北京市201x年中考数学复习 三角形 课时训练(二十一)全等三角形
2024年中考数学复习 全等三角形的六种模型全梳理(原卷+答案解析)
全等三角形的六种模型全梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。
类型一、倍长中线模型目的:①构造出一组全等三角形;②构造出一组平行线。
将分散的条件集中到一个三角形中。
1【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连接BE.请根据小明的方法思考:(1)如图2,由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.ASA(2)如图2,AD长的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】(3)如图3,AD是△ABC的中线,BE交AC于点E,交AD于F,且AE=EF.求证:AC=BF.2(培优)已知△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AD,BE,点F为BE中点.AD;(1)如图1,求证:BF=12(2)将△DCE绕C点旋转到如图2所示的位置,连接AE,BD,过C点作CM⊥AD于M点.①探究AE和BD的关系,并说明理由;②连接FC,求证:F,C,M三点共线.1.如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AB=2AE.2.(1)如图1,已知△ABC中,AD是中线,求证:AB+AC>2AD;(2)如图2,在△ABC中,D,E是BC的三等分点,求证:AB+AC>AD+AE;(3)如图3,在△ABC中,D,E在边BC上,且BD=CE.求证:AB+AC>AD+AE.3.(1)阅读理解:如图①,在△ABC中,若AB=8,AC=5,求BC边上的中线AD的取值范围.可以用如下方法:将△ACD绕着点D逆时针旋转180°得到△EBD,在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=100°,以C为顶点作一个50°的角,角的两边分别交AB、AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并说明理由.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)3如图,在五边形ABCDE中,AB=AE,CA平分∠BCD,∠CAD=12∠BAE.(1)求证:CD=BC+DE;(2)若∠B=75°,求∠E的度数.4(培优)在△ABC中,BE,CD为△ABC的角平分线,BE,CD交于点F.(1)求证:∠BFC=90°+12∠A;(2)已知∠A=60°.①如图1,若BD=4,BC=6.5,求CE的长;②如图2,若BF=AC,求∠AEB的大小.1.如图,△ABC为等边三角形,若∠DBC=∠DAC=α0°<α<60°,则∠BCD=(用含α的式子表示).2.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E、F分别在直线BC、CD上,且∠BAD.∠EAF=12(1)当点E、F分别在边BC、CD上时(如图1),请说明EF=BE+FD的理由.(2)当点E、F分别在边BC、CD延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF、BE、FD之间的数量关系,并说明理由.3.阅读下面材料:【原题呈现】如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD 的长.类型三、一线三等角模型应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。
2021年北京市中考数学总复习考点21:全等三角形
2021年北京市中考数学总复习考点21:全等三角形一.选择题(共9小题)1.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.2.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙【分析】根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.【解答】解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选:B.3.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C【分析】利用判断三角形全等的方法判断即可得出结论.【解答】解:A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B.4.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b﹣c;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.5.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.B.2 C.2 D.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【解答】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选:B.6.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.130【分析】根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.【解答】解:∵正三角形ACD,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△AED,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选:C.7.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC ≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.8.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD 的面积为()A.15 B.12.5 C.14.5 D.17【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到=△ACE是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE×5×5=12.5,即可得出结论.【解答】解:如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB,∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,=×5×5=12.5,∵S△ACE∴四边形ABCD的面积为12.5,故选:B.9.如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,若AE=,AD=,则两个三角形重叠部分的面积为()A.B.3C.D.3【分析】如图设AB交CD于O,连接BD,作OM⊥DE于M,ON⊥BD于N.想办法求出△AOB的面积.再求出OA与OB的比值即可解决问题;【解答】解:如图设AB交CD于O,连接BD,作OM⊥DE于M,ON⊥BD于N.∵∠ECD=∠ACB=90°,∴∠ECA=∠DCB,∵CE=CD,CA=CB,∴△ECA≌△DCB,∴∠E=∠CDB=45°,AE=BD=,∵∠EDC=45°,∴∠ADB=∠ADC+∠CDB=90°,在Rt△ADB中,AB==2,∴AC=BC=2,∴S×2×2=2,△ABC=∵OD平分∠ADB,OM⊥DE于M,ON⊥BD于N,∴OM=ON,∵====,=2×=3﹣,∴S△AOC故选:D.二.填空题(共4小题)10.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC ≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC.【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.11.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AB=ED(只需写一个,不添加辅助线).【分析】根据等式的性质可得BC=EF,根据平行线的性质可得∠B=∠E,再添加AB=ED可利用SAS判定△ABC≌△DEF.【解答】解:添加AB=ED,∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB∥DE,∴∠B=∠E,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故答案为:AB=ED.12.等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为30°或110°.【分析】分两种情形,利用全等三角形的性质即可解决问题;【解答】解:如图,当点P在直线AB的右侧时.连接AP.∵AB=AC,∠BAC=40°,∴∠ABC=∠C=70°,∵AB=AB,AC=PB,BC=PA,∴△ABC≌△BAP,∴∠ABP=∠BAC=40°,∴∠PBC=∠ABC﹣∠ABP=30°,当点P′在AB的左侧时,同法可得∠ABP′=40°,∴∠P′BC=40°+70°=110°,故答案为30°或110°.13.如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.给出以下判断:①AC垂直平分BD;②四边形ABCD的面积S=AC•BD;③顺次连接四边形ABCD的四边中点得到的四边形可能是正方形;④当A,B,C,D四点在同一个圆上时,该圆的半径为;⑤将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,当BF⊥CD时,点F到直线AB的距离为.其中正确的是①③④.(写出所有正确判断的序号)【分析】依据AB=AD=5,BC=CD,可得AC是线段BD的垂直平分线,故①正确;依据四边形ABCD的面积S=,故②错误;依据AC=BD,可得顺次连接四边形ABCD的四边中点得到的四边形是正方形,故③正确;当A,B,C,D四点在同一个圆上时,设该圆的半径为r,则r2=(r﹣3)2+42,得r=,故④正确;连接AF,设点F到直线AB的距离为h,由折叠可得,四边形ABED是菱形,AB=BE=5=AD=GD,BO=DO=4,依据S△BDE=×BD×OE=×BE×DF,可得DF=,进而得出EF=,再根据S△ABF =S梯形ABFD﹣S△ADF,即可得到h=,故⑤错误.【解答】解:∵在四边形ABCD中,AB=AD=5,BC=CD,∴AC是线段BD的垂直平分线,故①正确;四边形ABCD的面积S=,故②错误;当AC=BD时,顺次连接四边形ABCD的四边中点得到的四边形是正方形,故③正确;当A,B,C,D四点在同一个圆上时,设该圆的半径为r,则r2=(r﹣3)2+42,得r=,故④正确;将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,如图所示,连接AF,设点F到直线AB的距离为h,由折叠可得,四边形ABED是菱形,AB=BE=5=AD=GD,BO=DO=4,∴AO=EO=3,=×BD×OE=×BE×DF,∵S△BDE∴DF==,∵BF⊥CD,BF∥AD,∴AD⊥CD,EF==,=S梯形ABFD﹣S△ADF,∵S△ABF∴×5h=(5+5+)×﹣×5×,解得h=,故⑤错误;故答案为:①③④.三.解答题(共23小题)14.如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.【分析】依据两角及其夹边分别对应相等的两个三角形全等进行判断.【解答】证明:∵在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).15.如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.【分析】根据角平分线的定义得到∠BAC=∠DAC,利用SAS定理判断即可.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△ABC和△ADC中,,∴△ABC≌△ADC.16.如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.【分析】欲证明∠F=∠C,只要证明△ABC≌△DEF(SSS)即可;【解答】证明:∵DA=BE,∴DE=AB,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠C=∠F.17.如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.(1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.【分析】(1)根据AE=DE,BE=CE,∠AEB和∠DEC是对顶角,利用SAS证明△AEB≌△DEC即可.(2)根据全等三角形的性质即可解决问题.【解答】(1)证明:在△AEB和△DEC中,,∴△AEB≌△DEC(SAS).(2)解:∵△AEB≌△DEC,∴AB=CD,∵AB=5,∴CD=5.18.如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.(1)求证:△AEF≌△DEB;(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.