何
2-3-22三角函数、平面向量、立体几何、概率与统计型解答题
高考专题训练二十二三角函数、平面向量、立体几何、概率与统计型解答题班级_______ 姓名_______ 时间:45分钟 分值:50分 总得分________1.(12分)(2011·广东卷)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6,x ∈R. (1)求f ⎝ ⎛⎭⎪⎫5π4的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫3α+π2=1013,f (3β+2π)=65,求cos(α+β)的值.分析:本题考查运用三角公式化简求值.(1)f (x )的解析式已给出,求f ⎝ ⎛⎭⎪⎫5π4即可;(2)先化简f ⎝ ⎛⎭⎪⎫3α+π2=1013,f (3β+2π)=65,再结合α,β∈⎣⎢⎡⎦⎥⎤0,π2求cos α与sin β,代入即得cos(α+β)的值. 解:(1)∵f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6, ∴f ⎝ ⎛⎭⎪⎫5π4=2sin ⎝ ⎛⎭⎪⎫5π12-π6=2sin π4= 2. (2)∵α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫3α+π2=1013,f (3β+2π)=65,∴2sin α=1013,2sin ⎝ ⎛⎭⎪⎫β+π2=65,即sin α=513,cos β=35,∴cos α=1213,sin β=45,∴cos(α+β)=cos αcos β-sin αsin β=1213×35-513×45=1665.2.(12分)(2011·重庆卷)如图,在四面体ABCD 中,平面ABC ⊥平面ACD ,AB ⊥BC ,AD =CD ,∠CAD=30°.(1)若AD =2,AB =2BC ,求四面体ABCD 的体积;(2)若二面角C -AB -D 为60°,求异面直线AD 与BC 所成角的余弦值.分析:本小题主要考查面面垂直的性质、四面体的体积计算公式、二面角的意义与异面直线所成的角的意义及求法.在具体处理过程中,可围绕线面垂直的性质定理去考虑,从而添加相关的辅助线,由此求得相关几何体的体积;在求异面直线所成的角的过程中,注意根据异面直线所成角的意义,考虑平移其中一条或两条直线,从而将问题转化为求两条相交直线的夹角问题.也可考虑通过建立坐标系的方式解决相关问题.解:(1)如图所示,设F 为AC 中点,连接FD ,由于AD =CD ,所以DF ⊥AC .又由平面ABC ⊥平面ACD ,知DF ⊥平面ABC ,即DF 是四面体ABCD 的面ABC 上的高,且DF =AD sin30°=1,AF =AD cos30°= 3.在Rt △ABC 中,因AC =2AF =23,AB =2BC ,由勾股定理易知BC =2155,AB =4155.故四面体ABCD 的体积V =13·S △ABC ·DF =13×12×4155×2155=45.(2)解法一:如图所示,设G ,H 分别与边CD ,BD 的中点,则FG ∥AD ,GH ∥BC ,从而∠FGH 是异面直线AD 与BC 所成的角或其补角.设E 为边AB 的中点,则EF ∥BC ,由AB ⊥BC ,知EF ⊥AB .又由(1)知DF ⊥平面ABC ,故由三垂线定理知DE ⊥AB .所以∠DEF 为二面角C -AB -D 的平面角.由题设知 ∠DEF =60°.设AD =a ,则DF =AD ·sin ∠CAD =a2.在Rt △DEF 中,EF =DF ·cot ∠DEF =a 2·33=36a ,从而GH =12BC =EF =36a .因Rt △ADE ≌△BDE ,故BD =AD =a , 从而,在Rt △BDF 中,FH =12BD =a 2.又FG =12AD =a 2,从而在△FGH 中,因FG =FH ,由余弦定理得cos ∠FGH =FG 2+GH 2-FH 22FG ·GH =GH 2FG =36.因此,异面直线AD 与BC 所成角的余弦值为36.解法二:如图所示,过F 作FM ⊥AC ,交AB 于M ,已知AD =CD ,平面ABC ⊥平面ACD ,易知FC ,FD ,FM 两两垂直.以F 为原点,射线FM ,FC ,FD 分别为x 轴,y 轴,z 轴的正半轴,建立空间直角坐标系F -xyz .不妨设AD =2,由CD =AD ,∠CAD =30°,易知点A ,C ,D 的坐标分别为A (0,-3,0),C (0,3,0),D (0,0,1),则AD →=(0,3,1).显然向量k =(0,0,1)是平面ABC 的一个法向量.已知二面角C -AB -D 为60°,故可取平面ABD 的一个单位法向量n =(l ,m ,n ),使得〈n ,k 〉=60°,从而n =12.由n ⊥AD →,有3m +n =0,从而m =-36.由l 2+m 2+n 2=1,得l =±63.设点B 的坐标为B (x ,y,0),由AB →⊥BC →,n ⊥AB →,取l =63,有⎩⎨⎧x 2+y 2=3,63x -36(y +3)=0,解之得,⎩⎨⎧x =469,y =739或⎩⎪⎨⎪⎧x =0,y =-3(舍去). 易知l =-63与坐标系的建立方式不合,舍去.因此点B 的坐标为⎝ ⎛⎭⎪⎫469,739,0.所以CB →=⎝ ⎛⎭⎪⎫469,-239,0.从而cos 〈AD →,CB →〉=AD →·CB →|AD →||CB →|=3×⎝ ⎛⎭⎪⎫-2393+1×⎝ ⎛⎭⎪⎫4692+⎝ ⎛⎭⎪⎫-2392=-36.故异面直线AD 与BC 所成的角的余弦值为36.3.(13分)(2011·浙江卷)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由.分析:此题主要考查了线线位置关系和二面角的求解,对(1)问线线垂直的证明易入手,利用线面垂直即可进行证明;对(2)问可采用空间直角坐标向量法进行处理;解题时对(2)问要注意恰当建立坐标系,恰当设参数,从而有效快速求解.解:方法一:(1)如图,以O 为原点,以射线OP 为z 轴的正半轴,建立空间直角坐标系O -xyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4). BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ), AC →=(-4,5,0),BC →=(-8,0,0). 设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎨⎧x 1=0,z 1=2+3λ4-4λ1,可取n 1=⎝⎛⎭⎪⎫0,1,2+3λ4-4λ. 由⎩⎪⎨⎪⎧ AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3).由n 1·n 2=0,得4-3·2+3λ4-4λ0,解得λ=25,故AM =3.综上所述,存在点M 符合题意,AM =3.方法二:(1)由AB =AC ,D 是BC 的中点,得AD ⊥BC . 又PO ⊥平面ABC ,得PO ⊥BC .因为PO ∩AD =O ,所以BC ⊥平面PAD , 故BC ⊥PA .(2)如图,在平面PAB 内作BM ⊥PA于M ,连接CM .由(1)中知PA ⊥BC ,得AP ⊥平面BMC .又AP ⊂平面APC ,所以平面BMC ⊥平面APC .在Rt △ADB 中,AB 2=AD 2+BD 2=41,得AB =41.在Rt △POD 中,PD 2=PO 2+OD 2, 在Rt △PDB 中,PB 2=PD 2+BD 2, 所以PB 2=PO 2+OD 2+DB 2=36,得PB =6. 在Rt △POA 中,PA 2=AO 2+OP 2=25,得PA =5. 又cos ∠BPA =PA 2+PB 2-AB 22PA ·PB =13,从而PM =PB cos ∠BPA =2,所以AM =PA -PM =3. 综上所述,存在点M 符合题意,AM =3.4.(13分)(2011·天津)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球,2个黑球,乙箱子里装有1个白球,2个黑球, 这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱).(1)求在1次游戏中; (ⅰ)摸出3个白球的概率; (ⅱ)获奖的概率;(2)求在2次游戏中获奖次数X 的分布列及数学期望E (X ). 解:(1)(ⅰ)设“在1次游戏中摸出i 个白球”为事件A i =(i =0,1,2,3),则P (A 3)=C 23C 25·C 12C 23=15.(ⅱ)设“在1次游戏中获奖”为事件B ,则B =A 2∪A 3.又P (A 2)=C 23C 25·C 22C 23+C 13C 12C 25·C 12C 23=12. 且A 2,A 3互斥,所以P (B )=P (A 2)+P (A 3)=12+15=710.(2)由题意可知X 的所有可能取值为0,1,2.P (X =0)=⎝ ⎛⎭⎪⎫1-7102=9100.P (X =1)=C 12710⎝ ⎛⎭⎪⎫1-710=2150. P (X =2)=⎝ ⎛⎭⎪⎫7102=49100. 所以X 的分布列是X 的数学期望E (X )=0×9100+1×2150+2×49100=75.。
高考数学 试题汇编 第五节 立体几何中的向量方法 理(含解析)
第五节立体几何中的向量方法向量法证明平行、垂直关系考向聚焦高考常考内容,主要以向量为工具,通过直线的方向向量、平面的法向量证明线线、线面、面面平行与垂直,常以解答题形式出现,难度中档,所占分值6分左右1.(2011年辽宁卷,理18)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.(1)证明:平面PQC ⊥平面DCQ.(2)求二面角Q BP C 的余弦值.解:如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D xyz.(1)证明:依题意有Q(1,1,0),C(0,0,1),P(0,2,0)则=(1,1,0),=(0,0,1),=(1,-1,0).所以·=0,·=0.即PQ⊥DQ,PQ⊥DC.且DQ∩DC=D.故PQ⊥平面DCQ.又PQ⊂平面PQC,所以平面PQC⊥平面DCQ.(2)解:依题意有B(1,0,1),=(1,0,0),=(-1,2,-1).设n=(x,y,z)是平面PBC的法向量,则即因此可取n=(0,-1,-2).设m是平面PBQ的法向量,则可取m=(1,1,1),所以cos<m,n>=-.故二面角Q BP C的余弦值为-.2.(2011年北京卷,理16)如图,在四棱锥P ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面PAC;(2)若PA=AB,求PB与AC所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求PA的长.(1)证明:∵PA⊥平面ABCD,∴PA⊥BD,∵底面ABCD为菱形,∴AC⊥BD,∵PA∩AC=A,∴BD⊥平面PAC.解:(2)设AC∩BD=O,∵∠BAD=60°,PA=AB=2,∴BO=1,AO=OC=,如图,以O为坐标原点,OB、OC所在直线为x,y轴,建立空间直角坐标系O xyz,则P(0,-,2),A(0,-,0),B(1,0,0),C(0,,0),∴=(1,,-2),=(0,2,0),设PB与AC所成的角为θ,则cos θ=|cos<,>|=||=.(3)由(2)知,=(-1,,0),设|PA|=t>0,则P(0,-,t),∴=(-1,-,t),设平面PBC的法向量为m=(x,y,z),则即,令y=,则x=3,z=,∴m=(3,,),同理可得平面PDC的法向量n=(-3,,), ∵平面PBC⊥平面PDC,∴m·n=0,即-6+=0,∴t=,即PA=.求直线与平面所成的角考向聚焦高考热点内容,主要以向量为工具,考查通过求直线的方向向量和平面的法向量的夹角,进而转化为直线与平面所成的角,主要以解答题形式出现,难度中档,所占分值6分左右备考指津解决这类问题的关键是建立适当的坐标系,准确的求出直线的方向向量和平面的法向量,计算要准确3.(2012年湖北卷,理19,12分)如图(1),∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图(2)所示).(1)当BD的长为多少时,三棱锥A BCD的体积最大;(2)当三棱锥A BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.(1)解:法一:在如题图(1)所示的△ABC中,设BD=x(0<x<3),则CD=3-x.由AD⊥BC,∠ACB=45°知,△ADC为等腰直角三角形,所以AD=CD=3-x.由折起前AD⊥BC知,折起后(如题图(2)),AD⊥DC,AD⊥BD,且BD∩DC=D,所以AD⊥平面BCD.又∠BDC=90°,所以S△BCD=BD·CD=x(3-x).于是=AD·S △BCD=(3-x)·x(3-x)=·2x(3-x)(3-x)≤[]3=,当且仅当2x=3-x,即x=1时,等号成立,故当x=1,即BD=1时,三棱锥A BCD的体积最大.法二:同法一,得=AD·S△BCD=(3-x)·x(3-x)=(x3-6x2+9x).令f(x)=(x3-6x2+9x),由f'(x)=(x-1)(x-3)=0,且0<x<3,解得x=1.当x∈(0,1)时,f'(x)>0;当x∈(1,3)时,f'(x)<0,所以当x=1时,f(x)取得最大值.故当BD=1时,三棱锥A BCD的体积最大.(2)解:法一:以D为原点,建立如图a所示的空间直角坐标系D xyz.由(1)知,当三棱锥A BCD的体积最大时,BD=1,AD=CD=2,于是可得D(0,0,0),B(1,0,0),C(0,2,0),A(0,0,2),M(0,1,1),E(,1,0),且=(-1,1,1). 设N(0,λ,0),则=(-,λ-1,0).因为EN⊥BM等价于·=0,即(-,λ-1,0)·(-1,1,1)=+λ-1=0,故λ=,N(0,,0).所以当DN=(即N是CD的靠近点D的一个四等分点)时,EN⊥BM.设平面BMN的一个法向量为n=(x,y,z),由及=(-1,,0),得可取n=(1,2,-1).设EN与平面BMN所成角的大小为θ,则由=(-,-,0),n=(1,2,-1),可得sin θ=cos(90°-θ)===,即θ=60°.故EN与平面BMN所成角的大小为60°.法二:由(1)知,当三棱锥A BCD的体积最大时,BD=1,AD=CD=2,如图b,取CD的中点F,连结MF,BF,EF,则MF∥AD.由(1)知AD⊥平面BCD,所以MF⊥平面BCD.如图c,延长FE至P点使得FP=DB,连BP,DP,则四边形DBPF为正方形,所以DP⊥BF.取DF的中点N,连结EN,又E为FP的中点,则EN∥DP,所以EN⊥BF.因为MF⊥平面BCD.又EN⊂面BCD,所以MF⊥EN.又MF∩BF=F,所以EN⊥面BMF,又BM⊂面BMF,所以EN⊥BM.因为EN⊥BM当且仅当EN⊥BF,而点F是唯一的,所以点N是唯一的.即当DN=(即N是CD的靠近点D的一个四等分点),EN⊥BM.连接MN,ME,由计算得NB=NM=EB=EM=,所以△NMB与△EMB是两个共底边的全等的等腰三角形,如图d所示,取BM的中点G,连接EG,NG,则BM⊥平面EGN.在平面EGN中,过点E作EH⊥GN于H,则EH⊥平面BMN,故∠ENH是EN与平面BMN所成的角, 在△EGN中,易得EG=GN=NE=,所以△EGN是正三角形,故∠ENH=60°,即EN与平面BMN所成角的大小为60°.4.(2010年辽宁卷,理19)已知三棱锥P ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.(1)证明:CM⊥SN;(2)求SN与平面CMN所成角的大小.设PA=1,以A为原点,AB,AC,AP所在直线分别为x,y,z轴建立空间直角坐标系如图. 则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0,),N(,0,0),S(1,,0).(1)证明:=(1,-1,),=(-,-,0),因为·=-++0=0,所以CM⊥SN.(2)解:=(-,1,0),设a=(x,y,z)为平面CMN的一个法向量,由得令x=2,得a=(2,1,-2).设SN与平面CMN所成的角为θ,则sin θ=|cos<a,>|.又|cos<a,>|=||=,∴sin θ=,又θ∈[0°,90°],∴θ=45°,故SN与平面CMN所成角为45°.5.(2010年全国新课标卷,理18)如图,已知四棱锥P ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点.(1)证明:PE⊥BC;(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.(1)证明:以H为原点,HA,HB,HP分别为x,y,z轴.线段HA的长为单位长度,建立空间直角坐标系如图.则A(1,0,0),B(0,1,0).设C(m,0,0),P(0,0,n)(m<0,n>0).则D(0,m,0),E(,,0),可得=(,,-n),=(m,-1,0).因为·=-+0=0.所以PE⊥BC.(2)解:由已知条件可得m=-,n=1,故C(-,0,0).D(0,-,0),E(,-,0),P(0,0,1).设n=(x,y,z)为平面PEH的法向量.则即因此可以取n=(1,,0).又=(1,0,-1),可得|cos<,n>|=,所以直线PA与平面PEH 所成角的正弦值为.求二面角考向聚焦高考重点考查内容,主要以向量为工具,考查通过求两平面的法向量及其角,进而转化为二面角的大小,考查空间向量的线性运算及学生的空间想象能力,难度中档偏上,所占分值8分左右6.(2012年重庆卷,理19,12分)如图,在直三棱柱ABC A1B1C1中,AB=4,AC=BC=3,D为AB的中点.(1)求点C到平面A1ABB1的距离;(2)若AB1⊥A1C,求二面角A1CD C1的平面角的余弦值.解:(1)∵AC=BC,DA=DB,∴CD⊥AB,又∵AA1⊥平面ABC,CD⊂平面ABC,∴AA1⊥CD,∵AA1∩AB=A,AA1⊂平面ABB1A1,AB⊂平面ABB1A1∴CD⊥平面ABB1A1,∴点C到平面ABB1A1的距离为CD===.(2)如图,过点D作DD1∥AA1交A1B1于D1,由(1)知DB、DC、DD1两两垂直,以D为原点,射线DB、DC、DD1分别为x 轴、y轴、z轴的正半轴建立空间坐标系D xyz.设直棱柱的侧棱AA1=a,则A(-2,0,0),A1(-2,0,a),B1(2,0,a),C1(0,,a),C(0,,0),∴=(2,,-a),=(4,0,a),∵AB1⊥A1C,∴·=0,∴8-a2=0,∴a=2,∴=(0,,0),=(-2,0,2),=(0,0,2),设平面A1CD的法向量n1=(x1,y1,z1),则,∴,令z1=1,则n1=(,0,1),因AB⊥平面C1CD,故可取面C1CD的法向量n2=(1,0,0),∴cos<n1,n2>===.所以二面角A1CD C1的平面角的余弦值为.本题考查了立体几何中点到平面的距离和二面角大小的求法,空间向量的运用,主要考查学生的空间想象力、推理论证能力、化归能力和运算求解能力,难度适中.7.(2012年江西卷,理19,12分)在三棱柱ABC A1B1C1中,已知AB=AC=AA1=,BC=4,点A1在底面ABC的投影是线段BC的中点O.(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;(2)求平面A1B1C与平面BB1C1C夹角的余弦值.(1)证明:连接AO,在△AOA1中,作OE⊥AA1于点E,因为AA1∥BB1,得OE⊥BB1,因为A1O⊥平面ABC,所以A1O⊥BC.由AB=AC,OB=OC,得AO⊥BC,而A1O∩AO=O,所以BC⊥平面AA1O,所以BC⊥OE,而BB1∩BC=B,所以OE⊥平面BB1C1C,又AO==1,AA1=,得AE==.(2)解:如图,分别以OA,OB,OA1所在直线为x,y,z轴,建立空间直角坐标系,则A(1,0,0),B(0,2,0),C(0,-2,0),A1(0,0,2),由=得点E的坐标是(,0,),由(1)得平面BB1C1C的一个法向量是=(,0,),设平面A1B1C的法向量为n=(x,y,z),由,得,令y=1,得x=2,z=-1,即n=(2,1,-1),所以cos<,n>==,即平面BB1C1C与平面A1B1C夹角的余弦值是.8.(2012年安徽卷,理18,12分)平面图形ABB1A1C1C如图(1)所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC=,A1B1=A1C1=.现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A1A,A1B,A1C,得到如图(2)所示的空间图形,对此空间图形解答下列问题.(1)证明:AA1⊥BC;(2)求AA1的长;(3)求二面角A BC A1的余弦值.解:本题考查空间中的垂直关系,求线段长,考查求二面角的余弦值,考查空间向量在求解立体几何问题中的应用.考查空间想象能力,推理论证能力,计算求解能力等.(1)如图,过点A作AO⊥平面A1B1C1,垂足为O,连接OB1,OC1,OA1,∵△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,BB1C1C是矩形,∴ABC A1B1C1为直三棱柱,由BC=2,AB=AC=知∠BAC为直角,且OB1=OC1,∵A1B1=A1C1=,∴OA1⊥B1C1,∵AO⊥平面A1B1C1,∴OA⊥B1C1,∴B1C1⊥平面OAA1,∵AA1⊂平面OAA1,所以AA1⊥BC.(2)由(1)可知OA=BB1=4,OA1=+=3,由OA⊥OA1,∴AA1==5.(3)由(1)知∠BAC=90°,则∠B1OC1=90°,且OA1在角∠B1OC1的平分线上.以O为坐标原点,OB1,OC1,OA所在的直线分别为x轴,y轴,z轴,建立空间直角坐标系.A(0,0,4),B(,0,4),C(0,,4),A1(,,0),则=(-,,0),=(,,-4).