宁夏中考数学试题及答案.docx
宁夏中考数学试卷真题答案
宁夏中考数学试卷真题答案一、选择题1. B2. A3. C4. B5. C6. A7. D8. A9. D10. C11. B12. D13. A14. B15. A二、填空题1. 2.52. 143. 8504. 725. 0.71三、解答题1. 解:首先,将A、B两车速度的比值转化为时间的比值:3:4 = 15t :3t根据题意,我们知道A、B两车相遇后继续前行的时间相同,因此有:35t = 36解得:t ≈ 1.03(小时)所以,A车行驶的时间为:15t ≈ 15.45(小时)即A车行驶了约15.45小时。
2. 解:首先,已知直线AD的斜率为-1/2,那么过点A斜率为-1/2的直线方程为:y - 6 = -(1/2)(x - 1)化简得:2y - 12 = -x + 1即:x + 2y = 13又已知过点A斜率为2的直线方程为:y - 6 = 2(x - 1)化简得:2x - y = 4解以上两个方程组,得到交点D的坐标为:x = 6,y = 7所以,点D的坐标为(6,7)。
3. 解:根据题意,设蓝球个数为x,红球个数为y,则有以下两个方程:x + y = 300.3x + 0.4y = 13.2对第二个方程乘10,得:3x + 4y = 132接下来,我们可以通过消元法解方程组,将第一个方程的系数乘3,然后与第二个方程相减,得:x = 2代入第一个方程,得到:2 + y = 30y = 28所以,蓝球的个数为2个,红球的个数为28个。
四、应用题1. 解:设长方形的长为x,宽为y,则根据题意有以下方程组:2x + y = 12x + y = 8通过消元法可得:x = 4将x代入其中一个方程,得到:4 + y = 8y = 4所以,长方形的长为4厘米,宽为4厘米。
2. 解:首先,我们可以根据题意列出方程:2(x - 1) + (x + 3) = 386化简得:3x = 385解得:x = 128⅓所以,小明爸爸来接小明的时间是下午4点08分⅔。
2024年宁夏中考数学真题卷及答案解析
2024年宁夏中考数学试卷一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.(3分)下列各数中,无理数是( )A.﹣1B.C.D.π2.(3分)下列运算正确的是( )A.x3+x2=x5B.C.(3x)2=6x2D.﹣5﹣3=﹣2 3.(3分)小明与小亮要到科技馆参观.小明家、小亮家和科技馆的方位如图所示,则科技馆位于小亮家的( )A.南偏东60°方向B.北偏西60°方向C.南偏东50°方向D.北偏西50°方向4.(3分)某班24名学生参加一分钟跳绳测试,成绩(单位:次)如表:成绩171及以下172173174175及以上人数38652则本次测试成绩的中位数和众数分别是( )A.172和172B.172和173C.173和172D.173和173 5.(3分)用5个大小相同的小正方体搭一个几何体,其主视图、左视图如图2,现将其中4个小正方体按图1方式摆放,则最后一个小正方体应放在( )A .①号位置B .②号位置C .③号位置D .④号位置6.(3分)已知|3﹣a |=a ﹣3,则a 的取值范围在数轴上表示正确的是( )A .B .C .D .7.(3分)数学活动课上,甲、乙两位同学制作长方体盒子.已知甲做6个盒子比乙做4个盒子少用10分钟,甲每小时做盒子的数量是乙每小时做盒子的数量的2倍.设乙每小时做x 个盒子,根据题意可列方程( )A .B .C .D .8.(3分)如图,在Rt △ABC 中,∠ABC =90°,AB =3cm ,BC =2cm ,点A 在直线l 1上,点B ,C 在直线l 2上,l 1∥l 2,动点P 从点A 出发沿直线l 1以1cm /s 的速度向右运动,设运动时间为t s .下列结论:①当t =2s 时,四边形ABCP 的周长是10cm ;②当t =4s 时,点P 到直线l 2的距离等于5cm ;③在点P 运动过程中,△PBC 的面积随着t 的增大而增大;④若点D ,E 分别是线段PB ,PC 的中点,在点P 运动过程中,线段DE 的长度不变.其中正确的是( )A .①④B .②③C .①③D .②④二、填空题(本题共8小题,每小题3分,共24分)9.(3分)地球上水(包括大气水、地表水和地下水)的总体积约为14.2亿km 3.请将数据1420000000用科学记数法表示为 .10.(3分)为考查一种枸杞幼苗的成活率,在同一条件下进行移植试验,结果如表所示:移植总数n4015030050070010001500成活数m351342714516318991350成活的频率0.8750.8930.9030.9020.9010.8990.900估计这种幼苗移植成活的概率是 (结果精确到0.1).11.(3分)某水库警戒水位为29.8米,取警戒水位作为0点.如果水库水位为31.4米记作+1.6米,那么水库水位为28米记作 米.12.(3分)若二次函数y=2x2﹣x+m的图象与x轴有交点,则m的取值范围是 .13.(3分)如图,在正五边形ABCDE的内部,以CD边为边作正方形CDFH,连接BH,则∠BHC= °.14.(3分)在平面直角坐标系中,一条直线与两坐标轴围成的三角形是等腰三角形,则该直线的解析式可能为 (写出一个即可).15.(3分)观察下列等式:第1个:1×2﹣2=22×0;第2个:4×3﹣3=32×1;第3个:9×4﹣4=42×2;第4个:16×5﹣5=52×3.…按照以上规律,第n个等式为 .16.(3分)如图1是三星堆遗址出土的陶盉(hè),图2是其示意图.已知管状短流AB=2cm,四边形BCDE是器身,BE∥CD,BC=DE=11cm,∠ABE=120°,∠CBE=80°.器身底部CD距地面的高度为21.5cm,则该陶盉管状短流口A距地面的高度约为 cm(结果精确到0.1cm).(参考数据:sin80°≈0.9848,cos80°≈0.1736,tan80°≈5.6713,≈1.732)三、解答题(本题共10小题,其中17~22题每小题6分,23、24题每小题6分,25、26题每小题6分,共72分)17.(6分)解不等式组.18.(6分)先化简,再求值:,其中.19.(6分)如图,在△ABC中,点D是边BC的中点,以AB为直径的⊙O经过点D,点P 是边AC上一点(不与点A,C重合).请仅用无刻度直尺按要求作图,保留作图痕迹,不写作法.(1)过点A作一条直线,将△ABC分成面积相等的两部分;(2)在边AB上找一点P′,使得BP′=CP.20.(6分)中国传统手工艺享誉海内外,扎染和刺绣体现了中国人民的智慧和创造力.某店销售扎染和刺绣两种工艺品,已知扎染175元/件,刺绣325元/件.(1)某天这两种工艺品的销售额为1175元,求这两种工艺品各销售多少件?(2)中国的天问一号探测器、奋斗者号潜水器等科学技术世界领先,国人自豪感满满,相关纪念品深受青睐.该店设立了一个如图所示可自由转动的转盘(转盘被分为5个大小相同的扇形).凡顾客在本店购买一件工艺品,就获得一次转动转盘的机会,当转盘停止时,顾客即可免费获得指针指向区域的纪念品一个(指针指向两个扇形的交线时,视为指向右边的扇形).一顾客在该店购买了一件工艺品,求该顾客获得纪念品的概率是多少?21.(6分)如图,在▱ABCD中,点M,N在AD边上,AM=DN,连接CM并延长交BA 的延长线于点E,连接BN并延长交CD的延长线于点F.求证:AE=DF.小丽的思考过程如下:参考小丽的思考过程,完成推理.22.(6分)尊老敬老是中华民族的传统美德,爱老是全社会的共同责任.为了解某地区老年人的生活状况,随机抽取部分65岁及以上的老年人进行了一次问卷调查.调查问卷以下问题均为单选题,请根据实际情况选择(例:65~70岁表示大于等于65岁同时小于70岁).1.您的年龄范围( )A.65~70岁B.70~75岁C.75~80岁D.80岁及以上2.您的养老需求( )A.医疗服务B.社交娱乐C.健身活动D.餐饮服务E.其他3.您的健康状况( )A.良好B.一般C.较差将调查结果绘制成如下统计图表.请阅读相关信息,解答下列问题:健康状况统计表65~70岁70~75岁75~80岁80岁及以上良好65%58%50%40%一般25%30%35%40%较差10%12%15%20%(1)参与本次调查的老年人共有 人,有“医疗服务”需求的老年人有 人;(2)已知该地区65岁及以上的老年人人口总数约为6万人,估计该地区健康状况较差的老年人人口数;(3)根据以上信息,针对该地区老年人的生活状况,你能提出哪些合理化的建议?(写出一条即可)23.(8分)在同一平面直角坐标系中,函数y=2x+1的图象可以由函数y=2x的图象平移得到.依此想法,数学小组对反比例函数图象的平移进行探究.【动手操作】列表:x…﹣5﹣4﹣3﹣2﹣112345……﹣1﹣221…描点连线:在已画出函数的图象的坐标系中画出函数的图象.【探究发现】(1)将反比例函数的图象向 平移 个单位长度得到函数的图象.(2)上述探究方法运用的数学思想是 .A.整体思想B.类比思想C.分类讨论思想【应用延伸】(1)将反比例函数的图象先 ,再 得到函数的图象.(2)函数图象的对称中心的坐标为 .24.(8分)如图,⊙O是△ABC的外接圆,AB为直径,点D是△ABC的内心,连接AD并延长交⊙O于点E,过点E作⊙O的切线交AB的延长线于点F.(1)求证:BC∥EF;(2)连接CE,若⊙O的半径为,求阴影部分的面积(结果用含π的式子表示).25.(10分)综合与实践如图1,在△ABC中,BD是∠ABC的平分线,BD的延长线交外角∠CAM的平分线于点E.【发现结论】结论1:∠AEB= ∠ACB;结论2:当图1中∠ACB=90°时,如图2所示,延长BC交AE于点F,过点E作AF 的垂线交BF于点G,交AC的延长线于点H.则AE与EG的数量关系是 .【应用结论】(1)求证:AH=GF;(2)在图2中连接FH,AG,延长AG交FH于点N,补全图形,求证:.26.(10分)抛物线与x轴交于A(﹣1,0),B两点,与y轴交于点C,点P是第四象限内抛物线上的一点.(1)求抛物线的解析式;(2)如图1,过P作PD⊥x轴于点D,交直线BC于点E.设点D的横坐标为m,当时,求m的值;(3)如图2点F(1,0),连接CF并延长交直线PD于点M,点N是x轴上方抛物线上的一点,在(2)的条件下,x轴上是否存在一点H,使得以F,M,N,H为顶点的四边形是平行四边形.若存在,直接写出点H的坐标;若不存在,请说明理由.2024年宁夏中考数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.(3分)下列各数中,无理数是( )A.﹣1B.C.D.π【分析】无理数即无限不循环小数,据此进行判断即可.【解答】解:﹣1,=2是整数,是分数,它们不是无理数;π是无限不循环小数,它是无理数;故选:D.【点评】本题考查无理数的识别,熟练掌握其定义是解题的关键.2.(3分)下列运算正确的是( )A.x3+x2=x5B.C.(3x)2=6x2D.﹣5﹣3=﹣2【分析】根据幂的乘方与积的乘方的运算方法,合并同类项的方法,有理数的减法的运算方法,以及负整数指数幂的运算方法,逐项判断即可.【解答】解:∵x3+x2≠x5,∴选项A不符合题意;∵2﹣1=,∴选项B符合题意;∵(3x)2=9x2,∴选项C不符合题意;∵﹣5﹣3=﹣8,∴选项D不符合题意.故选:B.【点评】此题主要考查了幂的乘方与积的乘方的运算方法,合并同类项的方法,有理数的减法的运算方法,以及负整数指数幂的运算方法,解答此题的关键是要明确:(1)①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数);(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;(3)有理数减法法则:减去一个数,等于加上这个数的相反数;(4)a﹣p=(a≠0,p为正整数).3.(3分)小明与小亮要到科技馆参观.小明家、小亮家和科技馆的方位如图所示,则科技馆位于小亮家的( )A.南偏东60°方向B.北偏西60°方向C.南偏东50°方向D.北偏西50°方向【分析】作CD∥AB,根据平行线的性质得∠DCE=60°,再根据CD∥EF,可得∠CEF =∠DCE=60°,根据方向角的定义即可得出答案.【解答】解:如图,作CD∥AB,则∠ACD=∠BAC=50°,∴∠DCE=100°﹣50°=60°,∵AB∥CD,AB∥EF,∴CD∥EF,∴∠CEF=∠DCE=60°,∴科技馆位于小亮家的南偏东60°方向.故选:A.【点评】本题考查了方向角,熟练掌握方向角的定义和平行线的性质是关键.4.(3分)某班24名学生参加一分钟跳绳测试,成绩(单位:次)如表:成绩171及以下172173174175及以上人数38652则本次测试成绩的中位数和众数分别是( )A.172和172B.172和173C.173和172D.173和173【分析】根据众数和中位数的定义求解可得.【解答】解:中位数是第12、13个数据的平均数,所以中位数为=173,这组数据中172出现次数最多,所以众数为172,故选:C.【点评】本题主要考查中位数和众数的概念.在一组数据中出现次数最多的数叫做这组数据的众数;将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.(3分)用5个大小相同的小正方体搭一个几何体,其主视图、左视图如图2,现将其中4个小正方体按图1方式摆放,则最后一个小正方体应放在( )A.①号位置B.②号位置C.③号位置D.④号位置【分析】根据题意主视图和左视图即可得到结论.【解答】解:现将其中4个小正方体按图1方式摆放,则最后一个小正方体应放在②号位置.故选:B.【点评】本题考查了由三视图判断几何体,掌握简单组合体三视图的画法和形状是正确解答的关键.6.(3分)已知|3﹣a|=a﹣3,则a的取值范围在数轴上表示正确的是( )A.B.C.D.【分析】由|3﹣a|=a﹣3,可知a﹣3≥0,解这个不等式并在数轴表示出来即可.【解答】解:∵|3﹣a|=a﹣3,∴a﹣3≥0,∴a≥3.故选:A.【点评】本题考查在数轴上表示不等式的解集、绝对值,掌握一元一次不等式的解法及在数轴上表示不等式的解集是解题的关键.7.(3分)数学活动课上,甲、乙两位同学制作长方体盒子.已知甲做6个盒子比乙做4个盒子少用10分钟,甲每小时做盒子的数量是乙每小时做盒子的数量的2倍.设乙每小时做x个盒子,根据题意可列方程( )A.B.C.D.【分析】根据甲做6个盒子比乙做4个盒子少用10分钟,可以列出相应的分式方程,本题得以解决.【解答】解:由题意可得,,故选:C.【点评】本题主要考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.8.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=3cm,BC=2cm,点A在直线l1上,点B,C在直线l2上,l1∥l2,动点P从点A出发沿直线l1以1cm/s的速度向右运动,设运动时间为t s.下列结论:①当t=2s时,四边形ABCP的周长是10cm;②当t=4s时,点P到直线l2的距离等于5cm;③在点P运动过程中,△PBC的面积随着t的增大而增大;④若点D,E分别是线段PB,PC的中点,在点P运动过程中,线段DE的长度不变.其中正确的是( )A.①④B.②③C.①③D.②④【分析】①根据t=2s时得出四边形ABCP为矩形,据此可解决问题.②根据“平行线间的距离处处相等”即可解决问题.③根据②中的发现即可解决问题.④利用三角形的中位线定理即可解决问题.【解答】解:①当t=2s时,AP=2cm,则AP=BC.又因为AP∥BC,∠ABC=90°,所以四边形ABCP是矩形,所以PC=AB=3cm,所以四边形ABCP的周长为:2×(2+3)=10(cm).故①正确.因为“平行线间的距离处处相等”,AB=3cm,∠ABC=90°,所以直线l1与直线l2之间的距离是3cm,所以当t=4s时,点P到直线l2的距离仍然是3cm.故②错误.由上述过程可知,点P到BC的距离为定值3cm,即△PBC的BC边上的高为3cm,又因为BC=2cm,所以△PBC的面积为定值.故③错误.因为点D,E分别是线段PB,PC的中点,所以DE是△PBC的中位线,所以DE=(cm),即线段DE的长度不变.故④正确.故选:A.【点评】本题主要考查了三角形面积及三角形的中位线定理,熟知三角形的中位线定理及三角形的面积公式是解题的关键.二、填空题(本题共8小题,每小题3分,共24分)9.(3分)地球上水(包括大气水、地表水和地下水)的总体积约为14.2亿km3.请将数据1420000000用科学记数法表示为 1.42×109 .【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.据此解答即可.【解答】解:1420000000用科学记数法可以表示成为1.42×109.故答案为:1.42×109.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.10.(3分)为考查一种枸杞幼苗的成活率,在同一条件下进行移植试验,结果如表所示:移植总数n4015030050070010001500成活数m351342714516318991350成活的频率0.8750.8930.9030.9020.9010.8990.900估计这种幼苗移植成活的概率是 0.9 (结果精确到0.1).【分析】利用大量重复试验下事件发生的频率可以估计该事件发生的概率直接回答即可.【解答】解:∵根据表中数据,试验频率逐渐稳定在0.9左右,∴这种幼苗在此条件下移植成活的概率是0.9;故答案为:0.9.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.11.(3分)某水库警戒水位为29.8米,取警戒水位作为0点.如果水库水位为31.4米记作+1.6米,那么水库水位为28米记作 ﹣1.8 米.【分析】根据正数和负数的实际意义即可求得答案.【解答】解:某水库警戒水位为29.8米,取警戒水位作为0点.如果水库水位为31.4米记作+1.6米,那么水库水位为28米记作﹣1.8米,故答案为:﹣1.8.