【分析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠EAF=∠EDB、AE=DE即可判定全等;(2)根据AB=AC,且AD是BC边上的中线可得∠ADC=90°,由四边形ADCF是矩形可得答案.【解答】证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∠EAF=∠EDB,∴△AEF≌△DEB(AAS);(2)连接DF,∵AF∥CD,AF=CD,∴四边形ADCF是平行四边形,∵△AEF≌△DEB,∴BE=FE,∵AE=DE,∴四边形ABDF是平行四边形,∴DF=AB,∵AB=AC,∴DF=AC,∴四边形ADCF是矩形.19.如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以AB=CD,证明△ABO与△CDO全等,所以有OB=OC.【解答】证明:在Rt△ABC和Rt△DCB中,∴Rt△ABC≌Rt△DCB(HL),∴∠OBC=∠OCB,∴BO=CO.20.如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.【分析】由∠BAE=∠DAC可得到∠BAC=∠DAE,再根据“SAS”可判断△BAC≌△DAE,根据全等的性质即可得到∠C=∠E.【解答】解:∵∠BAE=∠DAC,∴∠BAE﹣∠CAE=∠DAC﹣∠CAE,即∠BAC=∠DAE,在△ABC和△ADE中,∵,∴△ABC≌△ADE(SAS),∴∠C=∠E.21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE 于O.求证:AD与BE互相平分.【分析】连接BD,AE,判定△ABC≌△DEF(ASA),可得AB=DE,依据AB∥DE,即可得出四边形ABDE是平行四边形,进而得到AD与BE互相平分.【解答】证明:如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.22.已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF ⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.【分析】(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,ADC从而得出答案.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,=AE•DE=•2a•a=a2,∴S△ADE∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,=AC•DE=•(2a+2a)•a=2a2=2S△ADE;则S△ADC在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,=AE•BE=•(2a)•2a=2a2,∴S△ABES△ACE=CE•BE=•(2a)•2a=2a2,S△BHG=HG•BE=•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.23.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.24.已知:∠AOB.求作:∠A'O'B',使∠A'O′B'=∠AOB(1)如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D;(2)如图2,画一条射线O′A′,以点O′为圆心,OC长为半径间弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所而的弧交于点D′;(4)过点D′画射线O′B',则∠A'O'B'=∠AOB.根据以上作图步骤,请你证明∠A'O'B′=∠AOB.【分析】由基本作图得到OD=OC=O′D′=O′C′,CD=C′D′,则根据“SSS“可证明△OCD ≌△O′C′D′,然后利用全等三角形的性质可得到∠A'O'B′=∠AOB.【解答】证明:由作法得OD=OC=O′D′=O′C′,CD=C′D′,在△OCD和△O′C′D′中,∴△OCD≌△O′C′D′,∴∠COD=∠C′O′D′,即∠A'O'B′=∠AOB.25.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC 的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AC⊥AB,试判断四边形ADCF的形状,并证明你的结论.【分析】(1)连接DF,由AAS证明△AFE≌△DBE,得出AF=BD,即可得出答案;(2)根据平行四边形的判定得出平行四边形ADCF,求出AD=CD,根据菱形的判定得出即可;【解答】(1)证明:连接DF,∵E为AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴EF=BE,∵AE=DE,∴四边形AFDB是平行四边形,∴BD=AF,∵AD为中线,∴DC=BD,∴AF=DC;(2)四边形ADCF的形状是菱形,理由如下:∵AF=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AC⊥AB,∴∠CAB=90°,∵AD为中线,∴AD=BC=DC,∴平行四边形ADCF是菱形;26.如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.【分析】根据AE=EC,DE=BE,∠AED和∠CEB是对顶角,利用SAS证明△ADE ≌△CBE即可.【解答】证明:在△AED和△CEB中,,∴△AED≌△CEB(SAS),∴∠A=∠C(全等三角形对应角相等).27.如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.【分析】由全等三角形的判定定理AAS证得△ABC≌△ADC,则其对应边相等.【解答】证明:如图,∵∠1=∠2,∴∠ACB=∠ACD.在△ABC与△ADC中,,∴△ABC≌△ADC(AAS),∴CB=CD.28.已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.【分析】可证明△ACE≌△BDF,得出∠A=∠B,即可得出AE∥BF;【解答】证明:∵AD=BC,∴AC=BD,在△ACE和△BDF中,,∴△ACE≌△BDF(SSS)∴∠A=∠B,∴AE∥BF;29.如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.【分析】(1)利用ASA即可证明;(2)首先证明四边形AECD是平行四边形,推出CD=AE=AB即可解决问题;【解答】(1)证明:∵AD∥EC,∴∠A=∠BEC,∵E是AB中点,∴AE=EB,∵∠AED=∠B,∴△AED≌△EBC.(2)解:∵△AED≌△EBC,∴AD=EC,∵AD∥EC,∴四边形AECD是平行四边形,∴CD=AE,∵AB=6,∴CD=AB=3.30.如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.【分析】结论:DF=AE.只要证明△CDF≌△BAE即可;【解答】解:结论:DF=AE.理由:∵AB∥CD,∴∠C=∠B,∵CE=BF,∴CF=BE,∵CD=AB,∴△CDF≌△BAE,∴DF=AE.31.如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC ∥EF.【分析】由全等三角形的性质SAS判定△ABC≌△DEF,则对应角∠ACB=∠DFE,故证得结论.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴BC∥EF.32.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.【分析】只要证明Rt△ADE≌Rt△CDF,推出∠A=∠C,推出BA=BC,又AB=AC,即可推出AB=BC=AC;【解答】证明:∵DE⊥AB,DF⊥BC,垂足分别为点E,F,∴∠AED=∠CFD=90°,∵D为AC的中点,∴AD=DC,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF,∴∠A=∠C,∴BA=BC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形.33.已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.【分析】(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF;(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA (ASA),再根据全等三角形的性质即可得出BE=AF.【解答】(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.34.已知:如图,点A.F,E.C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.【分析】(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.【解答】证明:(1)∵AB∥DC,∴∠A=∠C,在△ABE与△CDF中,∴△ABE≌△CDF(ASA);(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD,∵EG=5,∴CD=10,∵△ABE≌△CDF,∴AB=CD=10.35.如图,已知四边形ABCD中,对角线AC、BD相交于点O,且OA=OC,OB=OD,过O点作EF⊥BD,分别交AD、BC于点E、F.(1)求证:△AOE≌△COF;(2)判断四边形BEDF的形状,并说明理由.【分析】(1)首先证明四边形ABCD是平行四边形,再利用ASA证明△AOE≌△COF;(2)结论:四边形BEDF是菱形.根据邻边相等的平行四边形是菱形即可证明;【解答】(1)证明:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF.(2)解:结论:四边形BEDF是菱形,∵△AOE≌△COF,∴AE=CF,∵AD=BC,∴DE=BF,∵DE∥BF,∴四边形BEDF是平行四边形,∵OB=OD,EF⊥BD,∴EB=ED,∴四边形BEDF是菱形.36.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【分析】(1)求出AC=DF,根据SSS推出△ABC≌△DEF.(2)由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.【解答】证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF∴AC=DF在△ABC和△DEF中,∴△ABC≌△DEF(SSS)(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°﹣(∠A+∠B)=180°﹣(55°+88°)=37°∴∠F=∠ACB=37°。
2019中考数学一轮复习第21讲直角三角形与勾股定理教案
第20讲:直角三角形与勾股定理一、复习目标(1)掌握判定直角三角形全等的条件和直角三角形的性质。
(2)掌握角平分线性质的逆定理。
(3)掌握勾股定理及其逆定理。
二、课时安排1课时三、复习重难点直角三角形的性质和判定,勾股定理及其逆定理,直角三角形全等的判定及其应用。
四、教学过程(一)知识梳理直角三角形的概念、性质与判定b,外接圆半径勾股定理及逆定理互逆命题如果两个命题的题设和结论正好相反,我们把这样的两命题、定义、定理、公理述,作出________(二)题型、技巧归纳考点一:利用勾股定理求线段的长度技巧归纳:勾股定理的作用:(1)已知直角三角形的两边求第三边;(2)已知直角三角形的一边求另两边的关系;(3)用于证明平方关系的问题.考点2实际问题中勾股定理的应用技巧归纳:利用勾股定理求最短线路问题的方法:将起点和终点所在的面展开成为一个平面,进而利用勾股定理求最短长度.考点3勾股定理逆定理的应用技巧归纳:判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.考点4定义、命题、定理、反证法技巧归纳:只有对一件事情做出判定的语句才是命题,其中正确的命题是真命题,错误的命题是假命题.对于命题的真假(正误)判断问题,一般只需根据熟记的定义、公式、性质、判定定理等相关内容直接作出判断即可,有的则需要经过必要的推理与计算才能进一步确定真与假.(三)典例精讲例1 将一个有45度角的三角板的直角顶点放在一张宽为3 cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30度角,如图21-1,则三角板的最大边的长为( )A、3CMB、6CMC、、[解析] 如图所示,过点A作AD⊥BD,垂足为D,所以AB=2AD=2×3=6 (cm),△ABC是等腰直角三角形,AC=2AB=62(cm).例2 一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长;(3)求点B1到最短路径的距离.解:(1)如图,木柜的表面展开图是两个矩形和.蚂蚁能够最快到达目的地的可能路径有如图的AC′1和AC1.(2)蚂蚁沿着木柜表面经线段A1B1到C′1,爬过的路径的长是l1=42+(4+5)2=97. 蚂蚁沿着木柜表面经线段BB1到C1,爬过的路径的长是l2=(4+4)2+52=89.l1>l2,最短路径的长是l2=89.(3)作B1E⊥AC1于E,则B1E=B1C1AC1·AA1=489·5=208989例3 已知三组数据:①2,3,4;②3,4,5;③1,,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有( )A.② B.①② C.①③ D.②③[解析] 根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.只要判断两个较小的数的平方和是否等于最大数的平方即可判断.①∵22+32=13≠42,∴以这三个数为长度的线段不能构成直角三角形,故不符合题意;②∵32+42=52,∴以这三个数为长度的线段能构成直角三角形,故符合题意;③∵12+(√3)2=22,∴以这三个数为长度的线段能构成直角三角形,故符合题意.故构成直角三角形的有②③.故选D.例4 下列命题为假命题的是( )A .三角形三个内角的和等于180°B .三角形两边之和大于第三边C .三角形两边的平方和等于第三边的平方D .三角形的面积等于一条边的长与该边上的高的乘积的一半[解析] 选项A 和B 中的命题分别为三角形的内角和定理与三角形三边关系定理,均为真命题;对于选项C ,只有直角三角形中两直角边的平方和等于斜边的平方,而其他三角形的三边都不具有这一关系,因此是假命题;选项D 中的命题是三角形的面积计算公式,也是真命题,故应选C.(四)归纳小结本部分内容要求熟练掌握判定直角三角形全等的条件和直角三角形的性质、掌握角平分线性质的逆定理、掌握勾股定理及其逆定理。