设平面BCA1的法向量为n=(x,y,z),则,即,取x=1,则n=(1,1,).由平面ABC的一个法向量为=(0,0,4),∴cos<n,>===,由图形可知二面角为钝角,所以二面角A BC A1的余弦值为-.解决本题的关键是能正确理解由平面几何图形到空间几何体的转换,其中的平行和垂直关系,线段长度关系等,然后通过添加辅助线构造常见几何体,就容易找出所需要的平行和垂直关系,也容易得出特殊的图形,也容易建立空间直角坐标系来求解.9.(2012年山东卷,理18,12分)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(1)求证:BD⊥平面AED;(2)求二面角F BD C的余弦值.(1)证明:∵四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,∴∠DCB=120°,∵CD=CB,∴∠CBD=∠CDB=30°,∴∠ABD=30°,∴∠ADB=90°,即AD⊥DB,又∵DB⊥AE,AE∩AD=A,∴BD⊥平面AED.(2)解:取BD中点P,连结CP,FP.∵CD=CB,∴CP⊥BD.又∵FC⊥平面ABCD,∴BD⊥FC,∴BD⊥平面FCP,∴BD⊥FP,∴∠FPC是二面角F BD C的平面角.设CD=1,则CP=,∴在Rt△FCP中,FP==,∴cos∠FPC==,即二面角F BD C的余弦值为.10.(2012年新课标全国卷,理19,12分)如图,直三棱柱ABC A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD.(1)证明:DC1⊥BC;(2)求二面角A1BD C1的大小.(1)证明:不妨设AC=BC=AA1=1.又∵D为AA1中点,∴DC1=,BC1=,∴BD2=3=AD2+AB2,∴AB2=2=AC2+BC2,∴∠ACB=90°,即BC⊥AC,又∵BC⊥CC1,∴BC⊥平面ACC1A1,又∵DC1⊂平面ACC1A1,∴DC1⊥BC.(2)解:由(1)知CA、CB、CC1两两垂直.分别以CA、CB、CC1为x、y、z轴建立空间直角坐标系,则B(0,1,0),D(1,0,1),A1(1,0,2),C1(0,0,2),∴=(1,-1,1),=(0,-1,2),设平面BDC1的一个法向量n=(x,y,z).则即令z=1,则y=2,x=1,即n=(1,2,1).可取平面A1BD的一个法向量m=(1,1,0),∴cos<m,n>===,又∵二面角A1BD C1为锐二面角,∴该二面角的大小为.该题应属立体几何的常规考查形式,一证一求,难度适中.11.(2012年广东卷,理18,13分)如图所示,在四棱锥P ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC 上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若PA=1,AD=2,求二面角B PC A的正切值.解:(1)∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD,同理PC⊥BD.∵PA、PC是平面PAC中的两条相交直线,∴BD⊥平面PAC.(2)解:法一:设AC、BD的交点为O,连接OE,则∠BEO即为所求二面角B PC A的平面角,由(1)知BD⊥平面PAC,∴BD⊥AC,又∵四边形ABCD为矩形.∴四边形ABCD是正方形,∴AB=AD=2,AC=BD=2,∴BO=OC=BD=×2=,PC===3,由Rt△PAC∽Rt△OEC知=,=,OE=,在Rt△BOE中,tan ∠BEO===3.即二面角B PC A的正切值为3.法二:如图,分别以AB、AD、AP所在直线为x、y、z轴,A为坐标原点,建立空间直角坐标系, 由(1)知BD⊥平面PAC,∴BD⊥AC,∴矩形ABCD为正方形,∴P(0,0,1),B(2,0,0),D(0,2,0),C(2,2,0),=(-2,2,0)是平面PAC的一个法向量,设n=(x,y,z)是平面PBC的法向量,由得,令x=1,则z=2,y=0,∴n=(1,0,2),∴cos<n,>===-,sin <n,>==,∴tan <n,>==-=-3又二面角B PC A为锐角,∴二面角B PC A的正切值为3.12.(2012年浙江卷,理20,15分)如图,在四棱锥P ABCD中,底面是边长为2的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2,M,N分别为PB,PD的中点.(1)证明:MN∥平面ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角A MN Q的平面角的余弦值.(1)证明:因为M,N分别是PB,PD的中点,所以MN是△PBD的中位线,所以MN∥BD.又因为MN⊄平面ABCD,所以MN∥平面ABCD.(2)解:法一:连结AC交BD于O,以O为原点,OC,OD所在直线为x,y轴,建立空间直角坐标系Oxyz,如图所示.在菱形ABCD中,∠BAD=120°,得AC=AB=2,BD=AB=6.又因为PA⊥平面ABCD,所以PA⊥AC.在Rt△PAC中,AC=2,PA=2,AQ⊥PC,得QC=2,PQ=4.由此知各点坐标如下:A(-,0,0),B(0,-3,0)C(,0,0),D(0,3,0),P(-,0,2),M(-,-,),N(-,,),Q(,0,).设m=(x1,y1,z1)为平面AMN的法向量.由=(,-,),=(,,)取z1=-1,得m=(2,0,-1).设n=(x2,y2,z2)为平面QMN的法向量.由=(-,-,),=(-,,)知取z2=5,得n=(2,0,5).于是cos<m,n>==.所以二面角A MN Q的平面角的余弦值为.法二:在菱形ABCD中,∠BAD=120°,得AC=AB=BC=CD=DA,BD=AB.又因为PA⊥平面ABCD,所以PA⊥AB,PA⊥AC,PA⊥AD.所以PB=PC=PD.所以△PBC≌△PDC.因M,N分别是PB,PD的中点,所以MQ=NQ,且AM=PB=PD=AN.取线段MN的中点E,连结AE,EQ,则AE⊥MN,QE⊥MN,所以∠AEQ为二面角A MN Q的平面角.由AB=2,PA=2,故在△AMN中,AM=AN=3,MN=BD=3,得AE=.在Rt△PAC中,AQ⊥PC,得AQ=2,QC=2,PQ=4.在△PBC中,cos∠BPC==,得MQ==.在等腰△MQN中,MQ=NQ=,MN=3,得QE==.在△AEQ中,AE=,QE=,AQ=2,得cos∠AEQ==.所以二面角A MN Q的平面角的余弦值为.13.(2012年天津卷,理17,13分)如图,在四棱锥P ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明:PC⊥AD;(2)求二面角A PC D的正弦值;(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.解:如图,以点A为原点,射线AD、AC、AP分别为x轴、y轴、z轴的正半轴建系, 则A(0,0,0),D(2,0,0),B(-,,0),C(0,1,0),P(0,0,2),(1)∵=(0,1,-2),=(2,0,0),∴·=0,∴PC⊥AD.(2)=(0,1,-2),=(2,-1,0),设平面PCD的法向量为n1=(x,y,z),则,即,令x=1,则n1=(1,2,1).又平面PAC的一个法向量可取n2=(1,0,0),∴cos<n1,n2>===.∴sin<n1,n2>=.∴二面角A PC D的正弦值为.(3)设点E(0,0,a),a∈[0,2],则=(,-,a),又=(2,-1,0),故cos<,>===,∴=cos 30°=,∴a=,∴AE=.本小题主要考查了空间两直线的位置关系,二面角,异面直线所成的角等基础知识,主要考查学生的空间想象力,化归能力和运算能力,难度适中.14.(2012年四川卷,理19,12分)如图,在三棱锥P ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,平面PAB⊥平面ABC.(1)求直线PC与平面ABC所成的角的大小;(2)求二面角B AP C的大小.解:法一:(1)设AB的中点为D,AD的中点为O,连结PO、CO、CD.由已知,△PAD为等边三角形.所以PO⊥AD.又平面PAB⊥平面ABC,平面PAB∩平面ABC=AD,所以PO⊥平面ABC.所以∠OCP为直线PC与平面ABC所成的角.不妨设AB=4,则PD=2,CD=2,OD=1,PO=.在Rt△OCD中,CO==.所以,在Rt△POC中,tan∠OCP===.故直线PC与平面ABC所成的角的大小为arctan .(2)过D作DE⊥AP于E,连结CE.由已知可得,CD⊥平面PAB.根据三垂线定理知,CE⊥PA.所以∠CED为二面角B AP C的平面角.由(1)知,DE=.在Rt△CDE中,tan∠CED===2.故二面角B AP C的大小为arctan 2.法二:(1)设AB的中点为D,作PO⊥AB于点O,连结CD.因为平面PAB⊥平面ABC,平面PAB∩平面ABC=AD,所以PO⊥平面ABC.所以PO⊥CD.由AB=BC=CA,知CD⊥AB.设E为AC中点,则EO∥CD,从而OE⊥PO,OE⊥AB.如图,以O为坐标原点,OB、OE、OP所在直线分别为x、y、z轴建立空间直角坐标系O xyz. 不妨设PA=2,由已知可得,AB=4,OA=OD=1,OP=,CD=2.所以O(0,0,0),A(-1,0,0),C(1,2,0),P(0,0,).所以=(-1,-2,),而=(0,0,)为平面ABC的一个法向量.设α为直线PC与平面ABC所成的角,则sin α=||=||=.故直线PC与平面ABC所成的角的大小为arcsin .(2)由(1)有,=(1,0,),=(2,2,0).设平面APC的一个法向量为n=(x1,y1,z1),则⇔⇔从而取x1=-,则y1=1,z1=1,所以n=(-,1,1).设二面角B AP C的平面角为β,易知β为锐角.而平面ABP的一个法向量为m=(0,1,0),则cos β=||=||=.故二面角B AP C的大小为arccos .15.(2011年天津卷,理17)如图,在三棱柱ABC A1B1C1中,H是正方形AA1B1B的中心,AA1=2,C1H⊥平面AA1B1B,且C1H=.(1)求异面直线AC与A1B1所成角的余弦值;(2)求二面角A A1C1B1的正弦值;(3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.解:如图所示,建立空间直角坐标系,点H为原点,依题意得A(2,0,0),B1(-2,0,0),A1(0,2,0),B(0,-2,0),C1(0,0,),C(2,-2,).(1)∵=(0,-2,),=(-2,-2,0),∴cos<,>===,∴异面直线AC与A1B1所成角的余弦值为.(2)设平面AA1C1的法向量m=(x,y,z),则,即,取x=,可得m=(,,2),同理设平面A1B1C1的法向量n=(x',y',z'), 则,即,取x'=,可得n=(,-,-2).∴cos<m,n>==-=-,从而sin<m,n>=.所以二面角A A1C1B1的正弦值为.(3)B1C1的中点N(-1,0,),设M(a,b,0),则=(-1-a,-b,),由⊥平面A1B1C1,得,即,∴,∴M(,-,0),∴=(,,0),∴||==.∴线段BM的长为.16.(2011年新课标全国卷,理18)如图,四棱锥P ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A PB C的余弦值.(1)证明:∵∠DAB=60°,AB=2AD,不妨设AD=1.由余弦定理得BD=,∴BD2+AD2=AB2,∴BD⊥AD.又PD⊥底面ABCD,可得BD⊥PD,∵AD∩PD=D,∴BD⊥平面PAD.∴PA⊥BD.(2)解:如图,以D为坐标原点,DA,DB,DP分别为x,y,z轴,建立空间直角坐标系D xyz.设AD=1,则A(1,0,0),B(0,,0),C(-1,,0),P(0,0,1),=(-1,,0),=(0,,-1),=(-1,0,0).设平面PAB的法向量为n=(x,y,z),则,即.设z=,则得n=(,1,).同理设平面PBC的法向量为m,则可取m=(0,-1,-),cos<m,n>===-.故二面角A PB C的余弦值为-.17.(2010年浙江卷,理20)如图, 在矩形ABCD中,点E,F分别在线段AB,AD上,AE=EB=AF=FD=4.沿直线EF将△AEF翻折成△A'EF,使平面A'EF⊥平面BEF.(1)求二面角A'FD C的余弦值;(2)点M,N分别在线段FD,BC上,若沿直线MN将四边形MNCD向上翻折,使C与A'重合,求线段FM的长.解:法一:(1)取线段EF的中点H,连接A'H.因为A'E=A'F及H是EF的中点,所以A'H⊥EF.又因为平面A'EF⊥平面BEF,及A'H⊂平面A'EF,所以A'H⊥平面BEF.如图建立空间直角坐标系A xyz,则A'(2,2,2),C(10,8,0),F(4,0,0),D(10,0,0),故=(-2,2,2),=(6,0,0).设n=(x,y,z)为平面A'FD的一个法向量,所以取z=,则n=(0,-2,).又平面BEF的一个法向量m=(0,0,1).故cos<n,m>==.所以二面角A'FD C的余弦值为.(2)设FM=x,则M(4+x,0,0),因为翻折后C与A'重合,所以CM=A'M,故(6-x)2+82+02=(-2-x)2+22+(2)2,得x=,经检验,此时点N在线段BC上,所以FM=.法二:(1)取线段EF的中点H,AF的中点G,连接A'G,A'H,GH.因为A'E=A'F及H是EF的中点,所以A'H⊥EF,又因为平面A'EF⊥平面BEF,A'H⊂平面A'EF,所以A'H⊥平面BEF,又AF⊂平面BEF,故A'H⊥AF,又因为G,H分别是AF,EF的中点,易知GH∥AB,所以GH⊥AF,又∵GH∩A'H=H,∴AF⊥平面A'GH,所以∠A'GH为二面角A'FD C的平面角,在Rt△A'GH中,A'H=2,GH=2,A'G=2,所以cos∠A'GH=.故二面角A'FD C 的余弦值为.(2)设FM=x,因为翻折后C与A'重合, 所以CM=A'M,而CM2=DC2+DM2=82+(6-x)2,A'M2=A'H2+MH2=A'H2+MG2+GH2=(2)2+(x+2)2+22,得x=,经检验,此时点N在线段BC上,所以FM=.立体几何的开放性问题考向聚焦高考常考内容,主要考查立体几何的开放性问题:(1)条件追溯型;(2)存在探索型;(3)方法类比探索型.考查学生分析问题、解决问题的能力,多在解答题的最后一问,难度中档偏上,所占分值4~8分18.(2012年上海数学,理14,4分)如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2.若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.解析:过点A作AE⊥BC于E,连结DE,则DE⊥BC,所以四面体ABCD的体积为S△ADE.由对称性知,点E为BC的中点,且AB=BD=a时,△ADE的面积最大,又AB+BD>AD,即a>c.所以S△ADE=c,因此四面体ABCD的体积的最大值为.答案:19.(2012年北京卷,理16,14分)如图(1),在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE ∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图(2).(1)求证:A1C⊥平面BCDE;(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由.解:(1)在图(1)中,DE∥BC,AC⊥BC,∴DE⊥AD,DE⊥DC.∴折起后在图(2)中,DE⊥A1D,DE⊥DC.又∵A1D∩DC=D,且A1D,DC⊂平面A1CD,∴DE⊥平面A1CD.∴DE⊥A1C.又∵CD⊥A1C,且CD∩DE=D,且CD,DE⊂平面BCDE,∴A1C⊥平面BCDE.(2)在图(1)中,∵DE∥BC,AC=6,DE=2,BC=3,∴AD=4,DC=2,∴折起后在图(2)中,A1D=4,DC=2,又∵A1C⊥CD,∴A1C=2.由(1)知,建立如图所示的空间直角坐标系C xyz,则C(0,0,0),A1(0,0,2),D(0,2,0),B(3,0,0),E(2,2,0),∴中点M(0,1,),∴=(0,1,).又∵=(-1,2,0),=(3,0,-2).设平面A1BE的法向量为n=(x1,y1,z1),则,∴不妨取x1=1,则n=(1,,).设直线CM与平面A1BE所成角为α,则sin α=|cos(-α)|===,∴α=,∴直线CM与平面A1BE所成角为.(3)不存在点P,使平面A1DP与平面A1BE垂直.证明:假设存在点P,使平面A1DP与平面A1BE垂直.记P的坐标为P(m,0,0),且0≤m≤3.∴=(m,0,-2),=(0,2,-2),设平面A1PD的法向量为m,且m=(x2,y2,z2),∴∴令z2=1,得m=(,,1).又当平面A1DP⊥平面A1BE时,m·n=0,∴++=0,∴m=-2∉[0,3].∴假设不成立,∴不存在点P,使平面A1DP与平面A1BE垂直.本题考查了空间向量在立体几何中的应用,尤其第三问中更好地体现了空间向量的优越性.20.(2012年福建卷,理18,13分)如图,在长方体ABCD A1B1C1D1中,AA1=AD=1,E为CD中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由;(3)若二面角A B1E A1的大小为30°,求AB的长.解:(1)以A为原点,,,的方向分别为x轴,y轴,z轴的正方向建立空间直角坐标系(如图).设AB=a,则A(0,0,0),D(0,1,0),D1(0,1,1),E(,1,0),B1(a,0,1),故=(0,1,1),=(-,1,-1),=(a,0,1),=(,1,0).∵·=-×0+1×1+(-1)×1=0,∴B1E⊥AD1.(2)假设在棱AA1上存在一点P(0,0,z0)(0≤z0≤1),使得DP∥平面B1AE.此时=(0,-1,z0).设平面B1AE的法向量n=(x,y,z),∵n⊥平面B1AE,∴n⊥,n⊥,得取x=1,得平面B1AE的一个法向量n=(1,-,-a).要使DP∥平面B1AE,只要n⊥,有-az0=0,解得z0=.即AP=.(3)连接A1D,B1C,由长方体ABCD A1B1C1D1及AA1=AD=1,得AD1⊥A1D.∵B1C∥A1D,∴AD1⊥B1C.又由(1)知B1E⊥AD1,且B1C∩B1E=B1,∴AD1⊥平面DCB1A1,∴是平面A1B1E的一个法向量,此时=(0,1,1).设与n所成的角为θ,则cos θ==.∵二面角A B1E A1的大小为30°,∴|cos θ|=cos 30°,即=,解得a=2,即AB的长为2.利用空间向量解决立体几何中的判定与求解问题的关键是合理建系,准确设点,本题第3问较为创新,更能体现向量法的优点,而在法向量的应用上,要注意赋值的有效性.21.(2010年湖南卷,理18)如图所示,在正方体ABCD A1B1C1D1中,E是棱DD1的中点.(1)求直线BE与平面ABB1A1所成的角的正弦值;(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.解:法一:设正方体的棱长为1.如图所示,以,,为单位正交基底建立空间直角坐标系A xyz.(1)依题意,得B(1,0,0),E(0,1,),A(0,0,0),D(0,1,0),所以=(-1,1,),=(0,1,0).在正方体ABCD A1B1C1D1中,因为AD⊥平面ABB1A1,所以是平面ABB1A1的一个法向量.设直线BE与平面ABB1A1所成的角为θ,则sin θ===.即直线BE与平面ABB1A1所成的角的正弦值为.(2)在棱C1D1上存在点F,使B1F∥平面A1BE.证明如下:依题意,得A1(0,0,1),=(-1,0,1),=(-1,1,).设n=(x,y,z)是平面A1BE的一个法向量,则由n·=0,n·=0,得所以x=z,y=z.取z=2,得n=(2,1,2).设F是棱C1D1上的点,则F(t,1,1)(0≤t≤1).又B1(1,0,1),所以=(t-1,1,0).而B1F⊄平面A1BE,于是B1F∥平面A1BE⇔·n=0⇔(t-1,1,0)·(2,1,2)=0⇔2(t-1)+1=0⇔t=⇔F为棱C1D1的中点.这说明在棱C1D1上存在点F(C1D1的中点),使B1F∥平面A1BE.法二:(1)如图(1)所示,取AA1的中点M,连接EM,BM.因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD.又在正方体ABCD A1B1C1D1中,AD⊥平面ABB1A1,所以EM⊥平面ABB1A1,从而BM为BE在平面ABB1A1上的射影,∠EBM为BE和平面ABB1A1所成的角.设正方体的棱长为2,则EM=AD=2,BE==3.于是,在Rt△BEM中,sin∠EBM==,即直线BE和平面ABB1A1所成的角的正弦值为.(2)在棱C1D1上存在点F,使B1F∥平面A1BE.证明如下:事实上,如图(2)所示,分别取C1D1和CD的中点F、G,连接B1F,EG,BG,CD1,FG.因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1是平行四边形,因此D1C∥A1B.又E,G分别是D1D,CD的中点,所以EG∥D1C,从而EG∥A1B.这说明A1,B,G,E四点共面.所以BG⊂平面A1BE.因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FG∥C1C∥B1B,且FG=C1C=B1B,因此四边形B1BGF是平行四边形,所以B1F∥BG.而B1F⊄平面A1BE,BG⊂平面A1BE,故B1F∥平面A1BE.(2011年福建卷,理20)如图,四棱锥P ABCD中,PA⊥底面ABCD,四边形ABCD中,AB⊥AD,AB+AD=4,CD=,∠CDA=45°.(1)求证:平面PAB⊥平面PAD;(2)设AB=AP.①若直线PB与平面PCD所成的角为30°,求线段AB的长;②在线段AD上是否存在一个点G,使得点G到点P、B、C、D的距离都相等?说明理由.解:(1)因为PA⊥平面ABCD,AB⊂平面ABCD,所以PA⊥AB.1分又AB⊥AD,PA∩AD=A,所以AB⊥平面PAD.2分又AB⊂平面PAB,所以平面PAB⊥平面PAD.3分第(1)问赋分细则:(1)证出PA⊥AB得1分,未写出AB⊂平面ABCD不得分;(2)证出AB⊥平面PAD得1分,未写出PA∩AD=A不得分;(3)写出平面PAB⊥平面PAD得1分.(2)以A为坐标原点,建立空间直角坐标系A xyz(如图).在平面ABCD内,作CE∥AB交AD于点E,则CE⊥AD.4分在Rt△CDE中,DE=CD·cos 45°=1,CE=CD·sin 45°=1.设AB=AP=t,则B(t,0,0),P(0,0,t).由AB+AD=4得AD=4-t,所以E(0,3-t,0),C(1,3-t,0),D(0,4-t,0),=(-1,1,0),=(0,4-t,-t).5分①设平面PCD的法向量为n=(x,y,z),由n⊥,n⊥,得取x=t,得平面PCD的一个法向量n=(t,t,4-t).又=(t,0,-t),故由直线PB与平面PCD所成的角为30°得cos 60°=||,即=,解得t=或t=4(舍去,因为AD=4-t>0),6分所以AB=.7分②假设在线段AD上存在一个点G,使得点G到点P,B,C,D的距离都相等.8分设G(0,m,0)(其中0≤m≤4-t),则=(1,3-t-m,0),=(0,4-t-m,0),=(0,-m,t).由||=||得12+(3-t-m)2=(4-t-m)2,即t=3-m;(ⅰ)由||=||得(4-t-m)2=m2+t2.(ⅱ)由(ⅰ)、(ⅱ)消去t,化简得m2-3m+4=0.(ⅲ)由于方程(ⅲ)没有实数根,所以在线段AD上不存在一个点G,使得点G到点P、B、C、D的距离都相等.11分从而,在线段AD上不存在一个点G,使得点G到点P、B、C、D的距离都相等.12分第(2)问赋分细则:(1)建立坐标系得1分,未说明如何建立坐标系扣1分;(2)用t表示出、得1分;(3)设出平面法向量,计算正确得1分;(4)在线段AD上设出G点得1分;(5)计算错误扣2分,如t值计算错;(6)没有结论扣1分.通过高考阅卷分析,造成失分原因如下:(1)解题过程不全,错过得分点,如不建立坐标系;(2)计算错误,如t值求错,平面法向量求错;(3)对参数没有限制范围,如0≤m≤4-t;(4)没有写出结论或未写清结论导致扣分,如不写在线段AD上不存在一个点G,使得点G到P、B、C、D的距离相等.。