【点评】本题考查正数和负数,理解正数和负数的实际意义是解题的关键.12.(3分)若二次函数y=2x2﹣x+m的图象与x轴有交点,则m的取值范围是 m≤ .【分析】利用根的判别式的意义得到Δ=(﹣1)2﹣4×2×m≥0,然后解不等式即可.【解答】解:∵二次函数y=2x2﹣x+m的图象与x轴有交点,∴Δ=(﹣1)2﹣4×2×m≥0,解得m≤,即m的取值范围为m≤.故答案为:m≤.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程;Δ=b2﹣4ac决定抛物线与x轴的交点个数.13.(3分)如图,在正五边形ABCDE的内部,以CD边为边作正方形CDFH,连接BH,则∠BHC= 81 °.【分析】先求出∠BCD的度数,再求出∠BCH的度数,最后根据等腰三角形的特征,即可得出答案.【解答】解:∵在正五边形ABCDE,∴∠BCD=180°﹣(360°÷5)=108°,∵∠HCD=90°,∴∠BCH=∠BCD﹣∠HCD=18°,∵BC=HC,∴∠BHC=∠CBH=(180°﹣∠BCH)=81°.故答案为:81.【点评】本题主要考查多边形内角和外角,熟练掌握多边形的外角和公式是解题的关键.14.(3分)在平面直角坐标系中,一条直线与两坐标轴围成的三角形是等腰三角形,则该直线的解析式可能为 y=x+1(答案不唯一) (写出一个即可).【分析】利用等腰三角形的判定,设直线y=kx+b与x轴的交点坐标为(﹣1,0),与y 轴的交点坐标为(0,1),然后利用待定系数法求出此时直线解析式.【解答】解:∵直线y=kx+b与两坐标轴围成的三角形是等腰三角形,∴可设直线y=kx+b与x轴的交点坐标为(﹣1,0),与y轴的交点坐标为(0,1),把(﹣1,0),(1,0)分别代入y=kx+b得,解得,∴此时直线解析式为y=x+1.故答案为:y=x+1.(答案不唯一)【点评】本题考查了待定系数法求一次函数解析式:求一次函数y=kx+b,则需要两组x,y的值.也考查了一次函数图象上点的坐标特征和等腰三角形的判定.15.(3分)观察下列等式:第1个:1×2﹣2=22×0;第2个:4×3﹣3=32×1;第3个:9×4﹣4=42×2;第4个:16×5﹣5=52×3.…按照以上规律,第n个等式为 n2×(n+1)﹣(n+1)=(n+1)2×(n﹣1) .【分析】分析所给的等式的形式,总结出规律,再对等式的左边进行整理即可.【解答】解:第1个:1×2﹣2=22×0;第2个:4×3﹣3=32×1;第3个:9×4﹣4=42×2;第4个:16×5﹣5=52×3.…按照以上规律,第n个等式为n2×(n+1)﹣(n+1)=(n+1)2×(n﹣1),故答案为:n2×(n+1)﹣(n+1)=(n+1)2×(n﹣1).【点评】本题主要考查数字的变化规律,解答的关键是对由所给的等式总结出存在的规律.16.(3分)如图1是三星堆遗址出土的陶盉(hè),图2是其示意图.已知管状短流AB=2cm,四边形BCDE是器身,BE∥CD,BC=DE=11cm,∠ABE=120°,∠CBE=80°.器身底部CD距地面的高度为21.5cm,则该陶盉管状短流口A距地面的高度约为 34.1 cm(结果精确到0.1cm).(参考数据:sin80°≈0.9848,cos80°≈0.1736,tan80°≈5.6713,≈1.732)【分析】过点C作CF⊥BE,垂足为F,过点A作AG⊥EB,交EB的延长线于点G,先利用平角定义可得∠ABG=60°,然后分别在Rt△ABG和Rt△BCF中,利用锐角三角函数的定义求出AG和CF的长,最后进行计算即可解答.【解答】解:过点C作CF⊥BE,垂足为F,过点A作AG⊥EB,交EB的延长线于点G,∵∠ABE=120°,∴∠ABG=180°﹣∠ABE=60°,在Rt△ABG中,AB=2cm,∴AG=AB•sin60°=2×=(cm),在Rt△BCF中,∠EBC=80°,BC=11cm,∴CF=BC•sin80°≈11×0.9848=10.8328(cm),∵器身底部CD距地面的高度为21.5cm,∴该陶盉管状短流口A距地面的高度=AG+CF+21.5=+10.8328+21.5≈34.1(cm),∴该陶盉管状短流口A距地面的高度约为34.1cm,故答案为:34.1.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三、解答题(本题共10小题,其中17~22题每小题6分,23、24题每小题6分,25、26题每小题6分,共72分)17.(6分)解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:,解不等式①得,x<﹣4,解不等式②得,,所以不等式组的解集为x<﹣4.【点评】本题考查了解一元一次不等式组,掌握同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解答此题的关键.18.(6分)先化简,再求值:,其中.【分析】首先化简,然后把代入化简后的算式计算即可.【解答】解:=•=a﹣1.当时,原式=1﹣﹣1=﹣.【点评】此题主要考查了分式的化简求值问题,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.19.(6分)如图,在△ABC中,点D是边BC的中点,以AB为直径的⊙O经过点D,点P 是边AC上一点(不与点A,C重合).请仅用无刻度直尺按要求作图,保留作图痕迹,不写作法.(1)过点A作一条直线,将△ABC分成面积相等的两部分;(2)在边AB上找一点P′,使得BP′=CP.【分析】(1)过A,D两点画直线AD.利用点D是边BC的中点和三角形面积公式可判断直线AD满足条件;(2)连接BP交AD于点E,连接CE并延长交AB于点P,利用圆周角定理得到∠ADB=90°,则△ABC为等腰三角形,然后利用对称性可得到点P′满足条件.【解答】解:(1)如图,直线AD为所作;(2)如图,点P′为所作.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.20.(6分)中国传统手工艺享誉海内外,扎染和刺绣体现了中国人民的智慧和创造力.某店销售扎染和刺绣两种工艺品,已知扎染175元/件,刺绣325元/件.(1)某天这两种工艺品的销售额为1175元,求这两种工艺品各销售多少件?(2)中国的天问一号探测器、奋斗者号潜水器等科学技术世界领先,国人自豪感满满,相关纪念品深受青睐.该店设立了一个如图所示可自由转动的转盘(转盘被分为5个大小相同的扇形).凡顾客在本店购买一件工艺品,就获得一次转动转盘的机会,当转盘停止时,顾客即可免费获得指针指向区域的纪念品一个(指针指向两个扇形的交线时,视为指向右边的扇形).一顾客在该店购买了一件工艺品,求该顾客获得纪念品的概率是多少?【分析】(1)设扎染工艺品销售扎染x件,刺绣工艺品销售y件,根据某天这两种工艺品的销售额为1175元,列出二元一次方程,求出正整数解即可;(2)直接由概率公式求解即可.【解答】解:(1)设扎染工艺品销售扎染x件,刺绣工艺品销售y件,根据题意得:175x+325y=1175,整理得:x=,∵x,y均为正整数,∴,答:扎染工艺品销售扎染3件,刺绣工艺品销售2件;(2)转动一次转盘所有等可能结果共5种,指针指向有纪念品的扇形的结果有3种,∴该顾客获得纪念品的概率是.【点评】本题考查了二元一次方程组的应用以及概率公式,找准等量关系,正确列出二元一次方程组是解题的关键.21.(6分)如图,在▱ABCD中,点M,N在AD边上,AM=DN,连接CM并延长交BA 的延长线于点E,连接BN并延长交CD的延长线于点F.求证:AE=DF.小丽的思考过程如下:参考小丽的思考过程,完成推理.【分析】由AM=DN,得AN=DM,则=,由AE∥DC,DF∥AB,证明△AME∽△DMC,△DNF∽△ANB,则=,=,所以=,即可证明AE=DF.【解答】证明:∵AM=DN,∴AM+MN=DN+MN,∴AN=DM,∴=,∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∵AE∥DC,DF∥AB,∴△AME∽△DMC,△DNF∽△ANB,∴=,=,∴=,∴==1,∴AE=DF.【点评】此题重点考查平行四边形的性质、相似三角形的判定与性质等知识,证明△AME ∽△DMC及△DNF∽△ANB是解题的关键.22.(6分)尊老敬老是中华民族的传统美德,爱老是全社会的共同责任.为了解某地区老年人的生活状况,随机抽取部分65岁及以上的老年人进行了一次问卷调查.调查问卷以下问题均为单选题,请根据实际情况选择(例:65~70岁表示大于等于65岁同时小于70岁).1.您的年龄范围( )A.65~70岁B.70~75岁C.75~80岁D.80岁及以上2.您的养老需求( )A.医疗服务B.社交娱乐C.健身活动D.餐饮服务E.其他3.您的健康状况( )A.良好B.一般C.较差将调查结果绘制成如下统计图表.请阅读相关信息,解答下列问题:健康状况统计表65~70岁70~75岁75~80岁80岁及以上良好65%58%50%40%一般25%30%35%40%较差10%12%15%20%(1)参与本次调查的老年人共有 1200 人,有“医疗服务”需求的老年人有 660 人;(2)已知该地区65岁及以上的老年人人口总数约为6万人,估计该地区健康状况较差的老年人人口数;(3)根据以上信息,针对该地区老年人的生活状况,你能提出哪些合理化的建议?(写出一条即可)【分析】(1)把四个等级的人数相加可得样本容量;用样本容量乘A组所占百分比可得有“医疗服务”需求的老年人人数;(2)用样本估计总体即可;(3)根据养老需求统计图数据解答即可(答案不唯一).【解答】解:(1)参与本次调查的老年人共有:480+350+220+150=1200(人);有“医疗服务”需求的老年人有:1200×(1﹣20%﹣12%﹣8%﹣5%)=660(人);故答案为:1200;660.(2)根据题意得,×60000=2400+2100+1650+1500=7650.答:估计该地区健康状况较差的老年人有7650人;(3)根据养老需求统计图可知,医疗服务需求占比大,因此建议提高本地区老年人的医疗服务质量(答案不唯一,只要建议合理即可).【点评】此题考查了频数(率)分布直方图,扇形统计图,统计表,用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.(8分)在同一平面直角坐标系中,函数y=2x+1的图象可以由函数y=2x的图象平移得到.依此想法,数学小组对反比例函数图象的平移进行探究.【动手操作】列表:x…﹣5﹣4﹣3﹣2﹣112345……﹣1﹣221…描点连线:在已画出函数的图象的坐标系中画出函数的图象.【探究发现】(1)将反比例函数的图象向 左 平移 1 个单位长度得到函数的图象.(2)上述探究方法运用的数学思想是 B .A.整体思想B.类比思想C.分类讨论思想【应用延伸】(1)将反比例函数的图象先 右平移2个单位长度 ,再 向下平移1个单位长度 得到函数的图象.(2)函数图象的对称中心的坐标为 (2,﹣1) .【分析】【动手操作】列表,描点、连线画出函数的图象即可;【探究发现】结合图象填空即可;【应用延伸】根据发现的规律填空即可.【解答】解:【动手操作】列表:x…﹣6﹣5﹣4﹣3﹣212345…y=…﹣﹣﹣1﹣21…描点、连线画出函数图象如图示:【探究发现】(1)将反比例函数的图象向左平移 1个单位长度得到函数的图象.故答案为:左,1;(2)上述探究方法运用的数学思想是B.故答案为:B;【应用延伸】(1)将反比例函数的图象先右平移2个单位长度,再向下平移1个得到函数的图象.故答案为:右平移2个单位长度;向下平移1个单位长度;(2)函数图象的对称中心的坐标为(2,﹣1).故答案为(2,﹣1).【点评】本题考查了反比例函数的图象,一次函数的图象,正比例函数图象,一次函数图象与几何变换,数形结合是解题的关键.24.(8分)如图,⊙O是△ABC的外接圆,AB为直径,点D是△ABC的内心,连接AD并延长交⊙O于点E,过点E作⊙O的切线交AB的延长线于点F.(1)求证:BC∥EF;(2)连接CE,若⊙O的半径为,求阴影部分的面积(结果用含π的式子表示).【分析】(1)连接OE,交BC于点G,根据等腰三角形的性质得到∠OAE=∠OEA,由D为△ABC的内心,得到∠OAE=∠CAE,求得OE∥AC,根据圆周角定理得到∠ACB=90°,求得∠BGO=90°,根据切线的性质得到∠FEO=90°,根据平行线的判定定理得到结论;(2)连接BE,根据三角函数的定义得到∠AEC=30°,求得∠ABC=∠AEC=30°,求。
2020年宁夏回族自治区中考数学试题及参考答案(word解析版)
宁夏回族自治区2020年初中毕业暨高中阶段招生考试数学试题(全卷总分120分,考试时间120分钟)一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.下列各式中正确的是()A.a3•a2=a6B.3ab﹣2ab=1 C.=2a+1 D.a(a﹣3)=a2﹣3a2.小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图),则下列说法正确的是()A.中位数是3,众数是2B.众数是1,平均数是2C.中位数是2,众数是2D.中位数是3,平均数是2.53.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是()A.B.C.D.4.如图摆放的一副学生用直角三角板,∠F=30°,∠C=45°,AB与DE相交于点G,当EF∥BC时,∠EGB的度数是()A.135°B.120°C.115°D.105°5.如图,菱形ABCD的边长为13,对角线AC=24,点E、F分别是边CD、BC的中点,连接EF并延长与AB的延长线相交于点G,则EG=()A.13 B.10 C.12 D.56.如图,等腰直角三角形ABC中,∠C=90°,AC=,以点C为圆心画弧与斜边AB相切于点D,交AC于点E,交BC于点F,则图中阴影部分的面积是()A.1﹣B.C.2﹣D.1+7.如图,函数y1=x+1与函数y2=的图象相交于点M(1,m),N(﹣2,n).若y1>y2,则x的取值范围是()A.x<﹣2或0<x<1 B.x<﹣2或x>1C.﹣2<x<0或0<x<1 D.﹣2<x<0或x>18.如图2是图1长方体的三视图,若用S表示面积,S主=a2,S左=a2+a,则S俯=()A.a2+a B.2a2C.a2+2a+1 D.2a2+a二、填空题(本题共8小题,每小题3分,共24分)9.分解因式:3a2﹣6a+3=.10.若二次函数y=﹣x2+2x+k的图象与x轴有两个交点,则k的取值范围是.11.有三张大小、形状完全相同的卡片.卡片上分别写有数字4、5、6,从这三张卡片中随机先后不放回地抽取两张,则两次抽出数字之和为奇数的概率是.12.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深ED=1寸,锯道长AB=1尺(1尺=10寸).问这根圆形木材的直径是寸.13.如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△AOB绕点B逆时针旋转90°后得到△A1O1B,则点A1的坐标是.14.如图,在△ABC中,∠C=84°,分别以点A、B为圆心,以大于AB的长为半径画弧,两弧分别交于点M、N,作直线MN交AC点D;以点B为圆心,适当长为半径画弧,分别交BA、BC于点E、F,再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线BP,此时射线BP恰好经过点D,则∠A=度.15.《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为.16.2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a,较长直角边为b.如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为.三、解答题(本题共有6个小题,每小题6分,共36分)17.(6分)在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(1,3),B(4,1),C(1,1).(1)画出△ABC关于x轴成轴对称的△A1B1C1;(2)画出△ABC以点O为位似中心,位似比为1:2的△A2B2C2.18.(6分)解不等式组:.19.(6分)先化简,再求值:(+)÷,其中a=.20.(6分)在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品60件,B种物品45件,共需1140元;如果购买A种物品45件,B种物品30件,共需840元.(1)求A、B两种防疫物品每件各多少元;(2)现要购买A、B两种防疫物品共600件,总费用不超过7000元,那么A种防疫物品最多购买多少件?21.(6分)如图,在▱ABCD中,点E是AD的中点,连接CE并延长,交BA的延长线于点F.求证:FA=AB.22.(6分)某家庭记录了未使用节水龙头20天的日用水量数据(单位:m3)和使用了节水龙头20天的日用水量数据,得到频数分布表如下:未使用节水龙头20天的日用水量频数分布表:日用水量/m30≤x<0.1 0.1≤x<0.2 0.2≤x<0.3 0.3≤x<0.4 0.4≤x<0.5 频数0 4 2 4 10 使用了节水龙头20天的日用水量频数分布表:日用水量/m30≤x<0.1 0.1≤x<0.2 0.2≤x<0.3 0.3≤x<0.4 频数 2 6 8 4 (1)计算未使用节水龙头20天的日平均用水量和使用了节水龙头20天的日平均用水量;(2)估计该家庭使用节水龙头后,一年能节省多少立方米水?(一年按365天计算)四、解答题(本题共4道题,其中23、24题每题8分,25、26题每题10分,共36分)23.(8分)如图,在△ABC中,∠B=90°,点D为AC上一点,以CD为直径的⊙O交AB于点E,连接CE,且CE平分∠ACB.