全等三角形(4种模型2种添加辅助线方法)(学生版)--中考数学压轴题专项训练
全等三角形(4种模型2种添加辅助线方法)1.题型一:一线三等角模型2.题型二:手拉手模型3.题型三:半角模型4.题型四:旋转模型5.题型五:倍长中线法6.题型六:截长补短法题型一一线三等角模型过等腰直角三角形的直角顶点或者正方形直角顶点的一条直线。
过等腰直角三角形的另外两个顶点作该直线的垂线段,会有两个三角形全等(AAS)常见的两种图形:题型二手拉手模型【基本模型】一、等边三角形手拉手-出全等二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;12题型三半角模型过等腰三角形顶点两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。
解题技巧:在图1中,△AEB 由△AND 旋转所得,可得△AEM ≌△AMN ,∴BM +DN =MN∠AMB =∠AMNAB =AH△CMN 的周长等于正方形周长的一半在图2中将△ABC 旋转至△BEF ,易得△BED ≌△BCD 同理得到边角之间的关系;总之:半角模型(题中出现角度之间的半角关系)利用旋转--证全等--得到相关结论.题型四旋转模型31一、奔驰模型旋转是中考必考题型,奔驰模型是非常经典的一类题型,且近几年中考中经常出现。
我们不仅要掌握这类题型,提升利用旋转解决问题的能力,更重要的是要明白一点:旋转的本质是把分散的条件集中化,从而解决问题2二、费马点模型费马点就是到三角形的三个顶点距离之和最小的点.最值问题是中考常考题型,费马点属于几何中的经典题型,目前全国范围内的中考题都是从经典题改编而来,所以掌握费马点等此类最值经典题是必不可少的.题型五倍长中线法三角形一边的中线(与中点有关的线段),或中点,通常考虑倍长中线或类中线,构造全等三角形.把该中线延长一倍,证明三角形全等,从而运用全等三角形的有关知识来解决问题的方法.主要思路:倍长中线(线段)造全等4在△ABC 中AD 是BC边中线延长AD 到E ,使DE =AD ,连接BE作CF ⊥AD 于F ,作BE ⊥AD 的延长线于E 连接BE延长MD 到N ,使DN =MD ,连接CD截长补短法截长补短法在初中几何教学中有着十分重要的作用,它主要是用来证线段的和差问题,而且这种方法一直贯穿着整个几何教学的始终.那么什么是截长补短法呢?所谓截长补短其实包含两层意思,即截长和补短.截长就是在较长的线段上截取一段等于要证的两段较短的线段中的一段,证剩下的那一段等于另外一段较短的线段.当条件或结论中出现a +b =c 时,用截长补短.1.补短法:通过添加辅助线“构造”一条线段使其为求证中的两条线段之和,在证所构造的线段和求证中那一条线段相等;2.截长法:通过添加辅助线先在求证中长线段上截取与线段中的某一段相等的线段,在证明截剩部分与线段中的另一段相等。
(2021年整理)备战中考数学(北师大版)巩固复习三角形(含解析)
备战中考数学(北师大版)巩固复习三角形(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(备战中考数学(北师大版)巩固复习三角形(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为备战中考数学(北师大版)巩固复习三角形(含解析)的全部内容。
2019备战中考数学(北师大版)巩固复习—三角形(含解析)一、单选题1.已知三角形的两边长分别为3cm和8cm,则该三角形的第三边的长可能是( )A。
4cmB。
5cmC。
6cmD. 11cm2。
如图.已知在正方形网格中,每个小方格都是边长为1的正方形,A、B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A、B、C为顶点的三角形面积为1,则点C的个数为()A. 3个B. 4个C。
5个D。
6个3。
如图,已知A.D.C。
F在同一条直线上,AB=DE , BC=EF ,要使△ABC≌△DEF , 还需要添加一个条件是()A. BC∥EF B。
∠B=∠FC。
AD=CFD. ∠A=∠EDF4.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是()A. PD=DQ B。
DE=ACC. AE=CQD. PQ⊥AB5。
不能确定△ABC与△DEF全等的是()A. AC=DF,AB=DE,BC=EF,B。
AB=DE,∠A=∠D, BC=EFC。
AC= DF,∠A=∠D,∠C=∠F D. AC= DF,∠B=∠E,∠A=∠D6。
如图已知,AC=AD,BC=BD,便能知道∠ABC=∠ABD.这是根据什么理由得到的,小芳想了想,马上得出了正确的答案.你猜想小芳说的依据是( )A. SASB. SSAC. ASAD。
2023年中考数学(人教版)总复习训练:全等三角形
2023年中考数学(人教版)总复习训练:全等三角形一、选择题(本大题共10小题,每小题4分,满分40分)1. (2021重庆A卷)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不等判断△ABC≌△DEF的是( )A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD2. (2020安顺模拟)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )A.∠B=∠CB.AD=AEC.BD=CED.BE=CD3. (2020秋•乐亭县期末)已知图中的两个三角形全等,则∠1等于( )A.47°B.57°C.60°D.73°4. (2021·重庆A)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD5. (2021·重庆B)如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是( )A.∠ABC=∠DCBB.AB=DCC.AC=DBD.∠A=∠D6. (2020秋•二道区期末)如图,在△ABC中,∠B=80°,∠C=30°.若△ABC≌△ADE,∠DAC=35°,则∠EAC的度数为( )A.40°B.35°C.30°D.25°7. (2022·安徽·宣城市宣州区卫东学校一模)如图,已知△ABC,下面甲、乙、丙、丁四个三角形中,与△ABC全等的是( )A. B. C. D.8. (2022七下·万州期末)如图,△ABC≌△CED,点D在BC边上,∠A+∠E=90o,EC、ED与AB交于点F、G,则下列结论不正确的是( )A.AC=CDB.∠ACB=90oC.AB⊥CED.EG=BG9. (2021·盐城)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA,OB上分别取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C,D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是( )A.SASB.ASAC.AASD.SSS10. (2021·威海)如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连结CD,连结BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是( )A.∠ADC=∠AEBB.CD∥ABC.DE=GED.BF2=CF·AC二、填空题(本大共8小题,每小题5分,满分40分)11. (2022北京市第五中学分校)如图,已知BE=DC,请添加一个条件,使得△ABE ≌△ACD:_____.12. (2021齐齐哈尔)如图,AC=AD,∠1=∠2,要使ABC AED△△,应添加的条件是≌______(只需写出一个条件即可)13. (2022北京丰台)如图,点B,E,C,F在一条直线上,BC=EF,∠B=∠DEF.只需添加一个条件即可证明△ABC≌△DEF,这个条件可以是 _____(写出一个即可).14. (2020·怀化模拟)如图,AC=DC,BC=EC,请你添加一个适当的条件: ,使得△ABC≌△DEC.15. (2020·黔东南模拟)如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件使得△ABC≌△DEF.16. (2022北京门头沟)如图,点P在直线AB外,点A、B、C、D均在直线AB上,如果AC=BD,只需添加一个条件即可证明△APC≌△BPD,这个条件可以是________(写出一个即可).17. (2020•黑龙江)如图,Rt△ABC和Rt△EDF中,∠B=∠D,在不添加任何辅助线的情况下,请你添加一个条件,使Rt△ABC和Rt△EDF全等.18. (2020•辽阳)如图,在△ABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D.若BC=4,则CD的长为.三、解答题(本大题共6道小题,每小题6-12分)19. (6分)(2021·宜宾)如图,已知OA=OC,OB=OD,∠AOC=∠BOD.求证:△AOB≌△COD.20. (6分)(2020•硚口区模拟)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.21. (8分)(2020•梁子湖区)如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.22. (10分)(2021黄石)如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E 点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.23. (12分)(2020•衡阳)如图,在△ABC中,∠B=∠C,过BC的中点D作DE⊥AB,DF ⊥AC,垂足分别为点E、F.(1)求证:DE=DF;(2)若∠BDE=40o,求∠BAC的度数.24. (12分)(2020•黔东南州)如图1,△ABC和△DCE都是等边三角形.探究发现(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.(3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长.。
2021中考数学 全等三角形 专题训练(含答案)
2021中考数学全等三角形专题训练一、选择题1. 如图,要用“SAS”证明△ABC≌△ADE,若已知AB=AD,AC=AE,则还需添加条件()A.∠B=∠D B.∠C=∠EC.∠1=∠2 D.∠3=∠42. 如图所示,∠C=∠D=90°,若要用“HL”判定Rt△ABC与Rt△ABD全等,则可添加的条件是()A.AC=AD B.AB=ABC.∠ABC=∠ABD D.∠BAC=∠BAD3. 下列三角形中全等的是()A.①②B.②③C.③④D.①④4. 如图,小强画了一个与已知△ABC全等的△DEF,他画图的步骤是:(1)画DE =AB;(2)在DE的同旁画∠HDE=∠A,∠GED=∠B,DH,EG相交于点F,小强画图的依据是()A.ASA B.SASC.SSS D.AAS5. 如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=EDB.∠A=∠DEF,AC=EDC.AC=ED,AB=EFD.∠A=∠DEF,BC=FD6. 如图,有两个长度相同的滑梯靠在一面墙上,已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,且左边的滑梯与地面的夹角∠ABC=35°,则右边的滑梯与地面的夹角∠DFE等于()A.60°B.55°C.65°D.35°7. 如图,平面上到两两相交的三条直线a,b,c的距离相等的点一共有()A.4个B.3个C.2个D.1个8. 现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误二、填空题9. 如图,△ABC≌△ADE,BC的延长线交DE于点G,∠CAB=54°,∠DAC=16°,则∠DGB=°.10. 如图,已知CD=CA,∠1=∠2,要使△ECD≌△BCA,需添加的条件是__________(只需写出一个条件).11. 要测量河岸相对两点A,B之间的距离,已知AB垂直于河岸BF,先在BF 上取两点C,D,使CD=CB,再过点D作BF的垂线段DE,使点A,C,E在一条直线上,如图,测出DE=20米,则AB的长是________米.12. 如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC于点E.