高考数学压轴专题专题备战高考《平面向量》分类汇编含答案
数学《平面向量》复习资料一、选择题1.已知椭圆2222:1(0)x y T a b a b +=>>,过右焦点F 且斜率为()0k k >的直线与T 相交于A ,B 两点,若3AF FB =uu u r uu r,则k =( )A .2 BCD .1【答案】C 【解析】 【分析】由2e =可得a =,b =,可设椭圆的方程为222334x y c +=,()()1122,,,A x y B x y ,并不妨设B 在x 轴上方,由3AF FB =uu u r uu r得到12123430x x c y y +=⎧⎨+=⎩,再由22211334x y c +=,22222334x y c +=得到A 、B 两点的坐标,利用两点的斜率公式计算即可. 【详解】因为c e a ===,所以2a b =,所以a =,b =,则椭圆方程22221x y a b+=变为222334x y c +=. 设()()1122,,,A x y B x y ,不妨设B 在x 轴上方,则210,0y y ><, 又3AF FB =uu u r uu r,所以()()1122,3,c x y x c y --=-,所以()121233c x x c y y ⎧-=-⎨-=⎩,12123430x x cy y +=⎧⎨+=⎩因为A ,B 在椭圆上,所以22211334x y c +=,① 22222334x y c +=②. 由①—9×②,得2121212123(3)(3)3(3)(3)84x x x x y y y y c +-++-=-,所以21234(3)84c x x c ⨯-=-,所以12833x x c -=-, 所以123x c =,2109x c =,从而1y =,2y =所以22(,)33A c c-,102(,)99B c c,故2292102393c ckc c+==-,故选:C.【点睛】本题考查直线与椭圆的位置关系,当然本题也可以利用根与系数的关系来解决,考查学生的数学运算求解能力,是一道中档题.2.在ABCV中,4AC AD=u u u r u u u r,P为BD上一点,若14AP AB ACλ=+u u u r u u u r u u u r,则实数λ的值()A.34B.320C.316D.38【答案】C【解析】【分析】根据题意,可得出144λ=+u u u r u u u r u u u rAP AB AD,由于B,P,D三点共线,根据向量共线定理,即可求出λ.【详解】解:由题知:4AC AD=u u u r u u u r,14AP AB ACλ=+u u u r u u u r u u u r,所以144λ=+u u u r u u u r u u u rAP AB AD,由于B,P,D三点共线,所以1414λ+=,∴316λ=.故选:C.【点睛】本题考查平面向量的共线定理以及平面向量基本定理的应用.3.若向量(1,1)a =r ,(1,3)b =-r ,(2,)c x =r 满足(3)10a b c +⋅=r r r,则x =( )A .1B .2C .3D .4【答案】A 【解析】 【分析】根据向量的坐标运算,求得(3)(2,6)a b +=rr,再根据向量的数量积的坐标运算,即可求解,得到答案. 【详解】由题意,向量(1,1)a =r,(1,3)b =-r ,(2,)c x =r,则向量(3)3(1,1)(1,3)(2,6)a b +=+-=rr ,所以(3)(2,6)(2,)22610a b c x x +⋅=⋅=⨯+=r r r,解得1x =,故选A.【点睛】本题主要考查了向量的坐标运算,及向量的数量积的坐标运算的应用,其中解答中熟记向量的数量积的坐标运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.4.如图,在ABC V 中,AD AB ⊥,3BC BD =u u u v u u u v ,1AD =u u u v ,则AC AD ⋅=u u u v u u u v( )A .3B .32C .33D 3【答案】D 【解析】∵3AC AB BC AB =+=u u u v u u u v u u u v u u u v u u v,∴(3)3AC AD AB AD AB AD BD AD ⋅=+⋅=⋅⋅u u u v u u u v u u u v u u v u u u v u u u v u u u v u u u v ,又∵AB AD ⊥,∴0AB AD ⋅=uuu r,∴33cos3cos33 AC AD BDAD BD AD ADB BD ADB ADu u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ⋅=⋅=⋅∠=⋅∠==,故选D.5.如图,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E为AD的中点,若(,)CA CE DB Rλμλμ=+∈u u u r u u u r u u u r,则λ+μ的值为()A.65B.85C.2D.83【答案】B【解析】【分析】建立平面直角坐标系,用坐标表示,,CA CE DBu u u r u u u r u u u r,利用(,)CA CE DB Rλμλμ=+∈u u u r u u u r u u u r,列出方程组求解即可.【详解】建立如图所示的平面直角坐标系,则D(0,0).不妨设AB=1,则CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),(2,2),(2,1),(1,2)CA CE DB∴=-=-=u u u r u u u r u u u rCA CE DBλμ=+u u u r u u u r u u u rQ∴(-2,2)=λ(-2,1)+μ(1,2),2222λμλμ-+=-⎧∴⎨+=⎩解得6525λμ⎧=⎪⎪⎨⎪=⎪⎩则85λμ+=.故选:B【点睛】本题主要考查了由平面向量线性运算的结果求参数,属于中档题.6.设双曲线()222210,0x ya ba b-=>>的右焦点为F,过点F作x轴的垂线交两渐近线于,A B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,225+=8λμ,则双曲线的离心率为( )A .23B .35C .32D .98【答案】A 【解析】 【分析】先根据已知求出,u λ,再代入225+=8λμ求出双曲线的离心率. 【详解】由题得双曲线的渐近线方程为b y x a =±,设F(c,0),则2(,),(,),(,),bc bc b A c B c P c a a a-因为(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,所以2(,)((),())b bc c u c u a aλλ=+-.所以,,bu c u cλλ+=-= 解之得,.22b c c bu c cλ+-== 因为225+=8λμ,所以22522()(),3, 3.22833b c c b c e c c a +-+=∴=∴= 故答案为A 【点睛】本题主要考查双曲线的几何性质和离心率的求法,意在考查学生对这些基础知识的掌握能力.解答本题的关键是根据(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v求出,u λ.7.如图,已知1OA OB ==u u u v u u u v ,2OC =u u u v ,4tan 3AOB ∠=-,45BOC ∠=︒,OC mOA nOB u u u v u u u v u u u v =+,则mn等于( )A .57B .75C .37D .73【答案】A【分析】依题意建立直角坐标系,根据已知角,可得点B 、C 的坐标,利用向量相等建立关于m 、n 的方程,求解即可. 【详解】以OA 所在的直线为x 轴,过O 作与OA 垂直的直线为y 轴,建立直角坐标系如图所示:因为1OA OB ==u u u r u u u r ,且4tan 3AOB ∠=-,∴34cos sin 55AOB AOB ∠=-∠=,,∴A (1,0),B (3455-,),又令θAOC ∠=,则θ=AOB BOC ∠-∠,∴413tan θ413--=-=7,又如图点C 在∠AOB 内,∴cos θ=210,sin θ=7210,又2OC u u u v =C (1755,), ∵OC mOA nOB =+u u u r u u u r u u u r ,(m ,n ∈R ),∴(1755,)=(m,0)+(3455n n -,)=(m 35n -,45n ) 即15= m 35n -,7455n =,解得n=74,m=54,∴57m n =, 故选A . 【点睛】本题考查了向量的坐标运算,建立直角坐标系,利用坐标解决问题是常用的处理向量运算的方法,涉及到三角函数的求值,属于中档题.8.已知5MN a b =+u u u u r r r ,28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r ,则( )A .,,M N P 三点共线B .,,M N Q 三点共线C .,,N P Q 三点共线D .,,M P Q 三点共线【答案】B【分析】利用平面向量共线定理进行判断即可. 【详解】因为28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r所以()2835NQ NP PQ a b a b a b =+=-++-=+u u u r u u u r u u u r r r r r r r ,因为5MN a b =+u u u u r rr ,所以MN NQ =u u u u r u u u r由平面向量共线定理可知,MN u u u u r 与NQ uuur 为共线向量,又因为MN u u u u r 与NQ uuur 有公共点N ,所以,,M N Q 三点共线.故选: B 【点睛】本题考查利用平面向量共线定理判断三点共线;熟练掌握共线定理的内容是求解本题的关键;属于中档题、常考题型.9.已知向量m =r (1,cosθ),(sin ,2)n θ=-r ,且m r ⊥n r,则sin 2θ+6cos 2θ的值为( )A .12B .2C .D .﹣2【答案】B 【解析】 【分析】根据m r ⊥n r 可得tanθ,而sin 2θ+6cos 2θ22226sin cos cos sin cos θθθθθ+=+,分子分母同除以cos 2θ,代入tanθ可得答案. 【详解】因为向量m =r (1,cosθ),n =r(sinθ,﹣2),所以sin 2cos m n θθ⋅=-u r r因为m r ⊥n r ,所以sin 2cos 0θθ-=,即tanθ=2,所以sin 2θ+6cos 2θ22222626226141sin cos cos tan sin cos tan θθθθθθθ++⨯+====+++ 2. 故选:B. 【点睛】本题主要考查平面向量的数量积与三角恒等变换,还考查运算求解的能力,属于中档题.10.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A .2B .2C .3D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得2AF =u u u v【详解】 根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-. 所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =, 所以()2212112AF n u u u v =-+=+=故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.11.已知向量(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r,则当,1[]2t ∈-时,a tb-r r 的最大值为( ) ABC .2D【答案】D 【解析】 【分析】根据(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r,得到1a =r ,1b =r ,0a b ⋅=r r ,再利用a tb -==r r 求解.【详解】因为(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r,所以1a =r ,1b =r ,0a b ⋅=r r ,所以a tb -==r r当[]2,1t ∈-时,maxa tb-=r r故选:D 【点睛】本题考查向量的模以及数量积的运算,还考查运算求解能力,属于中档题.12.在ABC V 中,若2AB BC BC CA CA AB ⋅=⋅=⋅u u u v u u u v u u u v u u u v u u u v u u u v,则AB BC=u u u vu u u v ( ) A .1 B.2C.2D.2【答案】C 【解析】 【分析】根据题意,由AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v可以推得AB AC =,再利用向量运算的加法法则,即可求得结果. 【详解】由题意得,AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v ,即A A =0+BC B C ⋅uu u v uu u v uuu v(),设BC 的中点为D ,则AD BC ⊥,即ABC V 为等腰三角形,B=C AB AC =∠∠,又因为2BC CA CA AB ⋅=⋅uu u v uu v uu v uu u v即2222222C C cos 2C 2C cos 112C +22232C 2AB BC CA A B AB BC B A CA B C BC A BC A BC⋅=⋅-=-+-=-+⨯=uu u v uu u v uu v uu u v uuv uu u v uu u v uu u v uu v uuvuu u v uu u v uu u v uu u v uu u v ()所以2AB BC=uu u v uu u v . 【点睛】本题主要考查平面向量的线性运算.13.已知向量m →,n →的夹角为60︒,且1m →=,m n →→-=n →=( )A .1B .2C .3D .4【答案】B 【解析】 【分析】设||n x →=,利用数量积的运算法则、性质计算即可. 【详解】 设||n x →=,因为1m →=,向量m →,n →的夹角为60︒, 所以2213m n x x →→-=-+=, 即220x x --=,解得2x =,或1x =-(舍去), 所以2n →=. 故选:B 【点睛】本题主要考查了向量的模的性质,向量数量积的运算,属于中档题.14.在ABC V 中,E 是AC 的中点,3BC BF =u u u r u u u r ,若AB a =u u u r r ,AC b =u u u r r ,则EF =u u u r( )A .2136a b -r r B .1133a b +r r C .1124a b +r r D .1133a b -r r 【答案】A【解析】【分析】根据向量的运算法则计算得到答案.【详解】 1223EF EC CF AC CB =+=+u u u r u u u r u u u r u u u r u u u r ()12212336AC AB AC AB AC =+-=-u u u r u u u r u u u r u u u r u u u r 2136a b =-r r . 故选:A .【点睛】本题考查了向量的基本定理,意在考查学生的计算能力和转化能力. 15.已知向量OA u u u r 与OB uuu r 的夹角为θ,2OA =u u u r ,1OB =uu u r ,=u u u r u u u r OP tOA ,()1OQ t OB =-u u u r u u u r ,PQ u u u r 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( )A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫ ⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭【答案】C【解析】【分析】 根据向量的数量积运算和向量的线性表示可得,()()22254cos 24cos 1PQ PQ t t θθ==+-++u u u r u u u r ,根据二次函数的最值可得出012cos 54cos t θθ+=+,再由0105t <<,可求得夹角θ的取值范围. 【详解】 因为2cos OA OB θ⋅=u u u r u u u r ,()1PQ OQ OP t OB tOA =-=--u u u r u u u r u u u r u u u r u u u r ,()()22254cos 24cos 1PQ PQ t t θθ==+-++u u u r u u u r , ∵PQ u u u r 在t t =0时取得最小值,所以012cos 54cos t θθ+=+,又0105t <<,则12cos 1054cos 5θθ+<<+,得1cos 02θ-<<,∵0θπ≤≤, 所以223ππθ<<, 故选:C.【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题.16.已知向量(sin ,cos )a αα=r ,(1,2)b =r ,则以下说法不正确的是( )A .若//a b r r ,则1tan 2α=B .若a b ⊥r r ,则1tan 2α=C .若()f a b α=⋅r r 取得最大值,则1tan 2α= D .||a b -r r 1 【答案】B【解析】【分析】A 选项利用向量平行的坐标表示来判断正确性.B 选项利用向量垂直的坐标表示来判断正确性.C 选项求得()f α的表达式,结合三角函数最值的求法,判断C 选项的正确性.D 选项利用向量模的运算来判断正确性.【详解】A 选项,若//a b r r ,则2sin cos αα=,即1tan 2α=,A 正确.B 选项,若a b ⊥r r ,则sin 2cos 0αα+=,则tan 2α=-,B 不正确.C 选项,si (n )2cos in()f a b ααααϕ+==⋅=+r r ,其中tan 2ϕ=.取得最大值时,22k παϕπ+=+,22k πϕπα=+-,tan 2tan 2k πϕπα=+-⎛⎫ ⎪⎝⎭1tan 22tan παα⎛⎫=== ⎪⎝⎭-,则1tan 2α=,则C 正确.D 选项,由向量减法、模的几何意义可知||a b -r r 1,此时a =r ,,a b r r 反向.故选项D 正确.故选:B【点睛】本小题主要考查向量平行、垂直的坐标表示,考查向量数量积的运算,考查向量减法的模的几何意义,属于中档题.17.已知向量5(,0)2a =r ,(0,5)b =r 的起点均为原点,而终点依次对应点A ,B ,线段AB 边上的点P ,若OP AB ⊥u u u r u u u r ,OP xa yb =+u u u r r r ,则x ,y 的值分别为( )A .15,45B .43,13-C .45,15D .13-,43 【答案】C【解析】【分析】 求得向量5(,5)2OP x y =u u u r ,5(,5)2AB b a =-=-u u u r r r ,根据OP AB ⊥u u u r u u u r 和,,A B P 三点共线,列出方程组,即可求解.