(1)求证:AE是⊙O的切线;(2)连接DE,若∠A=30°,求.24.(8分)“低碳生活,绿色出行”是一种环保、健康的生活方式,小丽从甲地匀速步行前往乙地,同时,小明从乙地沿同一路线匀速步行前往甲地,两人之间的距离y(m)与步行时间x(min)之间的函数关系式如图中折线段AB﹣BC﹣CD所示.(1)小丽与小明出发min相遇;(2)在步行过程中,若小明先到达甲地.①求小丽和小明步行的速度各是多少?②计算出点C的坐标,并解释点C的实际意义.25.(10分)在综合与实践活动中,活动小组的同学看到网上购鞋的鞋号(为正整数)与脚长(毫米)的对应关系如表1:鞋号(正整数)22 23 24 25 26 27 …脚长(毫米)160±2 165±2 170±2 175±2 180±2 185±2 …为了方便对问题的研究,活动小组将表1中的数据进行了编号,并对脚长的数据b n定义为[b n]如表2:序号n 1 2 3 4 5 6 …鞋号a n22 23 24 25 26 27 …脚长b n160±2 165±2 170±2 175±2 180±2 185±2 …脚长[b n] 160 165 170 175 180 185 …定义:对于任意正整数m、n,其中m>2.若[b n]=m,则m﹣2≤b n≤m+2.如:[b4]=175表示175﹣2≤b4≤175+2,即173≤b4≤177.(1)通过观察表2,猜想出a n与序号n之间的关系式,[b n]与序号n之间的关系式;(2)用含a n的代数式表示[b n];计算鞋号为42的鞋适合的脚长范围;(3)若脚长为271毫米,那么应购鞋的鞋号为多大?26.(10分)如图(1)放置两个全等的含有30°角的直角三角板ABC与DEF(∠B=∠E=30°),若将三角板ABC向右以每秒1个单位长度的速度移动(点C与点E重合时移动终止),移动过程中始终保持点B、F、C、E在同一条直线上,如图(2),AB与DF、DE分别交于点P、M,AC 与DE交于点Q,其中AC=DF=,设三角板ABC移动时间为x秒.(1)在移动过程中,试用含x的代数式表示△AMQ的面积;(2)计算x等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?答案与解析一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.下列各式中正确的是()A.a3•a2=a6B.3ab﹣2ab=1C.=2a+1 D.a(a﹣3)=a2﹣3a【知识考点】合并同类项;同底数幂的乘法;单项式乘多项式.【思路分析】利用整式的计算法则对四个选项一一验证即可得出答案.【解答过程】解:A、a3•a2=a5,所以A错误;B、3ab﹣2ab=ab,所以B错误;C、,所以C错误;D、a(a﹣3)=a2﹣3a,所以D正确;故选:D.【总结归纳】本题考查整式乘除法的简单计算,注意区分同底数幂相乘,底数不变,指数相加,而幂的乘方是底数不变,指数相乘,这两个要区分清楚;合并同类项的时候字母部分不变,系数进行计算,只有当系数计算结果为0时,整体为0.2.小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图),则下列说法正确的是()A.中位数是3,众数是2B.众数是1,平均数是2C.中位数是2,众数是2D.中位数是3,平均数是2.5【知识考点】折线统计图;加权平均数;中位数;众数.【思路分析】根据统计图中的数据,求出中位数,平均数,众数,即可做出判断.【解答过程】解:15名同学一周的课外阅读量为0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,处在中间位置的一个数为2,因此中位数为2;平均数为(0×1+1×4+2×6+3×2+4×2)÷15=2;众数为2;故选:C.【总结归纳】此题考查了平均数,中位数,众数,熟练掌握各自的求法是解本题的关键.3.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是()A.B.C.D.【知识考点】三角形三边关系;列表法与树状图法.【思路分析】画出树状图,找出所有的可能情况数以及能构成三角形的情况数,即可求出所求的概率.【解答过程】解:画树状图如图:共有24个等可能的结果,能组成三角形的结果有12个,∴能构成三角形的概率为=,故选:B.【总结归纳】本题考查了列表法与树状图法以及三角形的三边关系;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.如图摆放的一副学生用直角三角板,∠F=30°,∠C=45°,AB与DE相交于点G,当EF∥BC时,∠EGB的度数是()A.135°B.120°C.115°D.105°【知识考点】平行线的性质.【思路分析】过点G作HG∥BC∥EF,则有∠HGB=∠B,∠HGE=∠E,又因为△DEF和△ABC 都是特殊直角三角形,∠F=30°,∠C=45°,可以得到∠E=60°,∠B=45°,有∠EGB=∠HGE+∠HGB即可得出答案.【解答过程】解:过点G作HG∥BC,∵EF∥BC,∴GH∥BC∥EF,∴∠HGB=∠B,∠HGE=∠E,∵在Rt△DEF和Rt△ABC中,∠F=30°,∠C=45°∴∠E=60°,∠B=45°∴∠HGB=∠B=45°,∠HGE=∠E=60°∴∠EGB=∠HGE+∠HGB=60°+45°=105°故∠EGB的度数是105°,故选:D.【总结归纳】本题主要考查了平行线的性质和三角形内角和定理,其中平行线的性质为:两直线平行,内错角相等;三角形内角和定理为:三角形的内角和为180°;其中正确作出辅助线是解本题的关键.5.如图,菱形ABCD的边长为13,对角线AC=24,点E、F分别是边CD、BC的中点,连接EF 并延长与AB的延长线相交于点G,则EG=()A.13 B.10 C.12 D.5【知识考点】三角形中位线定理;菱形的性质.【思路分析】连接对角线BD,交AC于点O,证四边形BDEG是平行四边形,得EG=BD,利用勾股定理求出OD的长,BD=2OD,即可求出EG.【解答过程】解:连接BD,交AC于点O,如图:∵菱形ABCD的边长为13,点E、F分别是边CD、BC的中点,∴AB∥CD,AB=BC=CD=DA=13,EF∥BD,∵AC、BD是菱形的对角线,AC=24,∴AC⊥BD,AO=CO=12,OB=OD,又∵AB∥CD,EF∥BD,∴DE∥BG,BD∥EG,∵DE∥BG,BD∥EG,∴四边形BDEG是平行四边形,∴BD=EG,在△COD中,∵OC⊥OD,CD=13,CO=12,∴OB=OD==5,∴BD=2OD=10,∴EG=BD=10;故选:B.【总结归纳】本题主要考查了菱形的性质,平行四边形的判定与性质及勾股定理等知识;熟练掌握菱形、平行四边形的性质和勾股定理是解题的关键.6.如图,等腰直角三角形ABC中,∠C=90°,AC=,以点C为圆心画弧与斜边AB相切于点D,交AC于点E,交BC于点F,则图中阴影部分的面积是()A.1﹣B.C.2﹣D.1+【知识考点】等腰直角三角形;切线的性质;扇形面积的计算.【思路分析】连接CD,利用切线的性质和等腰直角三角形的性质求出CD的值,再分别计算出扇形ECF的面积和等腰三角形ACB的面积,用三角形的面积减去扇形的面积即可得到阴影部分的面积.【解答过程】解:连接CD,如图,∵AB是圆C的切线,∴CD⊥AB,∵△ABC是等腰直角三角形,∴AB=AC=×=2,∴CD=AB=1,∴图中阴影部分的面积=S△ABC﹣S扇形ECF=××﹣=1﹣.故选:A.【总结归纳】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了扇形的面积和等腰直角三角形的性质.7.如图,函数y1=x+1与函数y2=的图象相交于点M(1,m),N(﹣2,n).若y1>y2,则x 的取值范围是()A.x<﹣2或0<x<1 B.x<﹣2或x>1C.﹣2<x<0或0<x<1 D.﹣2<x<0或x>1【知识考点】反比例函数与一次函数的交点问题.【思路分析】观察函数y1=x+1与函数的图象,即可得出当y1>y2时,相应的自变量x的取值范围.【解答过程】解:由一次函数和反比例函数的图象可知,当一次函数图象在反比例函数图象之上时,所对应的x的取值范围为﹣2<x<0或x>1,故答案为:﹣2<x<0或x>1.故选:D.【总结归纳】本题主要考查了反比例函数图象与一次函数图象的交点问题,能利用数形结合求出不等式的解集是解答此题的关键.8.如图2是图1长方体的三视图,若用S表示面积,S主=a2,S左=a2+a,则S俯=()A.a2+a B.2a2C.a2+2a+1 D.2a2+a【知识考点】几何体的表面积;由三视图判断几何体.【思路分析】由主视图和左视图的宽为a,结合两者的面积得出俯视图的长和宽,即可得出结论.【解答过程】解:∵,∴俯视图的长为a+1,宽为a,∴,故选:A.【总结归纳】本题考查了几何体的三视图,熟练掌握三视图与几何体的长、宽、高的关系,进而求得俯视图的长和宽是解答的关键.二、填空题(本题共8小题,每小题3分,共24分)9.分解因式:3a2﹣6a+3=.【知识考点】提公因式法与公式法的综合运用.【思路分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答过程】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.【总结归纳】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.10.若二次函数y=﹣x2+2x+k的图象与x轴有两个交点,则k的取值范围是.【知识考点】抛物线与x轴的交点.【思路分析】根据二次函数y=﹣x2+2x+k的图象与x轴有两个交点,可知判别式△>0,列出不等式并解之即可求出k的取值范围.【解答过程】解:∵二次函数y=﹣x2+2x+k的图象与x轴有两个交点,∴△=4﹣4×(﹣1)•k>0,解得:k>﹣1,故答案为:k>﹣1.【总结归纳】本题考查二次函数的判别式、解一元一次不等式,熟记二次函数的图象与判别式的三种对应关系并熟练运用是解答的关键.11.有三张大小、形状完全相同的卡片.卡片上分别写有数字4、5、6,从这三张卡片中随机先后不放回地抽取两张,则两次抽出数字之和为奇数的概率是.【知识考点】列表法与树状图法.【思路分析】列表得出所有情况,看取出的两张卡片上的数字之和为奇数的情况数占所有情况数的多少即可.【解答过程】解:列表得:4 5 64 9 105 9 116 10 11共有6种情况,取出的两张卡片上的数字之和为奇数的情况数为4种,∴两次抽出数字之和为奇数的概率为.故答案为:.【总结归纳】本题考查了列表法与列树状图法以及概率公式;得到取出的两张卡片上的数字之和为奇数的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.12.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深ED=1寸,锯道长AB=1尺(1尺=10寸).问这根圆形木材的直径是寸.【知识考点】数学常识;垂径定理的应用.【思路分析】根据题意可得OE⊥AB,由垂径定理可得尺=5寸,设半径OA=OE=r,则OD=r﹣1,在Rt△OAD中,根据勾股定理可得:(r﹣1)2+52=r2,解方程可得出木材半径,即可得出木材直径.【解答过程】解:由题意可知OE⊥AB,∵OE为⊙O半径,∴尺=5寸,设半径OA=OE=r,∵ED=1,∴OD=r﹣1,则Rt△OAD中,根据勾股定理可得:(r﹣1)2+52=r2,解得:r=13,∴木材直径为26寸;故答案为:26.【总结归纳】本题考查垂径定理结合勾股定理计算半径长度.如果题干中出现弦的垂线或者弦的中点,则可验证是否满足垂径定理;与圆有关的题目中如果求弦长或者求半径直径,也可以从题中寻找是否有垂径定理,然后构造直角三角形,用勾股定理求解.13.如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△AOB绕点B逆时针旋转90°后得到△A1O1B,则点A1的坐标是.【知识考点】一次函数的性质;一次函数图象上点的坐标特征;坐标与图形变化﹣旋转.【思路分析】首先根据直线AB来求出点A和点B的坐标,A1的横坐标等于OB,而纵坐标等于OB﹣OA,即可得出答案.【解答过程】解:在中,令x=0得,y=4,令y=0,得,解得x=,∴A(,0),B(0,4),由旋转可得△AOB≌△A1O1B,∠ABA1=90°,∴∠ABO=∠A1BO1,∠BO1A1=∠AOB=90°,OA=O1A1=,OB=O1B=4,∴∠OBO1=90°,∴O1B∥x轴,∴点A1的纵坐标为OB﹣OA的长,即为4=;横坐标为O1B=OB=4,故点A1的坐标是(4,),故答案为:(4,).【总结归纳】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.14.如图,在△ABC中,∠C=84°,分别以点A、B为圆心,以大于AB的长为半径画弧,两弧分别交于点M、N,作直线MN交AC点D;以点B为圆心,适当长为半径画弧,分别交BA、BC于点E、F,再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线BP,此时射线BP恰好经过点D,则∠A=度.【知识考点】线段垂直平分线的性质;作图—复杂作图.【思路分析】由作图可得MN是线段AB的垂直平分线,BD是∠ABC的平分线,根据它们的性质可得∠A=∠ABD=∠CBD,再根据三角形内角和定理即可得解.【解答过程】解:由作图可得,MN是线段AB的垂直平分线,BD是∠ABC的平分线,∴AD=BD,,∴∠A=∠ABD,∴∠A=∠ABD=∠CBD,∵∠A+∠ABC+∠C=180°,且∠C=84°,∴∠A+2∠ABD=180°﹣∠C,即3∠A=180°﹣84°,∴∠A=32°.故答案为:32.【总结归纳】本题考查了作图﹣复杂作图,解决本题的关键是掌握线段垂直平分线的作法和角平分线的作法.15.《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为6.【知识考点】一元一次不等式组的应用.【思路分析】设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),根据给定的三个条件,即可得出关于a,b的二元一次不等式组,结合a,b均为整数即可得出b 的取值范围,再取其中最大的整数值即可得出结论.【解答过程】解:设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),依题意,得:,∵a,b均为整数∴4<b<7,∴b最大可以取6.故答案为:6.【总结归纳】本题考查二元一次不等式组的应用,根据各数量之间的关系,正确列出二元一次不等式组是解题的关键.16.2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a,较长直角边为b.如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为.【知识考点】数学常识;全等图形;勾股定理的证明.【思路分析】根据题意得出a2+b2=15,(b﹣a)2=3,图2中大正方形的面积为:(a+b)2,然后利用完全平方公式的变形求出(a+b)2即可.【解答过程】解:由题意可得在图1中:a2+b2=15,(b﹣a)2=3,图2中大正方形的面积为:(a+b)2,∵(b﹣a)2=3a2﹣2ab+b2=3,∴15﹣2ab=32ab=12,∴(a+b)2=a2+2ab+b2=15+12=27,故答案为:27.【总结归纳】本题考查了完全平方公式在几何图形中的应用,熟知完全平方式的形式是解题关键.三、解答题(本题共有6个小题,每小题6分,共36分)17.(6分)在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(1,3),B(4,1),C(1,1).(1)画出△ABC关于x轴成轴对称的△A1B1C1;(2)画出△ABC以点O为位似中心,位似比为1:2的△A2B2C2.【知识考点】作图﹣轴对称变换;作图﹣位似变换.【思路分析】(1)将△ABC的各个点关于x轴的对称点描出,连接即可.(2)在△ABC同侧和对侧分别找到2OA=OA2,2OB=OB2,2OC=OC2所对应的A2,B2,C2的坐标,连接即可.【解答过程】解:(1)由题意知:△ABC的三个顶点的坐标分别是A(1,3),B(4,1),C(1,1),则△ABC关于x轴成轴对称的△A1B1C1的坐标为A1(1,﹣3),B1(4,﹣1),C1(1,﹣1),连接A1C1,A1B1,B1C1得到△A1B1C1.如图所示△A1B1C1为所求;(2)由题意知:位似中心是原点,则分两种情况:第一种,△A2B2C2和△ABC在同一侧则A2(2,6),B2(8,2),C2(2,2),连接各点,得△A2B2C2.第二种,△A2B2C2在△ABC的对侧A2(﹣2,﹣6),B2(﹣8,﹣2),C2(﹣2,﹣2),连接各点,得△A2B2C2.综上所述:如图所示△A2B2C2为所求;【总结归纳】本题主要考查了位似中心、位似比和轴对称相关知识点,正确掌握位似中心、位似比的概念及应用是解题的关键.18.(6分)解不等式组:.【知识考点】解一元一次不等式组.【思路分析】分别解出两个不等式的解集,然后确定解集的公共部分就可以求出不等式的解集.【解答过程】解:由①得:x≤2,由②得:x>﹣1,所以,不等式组的解集是﹣1<x≤2.【总结归纳】本题考查了不等式组的解法,关键是求出两个不等式的解,然后根据口诀求出不等式组的解集.19.(6分)先化简,再求值:(+)÷,其中a=.【知识考点】分式的化简求值.【思路分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,代入计算即可求出值.【解答过程】解:原式===当时,原式=.【总结归纳】本题考查了分式的化简求值,解题的关键是选择正确的计算方法,对通分、分解因式、约分等知识点熟练掌握.20.