若AE=12 cm,则DE的长为cm.13. 如图,要测量河岸相对两点A,B之间的距离,从B点沿与AB成90°角方向,向前走50米到C处立一根标杆,然后方向不变继续向前走50米到D处,在D 处转90°沿DE方向再走17米到达E处,这时A,C,E三点在同一直线上,则A,B之间的距离为________米.14. 如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC 的面积是.15. 如图,在Rt△ABC中,∠C=90°,E为AB的中点,D为AC上一点,BF∥AC,交DE的延长线于点F,AC=6,BC=5,则四边形FBCD周长的最小值是.三、解答题16. 已知:如图,点C,F在AD上,AF=DC,∠B=∠E,∠A=∠D.求证:AB =DE.17. 已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE ≌△BCD ; (2)求证:2CD 2=AD 2+DB 2.18. 如图,A ,B两点分别在射线OM ,ON 上,点C 在∠MON 的内部且CA =CB ,CD ⊥OM ,CE ⊥ON ,垂足分别为D ,E ,且AD =BE . (1)求证:OC 平分∠MON ;(2)如果AO =10,BO =4,求OD 的长.2021中考数学 全等三角形 专题训练-答案一、选择题1. 【答案】C[解析] 还需添加条件∠1=∠2.理由:∵∠1=∠2,∴∠1+∠EAC =∠2+∠EAC ,即∠BAC =∠DAE. 在△ABC 和△ADE 中,⎩⎨⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE(SAS).2. 【答案】A3. 【答案】A[解析] ①②符合证明三角形全等的判定方法“SAS”.③④中相等的角所对的边不相等,所以不可能全等.故选A.4. 【答案】A5. 【答案】C[解析] A .添加BC=FD ,AC=ED ,可利用“SAS”判定△ABC ≌△EFD ;B .添加∠A=∠DEF ,AC=ED ,可利用“ASA”判定△ABC ≌△EFD ; C .添加AC=ED ,AB=EF ,不能判定△ABC ≌△EFD ;D .添加∠A=∠DEF ,BC=FD ,可利用“AAS”判定△ABC ≌△EFD.6. 【答案】B [解析] 在Rt △ABC 和Rt △DEF 中,⎩⎨⎧BC =EF ,AC =DF ,∴Rt △ABC ≌Rt △DEF(HL). ∴∠DEF =∠ABC =35°. ∴∠DFE =90°-35°=55°.7. 【答案】A[解析] 如图,到三条直线a ,b ,c 的距离相等的点一共有4个.8. 【答案】A[解析] AB=b ,AB 是斜边,小惠作的斜边长是b 符合条件,而小雷作的是一条直角边长是b.故小惠的作法正确,小雷的作法错误.二、填空题9. 【答案】70 [解析] ∵△ABC ≌△ADE ,∴∠B=∠D.∵∠GFD=∠AFB ,∴∠DGB=∠F AB.∵∠F AB=∠DAC+∠CAB=70°,∴∠DGB=70°.10. 【答案】答案不唯一,如CE =CB [解析] 由∠1=∠2,可得∠DCE =∠ACB ,又∵CD =CA ,∴添加CE =CB ,可根据“SAS”判定两个三角形全等.11. 【答案】2012. 【答案】12[解析] 如图,连接BE.∵D 为Rt △ABC 中斜边BC 上的一点,过点D 作BC 的垂线,交AC 于点E ,∴∠A=∠BDE=90°. 在Rt △DBE 和Rt △ABE 中,∴Rt △DBE ≌Rt △ABE (HL).∴DE=AE.∵AE=12 cm ,∴DE=12 cm .13. 【答案】17[解析] 在△ABC 和△EDC 中,⎩⎨⎧∠ABC =∠EDC =90°,BC =DC ,∠ACB =∠ECD ,∴△ABC ≌△EDC(ASA). ∴AB =ED =17米.14. 【答案】8[解析]∵DC ⊥BC ,∴∠BCD=90°. ∵∠ACB=120°, ∴∠ACD=30°.延长CD 到H 使DH=CD , ∵D 为AB 的中点, ∴AD=BD.在△ADH与△BDC中,∴△ADH ≌△BDC (SAS), ∴AH=BC=4,∠H=∠BCD=90°. ∵∠ACH=30°, ∴CH=AH=4,∴CD=2,∴△ABC 的面积=2S △BCD =2××4×2=8.15. 【答案】16 [解析] ∵BF ∥AC ,∴∠EBF=∠EAD. 在△BFE 和△ADE 中,∴△BFE ≌△ADE (ASA).∴BF=AD.∴BF+FD+CD+BC=AD+CD+FD+BC=AC+BC+FD=11+FD. ∵当FD ⊥AC 时,FD 最短,此时FD=BC=5, ∴四边形FBCD 周长的最小值为5+11=16.三、解答题16. 【答案】证明:∵AF =DC ,∴AC =DF.在△ABC 和△DEF 中,⎩⎨⎧∠A =∠D ,∠B =∠E ,AC =DF ,∴△ABC ≌△DEF(AAS).∴AB =DE.17. 【答案】13证明:(1)∵△ACB 和△ECD 都是等腰直角三角形,∴CD =CE ,AC =BC ,∠ECD =∠ACB =90°,∴∠ECD -∠ACD =∠ACB -∠ACD ,即∠ACE =∠BCD ,(1分) 在△ACE 与△BCD 中,⎩⎨⎧EC =DC∠ACE =∠BCD AC =BC,(3分) ∴△ACE ≌△BCD(SAS ).(4分) (2)∵△ACE ≌△BCD ,∴AE =BD ,∠EAC =∠B =45°,(6分) ∴∠EAD =∠EAC +∠CAD =90°, 在Rt △EAD 中,ED 2=AD 2+AE 2, ∴ED 2=AD 2+BD 2,(8分) 又ED 2=EC 2+CD 2=2CD 2, ∴2CD 2=AD 2+DB 2.(10分)18. 【答案】解:(1)证明:∵CD ⊥OM ,CE ⊥ON , ∴∠CDA =∠CEB =90°.在Rt △ACD 与Rt △BCE 中,⎩⎨⎧CA =CB ,AD =BE ,∴Rt △ACD ≌Rt △BCE(HL). ∴CD =CE.又∵CD ⊥OM ,CE ⊥ON ,∴OC 平分∠MON. (2)在Rt △ODC 与Rt △OEC 中,⎩⎨⎧CD =CE ,OC =OC ,∴Rt △ODC ≌Rt △OEC. ∴OD =OE. 设BE =x.∵BO =4,∴OE =OD =4+x. ∵AD =BE =x ,∴AO =OD +AD =4+2x =10. ∴x =3.∴OD =4+3=7.。
2021年中考数学专题复习:全等三角形(含答案)
2020-2021中考专题复习:全等三角形一、选择题1. 如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等,所需的条件是()A.AC=A′C′,BC=B′C′B.∠A=∠A′,AB=A′B′C.AC=A′C′,AB=A′B′D.∠B=∠B′,BC=B′C′2. 如图所示,AC,BD是长方形ABCD的对角线,过点D作DE∥AC交BC的延长线于点E,则图中与△ABC全等的三角形共有()A.1个B.2个C.3个D.4个3. 如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.∠A=∠C B.∠D=∠BC.AD∥BC D.DF∥BE4. 如图所示,△ABD≌△CDB,下列四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,AD=BC5. 如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()图12-1-10A.2B.3C.5D.2.56. 如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D7. 如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE等于()A. 2B. 3C. 2D. 68. 如图,点G在AB的延长线上,∠GBC,∠BAC的平分线相交于点F,BE⊥CF 于点H.若∠AFB=40°,则∠BCF的度数为()A.40°B.50°C.55°D.60°二、填空题9. 如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________.10. 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).11. 如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当条件:________,使△AEH≌△CEB.12. 如图,已知CD=CA,∠1=∠2,要使△ECD≌△BCA,需添加的条件是__________(只需写出一个条件).13. 在平面直角坐标系xOy中,已知点A,B的坐标分别为(2,0),(2,4),若以A,B,P为顶点的三角形与△ABO全等,则点P的坐标为________________________.14. 如图,AB∥CD,点P到AB,BD,CD的距离相等,则∠BPD的度数为________.15. 如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.若△DBE的周长为20,则AB=________.16. 如图,P是△ABC外的一点,PD⊥AB交BA的延长线于点D,PE⊥AC于点E,PF⊥BC交BC的延长线于点F,连接PB,PC.若PD=PE=PF,∠BAC=64°,则∠BPC的度数为________.三、解答题17. 如图,AB=AD,BC=DC,点E在AC上.(1)求证:AC平分∠BAD;(2)求证:BE=DE.18. 如图,在△ABC中,D是BC边上一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100°,∠C=50°,求∠AEB的度数.19. 如图,沿AC方向开山修路,为了加快施工进度,要在山的另一面同时施工,工人师傅在AC上取一点B,在小山外取一点D,连接BD并延长,使DF=BD,过点F作AB的平行线FM,连接MD并延长,在延长线上取一点E,使DE=DM,在点E开工就能使A,C,E三点成一条直线,你知道其中的道理吗?20. 观察与类比(1)如图①,在△ABC中,∠ACB=90°.点D在△ABC外,连接AD,作DE⊥AB于点E,交BC于点F,AD=AB,AE=AC,连接AF.求证:DF=BC +CF;(2)如图②,AB=AD,AC=AE,∠ACB=∠AED=90°,延长BC交DE于点F,写出DF,BC,CF之间的数量关系,并证明你的结论.21. 如图,已知AP∥BC,∠P AB的平分线与∠CBA的平分线相交于点E,过点E 的直线分别交AP,BC于点D,C.求证:AD+BC=AB.22. 已知:在等边△ABC中,D、E分别是AC、BC上的点,且∠BAE=∠CBD<60°,DH⊥AB,垂足为点H.(1)如图①,当点D、E分别在边AC、BC上时,求证:△ABE≌△BCD;(2)如图②,当点D、E分别在AC、CB延长线上时,探究线段AC、AH、BE的数量关系;(3)在(2)的条件下,如图③,作EK∥BD交射线AC于点K,连接HK,交BC于点G,交BD于点P,当AC=6,BE=2时,求线段BP的长.2020-2021中考专题复习:全等三角形-答案一、选择题1. 【答案】C2. 【答案】D[解析] 与已知三角形全等的三角形有△DCB,△BAD,△DCE,△CDA.3. 【答案】B[解析] 在△ADF和△CBE中,由AD=BC,∠D=∠B,DF=BE,根据两边和它们的夹角分别相等的两个三角形全等,可以得到△ADF≌△CBE.故选B.4. 【答案】C[解析] A.∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项不符合题意;B.∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项不符合题意;C.∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB.∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项符合题意;D.∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD.∴AD∥BC,故本选项不符合题意.故选C.5. 【答案】B[解析] ∵△ABE≌△ACF,AB=5,∴AC=AB=5.∵AE=2,∴EC=AC-AE=5-2=3.6. 【答案】C7. 【答案】B【解析】如解图,连接OC,由已知条件易得∠A=∠OCE,CO=AO,∠DOE=∠COA,∴∠DOE-∠COD=∠COA-∠COD,即∠AOD=∠COE,∴△AOD≌△COE(ASA),∴AD=CE,进而得CD+CE=CD+AD=AC=22AB=3,故选B.8. 【答案】B[解析] 如图,过点F分别作FZ⊥AE于点Z,FY⊥CB于点Y,FW⊥AB于点W.∵AF平分∠BAC,FZ⊥AE,FW⊥AB,∴FZ=FW.同理FW=FY.∴FZ=FY.又∵FZ⊥AE,FY⊥CB,∴∠FCZ=∠FCY.由∠AFB=40°,易得∠ACB=80°.∴∠ZCY=100°.∴∠BCF=50°.二、填空题9. 【答案】120°【解析】由于△ABC≌△A′B′C′,∴∠C=∠C′=24°,在△ABC 中,∠B=180°-24°-36°=120°.10. 【答案】AB=DE或∠A=∠D或∠ACB=∠DFE或AC∥DF[解析]已知条件已经具有一边一角对应相等,需要添加的条件要么是夹已知角的边,构造SAS全等,要么添加另外的任一组角构造ASA或AAS,或者间接添加可以证明这些结论的条件即可.11. 【答案】AH=CB(符合要求即可)【解析】∵AD⊥BC,CE⊥AB,垂足分别为点D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,在Rt△HDC中,∠ECB=90°-∠DHC,∵∠AHE=∠DHC,∴∠EAH=∠ECB,∴根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故答案为:AH=CB或EH=EB或AE=CE均可.12. 