【详解】 由题意,向量5(,0)2a =r ,(0,5)b =r ,所以5(,5)2OP xa yb x y =+=u u u r r r , 又由5(,5)2AB b a =-=-u u u r r r , 因为OP AB ⊥u u u r u u u r ,所以252504OP AB x y ⋅=-+=u u u r u u u r ,可得4x y =, 又由,,A B P 三点共线,所以1x y +=, 联立方程组41x y x y =⎧⎨+=⎩,解得41,55x y ==. 故选:C .【点睛】本题主要考查了向量的坐标运算,以及向量垂直的坐标运算和向量共线定理的应用,着重考查了运算与求解能力.18.三角形ABC 中,5BC =,G ,O 分别为三角形ABC 的重心和外心,且5GO BC ⋅=u u u r u u u r ,则三角形ABC 的形状是( )A .锐角三角形B .钝角三角形C .直角三角形D .上述均不是 【答案】B【解析】【分析】 取BC 中点D ,利用GO GD DO =+u u u r u u u r u u u r 代入计算,再利用向量的线性运算求解.【详解】如图,取BC 中点D ,连接,OD AD ,则G 在AD 上,13GD AD =,OD BC ^, ()GO BC GD DO BC GD BC DO BC ⋅=+⋅=⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r221111()()()53326GD BC AD BC AB AC AC AB AC AB =⋅=⋅=⨯+⋅-=-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , ∴2223025AC AB BC -=>=,∴2220AB BC AC +-<,由余弦定理得cos 0B <,即B 为钝角,三角形为钝角三角形.故选:B .【点睛】本题考查平面向量的数量积,考查向量的线性表示,考查余弦定理.解题关键是取BC 中点D ,用,AB AC u u u r u u u r 表示出,GD BC u u u r u u u r. 19.已知向量()1,3a =-v ,()3,b m =v ,若a b ⊥v v ,则2a b +v v 等于( )A .10B .16C .52D .410【答案】C【解析】【分析】 先利用向量垂直的坐标表示求出实数m 的值,得出向量b r 的坐标,并计算出向量2a b +r r ,最后利用向量模的坐标运算得出结果.【详解】 ()1,3a =-r Q ,()3,b m =r ,a b ⊥r r ,则1330a b m ⋅=⨯-=r r ,得1m =,()3,1b ∴=r ,则()()()221,33,15,5a b +=-+=-r r ,因此,()2225552a b +=+-=r r C.【点睛】本题考查向量垂直的坐标表示以及向量模的坐标运算,意在考查学生对这些公式的理解掌握情况,考查运算求解能力,属于中等题.20.在ABC V 中,AD 为BC 边上的中线,E 为AD 的中点,且||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒,则||EB =u u u r ( )A 19B 11C 3D 7【答案】A【解析】【分析】 根据向量的线性运算可得3144EB AB AC =-u u u r u u u r u u u r ,利用22||B EB E =u u r u u u r u 及||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒计算即可.【详解】 因为11131()22244EB EA AB AD AB AB AC AB AB AC =+=-+=-⨯++=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 所以22229311216441||6EB AB AB B AC AC E =-⨯=⨯⋅+u u u r u u u r u u u r u u u r u u r u u u r u 229311112()2168216=⨯-⨯⨯⨯-+⨯ 1916=,所以||4EB =u u u r , 故选:A【点睛】 本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.。
2011高考数学真题考点分类新编:考点35立体几何中的向量方法(新课标地区)
考点35立体几何中的向量方法一、解答题1.(2011·福建卷理科·T20)(本小题满分14分)如图,四棱锥P-ABCD中,PA⊥底面ABCD.四边形ABCD中,AB⊥AD,AB+AD=4,CD=2,︒∠45CDA.=(I)求证:平面PAB⊥平面PAD;(II)设AB=AP.(i)若直线PB与平面PCD所成的角为︒30,求线段AB的长;(ii)在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由.【思路点拨】(1)证面面PAB中的直线AB PAD⊥面,也可⊥面,从而可推得面PAB PAD以建立坐标系证明两面的法向量垂直;(2)以A为坐标原点,建立空间直角坐标系-A xyz,然后用空间向量法进行求解探究.【精讲精析】(I)因为PA⊥平面ABCD,AB⊂平面ABCD,所以PA AB解法1:⊥,又,A B A D P A A D A⊥=,所以AB⊥平面PAD.又AB⊂平面PAB,所以平面PAB⊥平面PAD.(2)以A为坐标原点,建立空间直角坐标系A xyz-(如图).在平面ABCD内,作//⊥.CE AB交AD于点E,则CE AD在Rt CDE ∆中,cos451DE CD =⋅︒=.设AB AP t ==,则(,0,0),(0,0,)B t P t . 由AB+AD =4得AD =4t -,所以(0,3,0),1,3,0),(0,4,0)E t C t D t ---(,(1,1,0),(0,4,).CD PD t t =-=--(i )设平面PCD 的法向量为=(,,),x y z n 由,,CD PD ⊥⊥n n 得0(4)0.x y t y tz -+=⎧⎨--=⎩取x t =,得平面PCD 的一个法向量(,,4)t t t =-n .cos60||,|||PBPB ⋅︒=⋅n n |即21,2= 解得45t =或4t =(舍去,因为40AD t =->),所以AB =4.5(ii )假设在线段AD 上存在一个点G (如下图),使得点G 到点P 、B 、C 、D 的距离都相等,设G (0,m,0)(其中04m t ≤≤-),则(1,3,0),(0,4,0),(0,,)GC t m GD t m GP m t =--=--=-由||||GC GD =得2221(3)(4),t m t m +--=--即3t m =-.① 由||||GD GP =得222(4).m t m t --=+②C由①②消去t ,化简得23+40.m m -=③由于方程③没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点P ,C ,D 的距离都相等. 解法2:(I )同解法1. (Ⅱ)(i )同解法1 .(ii )假设在线段AD 上存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等. 由GC =GD ,得45,GCD GDC ∠=∠=︒从而90,CGD ∠=︒即CG AD ⊥,所以cos451GD CD =⋅︒=.设AB λ=,则4AD λ=-,AG =AD-GD=3λ-.在Rt ABG ∆中,1,GB ==>这与GB =GD 矛盾.所以在线段AD 上不存在一个点G ,使得点G 到点P 、B 、C 、D 的距离都相等. 2. (2011·江苏高考·T22)(本小题满分10分)如图,在正四棱柱1111ABCD A B C D -中,12,1AA AB ==,点N 是BC 的中点,点M 在1CC 上,设二面角1A DN M --的大小为θ。
2011年高考数学试题汇编4——平面向量
2011年高考数学试题汇编4——平面向量(北京4)已知O 是A B C △所在平面内一点,D 为B C 边中点,且2OA OB OC ++=0,那么( A ) A.AO O D = B.2AO OD =C.3AO OD =D.2AO OD =(辽宁3)若向量a 与b 不共线,0≠ a b ,且⎛⎫ ⎪⎝⎭a ac =a -b a b,则向量a 与c 的夹角为( D )A .0B .π6C .π3D .π2(辽宁6)若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a =( A ) A .(12)--,B .(12)-,C .(12)-,D .(12),(宁夏,海南4)已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( D )A.(21)--, B.(21)-,C.(10)-,D.(12),(福建4)对于向量,,a b c 和实数λ,下列命题中真命题是( B ) A .若=0 a b ,则0a =或0b =B .若λ0a =,则0λ=或=0aC .若22=a b ,则=a b 或-a =bD .若 a b =a c ,则b =c(湖北2)将π2cos 36x y ⎛⎫=+⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为(A )A.π2cos 234x y ⎛⎫=+- ⎪⎝⎭B.π2cos 234x y ⎛⎫=-+ ⎪⎝⎭C.π2cos 2312x y ⎛⎫=--⎪⎝⎭D.π2cos 2312x y ⎛⎫=++⎪⎝⎭(湖北文9)设(43)=,a ,a 在b 上的投影为522,b 在x 轴上的投影为2,且||14≤b ,则b 为( B )A .(214),B .227⎛⎫-⎪⎝⎭, C .227⎛⎫- ⎪⎝⎭,D .(28), (湖南4)设,a b 是非零向量,若函数()()()f x x x =+- a b a b 的图象是一条直线,则必有( A ) A .⊥a bB .∥a bC .||||=a bD .||||≠a b (湖南文2)若O E F ,,是不共线的任意三点,则以下各式中成立的是( B ) A .EF OF OE =+B .EF OF OE =-C .EF OF OE =-+D .EF OF OE =--(四川7)设A {a ,1},B {2,b },C {4,5},为坐标平面上三点,O 为坐标原点,若方向在与→→→OC OB OA 上的投影相同,则a 与b 满足的关系式为 ( A ) (A)354=-b a(B)345=-b a (C)1454=+b a(D)1445=+b a(天津10)设两个向量22(2cos )λλα=+-,a 和sin 2m m α⎛⎫=+ ⎪⎝⎭,b ,其中m λα,,为实数.若2=a b ,则mλ的取值范围是( A )A.[-6,1] B.[48],C.(-6,1] D.[-1,6](浙江7)若非零向量,a b 满足+=a b b ,则( C ) A.2>2+a a b B.22<+a a b C.2>+2b a bD. 22<+b a b(浙江文9)若非零向量a 、b 满足|a 一b |=|b|,则(A) (A) |2b |>|a 一2b | (B) |2b |<|a 一2b|(C) |2a |>|2a 一b | (D) |2a |<|2a 一b|(山东11)在直角A B C ∆中,C D 是斜边A B 上的高,则下列等式不成立的是( C ) (A )2AC AC AB =⋅(B ) 2BCBA BC =⋅(C )2ABAC CD =⋅(D ) 22()()AC AB BA BC C DAB⋅⨯⋅= (山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( C ) A .1B .2C .2D .4(重庆5)在A B C △中,3AB =,45A = ,75C = ,则B C =( A )A.33-B.2 C.2 D.33+(重庆10)如题(10)图,在四边形A B C D 中,4AB BD D C ++=,4AB BD BD D C +=,0AB BD BD DC == ,则()A B D C A C +的值为( C )A.2 B.22 C.4 D.42(上海14)直角坐标系x O y 中,i j,分别是与x y ,轴正方向同向的单位向量.在直角三角形A B C 中,若j k i AC j i AB+=+=3,2,则k 的可能值个数是( B )A.1 B.2 C.3 D.4 (全国Ⅰ3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( A ) A .垂直 B .不垂直也不平行 C .平行且同向 D .平行且反向(全国Ⅱ5)在A B C △中,已知D 是A B 边上一点,若123A D DBCD C A C B λ==+,,则λ=( A ) DCA B 题(10)图A .23B .13C .13-D .23-二、填空题 (安徽13)在四面体O A B C -中,OA OB OC D === ,,,a b c 为B C 的中点,E 为A D 的中点,则O E =111244++a b c(用,,a b c 表示).(北京11.)已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是3-(北京12.)在A B C △中,若1tan 3A =,150C = ,1BC =,则A B =102(广东10. )若向量a 、b 满足b a b a 与,1==的夹角为120°,则b a b a ··+= 21. (湖南12.)在A B C △中,角A B C ,,所对的边分别为a b c ,,,若1a =,b =7,3c =,则B = 5π6 .(湖南文12.)在A B C △中,角A B C ,,所对的边分别为a b c ,,,若1a =,3c =,π3C =,则A = π6 .(江西15.)如图,在A B C △中,点O 是B C 的中点,过点O 的直线分别交直线A B ,A C 于不同的两点M N ,,若A B mA M = ,AC n AN =,则m n +的值为2 .(江西文13.)在平面直角坐标系中,正方形O A B C 的对角线O B 的两端点分别为(00)O ,,(11)B ,,则AB AC =1.(陕西15. )如图,平面内有三个向量OA 、OB 、OC ,其中与OA 与OB 的夹角为120°,OA 与OC 的夹角为30°,且|OA |=|OB |=1,|OC |=32,若OC =λOA +μOB (λ,μ∈R ),则λ+μ的值为 6 . (天津15.)如图,在A B C △中,12021B A C A B A C ∠===,,°,D 是边B C 上一点,2D C B D =,则A D B C =·83- .(天津文15)在A B C △中,2A B =,3A C =,D 是边B C 的中点,则AD BC =52.(重庆文(13))在△ABC 中,AB =1,B C =2,B =60°,则AC = 3。
(必考题)高中数学必修二第一章《立体几何初步》测试(答案解析)(1)
一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A .5B .2C .3D .22.在正方体1111ABCD A BC D -中,点,E F 分别是梭BC ,CD 的中点,则1A F 与1C E 所成角的余弦值为( ) A .5B .25C .5 D .253.已知平面,αβ,直线l ,记l 与,αβ所成的角分别为1θ,2θ,若αβ⊥,则( ) A .12sin sin 1θθ+≤B .12sin sin 1θθ+≥C .122πθθ+≤D .122πθθ+≥4.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为正方形,PA AB =,E 为AP 的中点,则异面直线PC 与DE 所成的角的正弦值为( ).A 2B 5C 15D 10 5.如图,在Rt ABC △中,1AC =,BC x =,D 是斜边AB 的中点,将BCD △沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB AD ⊥,则x 的取值范围是( )A .(0,3⎤⎦B .2,22⎛⎤⎥ ⎝⎦C .3,23D .(]2,46.设有直线m ,n ,l 和平面α,β,下列四个命题中,正确的是( ) A .若//,//m n αα,则//m n B .若//,//,//l m αβαβ,则//l m C .若,m αβα⊥⊂,则m β⊥D .若,,m m αββα⊥⊥⊄,则//m α7.已知四面体ABCD 中,二面角A BC D --的大小为60,且2AB =,4CD =,120CBD ∠=,则四面体ABCD 体积的最大值是( )A .43B .23C .83D .438.如下图所示是一个正方体的平面展开图,在这个正方体中①//BM 平面ADE ;②D E BM ⊥;③平面//BDM 平面AFN ;④AM ⊥平面BDE .以上四个命题中,真命题的序号是( )A .①②③④B .①②③C .①②④D .②③④9.如图是某个四面体的三视图,则下列结论正确的是( )A .该四面体外接球的体积为48πB .该四面体内切球的体积为23π C .该四面体外接球的表面积为323π D .该四面体内切球的表面积为2π10.某几何体的三视图如图所示,该几何体的体积为V ,该几何体所有棱的棱长之和为L ,则( )A .8,14253V L ==+ B .8,1425V L ==+ C .8,16253V L ==+ D .8,1625VL ==+11.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .212.已知长方体1111ABCD A BC D -的顶点A ,B ,C ,D ,在球O 的表面上,顶点1A,1B ,1C ,1D ,在过球心O 的一个平面上,若6AB =,8AD =,14AA =,则球O 的表面积为( ) A .169πB .161πC .164πD .265π二、填空题13.如图,四边形ABCD 是矩形,且有2AB BC =,沿AC 将ADC 翻折成AD C ',当二面角D AC B '--的大小为3π时,则异面直线D C '与AB 所成角余弦值是______.14.已知长方体1234ABCD A B C D -,底面是边长为4的正方形,高为2,点O 是底面ABCD 的中心,点P 在以O 为球心,半径为1的球面上,设二面角111P A B C --的平面角为θ,则tan θ的取值范围是________.15.在三棱锥P ABC -中,4PA PB ==,42BC =,8AC =,AB BC ⊥.平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为_________.16.二面角a αβ--的大小为135A AE a E α︒∈⊥,,,为垂足,,B BF a F β∈⊥,为垂足,2,31AE BF EF P ===,,是棱上动点,则AP PB +的最小值为_______. 17.如图,在三棱锥V ABC -中,22AB =,VA VB =,1VC =,且AV BV ⊥,AC BC ⊥,则二面角V AB C --的余弦值是_____.18.已知四面体P ﹣ABC 的外接球的球心O 在AB 上,且PO ⊥平面ABC ,2AC 3=,若四面体P ﹣ABC 的体积为32,则该球的体积为_____. 19.在正方体1111ABCD A BC D -中,P 为线段1AB 上的任意一点,有下面三个命题:①//PB 平面11CC D D ;②1BD AC ⊥;③1BD PC ⊥.上述命题中正确命题的序号为__________(写出所有正确命题的序号).20.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.三、解答题21.如图,三棱柱111ABC A B C -中,1CC ⊥平面ABC ,5AB =,3AC =,14BC CC ==,M 是1CC 的中点.(Ⅰ)求证:BC AM ⊥;(Ⅱ)若N 是AB 上的点,且//CN 平面1AB M ,求BN 的长.22.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:DE ⊥平面PAH ;(2)若2PA AD ==,求直线PD 与平面PAH 所成线面角的正弦值.23.如图,四棱锥P ABCD -,底面ABCD 为矩形,PD ⊥面ABCD ,E 、F 分别为PA 、BC 的中点.(1)求证://EF 面PCD ;(2)若2AB =,1AD PD ==,求三棱锥P BEF -的体积.24.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,M 是棱PD 的中点.(1)求证://PB 平面AMC ;(2)若PD ⊥平面ABCD ,2AD PD ==,3BAD π∠=,求点B 到平面AMC 的距离.25.如图,在三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC ,2,AB BC ==30ACB ∠=,13AA =,11BC AC ,E 为AC 的中点.(1)求证:1//AB 平面1C EB ;(2)求证:1AC ⊥平面1C EB . 26.如图,四棱锥P ABCD -中,底面ABCD 是正方形,PD ⊥平面ABCD ,226AB PD ==,O 为AC 与BD 的交点,E 为棱PB 上一点.(1)证明:平面EAC ⊥平面PBD ;(2)若//PD 平面EAC ,求三棱锥B AEC -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===133xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-则在等腰直角三角形AOE 中,2522xAO OE -===O 是底面中心,则133xOE CE ==,2532x x-=,解得3x = 则1AO =,底面边长为23则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.D解析:D【分析】延长DA至G,使AG CE=,可证11//AG C E,得1GA F∠是异面直线1A F与1C E所成的角(或其补角).