(6分)在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品60件,B种物品45件,共需1140元;如果购买A种物品45件,B种物品30件,共需840元.(1)求A、B两种防疫物品每件各多少元;(2)现要购买A、B两种防疫物品共600件,总费用不超过7000元,那么A种防疫物品最多购买多少件?【知识考点】二元一次方程组的应用;一元一次不等式的应用.【思路分析】(1)设A种防疫物品每件x元,B种防疫物品每件y元,根据“如果购买A种物品60件,B种物品45件,共需1140元;如果购买A种物品45件,B种物品30件,共需840元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买A种防疫物品m件,则购买B种防疫物品(600﹣m)件,根据总价=单价×购买数量结合总费用不超过7000元,即可得出关于m的一元一次不等式,解之取其中最大的整数值即可得出结论.【解答过程】解:(1)设A种防疫物品每件x元,B种防疫物品每件y元,依题意,得:,解得:.答:A种防疫物品每件16元,B种防疫物品每件4元.(2)设购买A种防疫物品m件,则购买B种防疫物品(600﹣m)件,依题意,得:16m+4(600﹣m)≤7000,解得:m≤383,又∵m为正整数,∴m的最大值为383.答:A种防疫物品最多购买383件.【总结归纳】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.21.(6分)如图,在▱ABCD中,点E是AD的中点,连接CE并延长,交BA的延长线于点F.求证:FA=AB.【知识考点】全等三角形的判定与性质;平行四边形的性质.【思路分析】在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明△AFE≌△DCE,根据全等的性质再证明AF=DC,从而证明AF=AB.【解答过程】证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.∴∠FEA=∠DEC,∠F=∠ECD.又∵EA=ED,∴△AFE≌△DCE.∴AF=DC.∴AF=AB.【总结归纳】本题考查平行四边形的性质及全等三角形等知识,是比较基础的证明题.22.(6分)某家庭记录了未使用节水龙头20天的日用水量数据(单位:m3)和使用了节水龙头20天的日用水量数据,得到频数分布表如下:未使用节水龙头20天的日用水量频数分布表:日用水量/m30≤x<0.1 0.1≤x<0.2 0.2≤x<0.3 0.3≤x<0.4 0.4≤x<0.5 频数0 4 2 4 10 使用了节水龙头20天的日用水量频数分布表:日用水量/m30≤x<0.1 0.1≤x<0.2 0.2≤x<0.3 0.3≤x<0.4 频数 2 6 8 4 (1)计算未使用节水龙头20天的日平均用水量和使用了节水龙头20天的日平均用水量;(2)估计该家庭使用节水龙头后,一年能节省多少立方米水?(一年按365天计算)【知识考点】用样本估计总体;频数(率)分布表;加权平均数.【思路分析】(1)取组中值,运用加权平均数分别计算出未使用节水龙头20天的日平均用水量和使用了节水龙头20天的日平均用水量即可;(2)先计算平均一天节水量,再乘以365即可得到结果.【解答过程】解:(1)未使用节水龙头20天的日平均用水量为:×(0×0.05+4×0.15+2×0.25+4×0.35+10×0.45)=0.35(m3),使用了节水龙头20天的日平均用水量为:×(2×0.05+6×0.15+8×0.25+4×0.35)=0.22(m3);(2)365×(0.35﹣0.22)=365×0.13=47.45(m3),答:估计该家庭使用节水龙头后,一年能节省47.45m3水.【总结归纳】此题主要考查节水量的估计值的求法,考查加权平均数等基础知识,考查运算求解能力,是基础题.四、解答题(本题共4道题,其中23、24题每题8分,25、26题每题10分,共36分)23.(8分)如图,在△ABC中,∠B=90°,点D为AC上一点,以CD为直径的⊙O交AB于点E,连接CE,且CE平分∠ACB.(1)求证:AE是⊙O的切线;(2)连接DE,若∠A=30°,求.【知识考点】圆周角定理;切线的判定与性质.【思路分析】(1)连接OE,证明OE∥BC,得∠AEO=∠B=90°,即可得出结论;(2)连接DE,先证明△DCE∽△ECB,得出=,易证∠ACB=60°,由角平分线定义得∠DCE=∠ACB=×60°=30°,由此可得的值,即可得出结果.【解答过程】(1)证明:连接OE,如图1所示:∵CE平分∠ACB,∴∠ACE=∠BCE,又∵OE=OC,∴∠ACE=∠OEC,∴∠BCE=∠OEC,∴OE∥BC,∴∠AEO=∠B,又∵∠B=90°,∴∠AEO=90°,即OE⊥AE,∵OE为⊙O的半径,∴AE是⊙O的切线;(2)解:连接DE,如图2所示:∵CD是⊙O的直径,∴∠DEC=90°,∴∠DEC=∠B,。
宁夏中考《数学》试题及答案完整篇.doc
2013宁夏中考《数学》试题及答案-中考文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第2页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第3页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第4页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第5页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第6页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第7页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第8页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第9页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第10页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第11页-
中考
文章责编:zhongzexing。
2023年宁夏回族自治区中考数学真题(含解析)
2023年宁夏回族自治区中考数学真题学校:___________姓名:___________班级:___________考号:___________....A.0.6B.0.55.估计23的值应在()A .23-B .237.在同一平面直角坐标系中,一次函数A .1y 随x 的增大而增大B .b n<C .当2x <时,12y y >D .关于x ,y 的方程组ax mx ⎧⎨二、填空题⨯网格,点16.如图是由边长为1的小正方形组成的96均在格点上.下列结论:①点D与点F关于点E中心对称;②连接FB,FC,FE,则FC平分∠③连接AG,则点B,F到线段AG的距离相等.其中正确结论的序号是.20.“人间烟火味,最抚凡人心”,地摊经济、小店经济是就业岗位的重要来源.某经营者购进了A型和B型两种玩具,已知用玩具的数量多30个,且A型玩具单价是(1)求两种型号玩具的单价各是多少元?23.学校组织七、八年级学生参加了“国家安全知识”测试(满分100分)年级各有200人,现从两个年级分别随机抽取10名学生的测试成绩x(单位:分)进行统计:七年级869479847190八年级887690788793(1)求证:AC 平分BAE ∠(2)若5AC =,tan ACE ∠25.如图,抛物线y ax =点A 的坐标是()1,0-,抛物线的对称轴是直线(1)直接写出点B 的坐标;(2)在对称轴上找一点P ,使PA PC +的值最小.求点P (3)第一象限内的抛物线上有一动点M ,过点M 作MN MN 于点Q .依题意补全图形,当2MQ CQ +的值最大时,求点26.综合与实践探究发现如图1,在ABC 中,A ∠=(1)操作发现:将ABC于点D,连接DE,DB (用含x的式子表示)(2)进一步探究发现:证明:512 BCAC-=底腰参考答案:∴45CAD ACD ∠=︒=∠,∴2cm AD CD ==,在Rt BCD 中,60BCD ∠=︒,点D与点F关于点E中心对称;故①②如图:由图可知:22==+=,3110FB FE△为等腰三角形,∴BFE∵FC经过BE的中点,∴FC平分BFE∠,故②正确;∴2==,BM FN∴点B,F到线段AG的距离相等,故综上,正确的有①②③;故答案为:①②③.【点睛】本题考查中心对称图形,勾股定理,等腰三角形的判定和性质,正方形的判定和性则:14070101809AB ππ=⨯=,过点A 作AC l ∥,BC AC ⊥于点C ∴30BAC ∠=︒,∴13529BC AB π==,即:粮袋上升的高度是的切线,∵直线DC是O⊥,∴OC DE⊥,∵AE DCO C A E,∴∥∠=∠+∠∵OCE OCF ACE∵()3,0B ,∴223332BC =+=,∵点A 关于对称轴的对称点为点∴PA PC PB PC BC +=+≥,∵()()1,0,3,0A B -,设抛物线的解析式为:y =∵()0,3C ,∴33a =-,。
2021年宁夏中考数学试题及参考答案(word解析版)
2021年宁夏中考数学试题及参考答案(word解析版)2021年宁夏中考数学试题及参考答案与解析一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的) 1.计算:|?11的结果是() |?241 C.0 D.��12��A.1 B.2.下列运算正确的是()A.(��a)3=a3 B.(a2)3=a5 C.a2÷a2=1 D.(��2a3)2=4a63.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A.30和 20 B.30和25 C.30和22.5 D.30和17.5 4.若2?3是方程x2��4x+c=0的一个根,则c的值是() A.1 B.3?3 C.1?3 D.2?35.某企业2021年初获利润300万元,到2021年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是()A.300(1+x)=507 B.300(1+x)2=507C.300(1+x)+300(1+x)2=507 D.300+300(1+x)+300(1+x)2=5076.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是() A.10 B.20 C.10π D.20π7.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40° B.50° C.60° D.70°8.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是()1A. B. C. D.二、填空题(本题共8小题,每小题3分,共24分)9.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是. 10.已知m+n=12,m��n=2,则m2��n2= . 11.反比例函数y?k(k是常数,k≠0)的图象经过点(1,4),那么这个函数图象所在的每个象限x内,y的值随x值的增大而.(填“增大”或“减小”) 12.已知:a2a?2b?,则的值是.a?2bb313.关于x的方程2x2��3x+c=0有两个不相等的实数根,则c的取值范围是.14.在平面直角坐标系中,四边形AOBC为矩形,且点C坐标为(8,6),M为BC中点,反比例函数y?k(k是常数,k≠0)的图象经过点M,交AC于点N,则MN的长度是. x15.一艘货轮以182km/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B的距离是 km.16.如图是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:A0纸长度方向对折一半后变为A1纸;A1纸长度方向对折一半后变为A2纸;A2纸长度方向对折一半后变为A3纸;A3纸长度方向对折一半后变为A4纸……A4规格的纸是我们日常生活中最常见的,那么由一张A4的纸可以裁张A8的纸.2三、解答题(本题共有6个小题,每小题6分,共36分) 17.(6分)解不等式组:??x?3?x?1?≥5?x?3x?1?1<?2?5.18.(6分)先化简,再求值:?1?2?1,其中,x?3?3. ????x?33?x?x?319.(6分)已知:△ABC三个顶点的坐标分别为A(��2,��2),B(��5,��4),C(��1,��5).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2,并写出点B2的坐标.20.(6分)某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).组别 A B C D E时间(小时)频数(人数)0≤t<0.5 0.5≤t<1 1≤t<1.5 1.5≤t<2 2≤t<2.5 3频率 0.05 0.3 0.35 0.2 0.1 20 a 140 80 40 请根据图表中的信息,解答下列问题:(1)表中的a= ,将频数分布直方图补全;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.21.(6分)已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.22.(6分)某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?四、解答题(本题共4道题,其中23、24题每题8分,25、26题每题10分,共36分)23.(8分)已知:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,且AC=CP.(1)求∠P的度数;(2)若点D是弧AB的中点,连接CD交AB于点E,且DE?DC=20,求⊙O的面积.(π取3.14)424.(8分)抛物线y??轴为直线l,顶点为C.12x?bx?c经过点A(33,0)和点B(0,3),且这个抛物线的对称3(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.25.(10分)空间任意选定一点O,以点O为端点,作三条互相垂直的射线ox、oy、oz.这三条互相垂直的射线分别称作x轴、y轴、z轴,统称为坐标轴,它们的方向分别为ox(水平向前)、oy(水平向右)、oz(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为S1、S2、S3,且S1<S2<S3的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体S1所在的面与x轴垂直,S2所在的面与y轴垂直,S3所在的面与z轴垂直,如图1所示.若将x轴方向表示的量称为几何体码放的排数,y轴方向表示的量称为几何体码放的列数,z轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了1排2列6层,用有序数组记作(1,2,6),如图3的几何体码放了2排3列4层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组(x,y,z)表示一种几何体的码放方式.(1)如图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为,组成这个几何体的单位长方体的个数为个;(2)对有序数组性质的理解,下列说法正确的是;(只填序号)①每一个有序数组(x,y,z)表示一种几何体的码放方式.②有序数组中x、y、z的乘积就表示几何体中单位长方体的个数.③有序数组不同,所表示几何体的单位长方体个数不同.④不同的有序数组所表示的几何体的体积不同.⑤有序数组中x、y、z每两个乘积的2倍可分别确定几何体表面上S1、S2、S3的个数.(3)为了进一步探究有序数组(x,y,z)的几何体的表面积公式S(x,y,z),某同学针对若干个单位长方体进行码放,制作了下列表格:几何体有序数组(1,1,1)(1,2,1)(3,1,1)(2,1,2)(1,5,1)单位长方体的表面上面积为表面上面积为表面上面积为个数 1 2 3 4 5 S1的个数 2 4 2 4 10 5 表面积 S2的个数 2 2 6 8 2 S3的个数 2 4 6 4 10 2S1+2S2+2S34S1+2S2+4S3 2S1+6S2+6S3 4S1+8S2+4S3 10S1+2S2+10S3感谢您的阅读,祝您生活愉快。
宁夏中考数学试卷及答案(K12教育文档)
(直打版)宁夏中考数学试卷及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)宁夏中考数学试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)宁夏中考数学试卷及答案(word版可编辑修改)的全部内容。
宁夏回族自治区2013年初中毕业暨高中阶段招生考试数 学 试 题注意事项:1.全卷总分120分,答题时间120分钟 2.答题前将密封线内的项目填写清楚3.使用答题卡的考生,将所有答案全部答在答题卡相应的位置上。
一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1.计算32)(a 的结果是 ( ) A .5a B 。
6a C 。
8a D.9a2。
一元二次方程x x x -=-2)2(的根是 ( )A. 1- B 。
0 C 。
1和2 D 。
1-和2 3.如图是某水库大坝横断面示意图.其中AB 、CD 分别表示水库上下底面的水平线,∠ABC =120°,BC 的长是50 m ,则水库大坝的高度h 是 ( )A . 253mB .25mC 。