【答案】答案不唯一,如CE=CB[解析] 由∠1=∠2,可得∠DCE=∠ACB,又∵CD=CA,∴添加CE=CB,可根据“SAS”判定两个三角形全等.13. 【答案】(4,0)或(4,4)或(0,4)14. 【答案】90°[解析] ∵点P到AB,BD,CD的距离相等,∴BP,DP分别平分∠ABD,∠BDC.∵AB∥CD,∴∠ABD+∠BDC=180°.∴∠PBD+∠PDB=90°.故∠BPD=90°.15. 【答案】20[解析] 由角平分线的性质可得CD=DE.易证Rt△ACD≌Rt△AED,则AC=AE,DE+DB=CD+DB=BC=AC=AE,故DE+DB+EB =AE+EB=AB.16. 【答案】32°[解析] ∵PD=PE=PF,PD⊥AB交BA的延长线于点D,PE⊥AC 于点E,PF⊥BC交BC的延长线于点F,∴CP平分∠ACF,BP平分∠ABC.∴∠PCF=12∠ACF,∠PBF=12∠ABC.∴∠BPC=∠PCF-∠PBF=12(∠ACF-∠ABC)=12∠BAC=32°.三、解答题17. 【答案】证明:(1)在△ABC与△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC ,即AC 平分∠BAD. (2)由(1)知∠BAE=∠DAE. 在△BAE 与△DAE 中,∴△BAE ≌△DAE (SAS), ∴BE=DE.18. 【答案】解:(1)证明:∵BE 平分∠ABC , ∴∠ABE=∠DBE , 在△ABE 和△DBE 中,∴△ABE ≌△DBE (SAS). (2)∵∠A=100°,∠C=50°, ∴∠ABC=30°, ∵BE 平分∠ABC ,∴∠ABE=∠DBE=∠ABC=15°,在△ABE 中,∠AEB=180°-∠A -∠ABE=180°-100°-15°=65°.19. 【答案】解:在△BDE 和△FDM 中,⎩⎨⎧BD =FD ,∠BDE =∠FDM ,DE =DM ,∴△BDE ≌△FDM(SAS). ∴∠BEM =∠FME.∴BE ∥MF. 又∵AB ∥MF ,∴A ,C ,E 三点在一条直线上.20. 【答案】解:(1)证明:∵DE ⊥AB ,∠ACB =90°, ∴∠AED =∠AEF =∠ACB =90°.在Rt △ACF 和Rt △AEF 中,⎩⎨⎧AC =AE ,AF =AF ,∴Rt △ACF ≌Rt △AEF(HL).∴CF =EF. 在Rt △ADE 和Rt △ABC 中,⎩⎨⎧AD =AB ,AE =AC ,∴Rt △ADE ≌Rt △ABC(HL). ∴DE =BC. ∵DF =DE +EF , ∴DF =BC +CF. (2)BC =CF +DF. 证明:如图,连接AF.在Rt △ABC 和Rt △ADE 中, ⎩⎨⎧AB =AD ,AC =AE ,∴Rt △ABC ≌Rt △ADE(HL). ∴BC =DE.∵∠ACB =90°,∴∠ACF =90°=∠AED. 在Rt △ACF 和 Rt △AEF 中,⎩⎨⎧AC =AE ,AF =AF ,∴Rt △ACF ≌△AEF(HL). ∴CF =EF.∵DE =EF +DF ,∴BC =CF +DF.21. 【答案】证明:如图,在AB 上截取AF =AD ,连接EF.∵AE 平分∠PAB ,∴∠DAE =∠FAE.在△DAE 和△FAE 中,⎩⎨⎧AD =AF ,∠DAE =∠FAE ,AE =AE ,∴△DAE ≌△FAE(SAS).∴∠AFE =∠ADE.∵AD ∥BC ,∴∠ADE +∠C =180°.又∵∠AFE +∠EFB =180°,∴∠EFB =∠C.∵BE 平分∠ABC ,∴∠EBF =∠EBC.在△BEF 和△BEC 中,⎩⎨⎧∠EFB =∠C ,∠EBF =∠EBC ,BE =BE ,∴△BEF ≌△BEC(AAS).∴BF =BC.∴AD +BC =AF +BF =AB.22. 【答案】(1)证明:∵△ABC 为等边三角形,∴∠ABC =∠C =∠CAB =60°,AB =BC ,在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA);(2)解:∵△ABC 为等边三角形,∴∠ABC =∠CAB =60°,AB =BC ,∴∠ABE =∠BCD =180°-60°=120°.∴在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA),∴BE =CD .∵DH ⊥AB ,∴∠DHA =90°,∵∠CAB =60°,∴∠ADH =30°,∴AD =2AH ,∴AC =AD -CD =2AH -BE ;(3)解:如解图,作DS ⊥BC 延长线于点S ,作HM ∥AC 交BC 于点M ,解图∵AC =6,BE =2,∴由(2)得AH =4,BH =2,与(1)同理可得BE =CD =2,CE =8,∵∠SCD =∠ACB =60°,∴∠CDS =30°,∴CS =1,SD =3,BS =7,∵BD 2=BS 2+SD 2=72+(3)2,∴BD =213,∵EK ∥BD ,∴△CBD ∽△CEK ,∴CB CE =CD CK =BD EK ,∴CK =CD ·CE CB =2×86=83,EK =CE ·BD CB =8×2136=8133. ∵HM ∥AC ,∴∠HMB =∠ACB =60°,∴△HMB 为等边三角形,BM =BH =HM =2, CM =CB -BM =4,又∵HM ∥AC ,∴△HMG ∽△KCG ,∴HM KC =MG CG ,即382=MG 4-MG,∴MG =127,BG =267,EG =407, ∵EK ∥BD ,∴△GBP ∽△GEK ,∴BP EK =GB GE , ∴BP =261315.。
2021年中考数学复习考点专项训练——全等三角形
2021中考数学复习考点专项训练——全等三角形一、选择题1. 如图所示,在∠AOB的两边上截取AO=BO,OC=OD,连接AD、BC交于点P,连接OP,则下列结论正确的是()①△APC≅△BPD②△ADO≅△BCO③△AOP≅△BOP④△OCP≅△ODPA.②③④B.①②③C.①②③④D.①③④2.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.DB=DC D.AB=AC3. 如图,已知在△ABC和△DEF中,∠A=∠D=90∘,则下列条件中不能判定△ABC和△DEF全等的是()A.AB=DE,AC=DFB.∠C=∠F,∠B=∠EC.AB=DE,BC=EFD.∠C=∠F,BC=EF4.下列条件不可以判定两个直角三角形全等的是()A.两条直角边对应相等B.两个锐角对应相等C.一条直角边和它所对的锐角对应相等D.一个锐角和锐角所对的直角边对应相等5.如图,已知△ABC≌△ADE若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为( )A.40°B.35°C.30°D.25°6. 如图,∠ABC=∠ABD,还应补充一个条件,才能推出△ABC≅△ABD,补充下列其中一个条件后,不一定能推出△ABC≅△ABD的是( )A.AC=ADB.BC=BDC.∠CAB=∠DABD.∠ACB=∠ADB7. 请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,要说明∠D′O′C′=∠DOC,需要证明△D′O′C′≅△DOC,则这两个三角形全等的依据是()A.边边边B.边角边C.角边角D.角角边8.已知△ABC和△DEF,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E其中能使△ABC≌△DEF的共有( )A.1组B.2组C.3组D.4组9.在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,在下面判断中错误的是()A、若添加条件AC=A′C′,则△ABC≌△A′B′C′B、若添加条件BC=B′C′,则△ABC≌△A′B′C′C、若添加条件∠B=∠B′,则△ABC≌△A′B′C′D、若添加条件∠C=∠C′,则△ABC≌△A′B′C′10.如图,已知△ABC≌△ADC,∠B=30°,∠BAC=23°,则∠ACD的度数为()A.120°B.125°C.127°D.104°11. 如图①,已知∠ABC,用尺规作它的角平分线.如图②,步骤如下:第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP,射线BP即为所求.下列叙述不正确的是( )A.a>0B.作图的原理是构造SSS三角形全等C.由第二步可知,DP=EPDE的长D.b<1212.如图△ABC中,∠C=90°,AB=2BC,D为AB中点过点D作DE⊥AB交AC于点E,下列结论:①CE=DE;②AE=BC;③∠B=2∠A;④∠A=30°中正确个数为()A、1个B、2个C、3个D、4个13. 如图,已知AD是△ABC的BC边上的高,下列能使△ABD≅△ACD的条件是( )A.AB=ACB.∠BAC=90∘C.BD=ACD.∠B=45∘14.工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是()A、SSSB、SASC、ASAD、HL15. 如图,AD是△ABC的角平分线,且AB:AC=√3:√2,则△ABD与△ACD的面积之比为()A.3:2B.√3:√2C.2:3D.√2:√3二.填空题16. 如图,△ABC中,AB=AC,D、E是BC边上两点,AD=AE,BE=6,DE=4,则EC=________.17. 如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是________.18.如图,D为Rt△ABC斜边BC上的一点,且BD=BA,过点D作BC的垂线,交AC于点E。
中考数学专题复习卷 三角形(含解析)-人教版初中九年级全册数学试题
三角形一、选择题1.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【答案】A【解析】:∵在直角三角形中,勾为3,股为4,∴弦为故答案为:A.【分析】根据在直角三角形中,勾是最短的直角边,股是长的直角边,弦是斜边,知道勾和股利用勾股定理,即可得出答案。
2.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值X围是()A.8<BC<10B.2<BC<18C.1<BC<8D.1<BC<9【答案】D【解析】:如图∵▱ABCD,AC=8,BD=10,∴OB=BD=5,OC=AC=4∴5-4<BC<5+4,即1<BC<9故答案为:D【分析】根据平行四边形的性质求出OB、OC的长,再根据三角形三边关系定理,建立不等式组,求解即可。
3.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A. 80°B. 100°C. 120°D. 140°【答案】B【解析】如图,延长BC交AD于点E,∵∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,∴∠BCD=∠A+∠B+∠D,∵∠A=50°,∠B=20°,∠D=30°,∴∠BCD=50°+20°+30°=100°,故答案为:B.【分析】延长BC交AD 于点E,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,所以∠BCD=∠A+∠B+∠D,由已知可得∠BCD=50°+20°+30°=100°。
4.如图,BE∥AF,点D是AB上一点,且DC⊥BE于点C,若∠A=35°,则∠ADC的度数()A. 105°B. 115°C. 125°D. 135°【答案】C【解析】:∵BE∥AF,∴∠B=∠A=35°.∵DC⊥BE,∴∠DCB=90°,∴∠ADC=90°+35°=125°.故答案为:C.【分析】由平行线的性质可得∠B=∠A=35°,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠ADC=90°+35°=125°。
中考数学总复习《全等三角形》专项提升练习题(附答案)