在1AGF△中,由余弦定理可得结论.【详解】延长DA至G,使AG CE=,连接1,GE GA,GF,11,AC AC,又//AG CE所以AGEC是平行四边形,//,GE AC GE AC=,又正方体中1111//,AC AC AC AC=,所以1111//,AC DE AC DE=,所以11AC EG是平行四边形,则11//AG C E,所以1GA F∠是异面直线1A F与1C E所成的角(或其补角).设正方体棱长为2,在正方体中易得15AG10GF22222112(21)3A F AA AF=+=++=,1AGF△中,2221111125cos2253AG A F GFGA FAG A F+-∠===⋅⨯⨯.故选:D.【点睛】方法点睛:本题考查空间向量法求异面直线所成的角,求异面直线所成角的方法: (1)定义法:根据定义作出异面直线所成的角并证明,然后解三角形得结论; (2)建立空间直角坐标系,由两异面直线的方向向量的夹角得异面直线所成的角.3.C解析:C 【分析】如图,作出1θ和2θ,再由线面角推得12sin sin 2πθθ⎛⎫≤- ⎪⎝⎭,利用三角函数的单调性判断选项. 【详解】设直线l 为直线AB ,m αβ=,AD m ⊥,BC m ⊥,连结BD ,AC ,1ABD θ=∠,2BAC θ=∠,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭,12,2πθθ-都是锐角, 122πθθ∴≤-,即122πθθ+≤故选:C 【点睛】关键点点睛:本题的关键是作图,并利用线段AD AC ≤,传递不等式,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭. 4.D解析:D 【分析】先取正方形的中心O ,连接OE ,由PC //OE 知OED ∠为异面直线PC 与DE 所成的角,再在OED 中求OED ∠的正弦即可. 【详解】连AC ,BD 相交于点O ,连OE 、BE ,因为E 为AP 的中点,O 为AC 的中点,有PC //OE ,可得OED ∠为异面直线PC 与DE 所成的角,不妨设正方形中,2AB =,则2PA =,由PA ⊥平面ABCD ,可得,PA AB PA AD ⊥⊥, 则145BE DE ==+=1122222OD BD ==⨯= 因为BE DE =,O 为BD 的中点,所以90EOD ∠=︒,210sin 5OD OED DE ∠===故选:D. 【点睛】 方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.5.A解析:A 【分析】取BC 中点E ,连接DE ,AE ,若CB AD ⊥,则可证明出BC ⊥平面ADE ,则可得BC AE ⊥. 根据题目中各边长的关系可得出AE ,AD 关于x 的表达式,然后在ADE中,利用三边关系求解即可.【详解】由题意得BC x =,则212x AD CD BD +===,如图所示,取BC 中点E ,翻折前,在图1中,连接DE ,CD ,则1122DE AC ==, 翻折后,在图2中,若CB AD ⊥,则有:∵BC DE ⊥,BC AD ⊥,AD DE D ⋂=,且,AD DE 平面ADE ,∴BC ⊥平面ADE ,∴BC AE ⊥,又BC AE ⊥,E 为BC 中点,∴1AB AC ==∴2114AE x =-212x AD +=,在ADE 中,由三边关系得:①221111224x x ++>-,②221111224x x +<-,③0x >;由①②③可得03x << 故选:A. 【点睛】本题考查折叠性问题,考查线面垂直的判定及性质在解题中的运用,解答本题的主要思路分析在于将异面直线间的垂直转化为线面垂直关系,即作出辅助线DE 与AE ,根据题目条件确定出BC ⊥平面ADE ,得到BC AE ⊥,从而通过几何条件求解.6.D解析:D 【分析】在A 中,m 与n 相交、平行或异面; 在B 中,l 与m 不一定平行,有可能相交; 在C 中,m ⊥β或m ∥β或m 与β相交;在D 中,由直线与平面垂直的性质与判定定理可得m ∥α.【详解】由直线m 、n ,和平面α、β,知: 对于A ,若m ∥α,n ∥α,则m 与n 相交、平行或异面,故A 错误;对于B ,若//,//,//l m αβαβ,l 与m 不一定平行,有可能相交,故B 错误; 对于C ,若α⊥β,m ⊂α,则m ⊥β或m ∥β或m 与β相交,故C 错误;对于D ,若α⊥β,m ⊥β,m ⊄α,则由直线与平面垂直的性质与判定定理得m ∥α,故D 正确.故选:D . 【点睛】本题考查了命题真假的判断问题,考查了空间线线、线面、面面的位置关系的判定定理及推论的应用,体现符号语言与图形语言的相互转化,是中档题.7.D解析:D 【分析】在BCD △中,利用余弦定理和基本不等式可得163BC BD ⋅≤,由三角形的面积公式可得43BCDS≤,由二面角A BC D --的大小为60,可得A 到平面BCD 的最大距离为2sin 603h ==ABCD 体积的最大值.【详解】在BCD △中,由余弦定理可得2222cos120CD BC BD BC BD =+-⋅22BC BD BC BD =++⋅因为222BC BD BC BD +≥,所以23CD BC BD ≥⋅, 所以163BC BD ⋅≤,当且仅当BC BD =时等号成立, 111634sin120322323BCDSBC BD =⋅≤⨯⨯= 因为二面角A BC D --的大小为60,所以点A 到平面BCD 的最大距离为2sin 603h ==所以1144333333A BCD BCDV S h -=⋅≤⨯⨯=, 所以四面体ABCD 体积的最大值是43, 故选:D 【点睛】关键点点睛:本题解题的关键点是利用余弦定理和基本不等式、三角形面积公式求出BCD S △最大值,再由二面角求出高的最大值. 8.A解析:A 【分析】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,得出BM ∥平面ADNE ,判断①正确;由连接AN ,则AN ∥BM ,又ED AN ⊥,判断②正确;由BD ∥FN ,得出BD ∥平面AFN ,同理BM ∥平面AFN ,证明平面BDM ∥平面AFN ,判断③正确;由MC BD ⊥,ED ⊥AM ,根据线面垂直的判定,判断④正确.【详解】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,如图1所示; 对于①,平面BCMF ∥平面ADNE ,BM ⊂平面BCMF , ∴BM ∥平面ADNE ,①正确;对于②,如图2所示,连接AN ,则AN ∥BM ,又ED AN ⊥,所以D E BM ⊥,②正确; 对于③,如图2所示,BD ∥FN ,BD ⊄平面AFN ,FN ⊂平面AFN ,∴BD ∥平面AFN ;同理BM ∥平面AFN ,且BD ∩BM =B ,∴平面BDM ∥平面AFN ,③正确; 对于④,如图3所示,连接AC ,则BD AC ⊥,又MC ⊥平面ABCD ,BD ⊂平面ABCD ,所以MC BD ⊥,又AC MC C ,所以BD ⊥平面ACM ,所以BD ⊥AM ,同理得ED ⊥AM ,ED BD D =,所以AM ⊥平面BDE ,∴④正确.故选:A .【点睛】关键点点睛:解决本题的关键在于展开空间想象,将正方体的平面展开图还原,再由空间的线线,线面,面面关系及平行,垂直的判定定理去判断命题的正确性.9.D解析:D 【分析】先找到几何体原图,再求出几何体的外接球的半径和内切球的半径,再判断每一个选项得解. 【详解】由三视图得几何体为下图中的三棱锥A BCD -,AB ⊥平面BCD,AB =2CE DE ==,2BE =,由题得2CBD π∠=.设外接球的球心为,O 外接球的半径为R ,则OE ⊥平面BCD , 连接,OB OA ,取AB 中点F ,连接OF .由题得12OE BF AB ===所以2222,R R =+∴=,所以外接球的体积为343π⨯=,所以选项A 错误;所以外接球的表面积为2448ππ⨯=,所以选项C 错误;由题得AC AD ===所以△ACD △6=, 设内切球的半径为r ,则11111112446)243222232r ++⨯⨯+⨯⨯=⨯⨯⨯⨯所以2r,所以内切球的体积为343π⨯=,所以选项B 错误;所以内切球的表面积为242ππ⨯=,所以选项D 正确. 故选:D【点睛】方法点睛:求几何体外接球的半径一般有两种方法:模型法和解三角形法.模型法就是把几何体放在长方体中,使几何体的顶点和长方体的若干个顶点重合,则几何体的外接球和长方体的外接球是重合的,长方体的外接球的半径22212r a b c =++就是几何体的外接球半径.如果已知中有多个垂直关系,可以考虑用此种方法.解三角形法就是找到球心O 和截面圆的圆心O ',找到OO '、球的半径OA 、截面圆的半径O A '确定的Rt OO A '△,再解Rt OO A '△求出球的半径OA .10.A解析:A 【分析】由三视图还原几何体,由棱锥的体积公式可得选项. 【详解】在如图所示的正方体1111ABCD A BC D -中,P ,E 分别为11,BC BC 的中点,该几何体为四棱锥P ABCD -,且PE ⊥平面ABCD . 由三视图可知2AB =,则5,3PC PB PD PA ====,则21825681425,2233L V =++=+=⨯⨯=. 故选:A.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.11.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112=221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.12.C【分析】把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体外接球的直径等于体对角线的长,求出直径,即可得出球的表面积. 【详解】 如下图所示:把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体的结构特征可得,其外接球直径等于体对角线的长, 所以球O 的半径R 满足2222688164R =++=, 所以球O 的表面积24164S R ππ==. 故选:C.【点睛】关键点点睛:本题主要考查几何体外接球的表面积,熟记长方体结构特征,其外接球的球心和半径与长方体的关系,以及球的表面积公式,是解决此类问题的关键.二、填空题13.【分析】作于于可得等于二面角的平面角从而可得然后求得而因此可得是异面直线与所成角(或补角)这样在求解可得【详解】如图作于于则连接根据二面角平面角的定义知与的夹角等于二面角的平面角所以因为所以设则在矩解析:12. 【分析】作DM AC ⊥于M ,BN AC ⊥于N ,可得,MD NB '<>等于二面角D AC B '--的平面角,从而可得DMD '∠,然后求得DD ',而//AB CD ,因此可得D CD '∠是异面直线D C '与AB 所成角(或补角).这样在DCD '求解可得.如图,作DM AC ⊥于M ,BN AC ⊥于N ,则//DM BN ,连接,D M DD '', 根据二面角平面角的定义知MD '与NB 的夹角等于二面角D AC B '--的平面角, 所以,3MD NB π'<>=,因为//DM BN ,所以23DMD π'∠=, 设1BC =,则22AB BC ==,在矩形ABCD 中,3AC =,1263DM ⨯==, 63D M DM '==, 则222222666612cos 22333332DD DM D M DM D M π⎛⎫⎛⎫⎛⎫'''=+-⋅=+-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以2DD '=,因为//AB CD ,所以D CD '∠是异面直线D C '与AB 所成角(或补角).DCD '是正三角形,3D CD π'∠=,1cos 2D CD '∠=. 所以异面直线D C '与AB 所成角余弦值是12. 故答案为:12.【点睛】关键点点睛:本题考查求异面直线所成的角,解题方法根据异面直线所成角定义作出它们所成的角,然后解三角形可得,解题关键是利用图中MD '与NB 的夹角等于二面角D AC B '--的平面角,从而求得DMD '∠,只要设1BC =,可求得DD ',从而求得结论.14.【分析】根据题意画出相应的图形结合题意找出什么情况下取最大值什么情况下取最小值利用和差角正切公式求得最值得到结果【详解】根据题意如图所示:取的中点过点作球的切线切点分别为可以判断为的最小值为的最大值解析:4747,⎡⎤-+⎢⎥⎣⎦【分析】根据题意,画出相应的图形,结合题意,找出什么情况下取最大值,什么情况下取最小值,利用和差角正切公式求得最值,得到结果. 【详解】根据题意,如图所示:取11A B 的中点H ,过H 点作球O 的切线,切点分别为,M N , 可以判断1O HN ∠为θ的最小值,1O HM ∠为θ的最大值, 且1112tan 12OO O HO HO ∠===, 22,1OH OM ON ===,所以7HM HN ==tan tan 7NHO OHM ∠=∠=, 11171827477tan tan()17117O HN O HO NHO ----∠=∠-∠====+ 11171827477tan tan()17117O HM O HO OHM ++++∠=∠+∠====-, 所以tan θ的取值范围是474733⎡⎢⎣⎦, 故答案为:4747-+⎣⎦.【点睛】方法点睛:该题考查的是有关二面角的求解问题,解题方法如下: (1)先根据题意画图;(2)结合题意,找出在什么情况下取最大值和最小值; (3)结合图形求得相应角的正切值; (4)利用和差角正切公式求得结果.15.4【分析】取中点连接再根据题意依次计算进而得球的球心即为(与重合)【详解】解:因为所以又因为所以所以因为平面平面平面平面平面所以平面取中点连接所以所以平面所以此时所以即球的球心球心即为(与重合)半径解析:4 【分析】取,AB AC 中点,D E ,连接DE ,DP ,再根据题意依次计算4EA EB EC EP ====,进而得球O 的球心O 即为E (O 与E 重合)【详解】解:因为BC =8AC =,AB BC ⊥,所以AB =4PA PB ==, 所以222PA PB AB +=,所以PA PB ⊥,因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,AB BC ⊥,BC ⊂平面ABC ,所以BC ⊥平面PAB ,取,AB AC 中点,D E ,连接DE ,DP所以//DE BC ,DE =DP =所以DE ⊥平面PAB ,所以DE PD ⊥,此时,142EB AC EA EC ====, 4EP =, 所以4EA EB EC EP ====,即球O 的球心球心O 即为E (O 与E 重合),半径为4EA =. 故答案为:4.【点睛】本题解题的关键在于寻找球心,在本题中,,PAB ABC △△均为直角三角形,故易得AC 中点即为球心.考查空间思维能力,运算求解能力,是中档题.16.【分析】首先将二面角展平根据两点距离线段最短求最小值【详解】如图将二面角沿棱展成平角连结根据两点之间线段最短可知就是的最小值以为邻边作矩形由可知三点共线则故答案为:【点睛】思路点睛:本题考查立体几何 解析:26 【分析】首先将二面角展平,根据两点距离线段最短,求AP PB +最小值.【详解】如图,将二面角沿棱a 展成平角,连结AB ,根据两点之间线段最短,可知AB 就是AP PB +的最小值,以,AE EF 为邻边,作矩形AEFC ,由,CF a BF a ⊥⊥可知,,C F B 三点共线, 则()222213226AB AC BC =+=++= 26【点睛】思路点睛:本题考查立体几何中的折线段和的最小值,一般都是沿交线展成平面,利用折线段中,两点间距离最短求解,本题与二面角的大小无关.17.【分析】取的中点连接证明出可得出面角的平面角为计算出利用余弦定理求得由此可得出二面角的余弦值【详解】取的中点连接如下图所示:为的中点则且同理可得且所以二面角的平面角为由余弦定理得因此二面角的余弦值为 解析:34【分析】 取AB 的中点O ,连接VO 、OC ,证明出VO AB ⊥,OC AB ⊥,可得出面角V AB C --的平面角为VOC ∠,计算出VO 、OC ,利用余弦定理求得cos VOC ∠,由此可得出二面角V AB C --的余弦值.【详解】取AB 的中点O ,连接VO 、OC ,如下图所示:VA VB =,O 为AB 的中点,则VO AB ⊥,且AV BV ⊥,22AB =122VO AB ∴== 同理可得OC AB ⊥,且2OC =V AB C --的平面角为VOC ∠,由余弦定理得2223cos 24VO OC VC VOC VO OC +-∠==⋅, 因此,二面角V AB C --的余弦值为34. 故答案为:34. 【点睛】本题考查二面角余弦值的计算,考查二面角的定义,考查计算能力,属于中等题. 18.【分析】根据四面体是球的内接四面体结合位置关系可得棱锥的形状以及棱长之间的关系利用体积公式即可代值计算【详解】设该球的半径为R 则AB =2R2ACAB2R ∴ACR 由于AB 是球的直径所以△ABC 在大圆所解析:43π【分析】根据四面体是球的内接四面体,结合位置关系,可得棱锥的形状,以及棱长之间的关系,利用体积公式即可代值计算.【详解】设该球的半径为R ,则AB =2R ,2AC 3=AB 3=⨯2R , ∴AC 3=R ,由于AB 是球的直径,所以△ABC 在大圆所在平面内且有AC ⊥BC ,在Rt △ABC 中,由勾股定理,得:BC 2=AB 2﹣AC 2=R 2,所以R t △ABC 面积S 12=⨯BC ×AC 3=R 2, 又PO ⊥平面ABC ,且PO =R ,四面体P ﹣ABC 的体积为32, ∴V P ﹣ABC 13=⨯R 32⨯⨯R 232=,即3R 3=9,R 3=33, 所以:球的体积V 43=⨯πR 343=⨯π×33=43π. 故答案为:43π.【点睛】本题考查三棱锥外接球体积的计算,属基础题;本题的重点是要根据球心的位置去推导四面体的几何形态,从而解决问题.19.①②③【分析】①证明线面平行可判断对错;②证明线面垂直可判断对错;③证明线面垂直可判断对错【详解】①如下图所示:因为平面平面平面所以平面故①正确;②连接如下图所示:因为平面所以又因为且所以平面又因为解析:①②③【分析】①证明线面平行可判断对错;②证明线面垂直可判断对错;③证明线面垂直可判断对错.【详解】①如下图所示:因为平面11//ABB A 平面11CC D D ,BP ⊂平面11ABB A ,所以//PB 平面11CC D D ,故①正确;②连接,AC BD ,如下图所示:因为1DD ⊥平面ABCD ,所以1DD AC ⊥,又因为AC BD ⊥且1DD BD D =,所以AC ⊥平面1DBD ,又因为1BD ⊂平面1DBD ,所以1BD AC ⊥,故②正确;③连接11,,,AC PC B C BC ,如下图所示:因为11D C ⊥平面11BCC B ,所以11D C ⊥1BC ,又因为11BC B C ⊥,且1111D C BC C ⋂=,所以1B C ⊥平面11BD C ,又1BD ⊂平面11BD C ,所以11B C BD ⊥,由②的证明可知1BD AC ⊥,且1AC BC C ⋂=,所以1BD ⊥平面1ABC ,又因为PC ⊂平面1ABC ,所以1BD PC ⊥,故③正确,故答案为:①②③.【点睛】本题考查空间线面平行、线线垂直关系的判断,涉及线面平行判定定理、线面垂直判定定理的运用,主要考查学生对空间中位置关系的逻辑推理能力,难度一般.20.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故解析:163π 【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积.【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)22213R R =+,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=. 故答案为:163π. 【点睛】 本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.三、解答题21.(Ⅰ)证明见解析;(Ⅱ)52. 【分析】(Ⅰ)可证BC ⊥平面11AAC C ,从而可得BC AM ⊥.(Ⅱ)可证N 为AB 的中点,从而可得BN 的长.【详解】(Ⅰ)证明:1CC ⊥平面ABC ,BC ⊂平面平面ABC ,∴1CC BC ⊥.又5AB =,3AC =,4BC =,∴222AC BC AB +=,即BC AC ⊥.又1AC CC C =,∴BC ⊥平面11AAC C ,又AM ⊂平面11AAC C ,∴BC AM ⊥. (Ⅱ)过点N 作1//NE BB 交1AB 于点E ,连ME ,由三棱柱111ABC A B C -可得11//BB CC ,∴1//NE CC 即四边形NEMC 为平面图形. 又//CN 平面1AB M ,CN ⊂平面NEMC ,且平面NEMC 平面1AB M ME =, ∴//CN ME ,∴四边形NEMC 为平行四边形,∴NE CM =,且//NE CM ,又点M 为1CC 中点,∴112CM BB =,且1//CM BB ,∴112NE BB =,且1//NE BB , ∴1522BN AB ==. 【点睛】思路点睛:线面垂直的判定可由线线垂直得到,注意线线是相交的,也可由面面垂直得到,注意线在面内且线垂直于两个平面的交线.由线面平行得到线线平行时,注意构造过线的平面.22.(1)证明见解析;(2)105. 【分析】(1)由PA ⊥底面ABCD ,得PA DE ⊥,由Rt ABH Rt DAE ≌△△,得DE AH ⊥,可得答案.(2)由可知DE ⊥平面PAH ,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角,在Rt PDG △中,由sin DPG ∠可得答案.