252mD 。
3350m4.如图,△ABC 中, ∠A C B =90°,沿CD 折叠△CBD,使点B 恰好落在AC 边上的点E 处,若∠A =22°,则∠BDC 等于 ( )第4题CD第3题A .44°B 。
60° C. 67° D 。
77°5。
雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人,设该企业捐助甲种帐篷x 顶、乙种帐篷y 顶,那么下面列出的方程组中正确的是 ( )A .⎩⎨⎧=+=+8000415004y x y x B .⎩⎨⎧=+=+8000615004y x y x C .⎩⎨⎧=+=+8000641500y x y x D .⎩⎨⎧=+=+8000461500y x y x 6。
2023年宁夏回族自治区中考数学真题试卷(解析版)
2023年宁夏回族自治区中考数学真题试卷及答案注意事项:1.本试卷满分120分,考试时间120分钟.2.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上规定位置,认真核对条形码上的姓名、准考证号,并将条形码粘贴在指定位置上.3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1. 的绝对值是()A. B. C. D.【答案】C【解析】根据绝对值的性质解答即可.,故选:C.【点拨】本题考查了绝对值,掌握绝对值的性质是解答本题的关键.2. 下面是由七巧板拼成的图形(只考虑外形,忽略内部轮廓),其中轴对称图形是()A. B. C. D.【答案】C【解析】根据轴对称图形的概念进行判断即可.解:A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.是轴对称图形,故此选项合题意;D.不是轴对称图形,故此选项不符合题意.故选:C.【点拨】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3. 下列计算正确的是()A. B. C. D.【答案】D【解析】根据合并同类项,同底数幂的除法,完全平方公式,积的乘方,逐一计算判断即可.解:A.,故选项A错误;B.,故选项B错误;C.,故选项C错误;D.,故选项D正确;故选D.【点拨】本题考查整式的运算.熟练掌握合并同类项,同底数幂的除法,完全平方公式,积的乘方法则,是解题的关键.4. 劳动委员统计了某周全班同学的家庭劳动次数(单位:次),按劳动次数分为4组:,,,,绘制成如图所示的频数分布直方图.从中任选一名同学,则该同学这周家庭劳动次数不足6次的概率是()A. B. C. D.【答案】A【解析】利用概率公式进行计算即可.解:由题意,得:;故选A.【点拨】本题考查直方图,求概率.解题的关键是从直方图中有效的获取信息.5. 估计的值应在()A. 和4之间B. 4和之间C. 和5之间D. 5和之间【答案】C【解析】先找到所求的无理数在哪两个和它接近的有理数之间,然后判断出所求的无理数的范围.∵,∴,排除A和D,又∵23更接近25,∴更接近5,∴在和5之间,故选:C.【点拨】此题主要考查了无理数的大小估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.6. 将一副直角三角板和一把宽度为2cm的直尺按如图方式摆放:先把和角的顶点及它们的直角边重合,再将此直角边垂直于直尺的上沿,重合的顶点落在直尺下沿上,这两个三角板的斜边分别交直尺上沿于,两点,则的长是()A. B. C. 2 D.【答案】B【解析】根据等腰直角三角形的性质可得,由含30度角直角三角形的性质可得,由勾股定理可得的长,即可得到结论.解:如图,在中,,∴,∴,在中,,∴,∴,∴,∴.故选:B.【点拨】本题考查了勾股定理,等腰直角三角形的性质,含角直角三角形的性质,熟练掌握勾股定理是解题的关键.7. 在同一平面直角坐标系中,一次函数与的图象如图所示,则下列结论错误的是()A. 随的增大而增大B.C. 当时,D. 关于,的方程组的解为【答案】C【解析】结合图象,逐一进行判断即可.解:A.随的增大而增大,故选项A正确;B.由图象可知,一次函数的图象与轴的交点在的图象与轴的交点的下方,即,故选项B正确;C.由图象可知:当时,,故选项C错误;D.由图象可知,两条直线的交点为,∴关于,的方程组的解为;故选项D正确;故选C.【点拨】本题考查一次函数的图象和性质,一次函数与二元一次方程组,一次函数与一元一次不等式.从函数图象中有效的获取信息,熟练掌握图象法解方程组和不等式,是解题的关键.8. 如图,在中,,,.点在上,且.连接,将线段绕点顺时针旋转得到线段,连接,.则的面积是()A. B. C. D.【答案】B【解析】证明,得到,推出为直角三角形,利用的面积等于,进行求解即可.解:∵,,∴,,∵将线段绕点顺时针旋转得到线段,∴,,∴,在和中,,∴,∴,∴,∵,,∴,∴的面积等于;故选B.【点拨】本题考查旋转的性质,等腰三角形的性质,全等三角形的判定和性质.熟练掌握旋转的性质,得到三角形全等是解题的关键.本题蕴含手拉手全等模型,平时要多归纳,多总结,便于快速解题.二、填空题(本题共8小题,每小题3分,共24分)9. 计算:________.【答案】【解析】根据同分母分式加法法则计算即可.解:,故答案:.【点拨】本题考查分式的加法,题目较为基础.10. 如图,在边长为2的正方形中,点在上,连接,.则图中阴影部分的面积是________.【答案】2【解析】根据正方形的,,边长为2,阴影部分面积等于与面积的和,运用三角形面积公式,即可求解.∵四边形为正方形,∴,,∵正方形的边长为2,∴.故答案为:2.【点拨】本题主要考查了正方形,三角形面积.熟练掌握正方形的边角性质,三角形面积公式,是解题的关键.11. 方程有两个相等的实数根,则的值为________.【答案】【解析】根据方程有两个相等的实数根,进行求解即可.解:∵方程有两个相等的实数根,∴,解得:;故答案为:.【点拨】本题考查根的判别式,熟练掌握,方程有两个相等的实数根,是解题的关键.12. 如图,在标有数字1,2,3,4的四宫格里任选两个小方格,则所选方格中数字之和为4的概率是________.【答案】【解析】利用列表法求概率即可.解:列表如下:12341345235634574567共有12种等可能的结果,其中和为4有2种等可能的结果,∴.故答案为:.【点拨】本题考查列表法求概率.熟练掌握列表法,是解题的关键.13. 如图,四边形内接于,延长至点,已知,那么________.【答案】【解析】根据圆周角定理得到,再根据圆内接四边形性质和平角的定义即可得解.解:∵,∴,∵四边形内接于,∴,∵,∴,故答案为:.【点拨】此题考查了圆内接四边形的性质、圆周角定理,熟记圆内接四边形的性质、圆周角定理是解题的关键.14. 如图,点,,在数轴上,点表示的数是,点是的中点,线段,则点表示的数是________.【答案】【解析】根据两点间的距离公式和中点平分线段进行计算即可.解:∵点是的中点,线段,∴,∴点表示的数是:;故答案为:.【点拨】本题考查数轴上两点间的距离,以及线段的中点.熟练掌握线段中点的定义,以及数轴上两点间的距离公式,是解题的关键.15. 如图是某种杆秤.在秤杆的点处固定提纽,点处挂秤盘,点为0刻度点.当秤盘不放物品时,提起提纽,秤砣所挂位置移动到点,秤杆处于平衡.秤盘放入克物品后移动秤砣,当秤砣所挂位置与提扭的距离为毫米时秤杆处于平衡.测得与的几组对应数据如下表:/克024610/毫米1014182230由表中数据的规律可知,当克时,________毫米.【答案】50【解析】根据表格可得y与x的函数关系式,再将代入求解即可.解:由表格可得,物品每增加2克,秤砣所挂位置与提扭的距离增加4毫米,则物品每增加1克,秤砣所挂位置与提扭的距离增加2毫米,当不挂重物时,秤砣所挂位置与提扭的距离为10毫米,∴y与x的函数关系式为,当时,,故答案为:50.【点拨】本题考查由表格得函数关系式以及求函数值,通过表格得出函数关系式是解题的关键.16. 如图是由边长为1的小正方形组成的网格,点,,,,,,均在格点上.下列结论:①点与点关于点中心对称;②连接,,,则平分;③连接,则点,到线段的距离相等.其中正确结论的序号是________.【答案】①②③【解析】根据描述,作图,逐一进行判断即可;解:①如图:点与点关于点中心对称;故①正确;②如图:由图可知:,∴为等腰三角形,∵经过的中点,∴平分,故②正确;③如图,点到的距离为,点到的距离为,∴,∴点,到线段的距离相等,故③正确;综上,正确的有①②③;故答案为:①②③.【点拨】本题考查中心对称图形,勾股定理,等腰三角形的判定和性质,正方形的判定和性质.解题的关键是根据描述,正确的画图,熟练掌握相关知识点.三、解答题(本题共10小题,其中17~22题每小题6分,23.24题每小题8分,25.26题每小题10分,共72分)17. 计算:【答案】【解析】先化简各式,按照运算顺序进行计算即可.解:原式.【点拨】本题考查特殊角三角函数值,实数的混合运算.解题的关键是熟记特殊角的三角函数值,掌握相关运算法则,正确的进行计算.18. 解不等式组下面是某同学的部分解答过程,请认真阅读并完成任务:解:由①得:第1步第2步第3步第4步任务一:该同学的解答过程第_______步出现了错误,错误原因是_______,不等式①的正确解集是_______;任务二:解不等式②,并写出该不等式组的解集.【答案】任务一:4,不等号的方向没有发生改变,;任务二:,【解析】任务一:系数化1时,系数小于0,不等号的方向要发生改变,即可得出结论;任务二:移项,合并同类项,系数化1,求出不等式②的解集,进而得出不等式组的解集即可.解:任务一:∵,∴;∴该同学的解答过程第4步出现了错误,错误原因是不等号的方向没有发生改变,不等式①的正确解集是;故答案为:4,不等号的方向没有发生改变,;任务二:,,,;又,∴不等式组的解集为:.【点拨】本题考查解一元一次不等式,求不等式组的解集.解题的关键是正确的求出每一个不等式的解集,注意系数化1时,系数是负数,不等号的方向要发生改变.19. 如图,已知,,分别是和上的点,.求证:四边形是平行四边形.【答案】见解析【解析】根据平行线的性质和判定证得,再根据平行四边形的判定即可证得结论.证明:,,又,,,,四边形是平行四边形.【点拨】本题主要考查了平行线的性质和判定,平行四边形的判定,根据平行线的性质和判定证得是解决问题的关键.20. “人间烟火味,最抚凡人心”,地摊经济、小店经济是就业岗位的重要来源.某经营者购进了型和型两种玩具,已知用520元购进型玩具的数量比用175元购进型玩具的数量多30个,且型玩具单价是型玩具单价的倍.(1)求两种型号玩具的单价各是多少元?根据题意,甲、乙两名同学分别列出如下方程:甲:,解得,经检验是原方程的解.乙:,解得,经检验是原方程的解.则甲所列方程中的表示_______,乙所列方程中的表示_______;(2)该经营者准备用1350元以原单价再次购进这两种型号的玩具共200个,则最多可购进型玩具多少个?【答案】(1)型玩具的单价;购买型玩具的数量(2)最多购进型玩具个【解析】(1)根据方程表示的意义,进行作答即可;(2)设最多购进型玩具个,根据题意,列出方程进行求解即可.(1)解:对于甲:表示的是:用520元购进型玩具的数量比用175元购进型玩具的数量多30个,∴分别表示型玩具和型玩具的数量,∴表示型玩具的单价;对于乙:表示的是:型玩具单价是型玩具单价的倍,∴,分别表示表示型玩具和型玩具的单价,∴表示购买型玩具的数量;故答案为:型玩具的单价;购买型玩具的数量(2)设购进型玩具个,则购买型玩具个,由(1)中甲同学所列方程的解可知:型玩具的单价为5元,则型玩具的单价为元,由题意,得:,解得:,∵为整数,∴;答:最多购进型玩具个.【点拨】本题考查分式方程和一元一次不等式的应用.读懂题意,找准等量关系,正确的列出方程和不等式,是解题的关键.21. 给某气球充满一定质量的气体,在温度不变时,气球内气体的气压是气体体积()的反比例函数,其图象如图所示.(1)当气球内的气压超过时,气球会爆炸.若将气球近似看成一个球体,试估计气球的半径至少为多少时气球不会爆炸(球体的体积公式,取3);(2)请你利用与的关系试解释为什么超载的车辆容易爆胎.【答案】(1)气球的半径至少为时,气球不会爆炸;(2)由于车辆超载,轮胎体积变小,胎内气压增大导致爆胎.【解析】(1)设函数关系式为,用待定系数法可得,即可得当时,,从而求出;(2)由于车辆超载,轮胎体积变小,胎内气压增大导致爆胎.(1)设函数关系式为,根据图象可得:,,当时,,,解得:,,随的增大而减小,要使气球不会爆炸,,此时,气球的半径至少为时,气球不会爆炸;(2)由于车辆超载,轮胎体积变小,胎内气压增大导致爆胎.【点拨】本题考查反比例函数的应用,涉及立方根等知识,解题的关键是读懂题意,掌握待定系数法求出反比例函数的解析式.22. 如图,粮库用传送带传送粮袋,大转动轮的半径为10cm,传送带与水平面成角.假设传送带与转动轮之间无滑动,当大转动轮转时,传送带上点处的粮袋上升的高度是多少?(传送带厚度忽略不计)【答案】粮袋上升的高度是cm【解析】先求出粮袋移动的距离,再根据含30度角的直角三角形的性质,进行求解即可.解:如图,设大转动轮转时,粮袋移动到点,则:,过点作,于点,∴,∴,即:粮袋上升高度是cm.【点拨】本题考查求弧长,含30度的直角三角形.解题的关键是掌握粮袋移动的距离为大轮转动的距离.23. 学校组织七、八年级学生参加了“国家安全知识”测试(满分100分).已知七、八年级各有200人,现从两个年级分别随机抽取10名学生的测试成绩(单位:分)进行统计:七年级86 94 79 84 71 90 76 83 90 87八年级88 76 90 78 87 93 75 87 87 79整理如下:年级平均数中位数众数方差七年级8490八年级8487根据以上信息,回答下列问题:(1)填空:_______,________.同学说:“这次测试我得了86分,位于年级中等偏上水平”,由此可判断他是________年级的学生;(2)学校规定测试成绩不低于85分为“优秀”,估计该校这两个年级测试成绩达到“优秀”的学生总人数;(3)你认为哪个年级的学生掌握国家安全知识的总体水平较好?请给出一条理由.【答案】(1)85,87,七;(2)220 (3)八年级,理由见解析【解析】(1)根据中位数和众数的定义即可求出答案;(2)分别求出七、八年级优秀的比例,再乘以总人数即可;(3)两组数据的平均数相同,通过方差的大小直接比较即可.(1)解:把七年级10名学生的测试成绩排好顺序为:71,76,79,83,84,86,87,90,90,94,根据中位数的定义可知,该组数据的中位数为,八年级10名学生的成绩中87分的最多有3人,所以众数,A同学得了86分大于85分,位于年级中等偏上水平,由此可判断他是七年级的学生;故答案为:85,87,七;(2)(人),答:该校这两个年级测试成绩达到“优秀”的学生总人数为220人;(3)我认为八年级的学生掌握国家安全知识的总体水平较好,理由:因为七、八年级测试成绩的平均数相等,八年级测试成绩的方差小于七年级测试成绩的方差,所以八年级的学生掌握防震减灾科普知识的总体水平较好.【点拨】本题考查中位数、众数、方差的意义和计算方法以及用样本估计总体,理解各个概念的内涵和计算方法是解题的关键.24. 如图,已知是的直径,直线是的切线,切点为,,垂足为.连接.(1)求证:平分;(2)若,,求的半径.【答案】(1)见解析(2)的半径为【解析】(1)连接,根据切线的性质可得,证明,根据平行线的性质和等腰三角形的性质求出即可;(2)连接,过点O作于F,证明,根据正切的定义列式求出,再根据勾股定理求出即可.(1)证明:连接,∵直线是的切线,∴,∵,∴,∴,∵,∴,∴,即平分;(2)解:连接,过点O作于F,则,∵,,∴,∴,∴,∴,∴,即的半径为.【点拨】本题考查了切线的性质,平行线的判定和性质,等腰三角形的性质,垂径定理,解直角三角形以及勾股定理等知识,灵活运用各性质进行推理论证是解题的关键.25. 如图,抛物线与轴交于,两点,与轴交于点.已知点的坐标是,抛物线的对称轴是直线.(1)直接写出点的坐标;(2)在对称轴上找一点,使的值最小.求点的坐标和的最小值;(3)第一象限内的抛物线上有一动点,过点作轴,垂足为,连接交于点.依题意补全图形,当的值最大时,求点的坐标.【答案】(1)(2)点,的最小值为(3)【解析】(1)根据抛物线的对称性,进行求解即可;(2)根据抛物线的对称性,得到,得到当三点共线时,的值最小,为的长,求出直线的解析式,解析式与对称轴的交点即为点的坐标,两点间的距离公式求出的长,即为的最小值;(3)根据题意,补全图形,设,得到,,将的最大值转化为二次函数求最值,即可得解.(1)解:∵点关于对称轴的对称点为点,对称轴为直线,∴点为;(2)当时,,∴,连接,∵,∴,∵点关于对称轴的对称点为点,∴,∴当三点共线时,的值最小,为的长,设直线的解析式为:,则:,解得:,∴,∵点在抛物线的对称轴上,∴;∴点,的最小值为;(3)过点作轴,垂足为,连接交于点,如图所示,∵,设抛物线的解析式为:,∵,∴,∴,∴,设,则:,由(2)知:直线:,∴,∴,∵,∴,,∴,∴,∴,∴,∴,∴当时,有最大值,此时.【点拨】本题考查二次函数的综合应用.正确的求出函数解析式,利用抛物线的对称性以及数形结合的思想进行求解,是解题的关键.26. 综合与实践问题背景数学小组发现国旗上五角星的五个角都是顶角为的等腰三角形,对此三角形产生了极大兴趣并展开探究.探究发现如图1,在中,,.(1)操作发现:将折叠,使边落在边上,点的对应点是点,折痕交于点,连接,,则_______,设,,那么______(用含的式子表示);(2)进一步探究发现:,这个比值被称为黄金比.在(1)的条件下试证明:;拓展应用:当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形.例如,图1中的是黄金三角形.如图2,在菱形中,,.求这个菱形较长对角线的长.【答案】(1)(2)证明见解析,拓展应用:【解析】(1)利用等边对等角求出的长,翻折得到,,利用三角形内角和定理求出,,,表示出即可;(2)证明,利用相似比进行求解即可得出;拓展应用:连接,延长至点,使,连接,得到为黄金三角形,进而得到,求出的长即可.解:(1)∵,,∴,∵将折叠,使边落在边上,∴,,∴,;故答案为:;(2)证明:∵,∴,∵,∴,∴,∵,∴,∴,∴,整理,得:,解得:(负值已舍掉);经检验是原分式方程的解.∴;拓展应用:如图,连接,延长至点,使,连接,∵在菱形中,,,∴,∴,∴,∴,∴为黄金三角形,∴,∴.即菱形的较长的对角线的长为.【点拨】本题考查等腰三角形的判定和性质,菱形的性质,相似三角形的判定和性质.解题的关键是理解并掌握黄金三角形的定义,利用相似三角形的判定和性质,得到黄金三角形的底边与腰长的比为.。