中考数学总复习《全等三角形》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列各组中的两个图形属于全等图形的是( )A. B. C. D.2.下列叙述中错误的是( )A.能够重合的图形称为全等图形B.全等图形的形状和大小都相同C.所有正方形都是全等图形D.形状和大小都相同的两个图形是全等图形3.下列四个选项图中,与题图中的图案完全一致的是( )A. B. C. D.4.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是( )A.AD=AEB.DB=AEC.DF=EFD.DB=EC5.如果两个三角形全等,那么下列结论不正确的是( )A.这两个三角形的对应边相等B.这两个三角形都是锐角三角形C.这两个三角形的面积相等D.这两个三角形的周长相等6.已知图中的两个三角形全等,则∠a度数是( )A.72°B.60°C.58°D.50°7.已知下列条件,不能作出唯一三角形的是( )A.两边及其夹角B.两角及其夹边C.三边D.两边及除夹角外的另一个角8.如图,某同学不小心将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②去9.如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,∠ADC+∠ABC=180°,有下列结论:①CD=CB;②AD+AB=2AE;③∠ACD=∠BCE;④AB-AD=2BE.其中正确的是( )A.②B.①②③C.①②④D.①②③④10.如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°.下列结论:①∠1=∠3;②BD+DH=AB;③2AH=BH;④若DF⊥BE于点F,则AE﹣FH=DF.其中正确的结论是( )A.①②③B.③④C.①②④D.①②③④二、填空题11.如图,四边形ABCD≌四边形A/B/C/D/,则∠A的大小是________.12.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、4,若这两个三角形全等,则x+y=.13.工人师傅常用角尺平分一个任意角.作法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法得△MOC≌△NOC的依据是.14.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB= .15.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD =BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC ≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是16.在△ABC中,AB=8,AC=10,则BC边上的中线AD的取值范围是 .三、解答题17.如图,线段AC与线段BD相交于点O,连结AB,BC,CD,∠A=∠D,OA=OD.求证:∠1=∠2.18.如图,在△ABC中,AB=AC.分别以点B,C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB,AC的延长线分别交于点E,F,连结AD,BD,CD.求证:AD平分∠BAC.19.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.20.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB的延长线上一点,点E在BC 边上,且BE=BD,连结AE,DE,CD.(1)求证:△ABE≌△CBD.(2)若∠CAE=27°,∠ACB=45°,求∠BDC的度数.21.如图,AD∥BC,∠D=90°.(1)如图1,若∠DAB的平分线与∠CBA的平分线交于点P,试问:点P是线段CD的中点吗?为什么?(2)如图2,如果P是DC的中点,BP平分∠ABC,∠CPB=35°,求∠PAD的度数为多少?22.(1)如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试探究AB,AD,DC之间的等量关系,证明你的结论;(2)如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,证明你的结论.答案1.D.2.C3.A4.B.5.B6.D7.D.8.C9.C10.C.11.答案为:95°.12.答案为:10.13.答案为:SSS.14.答案为:128°.15.答案为:ASA.16.答案为:1<AD <9.17.证明:在△AOB 和△DOC 中∵⎩⎨⎧∠A =∠D ,OA =OD ,∠AOB =∠DOC ,∴△AOB ≌△DOC(ASA)∴AB =DC ,OB =OC.∴OA +OC =OD +OB ,即AC =DB.在△ABC 和△DCB 中∵⎩⎨⎧AC =DB ,AB =DC ,BC =CB ,∴△ABC ≌△DCB(SSS)∴∠1=∠2.18.证明:在△ABD 和△ACD 中∵⎩⎨⎧AB =AC ,BD =CD ,AD =AD ,∴△ABD ≌△ACD(SSS)∴∠BAD =∠CAD即AD 平分∠BAC .19.解:(1)∵AE 和BD 相交于点O∴∠AOD =∠BOE.在△AOD 和△BOE 中∠A =∠B ,∠AOD =∠BOE∴∠BEO =∠2.又∵∠1=∠2∴∠1=∠BEO∴∠AEC =∠BED.在△AEC 和△BED 中⎩⎨⎧∠A =∠B ,AE =BE ,∠AEC =∠BED ,∴△AEC ≌△BED(ASA);(2)∵△AEC ≌△BED∴EC =ED ,∠C =∠BDE.在△EDC 中∵EC =ED ,∠1=42°∴∠C =∠EDC =69°∴∠BDE =∠C =69°.20.证明:(1)∵∠ABC =90°∴∠CBD =90°=∠ABC .在△ABE 和△CBD 中∵⎩⎨⎧AB =CB ,∠ABE =∠CBD ,BE =BD ,∴△ABE ≌△CBD(SAS).(2)∵△ABE ≌△CBD∴∠AEB =∠CDB .∵∠AEB 为△AEC 的一个外角∴∠AEB =∠CAE +∠ACB =27°+45°=72° ∴∠BDC =72°.21.解:点P 是线段CD 的中点. 证明如下:过点P 作PE ⊥AB 于E∵AD ∥BC ,PD ⊥CD 于D∴PC ⊥BC∵∠DAB 的平分线与∠CBA 的平分线交于点P ∴PD =PE ,PC =PE∴PC =PD∴点P 是线段CD 的中点.(2)35°22.解:(1)证明:延长AE 交DC 的延长线于点F∵E 是BC 的中点∴CE =BE∵AB ∥DC∴∠BAE =∠F在△AEB 和△FEC 中∴△AEB≌△FEC∴AB=FC∵AE是∠BAD的平分线∴∠BAE=∠EAD∵AB∥CD∴∠BAE=∠F∴∠EAD=∠F∴AD=DF∴AD=DF=DC+CF=DC+AB(2)如图②,延长AE交DF的延长线于点G∵E是BC的中点∴CE=BE∵AB∥DC∴∠BAE=∠G在△AEB和△GEC中∴△AEB≌△GEC∴AB=GC∵AE是∠BAF的平分线∴∠BAG=∠FAG∵AB∥CD∴∠BAG=∠G∴∠FAG=∠G∴FA=FG∴AB=CG=AF+CF第11 页共11 页。
2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)
2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)知识回顾1.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。
2.三角形的内角和定理:三角形的三个内角之和等于180°。
3.三角形的外角定理:三角形的一个外角等于它不相邻的两个内角之和。
大于它不相邻的任意一个内角。
4.全等三角形的性质:若两个三角形全等,则他们的对应边相等;对应角相等;对应边上的中线相等,高线相等,角平分线也相等;且这两个三角形的周长和面积均相等。
5.全等三角形的判定:①边边边(SSS):三条边分别对应性相等的两个三角形全等。
②边角边(SAS):两边及其这两边的夹角对应相等的两个三角形全等。
③角边角(ASA):两角及其这两角的夹边对应相等的两个三角形全等。
④角角边(AAS):两角及其其中一角的对边对应相等的两个三角形全等。
⑤直角三角形判定(HL):直角三角形中斜边与其中任意一直角边分别对应相等的两个直角三角形全等。
全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件。
在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形。
专项练习题(含答案解析)1.已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.【分析】根据邻补角的定义得出∠ACB=∠ACD,利用ASA证明△ACB≌△ACD,根据全等三角形的性质即可得解.【解答】证明:∵∠3=∠4,∴∠ACB=∠ACD,在△ACB和△ACD中,,∴△ACB≌△ACD(ASA),∴AB=AD.2.如图,△ABC是等腰三角形,点D,E分别在腰AC,AB上,且BE=CD,连接BD,CE.求证:BD=CE.【分析】根据等腰三角形的性质得出∠EBC=∠DCB,进而利用SAS证明△EBC与△DCB全等,再利用全等三角形的性质解答即可.【解答】证明:∵△ABC∴∠EBC=∠DCB,在△EBC与△DCB中,,∴△EBC≌△DCB(SAS),∴BD=CE.3.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.【分析】由∠BAD=∠EAC可得∠BAC=∠EAD,根据SAS可证△BAC≌△EAD,再根据全等三角形的性质即可求解.【解答】解:∵∠BAD=∠EAC,∴∠BAD+∠CAD=∠EAC+∠CAD,即∠BAC=∠EAD,在△BAC与△EAD中,,∴△BAC≌△EAD(SAS),∴∠D=∠C=50°.4.如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形的面积.【分析】(1)由AC平分∠BAD,得∠BAC=∠DAC,根据CB⊥AB,CD⊥AD,得∠B=90°=∠D,用AAS 可得△ABC≌△ADC;(2)由(1)△ABC≌△ADC,得BC=CD=3,S△ABC=S△ADC,求出S△ABC=AB•BC=6,即可得四边形ABCD的面积是12.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵CB⊥AB,CD⊥AD,∴∠B=90°=∠D,在△ABC和△ADC中,,∴△ABC≌△ADC(AAS);(2)解:由(1)知:△ABC≌△ADC,∴BC=CD=3,S△ABC=S△ADC,∴S△ABC=AB•BC=×4×3=6,∴S△ADC=6,∴S四边形ABCD=S△ABC+S△ADC=12,答:四边形ABCD的面积是12.5.如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.【分析】利用平行线的性质得∠EDC=∠B,再利用ASA证明△CDE≌△ABC,可得结论.【解答】证明:∵DE∥AB,∴∠EDC=∠B,在△CDE和△ABC中,,∴△CDE≌△ABC(ASA),∴DE=BC.6.如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【分析】(1)过点M作MQ∥BC,交AC于点Q,根据等边三角形的性质以及平行线的性质可得∠AMQ=∠AQM=∠A=60°,可得△AMQ是等边三角形,易证△QMP≌△CNP(AAS),即可得证;(2)根据等边三角形的性质可知AH=HQ,根据全等三角形的性质可知QP=PC,即可表示出HP的长.【解答】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:在等边△ABC中,∠A=∠B=∠ACB=60°,∵MQ∥BC,∴∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,∴△AMQ是等边三角形,∴AM=QM,∵AM=CN,∴QM=CN,在△QMP和△CNP中,,∴△QMP≌△CNP(AAS),∴MP=NP;(2)解:∵△AMQ是等边三角形,且MH⊥AC,∴AH=HQ,∵△QMP≌△CNP,∴QP=CP,∴PH=HQ+QP=AC,∵AB=a,AB=AC,∴PH=a.7.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC =∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【分析】(1)根据SSS ABC≌△DEF,即可解决问题;(2)根据全等三角形的性质可得∠A=∠EDF,再根据平行线的判定即可解决问题.【解答】(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.故答案为:①,SSS;(答案不唯一).(2)证明:∵△ABC≌△DEF.∴∠A=∠EDF,∴AB∥DE.8.在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【分析】(1)证明△BCD≌△FCE(SAS),由全等三角形的性质得出∠DBC=∠EFC,证出BD∥EF,则可得出结论;(2)由题意画出图形,延长BC到F,使CF=BC,连接AF,EF,由(1)可知BD∥EF,BD=EF,证出∠AEF=90°,得出∠DHE=90°,由直角三角形的性质可得出结论.【解答】(1)证明:在△BCD和△FCE中,,∴△BCD≌△FCE(SAS),∴∠DBC=∠EFC,∴BD∥EF,∵AF⊥EF,∴BD⊥AF;(2)解:由题意补全图形如下:CD=CH.证明:延长BC到F,使CF=BC,连接AF,EF,∵AC⊥BF,BC=CF,∴AB=AF,由(1)可知BD∥EF,BD=EF,∵AB2=AE2+BD2,∴AF2=AE2+EF2,∴∠AEF=90°,∴AE⊥EF,∴BD⊥AE,∴∠DHE=90°,又∵CD=CE,∴CH=CD=CE.9.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,且点D在线段BC上,连CE.(1)求证:△ABD≌△ACE;(2)若∠EAC=60°,求∠CED的度数.【分析】(1)可利用SAS证明结论;(2)由全等三角形的性质可得∠ACE=∠ABD,利用等腰直角三角形的性质可求得∠ACE=∠ABD=∠AED =45°,再根据三角形的内角和定理可求解∠AEC的度数,进而可求可求解【解答】(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ACE=∠ABD,∵△ABC和△ADE都是等腰直角三角形,∴∠ACE=∠ABD=∠AED=45°,∵∠EAC=60°,∴∠AEC=180°﹣∠ACE﹣∠EAC=180°﹣45°﹣60°=75°,∴∠CED=∠AEC﹣∠AED=75°﹣45°=30°.10.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.【分析】(1)由CD∥AB得∠ABC=∠ECD,而CD=CB,CE=AB,即可根据全等三角形的判定定理“SAS”证明△ABC≌△ECD;(2))由∠A=90°,根据全等三角形的对应角相等证明∠BED=∠CED=∠A=90°,设BE=x,由BD2﹣BE2=CD2﹣EC2=DE2,列方程(2)2﹣x2=(3+x)2﹣32,解方程求得符合题意的x的值为2,则BC =5,再根据勾股定理求出DE的长,即可求出△BCD的面积.【解答】(1)证明:∵CD∥AB,CD=CB,CE=AB,∴∠ABC=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS).(2)解:∵∠A=90°,∴∠CED=∠A=90°,∴∠BED=180°﹣∠CED=90°,设BE=x,∵EC=AB=3,BD=2,∴CD=BC=3+x,∵BD2﹣BE2=CD2﹣EC2=DE2,∴(2)2﹣x2=(3+x)2﹣32,整理得x2+3x﹣10=0,解得x1=2,x2=﹣5(不符合题意,舍去),∴BE=2,BC=3+2=5,∴DE===4,∴S△BCD=BC•DE=×5×4=10,∴△BCD的面积为10.11.如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt △ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.【分析】(1)由“SAS”可证△ACE;(2)由等腰三角形三角形的性质可得BC的长,由角度关系可求∠ADC=67.5°=∠CAD,可得AC=CD =1,即可求解.【解答】(1)证明:∵∠BAC=90°=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵∠BAC=90°,AB=AC=1,∴BC=,∠B=∠ACB=45°,∵∠BAD=22.5°,∴∠ADC=67.5°=∠CAD,∴AC=CD=1,∴BD=﹣1.12.如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB沿AC对折到△ACE的位置,AE和CD交于点F.(1)求证:△CEF≌△ADF;(2)求tan∠DAF的值(用含x的式子表示).【分析】(1)根据矩形的性质得到∠B=∠D=90°,BC=AD,根据折叠的性质得到BC=CE,∠E=∠B =90°,等量代换得到∠E=∠D=90°,AD=CE,根据AAS证明三角形全等即可;(2)设DF=a,则CF=8﹣a,根据矩形的性质和折叠的性质证明AF=CF=8﹣a,在Rt△ADF中,根据勾股定理表示出DF的长,根据正切的定义即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,BC=AD,根据折叠的性质得:BC=CE,∠E=∠B=90°,∴∠E=∠D=90°,AD=CE,在△CEF与△ADF中,,∴△CEF≌△ADF(AAS);(2)解:设DF=a,则CF=8﹣a,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=x,∴∠DCA=∠BAC,根据折叠的性质得:∠EAC=∠BAC,∴∠DCA=∠EAC,∴AF=CF=8﹣a,在Rt△ADF中,∵AD2+DF2=AF2,∴x2+a2=(8﹣a)2,∴a=,∴tan∠DAF==.13.如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE =BF.请解答下列问题:(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;(2)请选择(1)中任意一种结论进行证明;(3)若AB=6,CE=2,∠F=60°,S△ABC=123,则BC=,BF=.【分析】(1)根据图形分别得出答案;(2)利用AAS证明△ABC≌△DFE,得BC=EF,再根据图形可得结论;(3)首先利用含30°角的直角三角形的性质求出BH和AH的长,从而得出BC,再对点E的位置进行分类即可.【解答】解:(1)图②:BC+BE=BF,图③:BE﹣BC=BF;(2)图②:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BC+CE,∴BC+BE=EF+BC+CE=BF;图③:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BF+EF,∴BE﹣BC=BF+EF﹣BC=BF+BC﹣BC=BF;(3)当点E在BC上时,如图,作AH⊥BC于H,∵∠B=∠F=60°,∴∠BAH=30°,∴BH=3,∴AH=3,∵S△ABC=12,∴=12,∴BC=8,∵CE=2,∴BF=BE+EF=8﹣2+8=14;同理,当点E在BC延长线上时,如图②,BF=BC+BE=8+10=18,故答案为:8,14或18.14.△ABC和△ADE都是等边三角形.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有P A+PB =PC(或P A+PC=PB)成立(不需证明);(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?并加以证明;(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【分析】(2)证明△ABD≌△ACE(SAS)和△BAF≌△CAP(SAS),得AF=AP,∠BAF=∠CAP,再证明△AFP是等边三角形,最后由线段的和可得结论;(3)如图③,在PC上截取CM=PB,连接AM,同理可得结论.【解答】解:(2)PB=P A+PC,理由如下:如图②,在BP上截取BF=PC,连接AF,∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠CAD+∠DAE,即∠DAB=∠EAC,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,BF=CP,∴△BAF≌△CAP(SAS),∴AF=AP,∠BAF=∠CAP,∴∠BAC=∠P AF=60°,∴△AFP是等边三角形,∴PF=P A,∴PB=BF+PF=PC+P A;(3)PC=P A+PB,理由如下:如图③,在PC上截取CM=PB,连接AM,同理得:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,PB=CM,∴△AMC≌△APB(SAS),∴AM=AP,∠BAP=∠CAM,∴∠BAC=∠P AM=60°,∴△AMP是等边三角形,∴PM=P A,∴PC=PM+CM=P A+PB.15.【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O 顺时针旋转一个锐角到图②位置.按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC 交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.【分析】【情境再现】由△OBE≌△OAF,得BE=AF,OE=OF,∠BEO=∠AFO,可证明△BHE≌△AGF (SAS),得BH=AG;【迁移应用】由△BHE≌△AGF,得∠BHE=∠AGF,可得∠AGF+∠GPO=90°,从而∠BHE+∠HPD=90°,∠HDP=90°,故DG⊥BH;【拓展延伸】设AB交OH于T,OG交AC于K,根据△ABC,△HOG是含30°角的直角三角形,AO⊥BC,可得OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,即得△BOT∽△AOK,有===,∠BTO=∠AKO,又OH=GO,可得==,故△BTH∽△AKG,即得==,BH=AG.【解答】【情境再现】证明:由阅读材料知△OBE≌△OAF,∴BE=AF,OE=OF,∠BEO=∠AFO,∴∠BEH=∠AFG,∵OH=OG,∴OH﹣OE=OG﹣OF,即EH=GF,在△BHE和△AGF中,,∴△BHE≌△AGF(SAS),∴BH=AG;【迁移应用】解:猜想:DG⊥BH;证明如下:由【情境再现】知:△BHE≌△AGF,∴∠BHE=∠AGF,∵∠HOG=90°,∴∠AGF+∠GPO=90°,∴∠BHE+∠GPO=90°,∵∠GPO=∠HPD,∴∠BHE+∠HPD=90°,∴∠HDP=90°,∴DG⊥BH;【拓展延伸】解:猜想:BH=AG,证明如下:设AB交OH于T,OG交AC于K,如图:由已知得:△ABC,△HOG是含30°角的直角三角形,AO⊥BC,∴∠AOB=90°,∴OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,∴△BOT∽△AOK,∴===,∠BTO=∠AKO,∴OT=OK,BT=AK,∠BTH=∠AKG,∵OH=GO,∴HT=OH﹣OT=GO﹣OK=(GO﹣OK)=KG,∴==,∴△BTH∽△AKG,∴==,∴BH=AG19。
北京市2019年中考数学复习三角形课时训练二十一全等三角形(含答案)
课时训练(二十一) 全等三角形(限时:30分钟)|夯实基础|1.[2017·石景山一模]用尺规作图法作已知角∠AOB的平分线的步骤如下:图K21-1①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SASB.ASAC.AASD.SSS2.如图K21-2,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于()图K21-2A.60°B.50°C.45°D.30°3.如图K21-3,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P 有()图K21-3A.1个B.2个C.3个D.4个4.如图K21-4,将正方形ABCO放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为()图K21-4A.(-,1)B.(-1,)C.(,1)D.(-,-1)5.[2018·怀柔期末]如图K21-5,AB=AC,点D,E分别在AB,AC上,CD,BE交于点F,只添加一个条件使△ABE≌△ACD,添加的条件是:(添加一个即可).图K21-56.[2018·东城期末]如图K21-6,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠B的度数为.图K21-67.[2017·通州二模]如图K21-7,Rt△ABC≌Rt△DCB,两斜边交于点O,如果AC=3,那么OD的长为.图K21-78.如图K21-8,点B,E,C,F在同一条直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF= .图K21-89.[2015·石景山二模]如图K21-9为4×4的正方形网格,图中的线段均为格点线段(线段的端点为格点),则∠1+∠2+∠3+∠4+∠5的度数为.图K21-910.如图K21-10,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= °.图K21-1011.如图K21-11,在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,交AB于点D,DE⊥BC于点E.若BC=15 cm,则△DEB的周长为 cm.图K21-1112.[2018·延庆期末]如图K21-12,AE=DF,∠A=∠D,欲证△ACE≌△DBF,需要添加条件,证明全等的理由是.图K21-1213.[2018·石景山初二期末]如图K21-13,E是AC上一点,AB=CE,AB∥CD,∠ACB=∠D.求证:BC=ED.图K21-1314.[2018·房山二模]如图K21-14,四边形ABCD中,AD∥BC,DC⊥BC于C点,AE⊥BD于点E,且DB=DA.求证:AE=CD.图K21-1415.[ 2018·丰台期末]如图K21-15,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.求证:DE=DF.图K21-15|拓展提升|16.[2018·丰台期末]如图K21-16,△ABC是等边三角形,点D是BC边上一动点,点E,F分别在AB,AC边上,连接AD,DE,DF,且∠ADE=∠ADF=60°.小明通过观察、实验,提出猜想:在点D运动的过程中,始终有AE=AF.小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:利用AD是∠EDF的平分线,构造△ADF的全等三角形,然后通过等腰三角形的相关知识获证.想法2:利用AD是∠EDF的平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.想法3:将△ACD绕点A顺时针旋转至△ABG,使得AC和AB重合,然后通过全等三角形的相关知识获证.….请你参考上面的想法,帮助小明证明AE=AF.(一种方法即可)图K21-16参考答案1.D2.A[解析] 根据题目所给条件可得△OAD≌△OBC,则有∠C=∠D=35°.由三角形的一个外角等于和它不相邻的两个内角的和可得到∠EAC=∠O+∠D=85°,再根据三角形的内角和定理得到∠AEC的度数.3.C4.A[解析] 如图,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E.∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°.又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE.在△AOD和△OCE中,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1.又∵点C在第二象限,∴点C的坐标为(-,1).5.答案不唯一,如AE=AD或∠B=∠C或∠BEA=∠CDA6.70°7.1.58.69.225°10.55[解析] ∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠1=∠CAE.在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴∠ABD=∠2=30°.∵∠3=∠1+∠ABD,∴∠3=25°+30°=55°.11.15[解析] ∵CD平分∠ACB,∴∠ACD=∠ECD.∵DE⊥BC于点E,∴∠DEC=∠A=90°.又∵CD=CD,∴△ACD≌△ECD,∴AC=EC,AD=ED.∴△DEB的周长=DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=15 cm.12.答案不唯一,如∠E=∠F 两角及夹边对应相等的两个三角形全等,∠ECA=∠FBD 两角及其中一个角的对边对应相等的两个三角形全等,AB=CD(AC=BD)两边及夹角对应相等的两个三角形全等13.证明:∵AB∥CD,∴∠A=∠ACD.在△ABC和△CED中,∴△ABC≌△CED(AAS),∴BC=ED.14.证明:∵AD∥BC,∴∠ADB=∠DBC.∵DC⊥BC于点C,AE⊥BD于点E,∴∠C=∠AED=90°.又∵DB=DA,∴△AED≌△DCB.∴AE=CD.15.证明:∵AD是BC边上的中线,∴BD=CD,∵BE∥CF,∴∠DBE=∠DCF.在△BDE和△CDF中,∴△BDE≌△CDF(ASA).∴DE=DF.16.证明:想法1:在DE上截取DG=DF,连接AG.∵△ABC是等边三角形,∴∠B=∠C=60°,∵∠ADE=∠ADF=60°,AD=AD,∴△ADG≌△ADF.∴AG=AF,∠1=∠2.∵∠ADB=60°+∠3=60°+∠2,∴∠3=∠2,∴∠3=∠1.∴∠AEG=60°+∠3,∠AGE=60°+∠1,∴∠AEG=∠AGE.∴AE=AG.∴AE=AF.想法2:过点A作AG⊥DE于G,AH⊥DF交DF的延长线于H.∵∠ADE=∠ADF=60°,∴AG=AH.∵∠FDC=60°-∠1,∴∠AFH=∠DFC=60°+∠1.∴∠AEG=∠AFH,∴△AEG≌△AFH.∴AE=AF.想法3:将△ACD绕着点A顺时针旋转至△ABG,使得AC和AB重合,连接DG.∴△ABG≌△ACD.∴AG=AD,∠GAB=∠DAC.∵△ABC是等边三角形,∴∠BAC=∠ABC=∠C=60°,∴∠GAD=60°,∴△AGD是等边三角形,∴∠AGD=∠ADG=∠ADF=60°.∵∠ADE=60°,∴G,E,D三点共线,∴△AGE≌△ADF,∴AE=AF.。