【详解】(1)因为PA ⊥底面ABCD ,DE ⊂底面ABCD ,所以PA DE ⊥,因为E ,H 分别为正方形ABCD 的边AB ,BC 的中点, ,,AB DA BH AE HBA EAD ,所以Rt ABH Rt DAE ≌△△,所以BAH ADE ∠=∠,由90AED ADE ∠+∠= 所以90BAH AED ∠+∠=,所以DE AH ⊥,因为PA ⊂平面PAH ,AH ⊂平面PAH ,PA AH A ⋂=,所以DE ⊥平面PAH .(2)由(1)可知DE ⊥平面PAH ,设AH DE G ⋂=,如图,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角, 因为2PA AD ==,所以22PD =,5DE =,在Rt DAE 中,由于AG DE ⊥,所以2AD DG DE =⋅,所以45DG =⋅,所以5DG =, 所以在Rt PDG △中,105sin 522DG DPG PD ∠===,即直线PD 与平面PAH 所成线面角的正弦值为10.【点睛】本题主要考查线面垂直的证明、线面角的求法,对于线面角的求法的步骤,作:作(或找)出斜线在平面上的射影,证:证明某平面角就是斜线与平面所成的角;算:通常在垂线段、斜线段和射影所组成的直角三角形中计算.23.(1)证明见解析;(2)112. 【分析】(1)取PD 的中点M ,连接EM 、CM ,证明四边形CMEF 为平行四边形,可得出//EF CM ,利用线面平行的判定定理可证得结论成立;(2)连接AF ,取AD 的中点N ,连接EN ,由题意可知点P 、A 到平面BEF 的距离相等,并推导出EN ⊥平面ABCD ,可得出P BEF A BEF E ABF V V V ---==,利用锥体的体积公式可求得三棱锥P BEF -的体积.【详解】(1)如下图所示,取PD 的中点M ,连接EM 、CM ,因为四边形ABCD 为矩形,则//AD BC 且AD BC =,E 、M 分别为PA 、PD 的中点,则//EM AD 且12EM AD =, F 为BC 的中点,所以,//EM CF 且EM CF =,所以,四边形CMEF 为平行四边形,所以,//EF CM ,EF ⊄平面PCD ,CM ⊂平面PCD ,//EF ∴平面PCD ;(2)如下图所示,连接AF ,取AD 的中点N ,连接EN ,E 为PA 的中点,所以,点P 、A 到平面BEF 的距离相等, 所以,P BEF A BEF E ABF V V V ---==,E 、N 分别为PA 、AD 的中点,则//EN PD 且1122EN PD ==, PD ⊥平面ABCD ,EN ∴⊥平面ABCD ,ABF 的面积为111122222ABF S AB BF =⋅=⨯⨯=△, 因此,11111332212P BEF A BEF E ABF ABF V V V S EN ---===⋅=⨯⨯=△. 【点睛】方法点睛:常见的线面平行的证明方法有:(1)通过面面平行得到线面平行;(2)通过线线平行得到线面平行,在证明线线平行中,经常用到中位线定理或平行四边形的性质.24.(1)证明见详解;(2)22. 【分析】(1)连接BD 交AC 于点O ,连接OM ,根据题中条件,推出//OM PB ,再由线面平行的判定定理,即可证明结论成立;(2)根据题中条件,求出AMC S △,ABC S ,MD ;设点B 到平面AMC 的距离为d ,由B AMC M ABC V V --=,列出等式求解, 即可得出结果.【详解】(1)连接BD 交AC 于点O ,因为底面ABCD 为菱形,所以O 为AC 中点;连接OM ,因为M 是棱PD 的中点,所以//OM PB ,因为OM ⊂平面AMC ,PB ⊄平面AMC ,所以//PB 平面AMC ;(2)因为PD ⊥平面ABCD ,所以PD AD ⊥,PD DC ⊥,因为2AD PD ==,3BAD π∠=,所以22215AM MC ==+2BD =,23ABC π∠=, 则112sin 22sin 3223ABC S AB BC ABC π=⋅⋅∠=⋅⋅⋅=22cos 236AC AO AB π==⋅⋅= 所以22532MO MC CO =--=11232622AMC S AC MO =⋅⋅=⋅=, 设点B 到平面AMC 的距离为d ,由B AMC M ABC V V --=可得1133AMC ABC S d S MD ⋅=⋅, 则3226ABC AMC S MDd S ⋅===, 即点B 到平面AMC 的距离为22. 【点睛】方法点睛: 求解空间中点P 到平面的距离的方法:(1)空间向量的方法:建立适当的空间直角坐标系,求出平面的法向量m ,以及一条斜线的方向向量PA ,根据PA md m ⋅=,即可求出点到面的距离;(2)等体积法:先设所求点到面的距离,选几何体不同的定点为顶点,表示出该几何体的体积,列出等量关系,即可求出点到面的距离.25.(1)证明见解析;(2)证明见解析.【分析】(1)连接1AB 、1BC ,设11B C BC F =,连接EF ,可知点F 为1BC 的中点,利用中位线的性质可得出1//EF AB ,再利用线面平行的判定定理可证得结论成立; (2)推导出BE ⊥平面11AAC C ,可得出1BE AC ⊥,再由11BC AC ,利用线面垂直的判定定理可证得1AC ⊥平面1C EB . 【详解】(1)如下图所示,连接1AB 、1BC ,设11B C BC F =,连接EF ,在三棱柱111ABC A B C -中,四边形11BB C C 为平行四边形,因为11B C BC F =,在点F 为1BC 的中点,又因为点E 为AC 的中点,1//EF AB ∴, 1AB ⊄平面1C EB ,EF ⊂平面1C EB ,所以,1//AB 平面1C EB ;(2)AB BC =,E 为AC 的中点,BE AC ∴⊥,因为平面11A ACC ⊥平面ABC ,平面11A ACC ⋂平面ABC AC =,BE ⊂平面ABC , BE ∴⊥平面11A ACC ,1AC ⊂平面11A ACC ,1AC BE ∴⊥, 11BC AC ⊥,1BE BC B =,1AC ∴⊥平面1C EB . 【点睛】方法点睛:证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.26.(1)证明见解析;(226.。
2011高考数学立体几何大题汇总
2011高考数学立体几何大题汇总D因此可取n=(3,1,3)设平面PBC 的法向量为m ,则 00m PB m BC ⋅=⋅=可取m=(0,-1,3-)27cos ,727m n ==-故二面角A-PB-C 的余弦值为277-2如图,四棱锥S ABCD -中, AB CD ⊥,BC CD ⊥,侧面SAB 为等边三角形,2,1AB BC CD SD ====. (Ⅰ)证明:SD SAB ⊥平面;(Ⅱ)求AB 与平面SBC 所成角的大小.解法一: (I )取AB 中点E ,连结DE ,则四边形BCDE为矩形,DE=CB=2, 连结SE ,则, 3.SE AB SE ⊥= 又SD=1,故222ED SE SD =+,所以DSE ∠为直角。
…………3分 由,,AB DE AB SE DE SE E ⊥⊥=,得AB ⊥平面SDE ,所以AB SD ⊥。
SD 与两条相交直线AB 、SE 都垂直。
所以SD ⊥平面SAB 。
…………6分(II )由AB ⊥平面SDE 知, 平面ABCD ⊥平面SED 。
作,SF DE ⊥垂足为F ,则SF ⊥平面ABCD ,3SD SE SF DE⨯== 作FG BC ⊥,垂足为G ,则FG=DC=1。
连结SG ,则SG BC ⊥, 又,BC FG SG FG G ⊥=,故BC ⊥平面SFG ,平面SBC ⊥平面SFG 。
…………9分作FH SG ⊥,H 为垂足,则FH ⊥平面SBC 。
37SF FG FH SG ⨯==,即F 到平面SBC 的距离为217 由于ED//BC ,所以ED//平面SBC ,E 到平面SBC 的距离d 也有217 设AB 与平面SBC 所成的角为α,则2121sin arcsin 77d EBαα=== …………12分解法二:以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C —xyz 。
设D (1,0,0),则A (2,2,0)、B (0,2,0)。
2011年平面向量高考题及答案
第五章 平面向量【考试要求】(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念. (2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理.理解平面向量的坐标的概念,掌握平面向量的坐标运算.(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.(6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用掌握平移公式.(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.【考题】1、 (全国Ⅰ新卷文2)a ,b 为平面向量,已知a=(4,3),2a+b=(3,18),则a ,b 夹角的余弦值等于( )A .865 B .865- C .1665 D .1665- 2、 (重庆卷理2)已知向量a ,b 满足0,1,2,a b a b •===,则2a b -=( )A . 0B .C . 4D . 83、 (重庆卷文3)若向量a=(3,m ),b=(2,-1),a·b=0,则实数m 的值为( )A .32-B .32C .2D .6 4、 (安徽卷理3文3)设向量()1,0=a ,11,22⎛⎫=⎪⎝⎭b ,则下列结论中正确的是( )A .=a bB .2•=a b C .-a b 与b 垂直 D .a ∥b5、 (湖北卷理3)在ABC ∆中,a=15,b=10,A=60°,则cos B =( )A .-3 B .3C .-3D .36、 (北京卷文4)若a,b 是非零向量,且a b ⊥,a b ≠,则函数()()()f x xa b xb a =+⋅-是( )A .一次函数且是奇函数B .一次函数但不是奇函数C .二次函数且是偶函数D .二次函数但不是偶函数7、 (湖南卷理4)在Rt ABC ∆中,C ∠=90°AC=4,则AB AC ⋅等于( )A .-16B .-8C .8D .168、 (广东卷文5)若向量a=(1,1),b=(2,5),c =(3,x )满足条件 (8a-b)·c=30,则x =( )A .6B .5C .4D .39、 (四川卷理5文6)设点M 是线段BC 的中点,点A 在直线BC 外,216,BC AB AC AB AC =∣+∣=∣-∣,则AM ∣∣=( )A .8B .4C . 2D .110、(湖北卷理5文8)已知ABC ∆和点M 满足0MA MB MC --→--→--→+=+.若存在实数m 使得AB AC AM m --→--→--→+=成立,则m=( )A .2B .3C .4D .511、(湖南卷文6)若非零向量a ,b 满足||||,(2)0a b a b b =+⋅=,则a 与b 的夹角为( )A . 300B . 600C . 1200D . 1500 12、(北京卷理6)a ,b 为非零向量。
高考数学第二轮复习 立体几何教学案
2011年高考第二轮专题复习(教学案):立体几何 第1课时 直线、平面、空间几何体考纲指要:立体几何在高考中占据重要的地位,考察的重点及难点是直线与直线、直线与平面、平面与平面平行的性质和判定,而查空间线面的位置关系问题,又常以空间几何体为依托,因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式。
考点扫描:1.空间两条直线的位置关系:(1)相交直线;(2)平行直线;(3)异面直线。
2.直线和平面的位置关系:(1)直线在平面内;(2)直线和平面相交;(3)直线和平面平行。
3.两个平面的位置关系有两种:(1)两平面相交;(2)两平面平行。
4.多面体的面积和体积公式,旋转体的面积和体积公式。
考题先知:例1.在平面几何中,我们学习了这样一个命题:过三角形的内心作一直线,将三角形分成的两部分的周长比等于其面积比。
请你类比写出在立体几何中,有关四面体的相似性质,并证之。
解:通过类比,得命题:过四面体的内切球的球心作一截面,将四面体分成的两部分的表面积比等于其体积比。
证明:如图,设四面体P-ABC 的内切球的球心为O ,过O 作截面DEF交三条棱于点E 、D 、F ,记内切圆半径为r,则r 也表示点O 到各面的距离,利用体积的“割补法”知:PDF O PEFO PDE O DEF P V V V V ----++==r S r S r S PDF PEF PDE ⋅+⋅+⋅313131BCFD O DEF O ACFE O ABC O ABDE O ABC DEF V V V V V V ------++++==r S r S r S r S r S BCFD DEF ACFE ABC ABDE ⋅+⋅+⋅+⋅+⋅3131313131,从而21表表S S V V ABC DEF DEF P =--。
例2.(1)当你手握直角三角板,其斜边保持不动,将其直角顶点提起一点,则直角在平面内的正投影是锐角、直角 还是钝角?(2)根据第(1)题,你能猜想某个角在一个平面内的正投影一定大于这个角吗?如果正确,请证明;如果错误,则利用下列三角形举出反例:△ABC 中,2,6==AC AB ,13-=BC ,以∠BAC 为例。
2011届高考数学复习资料汇编第7单元立体几何(真题解析+最新模拟)
2011年最新高考+最新模拟——立体几何1.【2010·浙江理数】设,是两条不同的直线,是一个平面,则下列命题正确的是()A.若,,则B.若,,则C.若,,则D.若,,则【答案】B【解析】可对选项进行逐个检查.本题主要考察了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考察,属中档题.2.【2010·全国卷2理数】与正方体的三条棱、、所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M,N,Q,连PM,PN,PQ,由三垂线定理可得,PN⊥PM⊥;PQ⊥AB,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ,即P到三条棱AB、CC1、A1D1.所在直线的距离相等所以有无穷多点满足条件,故选D.3.【2010·全国卷2理数】已知正四棱锥中,,那么当该棱锥的体积最大时,它的高为()A.1B.C.2D.3【答案】C【解析】本试题主要考察椎体的体积,考察告辞函数的最值问题.设底面边长为a,则高所以体积,设,则,当y取最值时,,解得a=0或a=4时,体积最大,此时,故选C.4.【2010·陕西文数】若某空间几何体的三视图如图所示,则该几何体的体积是()A.2B.1C.D.【答案】B【解析】本题考查立体图形三视图及体积公式如图,该立体图形为直三棱柱,所以其体积为.5.【2010·辽宁文数】已知是球表面上的点,,,,,则球的表面积等于()A.4B.3C.2D.【答案】A【解析】由已知,球的直径为,表面积为6.【2010·辽宁理数】有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是()A.(0,)B.(1,)C.(,)D.(0,)【答案】A【解析】本题考查了学生的空间想象能力以及灵活运用知识解决数学问题的能力.根据条件,四根长为2的直铁条与两根长为a的直铁条要组成三棱镜形的铁架,有以下两种情况:(1)地面是边长为2的正三角形,三条侧棱长为2,a,a,如图,此时a可以取最大值,可知AD=,SD=,则有<2+,即,即有a<(2)构成三棱锥的两条对角线长为a,其他各边长为2,如图所示,此时a>0;综上分析可知a∈(0,)7.【2010·全国卷2文数】与正方体ABCD—A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个【答案】D【解析】本题考查了空间想象能力.∵到三条两垂直的直线距离相等的点在以三条直线为轴,以正方体边长为半径的圆柱面上,∴三个圆柱面有无数个交点.8.【2010·全国卷2文数】已知三棱锥中,底面为边长等于2的等边三角形,垂直于底面,=3,那么直线与平面所成角的正弦值为()A. B. C.D.【答案】D【解析】本题考查了立体几何的线与面、面与面位置关系及直线与平面所成角.过A作AE垂直于BC交BC于E,连结SE,过A作AF垂直于SE交SE于F,连BF,∵正三角形ABC,∴ E为BC中点,∵ BC⊥AE,SA⊥BC,∴ BC⊥面SAE,∴ BC⊥AF,AF⊥SE,∴ AF⊥面SBC,∵∠ABF为直线AB与面SBC所成角,由正三角形边长3,∴,AS=3,∴ SE=,AF=,∴.9.【2010·江西理数】过正方体的顶点A作直线L,使L与棱,,所成的角都相等,这样的直线L可以作()A.1条B.2条C.3条D.4条【答案】D【解析】考查空间感和线线夹角的计算和判断,重点考查学生分类、划归转第二类:化的能力.第一类:通过点A位于三条棱之间的直线有一条体对角线AC1,在图形外部和每条棱的外角和另2条棱夹角相等,有3条,合计4条.10.【2010·安徽文数】一个几何体的三视图如图,该几何体的表面积是()A.372B.360C.292D.280【答案】B【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和. 把三视图转化为直观图是解决问题的关键.又三视图很容易知道是两个长方体的组合体,画出直观图,得出各个棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的4个侧面积之和..11.【2010·重庆文数】到两互相垂直的异面直线的距离相等的点()A.只有1个B.恰有3个C.恰有4个D.有无穷多个【答案】D【解析】放在正方体中研究,显然,线段、EF、FG、GH、HE的中点到两垂直异面直线AB、CD的距离都相等,所以排除A、B、C,选D.亦可在四条侧棱上找到四个点到两垂直异面直线AB、CD的距离相等.12.【2010·浙江文数】若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()A.cm3B.cm3C.cm3D.cm3【答案】B【解析】本题主要考察了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题.13.【2010·山东文数】在空间,下列命题正确的是()A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行【答案】D14.【2010·北京文数】如图,正方体的棱长为2,动点E、F 在棱上.点Q是CD的中点,动点P在棱AD上,若EF=1,DP=x,E=y(x,y 大于零),则三棱锥P-EFQ的体积()A.与x,y都有关;B.与x,y都无关;C.与x有关,与y无关;D.与y有关,与x无关;【答案】C15.【2010·北京文数】一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该集合体的俯视图为:()【答案】C16.【2010·北京理数】如图,正方体ABCD-的棱长为2,动点E、F在棱上,动点P,Q分别在棱AD,CD上,若EF=1,E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ的体积()A.与x,y,z都有关B.与x有关,与y,z无关C.与y有关,与x,z无关D.与z有关,与x,y无关【答案】D17.【2010·四川理数】半径为的球的直径垂直于平面,垂足为,是平面内边长为的正三角形,线段、分别与球面交于点M,N,那么M、N两点间的球面距离是()A. B.C. D.【答案】A【解析】由已知,AB=2R,BC=R,故tan∠BAC=,cos∠BAC=,连结OM,则△OAM为等腰三角形,AM=2AOcos∠BAC=,同理AN=,且MN∥CD ,而AC=R,CD=R,故MN:CD=AN:AC MN=,连结OM、ON,有OM=ON=R,于是cos∠MON=,所以M、N两点间的球面距离是 .18.【2010·广东理数】如图1,△ ABC为三角形,////,⊥平面ABC 且3== =AB,则多面体△ABC -的正视图(也称主视图)是【答案】D19.【2010·广东文数】20.【2010·福建文数】若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于 ( )A. B.2C. D.6【答案】D【解析】本题考查立体几何中的三视图,考查同学们识图的能力、空间想象能力等基本能力.由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为,侧面积为,选D.21.【2010·全国卷1文数】已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A. B. C. D.【答案】B【解析】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为,则有,当直径通过AB与CD的中点时,,故.22.【2010·全国卷1文数】正方体-中,与平面所成角的余弦值为()A. B. C. D.【答案】D【解析】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D到平面AC的距离是解决本题的关键所在,这也是转化思想的具体体现.方法一:因为BB1//DD1,所以B与平面AC所成角和DD1与平面AC所成角相等,设DO⊥平面AC,由等体积法得,即.设DD1=a,则,.所以,记DD与平面AC所成角为,则1,所以.方法二:设上下底面的中心分别为;与平面AC所成角就是B与平面AC所成角,.23.【2010·全国卷1文数】直三棱柱中,若,,则异面直线与所成的角等于()A.30°B.45°C.60°D.90°【答案】C【解析】本小题主要考查直三棱柱的性质、异面直线所成的角、异面直线所成的角的求法.延长CA到D,使得,则为平行四边形,就是异面直线与所成的角,又三角形为等边三角形,.24.【2010·湖北文数】用、、表示三条不同的直线,表示平面,给出下列命题:①若∥,∥,则∥;②若⊥,⊥,则⊥;③若∥,∥,则∥;④若⊥,⊥,则∥.A. ①②B. ②③C. ①④ D.③④25.