2022年宁夏中考数学(word版有解析)
2022年宁夏中考数学试卷参考答案与试题解析一、选择题1.某地一天的最高气温是8℃,最低气温是﹣2℃,那么该地这天的温差是〔〕A.10℃ B.﹣10C.6℃ D.﹣6℃【解析】根据题意得:8﹣〔﹣2〕=8+2=10,那么该地这天的温差是10℃,应选A2.以下计算正确的选项是〔〕A.+=B.〔﹣a2〕2=﹣a4C.〔a﹣2〕2=a2﹣4 D.÷=〔a≥0,b>0〕【解析】A、+无法计算,故此选项错误;B、〔﹣a2〕2=a4,故此选项错误;C、〔a﹣2〕2=a2﹣4a+4,故此选项错误;D、÷=〔a≥0,b>0〕,正确.应选:D.3.x,y满足方程组,那么x+y的值为〔〕A.9 B.7 C.5 D.3【解析】,①+②得:4x+4y=20,那么x+y=5,应选C4.为响应“书香校响园〞建设的号召,在全校形成良好的阅读气氛,随机调查了局部学生平均每天阅读时间,统计结果如下列图,那么本次调查中阅读时间为的众数和中位数分别是〔〕A.2和1 B.1.25和1 C.1和1 D.1和1.25【解析】由统计图可知众数为1小时;共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,而第20个数和第21个数都是1〔小时〕,那么中位数是1小时.应选C.5.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.假设EF=,BD=2,那么菱形ABCD的面积为〔〕A.2B.C.6D.8【解析】∵E,F分别是AD,CD边上的中点,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面积S=×AC×BD=×2×2=2,应选:A.6.由假设干个相同的小正方体组合而成的一个几何体的三视图如下列图,那么组成这个几何体的小正方形个数是〔〕A.3 B.4 C.5 D.6【解析】综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.应选:C.7.某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写〞大赛,选拔中每名学生的平均成绩及其方差s2如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,那么应选择的学生是〔〕甲乙丙丁8.9 9.5 9.5 8.9s20.92 0.92 1.01 1.03A.甲B.乙C.丙D.丁【解析】根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙;应选B.8.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是〔〕A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2【解析】∵正比例和反比例均关于原点O对称,且点B的横坐标为﹣2,∴点A的横坐标为2.观察函数图象,发现:当x<﹣2或0<x<2时,一次函数图象在反比例函数图象的下方,∴当y1<y2时,x的取值范围是x<﹣2或0<x<2.应选B.二、填空题〔此题共8小题,每题3分,共24分〕9.分解因式:mn2﹣m=.【解析】mn2﹣m,=m〔n2﹣1〕,=m〔n+1〕〔n﹣1〕.10.假设二次函数y=x2﹣2x+m的图象与x轴有两个交点,那么m的取值范围是.【解析】∵二次函数y=x2﹣2x+m的图象与x轴有两个交点,∴△>0,∴4﹣4m>0,∴m<1.故答案为m<111.实数a在数轴上的位置如图,那么|a﹣3|=.【解析】由数轴上点的位置关系,得a<3.|a﹣3|=3﹣a,故答案为:3﹣a.12.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,那么这个圆锥的底面圆的半径为.【解析】设这个圆锥的底面圆的半径为R,由题意:2πR=,解得R=2.故答案为2.13.在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,假设平行四边形ABCD的周长是16,那么EC等于.【解析】∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠DAE,∵平行四边形ABCD的周长是16,∴AB+BC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE=3,∴BC=5,∴EC=BC﹣BE=5﹣3=2;故答案为:2.14.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为〔,0〕,〔0,1〕,把Rt△AOB沿着AB对折得到Rt△AO′B,那么点O′的坐标为.【解析】如图,作O′C⊥y轴于点C,∵点A,B的坐标分别为〔,0〕,〔0,1〕,∴OB=1,OA=,∴tan∠BAO==,∴∠BAO=30°,∴∠OBA=60°,∵Rt△AOB沿着AB对折得到Rt△AO′B,∴∠CBO′=60°,∴设BC=x,那么OC′=x,∴x2+〔x〕2=1,解得:x=〔负值舍去〕,∴OC=OB+BC=1+=,∴点O′的坐标为〔,〕.故答案为:〔,〕.15.正△ABC的边长为6,那么能够完全覆盖这个正△ABC的最小圆的半径是.【解析】如图,那么能够完全覆盖这个正△ABC的最小圆的半径就是△ABC外接圆的半径,设⊙O是△ABC的外接圆,连接OB,OC,作OE⊥BC于E,∵△ABC是等边三角形,∴∠A=60°,∠BOC=2∠A=120°,∵OB=OC,OE⊥BC,∴∠BOE=60°,BE=EC=3,∴sin60°=,∴OB=2,故答案为2.16.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,那么点P的坐标为.【解析】连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.∵直线MN为:x=1,设直线CC′为y=kx+b,由题意:,∴,∴直线CC′为y=x+,∵直线EF⊥CC′,经过CC′中点〔,〕,∴直线EF为y=﹣3x+2,由得,∴P〔1,﹣1〕.故答案为〔1,﹣1〕.三、解答题〔此题共6道题,每题6分,共36分〕17.解不等式组.【解】,由①得,x<3,由②得,x≥2,故不等式组的解集为:2≤x<3.18.化简求值:〔〕,其中a=2+.【解】原式=[+]•+=•+==,当a=2+时,原式=+1.19.在平面直角坐标系中,△ABC的三个顶点坐标分别为A〔2,﹣1〕,B〔3,﹣3〕,C 〔0,﹣4〕〔1〕画出△ABC关于原点O成中心对称的△A1B1C1;〔2〕画出△A1B1C1关于y轴对称的△A2B2C2.【解】〔1〕△A1B1C1如下列图;〔2〕△A2B2C2如下列图.20.为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个工程的喜欢情况,整理成以下统计表,其中“√〞表示喜欢,“×〞表示不喜欢.长跑短跑跳绳跳远200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××〔1〕估计学生同时喜欢短跑和跳绳的概率;〔2〕估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个工程的概率;〔3〕如果学生喜欢长跑、那么该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?【解】〔1〕同时喜欢短跑和跳绳的概率==;〔2〕同时喜欢三个工程的概率==;〔3〕同时喜欢短跑的概率==,同时喜欢跳绳的概率==,同时喜欢跳远的概率==,∵,∴同时喜欢跳绳的可能性大.21.在等边△ABC中,点D,E分别在边BC、AC上,假设CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.【解】∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在RT△DEC中,∵∠DEC=90°,DE=2,∴DF=2DE=4,∴EF===2.22.某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,每行驶1千米,纯燃油费用比纯用电费用多0.5元.〔1〕求每行驶1千米纯用电的费用;〔2〕假设要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,那么至少用电行驶多少千米?【解】〔1〕设每行驶1千米纯用电的费用为x元,=解得,x=0.26经检验,x=0.26是原分式方程的解,即每行驶1千米纯用电的费用为0.26元;〔2〕从A地到B地油电混合行驶,用电行驶y千米,0.26y+〔﹣y〕×〔0.26+0.50〕≤39解得,y≥74,即至少用电行驶74千米.四、解答题〔此题共4道题,其中23题、24题每题8分,25题、26题每题10分,共36分〕23.△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,假设ED=EC.〔1〕求证:AB=AC;〔2〕假设AB=4,BC=2,求CD的长.【解答】〔1〕证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,∴∠B=∠C,∴AB=AC;〔2〕解:连接AE,∵AB为直径,∴AE⊥BC,由〔1〕知AB=AC,∴BE=CE=BC=,∵CE•CB=CD•CA,AC=AB=4,∴•2=4CD,∴CD=.24.如图,Rt△ABO的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB=2,反比例函数y=〔x>0〕的图象经过OA的中点C,交AB于点D.〔1〕求反比例函数的关系式;〔2〕连接CD,求四边形CDBO的面积.【解】〔1〕∵∠ABO=90°,∠AOB=30°,OB=2,∴AB=OB=2,作CE⊥OB于E,∵∠ABO=90°,∴CE∥AB,∴OC=AC,∴OE=BE=OB=,CE=AB=1,∴C〔,1〕,∵反比例函数y=〔x>0〕的图象经过OA的中点C,∴1=,∴k=,∴反比例函数的关系式为y=;〔2〕∵OB=2,∴D的横坐标为2,代入y=得,y=,∴D〔2,〕,∴BD=,∵AB=2,∴AD=,∴S△ACD=AD•BE=××=,∴S四边形CDBO=S△AOB﹣S△ACD=OB•AB﹣=×2×2﹣=.25.某种水彩笔,在购置时,假设同时额外购置笔芯,每个优惠价为3元,使用期间,假设备用笔芯缺乏时需另外购置,每个5元.现要对在购置水彩笔时应同时购置几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购置笔芯上所需要的费用〔单位:元〕,n表示购置水彩笔的同时购置的笔芯个数.〔1〕假设n=9,求y与x的函数关系式;〔2〕假设要使这30支水彩笔“更换笔芯的个数不大于同时购置笔芯的个数〞的频率不小于0.5,确定n的最小值;〔3〕假设这30支笔在购置时,每支笔同时购置9个笔芯,或每支笔同时购置10个笔芯,分别计算这30支笔在购置笔芯所需费用的平均数,以费用最省作为选择依据,判断购置一支水彩笔的同时应购置9个还是10个笔芯.【解】〔1〕当n=9时,y==;〔2〕根据题意,“更换笔芯的个数不大于同时购置笔芯的个数〞的频率不小于0.5,那么“更换笔芯的个数不大于同时购置笔芯的个数〞的频数大于30×0.5=15,根据统计图可得,需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,因此当n=9时,“更换笔芯的个数不大于同时购置笔芯的个数〞的频数=4+6+8=18>15.因此n的最小值为9.〔3〕假设每支笔同时购置9个笔芯,那么所需费用总和=〔4+6+8〕×3×9+7×〔3×9+5×1〕+5×〔3×9+5×2〕=895,假设每支笔同时购置10个笔芯,那么所需费用总和=〔4+6+8+7〕×3×10+5×〔3×10+5×1〕=925,因此应购置9个笔芯.26.在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB 向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.假设两个点同时运动的时间为x秒〔0<x≤3〕,解答以下问题:〔1〕设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;〔2〕是否存在x的值,使得QP⊥DP?试说明理由.【解】〔1〕∵四边形ABCD为矩形,∴BC=AD=4,CD=AB=3,当运动x秒时,那么AQ=x,BP=x,∴BQ=AB﹣AQ=3﹣x,CP=BC﹣BP=4﹣x,∴S△ADQ=AD•AQ=×4x=2x,S△BPQ=BQ•BP=〔3﹣x〕x=x﹣x2,S△PCD=PC•CD=•〔4﹣x〕•3=6﹣x,=AB•BC=3×4=12,又S矩形ABCD∴S=S矩形ABCD﹣S△ADQ﹣S△BPQ﹣S△PCD=12﹣2x﹣〔x﹣x2〕﹣〔6﹣x〕=x2﹣2x+6=〔x ﹣2〕2+4,即S=〔x﹣2〕2+4,∴S为开口向上的二次函数,且对称轴为x=2,∴当0<x<2时,S随x的增大而减小,当2<x≤3时,S随x的增大而增大,又当x=0时,S=5,当S=3时,S=,但x的范围内取不到x=0,∴S不存在最大值,当x=2时,S有最小值,最小值为4;〔2〕存在,理由如下:由〔1〕可知BQ=3﹣x,BP=x,CP=4﹣x,当QP⊥DP时,那么∠BPQ+∠DPC=∠DPC+∠PDC,∴∠BPQ=∠PDC,且∠B=∠C,∴△BPQ∽△PCD,∴=,即=,解得x=〔舍去〕或x=,∴当x=时QP⊥DP.。
宁夏回族自治区中考数学试题目及答案word版
中国校长网ADEO2121-2008年仙桃市,潜江市,江汉,油田初中毕业生学业考试数学试题亲爱的同学,相信在本场考试中,你的数学知识水平和探究能力一定会有很好的发挥.特别提醒你要仔细审题,先易后难.祝你取得好成绩!并请你注意以下几点:1.答卷前,请你用钢笔(圆珠笔)将自己的姓名、准考证号填在密封线内.2.答选择题时,请将答案直接填在选择题答题表中.3.试卷共8页,满分120分,考试时间120分钟.一、选择题(本大题共有8个小题,每小题3分,满分24分.)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入上面选择题答题表中相应题号下的方格内,填错或不填均为零分. 1.2-的倒数是A. 2B.C. 2-D.2.2008年5月12日,四川汶川发生里氏8.0级地震,国内外社会各界纷纷向灾区捐款捐物,抗震救灾.截止6月4日12时,全国共接收捐款约为43 681 000 000元人民币.这笔款额用科学记数法表示(保留三个有效数字)正确的是A. 1110437.0⨯ B. 10104.4⨯ C. 101037.4⨯ D. 9107.43⨯3.在下面的四个几何体中,它们各自的左视图与主视图不相同的是4.对于反比例函数xk y 2=(0≠k ),下列说法不正确的是A. 它的图象分布在第一、三象限B. 点(k ,k )在它的图象上C. 它的图象是中心对称图形D. y 随x 的增大而增大5.如图,四边形ABCD 是菱形,过点A 作BD 的平行线交CD的延长线于点E ,则下列式子不成立的是得分 评卷人正方体 长方体 圆柱 圆锥 A B C D(第8题图)A. DE DA =B. CE BD =C. 90=∠EAC °D. E ABC ∠=∠26.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为A. 0B. -1C. 1D. 27.如图,三个大小相同的正方形拼成六边形ABCDEF ,一动点P从点A 出发沿着A →B →C →D →E 方向匀速运动,最后到达点E .运动过程中PEF ∆的面积(s )随时间(t )变化的图象大致是8.如图,小明从半径为5cm 的圆形纸片中剪下40%圆周的一个扇形,然后利用剪下的扇形制作成一个圆锥形玩具纸帽(接缝处不重叠),那么这个圆锥的高为A.3cmB.4cmC.21cmD.62cm二、填空题(本大题共8个小题,每小题3分,满分24分)将结果直接填写在每题的横线上.9.分解因式:92-x = .10.化简211xx x -÷的结果是 .11. “五一”期间,某服装商店举行促销活动,全部商品八折销售.小华购买一件标价为180元的运动服,打折后他比按标价购买节省了 元.得分 评卷人40%5=R (图1)(图2)y–1 33O x(第6题图)P1 60% stAOs tBOsDOstCOt (第7题图) A BC DE. F.P.·12. 关于x 的一元二次方程022=+-m mx x 的一个根为1,则方程的另一根为13.如图是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(下底挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,则∠1+∠2= 度.14.2008年6月2日,奥运火炬在荆州古城传递,208名火炬手参加了火炬传递,其中8位火炬手所跑的路程(单位:米)如下:60,70,100,60,80,70,90,100,则这组数据的中位数是 .15.如图,矩形ABCD 的面积为5,它的两条对角线交于点1O ,以AB 、1AO 为两邻边作平行四边形11O ABC ,平行四边形11O ABC 的对角线交于点2O ,同样以AB 、2AO为两邻边作平行四边形22O ABC ,……,依次类推,则平行四边形n n O ABC 的面积为 .16.如图,ABC ∆中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使ABD ∆与ABC ∆ 全等,那么点D 的坐标是 .三、解答题(本大题共9个小题,满分72分.)17.(本题满分5分)计算:20)21(8)21(3--+-+-得 分 评 卷 人(第13题图)A BC1O D 1C2O2C……(第15题图)xyO A B C (第16题图)0.1元 135° 自备90° 0.2元 0.3元-1-2 -3 12318.(本题满分5分)解不等式组⎪⎩⎪⎨⎧>+-≥+x x x 12102 并把解集表示在下面的数轴上.19. (本题满分7分)为了降低能源消耗,减少环境污染,国务院办公厅下发了“关于限制生产销售使用塑料购物袋的通知”(简称“限塑令”),并从2008年6月1日起正式实施.小宇同学为了了解“限塑令”后使用购物袋的情况,6月8日到某集贸市场对部分购物者进行了调查,据了解该市场按塑料购物袋的承重能力提供了0.1元,0.2元,0.3元三种质量不同的塑料袋.下面两幅图是这次调查得到的不完整的统计图(若每人每次只使用一个购物袋),请你根据图中的信息,回答下列问题:(1)这次调查的购物者总人数是 ;(2)请补全条形统计图,并说明扇形统计图中20⋅元部分所对应的圆心角是 度0.3元部分所对应的圆心角是 度;(3)若6月8日到该市场购物的人数有3000人次,则该市场需销售塑料购物袋多少个?并根据调查情况,谈谈你的看法.20.(本题满分7分)得 分 评 卷 人得 分 评 卷 人得 分 评 卷 人类别10 20 30 40 50 0人数453312AB CD 在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A ,测得由点A 看大树顶端C 的仰角为35°;(2)在点A 和大树之间选择一点B (A 、B 、D 在同一直线上),测得由点B 看大树顶端C 的仰角恰好为45°;(3)量出A 、B 两点间的距离为4.5米. 请你根据以上数据求出大树CD 的高度.(可能用到的参考数据:sin35°≈0.57 cos35°≈0.82 tan35°≈0.70)21. (本题满分8分)A 箱中装有3张相同的卡片,它们分别写有数字1,2,4;B 箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A 箱、B 箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:(1)两张卡片上的数字恰好相同的概率.(2)如果取出A 箱中卡片上的数字作为十位上的数字,取出B 箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.22. (本题满分8分)如图,AB 为半圆O 的直径,点C 在半圆O 上,过点O 作BC 的平行线交AC 于点E ,交过点A 的直线于点D ,且BAC D ∠=∠.得 分 评 卷 人得 分评 卷 人(1)求证:AD 是半圆O 的切线;(2)若2=BC ,2=CE ,求AD 的长.23. (本题满分10分)小华将一张矩形纸片(如图1)沿对角线CA 剪开,得到两张三角形纸片(如图2),其中α=∠ACB ,然后将这两张三角形纸片按如图3所示的位置摆放,∆EFD 纸片的直角顶点D 落在∆ACB 纸片的斜边AC 上,直角边DF 落在AC 所在的直线上.(1) 若ED 与BC 相交于点G ,取AG 的中点M ,连接MB 、MD ,当∆EFD 纸片沿CA 方向平移时(如图3),请你观察、测量MB 、MD 的长度,猜想并写出MB 与MD 的数量关系,然后证明你的猜想;(2) 在(1)的条件下,求出BMD ∠的大小(用含α的式子表示),并说明当45=α°时, BMD ∆是什么三角形?(3) 在图3的基础上,将∆EFD 纸片绕点C 逆时针旋转一定的角度(旋转角度小于90°),此时CGD ∆变成CHD ∆,同样取AH 的中点M ,连接MB 、MD (如图4),请继续探究MB 与MD 的数量关系和BMD ∠的大小,直接写出你的猜想,不需要证明,并说明α为何值时,BMD ∆为等边三角形.得 分 评 卷 人ABCA BCD EF 图1图2A BCDE FGM 图3ABCDEFMH图410 20 30 40 50 0x (元/件)y (万件))60,20(A)28,36(B 60 )28,40(C24.(本题满分10分)的销售量1y (万件)与纪念品的价格x (元/件)之间的函数图象如图所示,该公司纪念品的生产数量2y (万件)与纪念品的价格x (元/件)近似满足函数关系式85232+-=x y .,若每件纪念品的价格不小于20元,且不大于40元.请解答下列问题:(1) 求1y 与x 的函数关系式,并写出x 的取值范围;(2) 当价格x 为何值时,使得纪念品产销平衡(生产量与销售量相等);(3) 当生产量低于销售量时,政府常通过向公司补贴纪念品的价格差来提高生产量,促成新的产销平衡.若要使新的产销平衡时销售量达到46万件,政府应对该纪念品每件补贴多少元?25.(本题满分12分)如图,直角梯形OABC 中,AB ∥OC ,O 为坐标原点,点A 在y 轴得 分 评 卷 人得 分 评 卷 人正半轴上,点C 在x 轴正半轴上,点B 坐标为(2,23),∠BCO = 60°,BC OH ⊥于点H .动点P 从点H 出发,沿线段HO 向点O 运动,动点Q 从点O 出发,沿线段OA 向点A 运动,两点同时出发,速度都为每秒1个单位长度.设点P 运动的时间为t 秒.(1) 求OH 的长;(2) 若OPQ ∆的面积为S (平方单位). 求S 与t 之间的函数关系式.并求t 为何值时,OPQ ∆的面积最大,最大值是多少?(3) 设PQ 与OB 交于点M .①当△OPM 为等腰三角形时,求(2)中S 的值.②探究线段OM 长度的最大值是多少,直接写出结论.参考答案及评分标准说明:本试卷中的解答题一般只给出一种解法,对于其它解法,只要推理严谨、运算合理、结果正确,均给满分.对部分正确的,参照本评分说明酌情给分. 一、选择题(每小题3分,共24分) 1—8 D C B D B A B CA BH OQPy xMC二、填空题(每小题3分,共24分)9. )3)(3(-+x x 10.x -1 11. 36 12.2-13. 90 14. 75 15.n2516.)14(-, )31(,- )1,1(--(第14题不写单位不扣分)三、解答题(共72分)17.(5分)解:原式=42213-++ ………………………………………………(3分)=22………………………………………………………………(5分) 18.(5分)解:02≥+x 的解集是:2-≥xx x >+-121的解集是:1<x 所以原不等式的解集是:12<≤-x ………………………………………(3分)解集表示如图…………………………………………………………………(5分)19.(7分)解:(1)120……………………………………………………………………(1分)(2)条形统计图,如图所示,…………………………………………………… (2分)0.2元的圆心角是99°,0.3元的圆心角是36°…………………(4分)(3)该市场需销售塑料购物袋的个数是1875120753000=⨯………………(6分)只要谈的看法涉及环保、节能等方面,且观念积极向上,即可给分……(7分)20.(7分)(1)解:在ACD Rt ∆中,035tan CDAD =在BCD Rt ∆中,045tan CDBD =而5.4=-BD AD即5.445tan 35tan 00=-CDCD …………………………………………(5分)解得:5.10=CD所以大树的高为5.10米………………………………………………(7分)类别10 20 3040 50 0人数453312· 。
宁夏中考数学试卷及答案word
宁夏回族自治区2008年初中毕业暨高中阶段招生数学试卷注意事项1 . 考试时间120分钟,全卷总分120分.2 . 答题前将密封线内的项目填写清楚.3 . 答卷一律使用黑、蓝钢笔或圆珠笔.4 .凡使用答题卡的考生,答卷前务必将答题卡上的有关项目填写清楚.选择题的每小题选出答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净 后,再选涂其他答案. 不使用答题卡的考生,将选择题的答案答在试卷上.1.的绝对值是( )31A . -3 B.-32. 根据国务院抗震救灾总指挥部权威发布:截止2008年6月13日12时,全国共接受国内外社会各界捐赠款物总计 455.02亿元.455.02亿元用科学记数法表示为()、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)C . 35.甲、乙两名学生 10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差2 2S 甲=0.006,乙10次立定跳远成绩的方差 S 乙=0.035,则()8——A . 4.5502 X 0 兀10 一C . 4.5502 X 0 兀 3.下列各式运算正确的是()4 c3A . 2 =-2B . 2 =64.下列分解因式正确的是()2 A . 2x -xy -x = 2x(x - y 「1)B . 4.5502 XI09 元 D . 4.5502 X 011 元 2 3C . 2 22B . -D .A •甲的成绩比乙的成绩稳定B .乙的成绩比甲的成绩稳定C •甲、乙两人的成绩一样稳定D .甲、乙两人成绩的稳定性不能比较6.平行四边形ABCD 中,AC , BD 是两条对角线,如果添加一个条件,即可推出平行四边 形ABCD 是矩形,那么这个条件是( )9. 计算:5、.2-、..8= ____ .10. 女口图,AB // CD , AC 丄 BC , Z BAC =65 ° 则/ BCD =11.某市对一段全长 1500米的道路进行改造.原计划每天修X 米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的 2倍还多35米,那么修这条路实际用了 ________ 天.12. 学校为七年级学生订做校服,校服型号有小号、中号、大号、特大号四种.随机抽取 了 100名学生调查他们的身高,得到身高频数分布表如下:型号 身高(x /cm ) 人数(频数)小号 145 < x V 155 22 中号 155 w x V 165 45 大号165 w x V 175 28 特大号175 w x V 1855已知该校七年级学生有 800名,那么中号校服应订制 ___________ 套.13. ____________________________ 从-1, 1, 2三个数中任取一个,作为一次函数 y=k x +3的k 值,则所得一次函数中 y 随x 的增大而增大的概率是 .A . AB=BCB . AC=BDC . AC 丄 BDD . AB 丄 BD k 7.反比例函数y (k >0)的部分图象如图所示,A 、B 是图象上两x的面积为S 2,则S 1和S 2的大小关系为()A . S i > S 2B . S i = S 2C . S i V S 2D . 无法确定&已知O O 1和。
2022年宁夏省中考数学(word版有解析)
2022年宁夏中考数学试卷一、选择题:本大题共8个小题,每题3分,共24分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.以下各式计算正确的选项是〔〕A.4a﹣a=3B.a6÷a2=a3C.〔﹣a3〕2=a6D.a3a2=a6【解析】A、系数相加字母指数不变,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B不符合题意;C、积的乘方等于乘方的积,故C符合题意;D、同底数幂的乘法底数不变指数相加,故D不符合题意;应选C.2.在平面直角坐标系中,点〔3,﹣2〕关于原点对称的点是〔〕A.〔-3,2〕B.〔-3,-2〕C.〔3,-2〕D.〔3,2〕【解析】点P〔3,﹣2〕关于原点对称的点的坐标是〔﹣3,2〕,应选A.3.学校国旗护卫队成员的身高分布如下表:身高/cm 159 160 161 162人数7 10 9 9那么学校国旗护卫队成员的身高的众数和中位数分别是〔〕A.160和160B.160和160.5C.160和161D.161和161【解析】数据160出现了10次,次数最多,众数:160cm;排序后位于中间位置的是161cm,中位数:161cm.应选C.4.某商品四天内每天每斤的进价与售价信息如下列图,那么售出这种商品每斤利润最大的是〔〕A.第一天B.第二天C.第三天D.第四天【解析】由图象中的信息可知,利润=售价﹣进价,利润最大的天数是第二天,应选B.5.关于x的一元二次方程〔a﹣1〕x2+3x﹣2=0有实数根,那么a的取值范围是〔〕A.B.C.且a≠1D.且a≠1【解析】根据题意得a≠1且△=32﹣4〔a﹣1〕〔﹣2〕≥0,得a≥﹣且a≠1.应选D.6.点A〔﹣1,1〕,B〔1,1〕,C〔2,4〕在同一个函数图象上,这个函数图象可能是〔〕A.B.C.D.【解析】∵A〔﹣1,1〕,B〔1,1〕,∴A与B关于y轴对称,故C,D错误;∵B〔1,1〕,C〔2,4〕∴当x>0时,y随x的增大而增大,故D正确,A错误.∴这个函数图象可能是B,应选B.7.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影局部沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是〔〕A.〔a-b〕2=a2﹣2ab+b2B. a(a-b)=a2-abC.〔a+b〕2=a2+2ab+b2D.a2-b2=(a-b)(a+b)【解析】第一个图形阴影局部的面积是a2﹣b2,第二个图形的面积是〔a+b〕〔a﹣b〕.那么a2﹣b2=〔a+b〕〔a﹣b〕.应选D.8.圆锥的底面半径r=3,高h=4,那么圆锥的侧面积是〔〕A.12πB.15πC.24πD.30π【解析】由勾股定理得母线l===5,∴S侧=2πrl=πr l=π×3×5=15π.应选B.二、填空题〔每题3分,总分值24分,将答案填在答题纸上〕9.分解因式:2a2﹣8=.【解析】2a2﹣8=2〔a2﹣4〕,=2〔a+2〕〔a﹣2〕.故答案为2〔a+2〕〔a﹣2〕.10.实数a在数轴上的位置如图,那么|a﹣|=.【解析】∵a<0,∴a﹣<0,那么原式=﹣a.故答案为﹣a.11.如下列图的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏〔每次飞镖均落在纸板上〕,那么飞镖落在阴影区域的概率是.【解析】由题意可得:阴影局部有4个小扇形,总的有10个小扇形,故飞镖落在阴影区域的概率是=.故答案为.12.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,那么该商品每件销售利润为元.【解析】设该商品每件销售利润为x元,根据题意,得80+x=120×0.7,解得x=4.故答案为4.13.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.假设∠1=∠2=50°,那么∠A'为.【解析】∵AD∥BC,∴∠ADB=∠DBG,由折叠可得∠ADB=∠BDG,∴∠DBG=∠BDG.又∵∠1=∠BDG+∠DBG=50°,∴∠ADB=∠BDG=25°.又∵∠2=50°,∴△ABD中,∠A=105°,∴∠A'=∠A=105°.故答案为105°.14.在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE 上,且ME=DM.当AM⊥BM时,那么BC的长为.【解析】∵AM⊥BM,点D是AB的中点,∴DM=AC=3.∵ME=DM,∴ME=1,∴DE=DM+ME=4.∵D是AB的中点,DE∥BC,∴BC=2DE=8.故答案为8.15.如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为.【解析】如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,那么⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为5.16.如图是由假设干个棱长为1的小正方体组合而成的一个几何体的三视图,那么这个几何体的外表积是.【解析】综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.∴这个几何体的外表积是5×6﹣8=22,故答案为22.三、解答题〔本大题共6小题,共36分.解容许写出文字说明、证明过程或演算步骤.〕17.解不等式组:.【解】,由①得x≤8,由②得x>﹣3,那么不等式组的解集为﹣3<x≤8.18.解方程:﹣=1.【解】〔x+3〕2﹣4〔x﹣3〕=〔x﹣3〕〔x+3〕x2+6x+9﹣4x+12=x2﹣9,x=﹣15,令x=﹣15代入〔x﹣3〕〔x+3〕≠0,∴原分式方程的解为x=﹣15.19.校园播送主持人培训班开展比赛活动,分为A、B、C、D四个等级,对应的成绩分别是9分、8分、7分、6分,根据如图不完整的统计图解答以下问题:〔1〕补全下面两个统计图〔不写过程〕;〔2〕求该班学生比赛的平均成绩;〔3〕现准备从等级A的4人〔两男两女〕中随机抽取两名主持人,请利用列表或画树状图的方法,求恰好抽到一男一女学生的概率?【解】〔1〕4÷10%=40〔人〕,C等级的人数40﹣4﹣16﹣8=12〔人〕,C等级的人数所占的百分比12÷40=30%.