【2010·山东理数】在空间,下列命题正确的是()A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行【答案】D【解析】考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,属基础题.由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以得出答案.26.【2010·福建理数】所以∥,故∥∥,所以选项A、C正确;因为平面,∥,所以平面,又平面,故,所以选项B也正确,故选D.【命题意图】本题考查空间中直线与平面平行、垂直的判定与性质,考查同学们的空间想象能力和逻辑推理能力.27.【2010·湖北省武汉市四月调研】若a、b是异面直线,、是两个不同平面,,则()A.l与a、b分别相交 B.l与a、b都不相交C.l至多与a、b中一条相交 D.l至少与a、b中的一条相交【答案】B【解析】假设l与a、b均不相交,则l∥a,l∥b,从而a∥b与a、b是异面直线矛盾.故l至少与a、b中的一条相交选D.28.【2010·北京西城一模】如图,平面平面,=直线,是内不同的两点,是内不同的两点,且直线,分别是线段的中点.下列判断正确的是()A.当时,两点不可能重合B.两点可能重合,但此时直线与不可能相交C.当与相交,直线平行于时,直线可以与相交D.当是异面直线时,直线可能与平行【答案】B【解析】若两点重合,由知,从而平面,故有,故B正确.29.【2010·宁波市二模】已知表示两个互相垂直的平面,表示一对异面直线,则的一个充分条件是()A. B. C. D.【答案】D选择【解析】依题意,a⊥α ,则a平行β或在β内,由于b⊥β,则,D.30.【2010·上海市浦东新区4月二模】“直线与平面没有公共点”是“直线与平面平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】C【解析】由直线与平面平行的定义知,选C.31.【2010··北京崇文一模】已知是两条不同直线,是三个不同平面,下列命题中正确的为 ( )A.若则 B.若则C.若,则 D.若则【答案】B【解析】A中可以是任意关系;B正确;C中平行于同一平面,其位置关系可以为任意.D中平行于同一直线的平面可以相交或者平行.32.【2010·甘肃省部分普通高中第二次联合考试】已知直线,平面,且,给出下列命题:①若∥,则m⊥;②若⊥,则m∥;③若m⊥,则∥;④若m∥,则⊥其中正确命题的个数是()A.1 B.2 C.3D.4【答案】B①正确;对【解析】对于①∵,若∥,∴m⊥β,所以m⊥,于②,若⊥,则m∥β或m在β内,m与l可以平行可以异面还可以相交,所以②错;对于③∵,若m⊥,则与β可以相交,③错;对于④若m ∥,则l⊥,∴⊥,④正确,选择B.33.【2010·湖北六市四月联考】给出互不相同的直线、、和平面、,下列四个命题:①若,,,则与不共面;②若、是异面直线,,,且,,则;③若,,,,,则;④若,,,则其中真命题有()A.4个B.3个C.2个 D.1个【答案】B【解析】由异面直线的判定定理,易知①是真命题;由线面平行的性质,存在直线,,使得,,∵、是异面直线,∴与是相交直线,又,,∴,,故,②是真命题;由线面平行的性质和判定,知③是真命题;满足条件,,的直线、或相交或平行或异面,故④是假命题,于是选B.34.【2010•河南省郑州市第二次质检】已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γβ⊥γ”是真命题.如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有()A.0个 B.1个 C.2个 D.3个【答案】C【解析】依题意,α与β换成直线后是真命题,γ与β换成直线后是真命题,γ与α换成直线后是假命题,选择C.35.【2010•宁波二模】已知表示两个互相垂直的平面,表示一对异面直线,则的一个充分条件是()A. B. C. D.【答案】D选择【解析】依题意,a⊥α ,则a平行β或在β内,由于b⊥β,则,D.36.【2010•绵阳三诊】已知,表示两个不同的平面,是一条直线且,则:“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】若,因是一条直线且,由面面垂直的判定定理,知,反之,若是一条直线且,当时,与平面的位置关系可以为:相交或平行或,故“”是“”的必要不充分条件,选B.37.【2010·吉林市下学期期末质量检测】已知a,b表示两条不同的直线,α、β表示两个不同的平面,则下列命题中正确的是()A.若B.若所成角等于b与β所成角,则a//b.C.若D.若【答案】D【解析】对于选项A:直线a,b可能平行或异面;对于选项B:只有当平面α与β平行时,才有a//b,故B不对;对于选项C,有可能直线b在平面β内,故C错;故选D.38.【2010·山东德州五月质检】在空间中,给出下面四个命题:(1)过一点有且只有一个平面与已知直线垂直;(2)若平面外两点到平面的距离相等,则过两点的直线必平行于该平面;(3)两条相交直线在同一平面的射影必为相交直线;(4)两个相互垂直的平面,一个平面内的任意一直线必垂直于另一平面内的无数条直线.其中正确的是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【答案】D【解析】对于(2)可能该直线与平面相交;对于(3)可能两相交直线的射影为一条直线或一点与过该点的一条直线,故选D.39.【2010·江西省重点中学第二次联考】已知一个确定的二面角,和是空间的两条异面直线,在下面给出的四个条件中,能使和所成的角也确定的是()A.∥且∥ B.∥且C.且 D.且【答案】D【解析】因为二面角的大小是确定的,所以当且时,和所成的角与二面角的大小相等或互补,故而和所成的角也确定,选D.40.【2010·崇文一模】已知是两条不同直线,是三个不同平面,下列命题中正确的为 ( )A.若则 B.若则C.若,则 D.若则【答案】D【解析】A中,垂直于同一平面的平面可能平行或者相交;B中,平行于同一直线的平面可能平行或者相交;C中,平行于同一平面的直线可能是任意关系;D中,垂直于同一平面的直线平行,正确.41.【2010·上海市长宁区二次模】已知α,β表示两个不同的平面,m为平面α内的一条直线,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】根据是平面与平面垂直的判定定理知:由m⊥βα⊥β,反之不成立.故选B.42.【2010·河北省衡水中学一模】正四棱锥P—ABCD的底面积为3,体积为E为侧棱PC的中点,则PA与BE所成的角为( )A.B. C.D.【答案】B【解析】由V==×3×h,所以h=,从而侧棱长PA=,取AC中点O,连OE,则OE∥PA,且OE=,于是∠OEB为异面直线PA与BE所成的角或其补角.在直角三角形BOE中,BO=,所以tan∠OEB=,所以∠OEB=.43.【2010·湖北省襄樊五中5月调研测试】如图,正三棱锥A-BCD中,E在棱AB上,F在棱CD上.并且==λ(0<λ<+∞),设α为异面直线EF与AC所成的角,β为异面直线EF与BD所成的角,则α+β的值是()A. B. C.D.与λ的值有关【答案】C【解析】利用特殊化思想,当λ=1,即E、F分别为AB、CD中点时,取BC中点M,则EM∥AC,FM∥BD,又AC⊥BD,所以三角形EMF为直角三角形,所以α+β=.44.【2010·甘肃省兰州市五月实战模拟】二面角,A,B是棱l 上的两点,AC,BD分别在平面内,AC⊥l,BD⊥l,且AC=AB=1,BD=2,则CD 的长等于()A.2 B.C. D.【答案】A【解析】过B作BE∥AC,且BE=1,则∠DBE=60°,从而DE==,在三角形CDE 中,CD==2.45.【2010·泸州二诊】如图,在正三棱柱中,.若二面角的大小为,则点到平面的距离为()A. B. C. D.【答案】A【解析】取中点,连结,,则是二面角的平面角. ∵,∴,∴在中,,,设点到平面的距离为,则由得,,解得,选A.46.【2010·湖北省年普通高等学校招生全国统一考试模拟训练(二)】如图,在直三棱柱ABC-A1B1C1中,AB=1,AC=2,BC=,D,E分别是AC1和BB1的中点,则直线DE与平面BB1C1C所成的角为()A. B. C. D.【答案】A【解析】取AC中点F,连DF,BF,则易知BF∥DE,过F作FH⊥BC于H,则FH⊥平面BCC1B1,则角∠FBH为所求,在直角三角形FHB中,FH=,BF=AC=1,所以∠FBH=30°.47.【2010·湖南师大附中第二次月考试卷】如图,在正三棱柱ABC-A1B 1 C1中,点M为侧棱AA1上一动点,已知△BCM面积的最大值是,二面角M―BC―A 的最大值是,则该三棱柱的体积等于()A. B. C.D.【答案】A【解析】当点M与点A1重合时,△BCM的面积为最大值,此时二面角M―BC―A也为最大.由已知可得,,所以底面正三角形ABC 的边长为2,高为,从而正三棱柱的高AA1=.所以正三棱柱的体积,故选A.48.【2010·曲靖一中高考冲刺卷数学(八)】如图,正方体中,M,N分别为AB,DC中点,则直线MC与所成角的余弦值为()A. B. C. D.【答案】B【解析】连NA,D1A,则∠D1NA为所求,在三角形D1NA中由余弦定理可求得cos∠D1NA=.49.【2010·曲靖一中高考冲刺卷数学(四)】一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是那么这个三棱柱的体积是()A. B. C. D.【答案】D【解析】因为球的体积为π,柱体的高为2r=4,又正三棱柱的底面三角形内=×(4)2×4=.切圆半径与球半径相等,r=2,所以底面边长a=4,所以V柱50.【2010·内蒙古赤峰市四月统一考试】已知正三棱锥的侧棱长是底面边长的2倍,则侧棱与底面所成角的余弦值等于()A. B. C. D .【答案】A【解析】设底面边长AB=1,则侧棱长SA=2,过顶点S作底面的垂线,垂足O 为底面中心,连结AO,则∠SAO为所求,因为AO=,所以cos∠SAO==.51.【2010·上海市奉贤区4月调研】已知一球半径为2,球面上A、B两点的球面距离为,则线段AB的长度为()A.1B.C.2D. 2【答案】C【解析】由l=αR=α×2=得,α=,从而知∠AOB=,即△AOB为正三角形,所以AB=OA=R=2.52.【2010·石家庄市教学质量检测(二)】如图,在正三棱锥A-BCD中,E、F分别是AB、BC的中点,EF⊥DE,且BC=1,则正三棱锥A-BCD的体积是()A. B. C. D.【答案】B【解析】EF∥AC,所以AC⊥DE,又AC⊥BD,所以AC⊥平面ABD,所以侧面三角形为等腰直角三角形,AB=AC=AD=,V=×()3=.53.【2010·甘肃省部分普通高中高三第二次联合考试】如图,在半径为3的球面上有三点,,球心到平面的距离是,则两点的球面距离是()A.B.C. D.【答案】B【解析】取AC中点H,连OH,则OH垂直于平面ABC,又OA=3,所以AC=2AH=CH=2×=3,又,BC=3,从而三角形OBC为正三角形,∠BOC=60°,所以球面距离为l=×3=.54.【2010·成都石室中学高三“三诊”模拟考试】如图所示,在正三棱锥S—ABC中,M、N分别是SC、BC的中点,且,若侧棱则正三棱锥S—ABC外接球的表面积是()A.12π B.32π C.36π D.48π【答案】C【解析】因为MN⊥AM,所以SB⊥AM,又SB⊥AC,所以侧面三角形为等腰直角三角形,所以SA=SB=SC=2,所以2R=×(2)=6,所以S=π(2R)2=36π.55.【河南省郑州市2010年高中毕业班第二次质量预测】过球的一条半径的中点作垂直于这条半径的球的截面,则此截面面积是球表面积的()A. B. C.D.【答案】B【解析】易求得截面圆半径为球半径的倍,所以==.56.【2010·唐山三模】一个与球心距离为1的平面截球所得的圆面面积为4π,则球的表面积为( )A.5πB.17πC.20π D.68π【答案】C【解析】截面圆的半径为2,所以球半径R==,所以S=20π.57.【2010·成都市第37中学五月考前模拟】如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C. D.【答案】A【解析】过A、B两点分别作AM、BN垂直于EF,垂足分别为M、N,连结DM、CN,可证得DM⊥EF、CN⊥EF,多面体ABCDEF分为三部分,多面体的体积V为,∵,,∴,作NH垂直于点H,则H为BC的中点,则,∴,∴,, ,∴,故选A .58.【2010·内蒙古赤峰市一模】四面体ABCD 的外接球球心在CD 上,且CD=2,.在外接球球面上A 、B 两点间的球面距离是( )A .B .C .D .【答案】C【解析】由题意知半径R=1,所以∠AOB=,从而球面距离为l=×1=.59.【2010·江西赣州十一县(市)第二学期期中联考】棱长为1的正方体的8个顶点都在球O 的表面上,E 、F 分别是棱AB 、的中点,则经过E 、F 的球截面的面积最小值是( ) A . B . C . D .【答案】C【解析】当截面圆的圆心在直线EF上时,其面积最小.因为EF=,可求得球心O到直线EF的距离为,所以截面圆的半径r===,所以S=.60.【2010·上海文数】已知四棱椎的底面是边长为6 的正方形,侧棱底面,且,则该四棱椎的体积是.【答案】96【解析】考查棱锥体积公式.61.【2010·湖南文数】图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm.【答案】462.【2010·浙江理数】若某几何体的三视图(单位:cm)如上图(右)所示,则此几何体的体积是___________.【答案】144【解析】图为一四棱台和长方体的组合体的三视图,由卷中所给公式计算得体积为144,本题主要考察了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题.63.【2010·辽宁理数】如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为___ ___.【答案】【解析】本题考查了三视图视角下多面体棱长的最值问题,考查了同学们的识图能力以及由三视图还原物体的能力.由三视图可知,此多面体是一个底面边长为2的正方形且有一条长为2的侧棱垂直于底面的四棱锥,所以最长棱长为.64.【2010·江西理数】如图,在三棱锥中,三条棱,,两两垂直,且>>,分别经过三条棱,,作一个截面平分三棱锥的体积,截面面积依次为,,,则,,的大小关系为 .【答案】【解析】考查立体图形的空间感和数学知识的运用能力,通过补形,借助长方体验证结论,特殊化,令边长为1,2,3得.65.【2010·北京文数】如图放置的边长为1的正方形PABC沿x轴滚动.设顶点p(x,y)的纵坐标与横坐标的函数关系是,则的最小正周期为;在其两个相邻零点间的图像与x轴所围区域的面积为 .【答案】4【解析】“正方形PABC沿x轴滚动”包含沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动是指以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续,类似地,正方形PABC可以沿着x轴负方向滚动.66.【2010`四川理数】如图,二面角的大小是60°,线段.,与所成的角为30°.则与平面所成的角的正弦值是 .【答案】【解析】过点A作平面β的垂线,垂足为C,在β内过C作l的垂线.垂足为D,连结AD,由三垂线定理可知AD⊥l,故∠ADC为二面角的平面角,为60°,又由已知,∠ABD=30°,连结CB,则∠ABC为与平面所成的角,设AD=2,则AC=,CD=1,AB==4,∴sin∠ABC=.67.【2010·天津文数】一个几何体的三视图如图所示,则这个几何体的体积为 .【答案】3【解析】本题主要考查三视图的基础知识,和主题体积的计算,属于容易题. 正视图和侧视图的高是几何体的高,由俯视图可以确定几何体底面的形状,本题也可以将几何体看作是底面是长为3,宽为2,高为1的长方体的一半.由俯视图可知该几何体的底面为直角梯形,则正视图和俯视图可知该几何体的高为1,结合三个试图可知该几何体是底面为直角梯形的直四棱柱,所以该几何题的体积为.68.【2010·天津理数】一个几何体的三视图如图所示,则这个几何体的体积为 .【答案】【解析】本题主要考查三视图的概念与柱体、椎体体积的计算,属于容易题.利用俯视图可以看出几何体底面的形状,结合正视图与侧视图便可得到几何体的形状,求锥体体积时不要丢掉哦.由三视图可知,该几何体为一个底面边长为1,高为2的正四棱柱与一个底面边长为2,高为1的正四棱锥组成的组合体,因为正巳灵珠的体积为2,正四棱锥的体积为,所以该几何体的体积V=2+= .69.【2010·湖北文数】圆柱形容器内盛有高度为3cm的水,若放入三个相同的珠(球的半么与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是__ __cm.【答案】4【解析】设球半径为r,则由可得,解得r=4.70.【2010·湖南理数】图3中的三个直角三角形是一个体积为20的几何体的三视图,则.71.【2010·福建理数】若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于.【答案】【解析】本题考查立体几何中的三视图,考查同学们识图的能力、空间想象能力等基本能力.由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为,侧面积为,所以其表面积为.72.【2010·甘肃省兰州市五月实战模拟】已知S—ABC是正四面体,M为AB 之中点,则SM与BC所成的角为 .【答案】arccos【解析】设正四面体边长为1,取AC中点N,则MN∥BC,∠SMN为异面直线SM与BC所成的角或其补角,且MN=,SM=SN=,由余弦定理可得cos∠SMN=.73.【2010·石家庄市质量检测(二)】如图,在底面边长为2的正三棱柱ABC-A1B1C1中,若二面角C1-AB-C的大小为60,则点C到平面ABC1的距离为.【答案】【解析】过点C作CD⊥AB交AB于D,连结C1D,则由三垂线定理知∠CDC1为二面角的平面角,则∠CDC1=60°.过点C作CH⊥C1D,交C1D于H,则CH⊥平面ABC1,故CH为所求,在三角形CC1D中,CD=,从而CC1=3,从而CH=.74.【2010·云南曲靖一中高考冲刺卷六】正四面体外接球的体积为,则点A到平面BCD的距离为__________________.【答案】【解析】V=,所以R=,过A作AH⊥平面BCD,则垂足为底面中心,则AH为所求.又由正四面体与外接球的关系知,AH=R=.75.【2010·上海市长宁区二模】棱长为a的正方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E、F分别是棱AA1、DD1的中点,则直线EF被球O截得的线段长是_________.【答案】a【解析】由题意知球心为正方体对角线的中点,球半径为a,球心到直线EF 的距离为,所以直线EF被球O截得的线段长l=2=a.76.【2010·邯郸市二模】三棱锥A—BCD,AB=a,CD=b,∠ABD=∠BDC,M,N 分别为AD,BC的中点,P为BD上一点,则MP+NP 的最小值是 .。
2011年数学高考平面向量详解
九、平面向量一、选择题1.(四川理4)如图,正六边形ABCDEF 中,BA CD EF ++=A .0B .BEC .ADD .CF【答案】D解析:BA CD EF BA AF EF BF EF CE EF CF ++=++=+=+=2.(山东理12)设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312AA A A λ= (λ∈R ),1412AA A A μ=(μ∈R ),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知平面上的点C ,D 调和分割点A ,B 则下面说法正确的是 A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点 C .C ,D 可能同时在线段AB 上 D .C ,D 不可能同时在线段AB 的延长线上 【答案】D解析:根据题意可知112c d +=,若C 或D 是线段AB 的中点,则12c =,或12d =,矛盾; 若C,D 可能同时在线段AB 上,则01,01,c d <<<<则112c d+>矛盾,若C,D 同时在线段AB 的延长线上,则1,1c d >>,1102c d<+<,故C,D 不可能同时在线段AB 的延长线上,答案选D 。
3.(全国新课标理10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,)3p a b πθ+>⇔∈ 22:||1(,]3p a b πθπ+>⇔∈13:||1[0,)3p a b πθ->⇔∈ 4:||1(,]3p a b πθπ->⇔∈其中真命题是(A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p 【答案】A解析:1a b +==得, 1cos 2θ>-,20,3πθ⎡⎫⇒∈⎪⎢⎣⎭。
由1a b -==>得1cos 2θ< ,3πθπ⎛⎤⇒∈ ⎥⎝⎦。
2011高考数学平面向量集锦