两个统计图补充如下:〔2〕9×10%+8×40%+7×30%+6×20%=7.4〔分〕;〔3〕列表为:男1 男2 女1 女2男1 ﹣﹣男2男1 女1男1 女2男1男2 男1男2 ﹣﹣女1男2 女2男2女1 男1女1 男2女1 ﹣﹣女2女1女2 男1女2 男2女2 女1女2 ﹣﹣由上表可知,从4名学生中任意选取2名学生共有12种等可能结果,其中恰好选到1名男生和1名女生的结果有8种,所以恰好选到1名男生和1名女生的概率P==.20.在平面直角坐标系中,△ABC三个顶点的坐标分别为A〔2,3〕,B〔1,1〕,C〔5,1〕.〔1〕把△ABC平移后,其中点A移到点A1〔4,5〕,画出平移后得到的△A1B1C1;〔2〕把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2 B2C2.【解】〔1〕如图,△A1B1C1即为所求;〔2〕如图,△A2 B2C2即为所求.21.在△ABC中,M是AC边上的一点,连接BM.将△ABC沿AC翻折,使点B落在点D处,当DM∥AB时,求证:四边形ABMD是菱形.【证明】∵AB∥DM,∴∠BAM=∠AMD,∵△ADC是由△ABC翻折得到,∴∠CAB=∠CAD,AB=AD,BM=DM,∴∠DAM=∠AMD,∴DA=DM=AB=BM,∴四边形ABMD是菱形.22.某商店分两次购进A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量〔件〕购进所需费用〔元〕A B第一次30 40 3 800第二次40 30 3 200〔1〕求A、B两种商品每件的进价分别是多少元?〔2〕商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.【解】〔1〕设A种商品每件的进价为x元,B种商品每件的进价为y元,根据题意得,解得.答:A种商品每件的进价为20元,B种商品每件的进价为80元.〔2〕设购进B种商品m件,获得的利润为w元,那么购进A种商品〔1000﹣m〕件,根据题意得w=〔30﹣20〕〔1000﹣m〕+〔100﹣80〕m=10m+10000.∵A种商品的数量不少于B种商品数量的4倍,∴1000﹣m≥4m,解得m≤200.∵在w=10m+10000中,k=10>0,∴w的值随m的增大而增大.∴当m=200时,w取最大值,最大值为10×200+10000=12000,∴当购进A种商品800件、B种商品200件时,销售利润最大,最大利润为12000元.四、解答题〔本大题共4小题,共36分.解容许写出文字说明、证明过程或演算步骤.〕23.将一副三角板Rt△ABD与Rt△ACB〔其中∠ABD=90°,∠D=60°,∠ACB=90°,∠ABC=45°〕如图摆放,Rt△ABD中∠D所对直角边与Rt△ACB斜边恰好重合.以AB为直径的圆经过点C,且与AD交于点E,分别连接EB,EC.〔1〕求证:EC平分∠AEB;〔2〕求的值.〔1〕证明:∵Rt△ACB中,∠ACB=90°,∠ABC=45°,∴∠BAC=∠ABC=45°.∵∠AEC=∠ABC,∠BEC=∠BAC,∴∠AE C=∠BEC,即EC平分∠AEB;〔2〕解:如图,设A B与CE交于点M.∵EC平分∠AEB,∴=.在Rt△ABD中,∠ABD=90°,∠D=60°,∴∠BAD=30°.∵以AB为直径的圆经过点E,∴∠AEB=90°,∴tan∠BAE==,∴AE=BE,∴==.作AF⊥CE于F,BG⊥CE于G.在△AFM与△BGM中,∵∠AFM=∠BGM=90°,∠AMF=∠BMG,∴△AFM∽△BGM,∴==,∴===.24.直线y=kx+b与反比例函数y=〔x>0〕的图象分别交于点A〔m,3〕和点B〔6,n〕,与坐标轴分别交于点C和点D.〔1〕求直线AB的解析式;〔2〕假设点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.【解】〔1〕∵y=kx+b与反比例函数y=〔x>0〕的图象分别交于点A〔m,3〕和点B〔6,n〕,∴m=2,n=1,∴A〔2,3〕,B〔6,1〕.那么有,解得,∴直线AB的解析式为y=﹣x+94;〔2〕如图①当PA⊥OD时,∵PA∥CC,∴△ADP∽△CDO,此时p〔2,0〕.②当AP′⊥CD时,易知△P′DA∽△CDO,∵直线AB的解析式为y=﹣x+4,∴直线P′A的解析式为y=2x﹣1,令y=0,解得x=,∴P′〔,0〕,综上所述,满足条件的点P坐标为〔2,0〕或〔,0〕.25.为确保广阔居民家庭根本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超过根本用水量的局部享受根本价格,超出根本用水量的局部实行超价收费.为对根本用水量进行决策,随机抽查2000户居民家庭每户每月用水量的数据,整理绘制出下面的统计表:用户每月用水量〔m3〕32及其以下33 34 35 36 37 38 39 40 41 42 43及其以上户数200 160 180 220 240 210 190 100 170 120 100 110〔户〕〔1〕为确保70%的居民家庭每户每月的根本用水量需求,那么每户每月的根本用水量最低应确定为多少立方米?〔2〕假设将〔1〕中确定的根本用水量及其以内的局部按每立方米1.8元交费,超过根本用水量的局部按每立方米2.5元交费.设x表示每户每月用水量〔单位:m3〕,y表示每户每月应交水费〔单位:元〕,求y与x的函数关系式;〔3〕某户家庭每月交水费是80.9元,请按以上收费方式计算该家庭当月用水量是多少立方米?【解】〔1〕200+160+180+220+240+210+190=1400〔户〕,2000×70%=1400〔户〕,∴根本用水量最低应确定为多38m3.答:为确保70%的居民家庭每户每月的根本用水量需求,那么每户每月的根本用水量最低应确定为38立方米.〔2〕设x表示每户每月用水量〔单位:m3〕,y表示每户每月应交水费〔单位:元〕,当0≤x≤38时,y=1.8x;当x>38时,y=1.8×38+2.5〔x﹣38〕=2.5x﹣26.6.综上所述:y与x的函数关系式为y=.〔3〕∵1.8×38=68.4〔元〕,68.4<80.9,∴该家庭当月用水量超出38立方米.当y=2.5x﹣26.6=80.9时,x=43.答:该家庭当月用水量是43立方米.26.在边长为2的等边三角形ABC中,P是BC边上任意一点,过点P分别作PM⊥A B,PN ⊥AC,M、N分别为垂足.〔1〕求证:不管点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;〔2〕当BP的长为何值时,四边形AMPN的面积最大,并求出最大值.【解】〔1〕连接AP,过C作CD⊥AB于D,∵△ABC是等边三角形,∴AB=AC.∵S△ABC=S△ABP+S△ACP,∴ABCD=ABPM+ACPN,∴PM+PN=CD.即不管点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;〔2〕设BP=x,那么CP=2﹣x,∵△ABC是等边三角形,∴∠B=∠C=60°.∵PM⊥AB,PN⊥AC,∴BM=x,PM=x,CN=〔2﹣x〕,PN=〔2﹣x〕,∴四边形AMPN的面积=×〔2﹣x〕x+ [2﹣〔2﹣x〕]〔2﹣x〕=﹣x2+x+=﹣〔x﹣1〕2+,∴当BP=1时,四边形AMPN的面积最大,最大值是.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宁夏回族自治区2017 年初中学业水平暨高中阶段招生考试数学试题一、选择题(本题共8 小题,每小题 3 分,共 24 分,下列每小题所给出的四个选项中只有一个是符合题目要求的)1.下列各式计算正确的是A. B. C. D.2.在平面直角坐标系中,点( 3, -2 )关于原点对称的点是A.(-3 ,2)B.(-3,-2)C.(3,- 2)D.(3,2)3.学校国旗护卫队成员的身高分布如下表 :身高 /cm159160161162人数(频数)71099则学校国旗护卫队成员的身高的众数和中位数分别是A. 160 和 160 B. 160和 C . 160和161和1614.某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是A.第一天B.第二天C.第三天D.第四天5. 关于x 的一元二次方程有实数根,则 a 的取值范围是A. B. C. D.6.已知点 A( -1 ,1), B( 1, 1),C(2,4)在同一个函数图像上,这个函数图像可能是A B C D7.如图 , 从边长为 a 的大正方形中剪掉一个边长为 b 的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形 . 根据图形的变化过程写出的一个正确的等式是(第7 题图)(第8 题图)A B.C. D.8.如图,圆锥的底面半径 r=3 ,高 h=4,则圆锥的侧面积是A. 12 πB. 15 πC.24πD.30π二、填空题(本题共8 小题,每小题3分,共 24分)9. 分解因式.10. 实数 a 在数轴上的位置如图所示,则.11.如图所示的圆形纸板被等分成 10 个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是.(第 11 题图)(第13题图)(第14题图)12.某种商品每件的进价为 80 元,标价为 120 元,后来由于该商品积压,将此商品打7 折销售,则该商品每件销售利润为元.13. 如图,将平行四边形ABCD沿对角线BD折叠,使点A 落在点A’处 . 若∠ 1=∠2=500,则∠ A’为.14.在△ ABC中, AB=6,点 D 是 AB的中点,过点 D 作 DE∥BC,交 AC于点 E,点 M在 DE上,且 ME=DM,当 AM⊥BM时,则 BC的长为.15.如图,点 A、B、C均在 6×6 的正方形网格格点上,过 A、B、 C三点的外接圆除经过 A、B、C三点外还能经过的格点数为.(第 15 题图)(第16题图)16.如图是由若干个棱长为 1 的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是.三、解答题(本题共有 6 小题,各小题 6 分,共 36 分)17.解不等式组:18.解方程:19. 校园广播主持人培训班开展比赛活动,分为A、B、C、D 四个等级,对应的成绩分别是 9 分、 8 分、 7 分、 6 分,根据下面不完整的统计图解答下列问题:(1)补全下面两个统计图(不写过程);(2)求该班学生比赛的平均成绩;(3)现准备从等级 A 的 4 人(两男两女)中随机抽取两名主持人,请利用列表或画树状图的方法,求恰好抽到一男一女学生的概率是多少?20.在平面直角坐标系中 , △ABC三个顶点的坐标分别为 A(2,3),B(1,1),C(5,1).(1) 把△ ABC平移后,其中点 A 移到点 A1(4,5) ,画出平移后得到的△ A1B1C1;(2) 把△ A1B1C1绕点 A1按逆时针方向旋转900,画出旋转后的△ A1B2C2..21.在△ ABC中, M是 AC边上的一点,连接 BM,将△ ABC沿 AC翻折,使点 B 落在点 D处,当 DM∥AB时,求证:四边形 ABMD是菱形 .22.商场分两次购进 A、B 两种型号的商品进行销售,两次购进同一型号的商品进价相同,具体情况如下表所示:购进数量(件)购进所需费用(元)A B第一次30403800第二次40303200(1)求A、 B 两种商品每件的进价分别是多少元?(2)商场决定 A 商品以每件 30 元出售, B 商品以每件 100 元出售,为满足市场需求,需购进 A、B 两种商品共 1000 件,且 A 种商品的数量不少于 B 种商品数量的4 倍,请你求出获利最大的进货方案,并确定最大利润.四、解答题(本题共 4 道题,其中23、24 题每题8 分, 25、 26 题每题10 分,共36 分)23.将一副三角板Rt△ABD与Rt△ACB(其中∠ABD=90o,∠D=60o, ∠ACB=90o, ∠ABC=45o)如图摆放,Rt△ABD中∠D 所对直角边与Rt△ACB 斜边恰好重合 . 以AB为直径的圆经过点C,且与AD交与点E ,分别连接EB、EC.(1)求证: EC平分∠ AEB;(2)求的值.24. 直线y=kx+b 与反比例函数y=的图像分别交于点A(m,3) 和点B(6,n)(1)求直线,与坐标轴分别交于点AB的解析式;C和点D.(2)若点 P 是 x 轴上一动点,当△ COD与△ADP 相似时,求点 P 的坐标 .25.为确保广大居民家庭基本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为对基本用水量进行决策,随机抽查 2000 户居民家庭每户每月用水量的数据,整理绘制出下面的统计表:每户每月3243用水量及其33343536373839404142及其3以下以上(m)户数(户) 200160180220240210190100170120100110(1)为确保 70%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为多少立方米;(2)若将( 1)中确定的基本用水量及其以内的部分按每立方米元交费,超过基3本用水量的部分按每立方米元交费. 设 x 表示每户每月用水量(单位: m),y表示每户每月应交水费(单位:元),求 y 与 x 的函数关系式;(3)某户家庭某月交水费是元,请按以上收费方式计算该家庭当月用水量是多少立方米 ?26.在边长为 2 的等边三角形 ABC中, P 是 BC边上任意一点,过点 P 分别作 PM⊥AB,PN⊥AC, M、 N 分别为垂足 .(1)求证:不论点P 在 BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高 .(2)当 BP的长为何值时 , 四边形 AMPN的面积最大,并求出最大值.绝密★启用前宁夏族回族自治区2017 年初中毕业暨高中阶段招生考试数学试题参考答案及评分标准说明: 1. 除本参考答案外,其它正确解法可根据评分标准相应给分。
2. 涉及计算的题,允许合理省略非关键步骤。
3. 以下解答中右端所注的分数,表示考生正确做到这步应得的累计分。
一、选择题( 3 分× 8=24 分)题号 1 2 3 4 5 6 7 8答案CACBDBDB二、填空题( 3 分× 8=24 分)9. 2( a2)(a2) ; 10.3 a ;2 12. 411. 5 ;;13. 105 0 ;14. 8;15. 5; 16. 22.三、解答题(每题6 分,共 36 分)17.解:-------- ①--------②由①得 x ≤ 8 -------------------------------------------------------------- 2 由②得x > -3 - ---------------------------------------------------------4∴ 不等式组的解集为 -3 < x ≤ 8 ------------------------------------------------ 618.解:方程两边乘以( x 2 9) ,去分母得:( x 3 ) 24( x3 )x 29 --------------------------------------------3解得 x 15 -------------------------------------------------------------5经检验 x15 是原方程的根 --------------------------------------------------619.( 1)该班学生人数为 40 人 , 统计图补充正确 ----------------------------21 8167126 8) 7.4( 分)( 2)该班学生比赛的平均成绩是:(9 4340---------- ( 3)设等级为 A 的两名男生分别为 A 1、 A 2,两名女生分别为 B 1、B 2 , 则分分分分 分分分分AA1 2A 1A 1 A 2AA A122B 1B 1 A 1 B 1 A 2B 2 B 2 A 1B 2 A 28所以 P ( 恰好抽到一男一女 ) =12BB1 1 1 2------------------------------------A BA B2122------------5分A BA BB 1 B 2B 2 B 12------------------6分12 320.( 1)正确画出△1 1 1 ----------------------3分A B C( 2)正确画出△ A 1 B 2C 2 --------------------6 分21.证明:由折叠的性质可得, △ ABM △ ADM∴ AB AD , BM DM , ∠ AMB ∠ AMD -------3分∵DM ∥AB∴∠AMD ∠BAM∴∠AMB∠ BAM∴ABBM --------------------------------------------------------4分∴ABBM DMAD∴ 四边形 ABMD 是菱形 -----------------------------------------------------6分22.解:( 1)设 A 种商品每件的进价为 x 元, B 种商品每件的进价为 y 元,根据题意得:30 x 40 y 3800240 x30 y3200 -----------------------------------------------------解得:x 20y 80所以 A 种商品每件的进价为20 元, B 种商品的每件的进价为 80 元 --------------- 3( 2)设 A 种商品购进m 件,则 B 种商品购进( 1000-m )件,由题意得:分分m 4 (1000m )解得: m 800-------------------------------------------------------4 分设获得利润为 w 元,由题意得:w=( 30-20 ) m+( 100-80 )( 1000-m ) =-10m+20000∵ m 800∴当 m=800时获得利润最大,即购进A 种商品 800 件,B 种商品 200 件 .此时,最大利润为12000 元。