2011高考数学平面向量集锦一、填空题1.(安徽)13.在四面体O A B C -中,O A O B O C D === ,,,a b c 为B C 的中点,E 为A D 的中点,则O E =111244++a b c(用,,a b c 表示).2.(北京)11.已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是3-3.(北京)12.在A B C △中,若1tan 3A =,150C = ,1B C =,则A B = 1024.(广东)10.若向量a 、b 满足b a b a 与,1==的夹角为120°,则b a b a ··+= 21.5.(湖南)12.在A B C △中,角A B C ,,所对的边分别为a b c ,,,若1a =,b =7,3c =,则B = 5π6 .6.(湖南文)12.在A B C △中,角A B C ,,所对的边分别为a b c ,,,若1a =,3c =,π3C =,则A = π6 .7.(江西)15.如图,在A B C △中,点O 是B C 的中点,过点O 的直线分别交直线A B ,A C 于不同的两点M N ,,若AB m AM = ,AC n AN =,则m n +的值为 2 . 8.(江西文)13.在平面直角坐标系中,正方形O A B C 的对角线O B 的两端点分别为(00)O ,,(11)B ,,则AB AC =1.9.(陕西)15.如图,平面内有三个向量OA 、OB 、OC ,其中与OA 与OB 的夹角为120°,OAOA +μOB (λ,μ∈R ),与OC 的夹角为30°,且|OA |=|OB |=1,|OC |=32,若OC =λ则λ+μ的值为 6 .10.(天津)15.如图,在A B C △中,12021BAC AB AC ∠===,,°,D 是边B C 上一点,2D C B D =,则A D B C =·83- .11.(天津文)(15)在A B C △中,2A B =,3A C =,D 是边B C 的中点,则AD BC =52.12.(重庆文)(13)在△ABC 中,AB =1,B C =2,B =60°,则AC =3。
2011届高考数学平面向量3
2011届高考数学平面向量3平面向量一、本知识结构:二、重点知识回顾1向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向2向量的表示方法:①用有向线段表示;②用字母、等表示;③平面向量的坐标表示:分别取与轴、轴方向相同的两个单位向量、作为基底。
任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得,叫做向量的(直角)坐标,记作,其中叫做在轴上的坐标,叫做在轴上的坐标,特别地,,,。
;若,,则,3零向量、单位向量:①长度为0的向量叫零向量,记为;②长度为1个单位长度的向量,叫单位向量(注:就是单位向量)4平行向量:①方向相同或相反的非零向量叫平行向量;②我们规定与任一向量平行向量、、平行,记作∥∥共线向量与平行向量关系:平行向量就是共线向量相等向量:长度相等且方向相同的向量叫相等向量6向量的加法、减法:①求两个向量和的运算,叫做向量的加法。
向量加法的三角形法则和平行四边形法则。
②向量的减法向量加上的相反向量,叫做与的差。
即:᠄ = + (᠄ );差向量的意义:= , = , 则= ᠄ ③平面向量的坐标运算:若,,则,,。
④向量加法的交换律:+ = + ;向量加法的结合律:( + ) + = + ( + ) 7.实数与向量的积:实数λ与向量的积是一个向量,记作:λ (1)|λ |=|λ|| |;(2)λ>0时λ 与方向相同;λ<0时λ 与方向相反;λ=0时λ = ;(3)运算定律λ(μ )=(λμ) ,(λ+μ) =λ +μ ,λ( + )=λ +λ 8.向量共线定理向量与非零向量共线(也是平行)的充要条是:有且只有一个非零实数λ,使=λ 。
9.平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1 +λ2 。
(1)不共线向量、叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量在给出基底、的条下进行分解;(4)基底给定时,分解形式惟一λ1,λ2是被,,唯一确定的数量。
[原创]2011届高考数学第二轮专题复习系列(5)-- 平面向量
高三数学第二轮专题复习系列(5)--平面向量一、本章知识结构:二、高考要求1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
2、掌握向量的加法和减法的运算法则及运算律。
3、掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。
4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。
7、掌握正、余弦定理,并能初步运用它们解斜三角形。
8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。
三、热点分析对本章内容的考查主要分以下三类:1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题.2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主.3.向量在空间中的应用(在B类教材中).在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质.在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。
对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。
本章的另一部分是解斜三角形,它是考查的重点。
总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。
考查的重点是基础知识和基本技能。
四、复习建议由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法则、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。
2011年高考数学试题分类汇编 立体几何
四、立体几何 一、选择题1.(重庆理9)高为24的四棱锥S-ABCD 的底面是边长为1的正方形,点S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为A .24 B .22C .1D .2【答案】C2.(浙江理4)下列命题中错误的是A .如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面αγ⊥平面,平面βγ⊥平面,=l αβ⋂,那么l γ⊥平面D .如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β【答案】D3.(四川理3)1l ,2l ,3l是空间三条不同的直线,则下列命题正确的是 A .12l l ⊥,23l l ⊥13//l l ⇒ B .12l l ⊥,23//l l ⇒13l l ⊥C .233////l l l ⇒1l ,2l ,3l共面D .1l,2l,3l共点⇒1l ,2l ,3l共面【答案】B【解析】A 答案还有异面或者相交,C 、D 不一定 4.(陕西理5)某几何体的三视图如图所示,则它的体积是A .283π-B .83π-C .82π-D .23π【答案】A5.(浙江理3)若某几何体的三视图如图所示,则这个几何体的直观图可以是 【答案】D3 32正视图侧视图俯视图图16.(山东理11)右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是 A .3 B .2 C .1 D .0 【答案】A7.(全国新课标理6)。
在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为 【答案】D8.(全国大纲理6)已知直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于A .23B .33 C .63 D .1【答案】C9.(全国大纲理11)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为A .7πB .9πC .11πD .13π 【答案】D10.(湖南理3)设图1是某几何体的三视图,则该几何体的体积为 A .9122π+ B .9182π+C .942π+D .3618π+【答案】B11.(江西理8)已知1a ,2a ,3a 是三个相互平行的平面.平面1a ,2a 之间的距离为1d ,平面2a ,3a 之间的距离为2d .直线l 与1a ,2a ,3a 分别相交于1p ,2p ,3p ,那么“12P P =23P P ”是“12d d =”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】C12.(广东理7)如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A .63B .3C .123D .183【答案】B13.(北京理7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A .8B .62C .10D .2【答案】C14.(安徽理6)一个空间几何体的三视图如图所示,则该几何体的表面积为 (A )48 (B )32+817(C )48+817(D )80 【答案】C15.(辽宁理8)。
2011年高考数学考前必做训练二平面向量 立体几何
高三数学训练题(三) 平面向量、立体几何(2)(时间:100分钟 满分100分)一、选择题:本大题共12小题,每小题4分,共48分.在每个小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案填入下面的表格内. 题号 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 得分 答案(1)已知向量b a b a 与则),2,1,1(),1,2,0(--==的夹角为 (A )0° (B )45°(C )90°(D )180°(2)在空间四边形ABCD 中,AB=BC ,AD=DC ,则对角线AC 与BD 所成角的大小是 (A )90︒ (B )60︒ (C )45︒(D )30︒(3)将函数12++=x x y 的图象按向量()1,1a =-平移后所得图象的函数解析式为 (A )252++=x x y (B )x y 1=(C )21+=x y (D )xx y 12+=(4)已知(1,0,2)a λλ=+,(6,21,2)b μ=-,若//a b ,则λ与μ的值分别为 (A )-5,-2 (B )5,2(C )21,51--(D )21,51 (5)若向量a 、b 的坐标满足(2,1,2)a b +=--,(4,3,2)a b -=--,则a ·b 等于(A )5-(B )5 (C )7(D )1-(6)在正方体ABCD —A 1B 1C 1D 1中,O 是底面ABCD 的中心,M 、N 分别是棱DD 1、D 1C 1的中点,则直线OM (A )是AC 和MN 的公垂线 (B )垂直于AC ,但不垂直于MN (C )垂直于MN ,但不垂直于AC(D )与AC 、MN 都不垂直(7)地球表面上从A 地(北纬45°,东经120°)到B 地(北纬45°,东经30°)的球面距离为(地球半径为R ) (A )R (B )42R π(C )3R π(D )2Rπ(8)如图,在一根长11cm ,外圆周长6cm 的圆柱形柱体外表面,用一根细铁丝缠绕,组成10个螺旋,如果铁丝的两端恰好落在圆柱的同一条母线上,则铁丝长度的最小值为 (A )61cm (B )157cm (C )1021cm(D )3710cm(9)在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么直线AM 与所成角的余弦值是( )(A )52-(B )52 (C )53 (D )1010 (10)平面内有1230OP OP OP ++=且122331OP OP OP OP OP OP ==,则113PPP ∆一定是 (A )钝角三角形 (B )直角三角形 (C )等腰三角形(D )等边三角形(11)在棱长为2的正方体AC 1中,点E ,F 分别是棱AB ,BC 的中点,则点C 1到平面B 1EF 的距离是(A )32(B )34(C )332 (D )322 (12)设PA ,PB ,PC 是从点P 引出的三条射线,每两条的夹角都等于60°,则直线PC 与平面APB 所成角的余弦值是 (A )21(B )23 (C )33 (D )36 二、填空题(本大题共4小题,每小题3分,共12分)(13)C B A P 、、、是球O 面上的四个点,PC PB PA 、、两两垂直,且1===PC PB PA ,则球的体积为__________.(14)设{|(2,2)2(cos ,sin )}M a a θθ==+,{|(2,0)(2,2)}N a a λ==+,则M N ⋂= (15)已知:a b a ,2||,2||==与b 的夹角为45°,要使a b -λ与a 垂直,则λ=.(16)向量的命题:①若非零向量),(y x a =,向量),(x y b -=,则b a ⊥;②四边形ABCD是菱形的充要条件是DC AB =且AD AB =;③若点G 是ABC ∆的重心,则0=++CG GB GA ④ABC ∆中,AB 和CA 的夹角为A -︒180,其中正确的命题序号是 __________.三、解答题(本大题共4小题,共40分) (17)(本小题满分8分)平行四边形ABCD 中,已知:13DE DC = ,14DF DB =, 求证:A 、E 、F 三点共线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学训练题(三) 平面向量、立体几何(2)(时间:100分钟 满分100分)一、选择题:本大题共12小题,每小题4分,共48分.在每个小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案填入下面的表格内. 题号 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 得分 答案(1)已知向量b a b a 与则),2,1,1(),1,2,0(--==的夹角为 (A )0° (B )45°(C )90°(D )180°(2)在空间四边形ABCD 中,AB=BC ,AD=DC ,则对角线AC 与BD 所成角的大小是 (A )90︒ (B )60︒ (C )45︒(D )30︒(3)将函数12++=x x y 的图象按向量()1,1a =-平移后所得图象的函数解析式为(A )252++=x x y (B )x y 1= (C )21+=x y (D )xx y 12+=(4)已知(1,0,2)a λλ=+,(6,21,2)b μ=-,若//a b ,则λ与μ的值分别为 (A )-5,-2 (B )5,2(C )21,51--(D )21,51 (5)若向量a 、b 的坐标满足(2,1,2)a b +=--,(4,3,2)a b -=--,则a ·b 等于(A )5- (B )5 (C )7(D )1-(6)在正方体ABCD —A 1B 1C 1D 1中,O 是底面ABCD 的中心,M 、N 分别是棱DD 1、D 1C 1的中点,则直线OM (A )是AC 和MN 的公垂线 (B )垂直于AC ,但不垂直于MN (C )垂直于MN ,但不垂直于AC(D )与AC 、MN 都不垂直(7)地球表面上从A 地(北纬45°,东经120°)到B 地(北纬45°,东经30°)的球面距离为(地球半径为R ) (A )R (B )42R π (C )3Rπ (D )2Rπ(8)如图,在一根长11cm ,外圆周长6cm 的圆柱形柱体外表面,用一根细铁丝缠绕,组成10个螺旋,如果铁丝的两端恰好落在圆柱的同一条母线上,则铁丝长度的最小值为 (A )61cm (B )157cm (C )1021cm(D )3710cm(9)在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )(A )52-(B )52 (C )53 (D )1010 (10)平面内有1230OP OP OP ++=且122331OP OP OP OP OP OP ==,则113PPP ∆一定是 (A )钝角三角形 (B )直角三角形 (C )等腰三角形(D )等边三角形(11)在棱长为2的正方体AC 1中,点E ,F 分别是棱AB ,BC 的中点,则点C 1到平面B 1EF 的距离是(A )32(B )34(C )332 (D )322 (12)设PA ,PB ,PC 是从点P 引出的三条射线,每两条的夹角都等于60°,则直线PC 与平面APB 所成角的余弦值是 (A )21(B )23 (C )33 (D )36 二、填空题(本大题共4小题,每小题3分,共12分)(13)C B A P 、、、是球O 面上的四个点,PC PB PA 、、两两垂直,且1===PC PB PA ,则球的体积为__________.(14)设{|(2,2)2(cos ,sin )}M a a θθ==+,{|(2,0)(2,2)}N a a λ==+,则M N ⋂= (15)已知:a b a ,2||,2||==与b 的夹角为45°,要使a b -λ与a 垂直,则λ= .(16)向量的命题:①若非零向量),(y x a =,向量),(x y b -=,则b a ⊥;②四边形ABCD是菱形的充要条件是DC AB =且AD AB =;③若点G 是ABC ∆的重心,则0=++CG GB GA ④ABC ∆中,AB 和CA 的夹角为A -︒180,其中正确的命题序号是 __________.三、解答题(本大题共4小题,共40分)(17)(本小题满分8分)平行四边形ABCD中,已知:13DE DC= ,14DF DB=, 求证:A、E、F三点共线。
(18)(本小题满分10分)已知△ABC的顶点坐标为A(1,坐标为4,在边AC上求一点QFCBDPCBAQ(19)(本小题满分10分)在正方体1111ABCD A B C D -中,E 、F 、G 、H 为BC 、CD 、1CC 、11C D 中点.(Ⅰ)求证:1A G ⊥平面1EFC ;(Ⅱ)求证:BH //平面1EFC 。
(20)(本小题满分12分)已知ABCD 为直角梯形,AD //BC ,90BAD ∠=, 1AD AB ==, 2BC =, PA ⊥平面ABCD ,GC D A CAB(Ⅰ)若异面直线PC 与BD 所成的角为θ,且3cos 6θ=,求||PA ; (Ⅱ)在(Ⅰ)的条件下,设E 为PC 的中点,能否在BC 上找到一点F ,使EF CD ⊥? (Ⅲ)在(Ⅱ)的条件下,求二面角B PC D --的大小.(三) 平面向量、立体几何(2)参考答案题 号 ⑴ ⑵ ⑶ ⑷ ⑸ ⑹ ⑺ ⑻ ⑼ ⑽ ⑾ ⑿ 答 案CABDAACABDBC(5)提示:求得()1,2,0a =-,()3,1,2b =- (8)提示:将圆柱侧面展开,如图,可得长度为22111066110⎛⎫+= ⎪⎝⎭(10)D 解析:由1230OP OP OP ++=知O 为113PPP ∆的重心,由1223OP OP OP OP = 31OP OP =知O 为113PPP ∆的垂心 (如:()122321323100OP OP OP OP OP OP OP OP P P =⇒-=⇒=) (也可用列举三角形,排除选项ABC )6cm1110cm EA CBPF(11)提示:等积法,1111C B EF E B FC V V --= 二、填空题 (13)π23(14) {(2,0),(4,2)} (M 是起点在原点,终点在圆22(2)(2)4x y -+-=上的向量的集合,N 是起点在原点,终点在直线2y x =-上的向量的集合,直线与圆有两个交点,对应M 、N 有两个相同的向量。
) (15)2 0)(=⋅-λ ;()202a b aλλ∴⋅-=⇒= (16)①②④三、(17)。
证明一:(利用共线向量的判定定理证明)以,AB BD 作为基底,有:34AF AB BF AB BD =+=+, 1433AE AD DE AB BD AB AB BD =+=++=+,从而43AE AF =, 所以A 、E 、F 共线。
证明二:(利用三点共线的判定定理证明)11113()(3)44444DF DB DA DC DA DE DA DE ==+=+=+,而:13144+=,所以A 、E 、F 共线。
(可以建立坐标系,利用求出等比分点坐标公式求出E 、F 的坐标,再证明A 、E 、F 共线) (18)设112145,,11PA AB QA AC λλλλ+===+ 431-=∴λ又||||ACAQ AB AP S S ABCAPQ ⋅=∆∆32,021||43|,|43||||2222-=∴<===λλλλ又则AC QA AB PA设点Q 的坐标为(x Q ,y Q ),则321)4()32(,3217)32(1--⨯-+=-⨯-+=Q Q y O x ,得)38,5(,38,5-∴-==Q y x Q Q(19)解:如图,建立坐标系xyz D -,设正方体的边长为2,则各点的坐标为:()2,0,21A 、()2,2,21B 、()2,2,01C 、()2,0,01D 、(2,2,0)B 、()0,2,1E 、()0,1,0F 、()0,2,1G ,(0,1,2)H(Ⅰ)∵()1,1,0EF =--,()11,0,2C E =-,()12,2,1AG =--∴()()11,1,02,2,10AG EF =----= ∴1AG EF ⊥ ()()111,0,22,2,10AG C E =---= ∴11AG C E ⊥ ∴1A G ⊥平面1EFC (Ⅱ)(0,1,2)(2,2,0)(2,1,2)BH =-=--=1EF C E -,BH ∴ 、EF 、1C E 共面。
又BH 不在平面1EFC 内,∴BH //平面1EFC(20)解:建立如图所示的空间坐标系(Ⅰ)设||PA a =,则(0,0,),(2,1,0),(0,1,0),(1,0,0)P a C B D(2,1,),(1,1,0)PC a BD ∴=-=-由已知得:2cos ||||25PC BD PC BD aθ==+= 256a +=1(0)a a ∴=>即|1|PA =(2)设能在BC 上找到一点F ,使EF CD ⊥,设(,1,0)F x ,由(1)知(1,0,0)P 11(1,,)22E ∴,则11(1,,)22EF x --,又有(1,1,0)CD =--,EF CD ⊥,1110,22EF CD x x ∴=-+=∴= 即存在点1(,1,0)2F 满足要求。
(3)111(,,)(2,1,1)0222EF PC =---=EF PC ∴⊥;EF CD ⊥且PC CD C ⋂=EF ∴⊥平面PCD 。
EF ⊂平面, 所以平面PCB ⊥平面PCD ,故二面角B PCD --的大小为90。