北师大版九年级数学下册中考总复习全等图形与三角形全等基本判定定理(5种)(有答案)
全等图形与全等三角形基本判定定理【复习回顾】【1】下列说法错误的是( )A .三角形的高、中线、角平分线都是线段B .三角形的三条中线都在三角形内部C .锐角三角形的三条高一定交于同一点D .三角形的三条高、三条中线、三条角平分线都交于同一点【2】如图,AD 是△ABC 的中线,ED 是△ABD 的中线,若25cm S AED =△,则2______cm S ABC =△【3】如图,BD ⊥AC ,垂足为点D ,点E 在BC 上,EF ⊥AC ,垂足为点G ,∠1=∠2. (1)试说明:DB ∥FE (2)HF 与BC 的位置关系如何?为什么? (3)若∠1=︒x ,求∠C 的度数(用含x 的代数式表示) 注:本题第(1)、(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程。
解:(1)∵BD ⊥AC ,EF ⊥AC ,(已知)∴DB ∥FE. ( )(2)HF 与BC 的位置关系:______________理由如下:∵DB ∥FE (已证)∴∠1=∠______.()∵∠1=∠2;(已知)∴∠2=∠______. (等量代换)∴_______∥________ ()(3)【知识分析】一、全等图形及其性质1、在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果它们能够完全重合,那么这两个图形叫做全等图形。
2、全等图形的形状、大小都要相同,对应角与对应边也相等,周长、面积也相等。
但周长或面积相等的两个图形,不一定是全等图形。
二、全等三角形的定义1、能完全重合的两个三角形叫全等三角形。
2、两个全等三角形重合时,互相重合的顶点叫对应点,能互相重合的边叫对应边,能互相重合的角叫对应角。
3、“全等”用“≌”表示,读作:“全等于”如上面问题中△ABC与△ADE,可以记作:△ABC“≌”△ADE,注意:对应点写在对应位置上。
4、全等三角形主要是指形状、大小相同的两个三角形,与位置无关系,将一个三角形经过平移、翻折、旋转后,得到的三角形与原三角形全等。
2024年中考数学复习 拓展 全等三角形提高证明题含辅助线(六种类型)(原卷+答案解析)
拓展全等三角形提高证明题含辅助线(六种类型)【类型一】利用角平分线构造全等1如图,在△ABC中,AD是角平分线,E,F分别为AC,AB上的点,且∠AED+∠AFD=180°.(1)求证:∠AFD=∠CED;(2)求证:DE=DF.2如图,在ΔABC中,∠C=90°,AD是∠BAC的角平分线交BC于D,过D作DE⊥BA于点E,点F 在AC上,且BD=DF.(1)求证:AC=AE;(2)求证:∠BAC+∠FDB=180°;(3)若AB=9.5,AF=1.5,求线段BE的长,3如图,AD是△ABC的角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.4已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.求证:(1)AD=AE=EC.(2)BA+BC=2BF.【类型二】倍长中线5如图,AB=CD,E为BC的中点,∠BAC=∠BCA,求证:AD=2AE.6如图,已知ΔABC中,点M是BC边长的中点,过M作∠BAC的角平分线AD的平行线交AB于E,交CA的延长线于F,求证:(1)AE=AF.(2)BE=CF.7在△ABC中,∠ABC=45°,AM⊥MB,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,点D在线段AM上,且DM=CM.求证:△BDM≌△ACM;(2)如图2,在(1)的条件下,点E是△ABC外一点,且满足EC=AC,连接ED并延长交BC于点F,且F为线段BC的中点,求证:∠BDF=∠CEF.8规定:有两组边相等,且它们所夹的角互补的两个三角形叫兄弟三角形.如图,OA=OB,OC=OD,∠AOB=∠COD=90°,回答下列问题:(1)求证:△OAC和△OBD是兄弟三角形.(2)取BD的中点P,连接OP,请证明AC=2OP.【类型三】截长补短9如图,在△ABC中,AB=AC,∠A=108°,BD平分∠ABC交AC于D,试说明:BC=AB+CD.10如图,在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC.11在△ABC中,∠ABC=60°,点D、E分别在AC、BC上,连接BD、DE和AE;并且有AB=BE,∠AED=∠C.(1)求∠CDE的度数;(2)求证:AD+DE=BD.12(1)如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.求证:AD=BD.(2)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD.(3)如图3,在四边形ABDE中,AB=9,DE=1,BD=6,C为BD边中点,若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.【类型四】直接连接13如图,在Rt△ABC中,AB=AC,∠A=90°,点D为BC中点,过点D作DM⊥DN,分别交BA,AC延长线于点M、N,求证:DM=DN.14△ABC中,∠A=90°,AB=AC,D为BC中点,E、F分别在AC、AB上,且DE⊥DF,试判断DE、DF的数量关系,并说明理由.15如图所示,在△ABC中,D为BC的中点,DE⊥BC,交∠BAC的平分线AE于点E,EF⊥AB于点F,EG⊥AC交AC延长线于点G.求证:BF=CG.16如图,在ΔABC中,∠ABC=90°,AB=BC,CD平分∠ACB交AB于D点,过A作AE⊥CD交CD延长线于E点,交CB延长线于F点,取FC中点G,连接DG,过C作CH⊥AC交DG延长线于H,(1)求证:AF=CD;(2)求证:AC=CH+2BD.【类型五】延长交于一点17如图,△ABC中,CD平分∠ACB,过点A作AD⊥CD于点D,点E是AB的中点,连接DE,若AC=20,BC=14,求DE的长.18已知,Rt△ABC中,∠ACB=90°,AC=BC,∠ABC的角平分线交AC于E,AD⊥BE于D,求证:AD=12 BE.19如图,在Rt△ABC中,∠ACB=90°,∠BAC的角平分线AD交BC于D,交∠ABC的角平分线于E,过点E作EF⊥AE,交AC于点F,求证:AF+BD=AB.20如图,在△ABC中,AB=AC,∠C=45°,点D为AC中点,AE⊥BD交BC于点E,交BD于点F.求证:(1)∠CAE=∠ABD;(2)BD=AE+ED.【类型六】半角模型21如图,△ABC中,AB=AC,∠BAC+∠BDC=180°.(1)求证:AD为∠BDC的平分线;∠BAC,且点E在BD上,直接写出BE、DE、DC三条线段之间的等量关系.(2)若∠DAE=1222(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,若∠EAF=12∠BAD,可求得EF、BE、FD之间的数量关系为.(只思考解题思路,完成填空即可,不必书写证明过程)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,若∠EAF=12∠BAD,判断EF、BE、FD之间的数量关系还成立吗,若成立,请完成证明,若不成立,请说明理由.23问题背景:如图1:在四边形ABCD中,AB=AD.∠BAD=120°.∠B=∠ADC=90°.E,F分别是BC.CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.(1)小王同学探究此问题的方法是:延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(直接写结论,不需证明)探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠ADF=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD,(1)中结论是否仍然成立,并说明理由;(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请直接写出它们之间的数量关系.24【问题引领】问题1:如图1.在四边形ABCD中,CB=CD,∠B=∠ADC=90°,∠BCD=120°.E,F分别是AB,AD上的点.且∠ECF=60°.探究图中线段BE,EF,FD之间的数量关系.小王祠学探究此问题的方法是,延长FD到点G.使DG=BE.连接CG.先证明△CBE≌△CDG,再证明△CEF≌△CGF.他得出的正确结论是.【探究思考】问题2:如图2,若将问题Ⅰ的条件改为:四边形ABCD中,CB=CD,∠ABC+∠ADC=180°,∠ECF= 1∠BCD,问题1的结论是否仍然成立?请说明理由.2【拓展延伸】问题3:如图3在问题2的条件下,若点E在AB的延长线上,点F在DA的延长线上,则问题2的结论是否仍然成立?若不成立,猜测此时线段BE,EF,FD之间存在的等量关系是.拓展全等三角形提高证明题含辅助线(六种类型)【类型一】利用角平分线构造全等1如图,在△ABC 中,AD 是角平分线,E ,F 分别为AC ,AB 上的点,且∠AED +∠AFD =180°.(1)求证:∠AFD =∠CED ;(2)求证:DE =DF.【答案】(1)见解析;(2)见解析【分析】(1)根据同角的补角相等即可得解;(2)过D 作DM ⊥AB 于M ,DN ⊥AC 于N ,根据角平分线性质求出DM =DN ,由(1)知∠MFD =∠DEN ,证出△FMD ≌△END 即可.【详解】(1)证明:∵∠AED +∠AFD =180°,∠AED +∠CED =180°,∴∠AFD =∠CED ;(2)证明:过D 作DM ⊥AB 于M ,DN ⊥AC 于N ,∵AD 平分∠BAC ,∴DM =DN ,∠FMD =∠END =90°,∵∠AED +∠AFD =180°,∠AED +∠DEN =180°,∴∠MFD =∠DEN ,在△FMD 和△END 中,∠MFD =∠DEN∠FMD =∠END DM =DN,∴△FMD ≌△END (AAS ),∴DE =DF .【点睛】本题考查了全等三角形的性质和判定,角平分线性质的应用,解题关键是利用AAS 推出△FMD ≌△END .2如图,在ΔABC 中,∠C =90°,AD 是∠BAC 的角平分线交BC 于D ,过D 作DE ⊥BA 于点E ,点F 在AC 上,且BD =DF.(1)求证:AC =AE ;(2)求证:∠BAC +∠FDB =180°;(3)若AB =9.5,AF =1.5,求线段BE 的长,【答案】(1)证明见解析;(2)证明见解析;(3)BE 的长为4.【分析】(1)根据已知条件,利用AAS 证明△ACD ≌△AED 即可;(2)设∠1=∠2=α,在AB 上截取AM =AF ,连接MD ,证明△FAD ≌△MAD ,进而证明Rt ΔMDE ≌Rt ΔBDE ,再证明ΔCFD ≌ΔEBD ,根据∠FDB +∠BAC 即可求证;(3)由(2)可得EB =EM ,AF =AM ,根据BE =AB -AM -ME 即可求得BE 的长.【详解】证明:(1)∵AD 平分∠BAC ,∴∠1=∠2,∵DE ⊥BA ,∴∠DEA =∠DEB =90°,∵∠C =90°,∴∠C =∠DEA =90°,在ΔACD 和ΔAED 中,∠DCA =∠DEA∠1=∠2AD =AD,∴ΔACD ≌ΔAED (AAS ),∴AC =AE ,(2)设∠1=∠2=α,∵∠C =∠DEA =90°,在ΔADC 中,∠ADC =90°-α,在ΔADE 中,∠ADE =90°-α,∵∠FDB =∠FCD +∠CFD =90°+∠CFD ,在AB 上截取AM =AF ,连接MD ,在ΔFAD 和ΔMAD 中,FA =MA∠1=∠2AD =AD∴ΔFAD ≌ΔMAD (SAS ),∴FD =MD ,∠5=∠6,∵BD =DF ,∴BD =MD ,在Rt ΔMDE 和Rt ΔBDE 中,MD =BDDE =DE∴Rt ΔMDE ≌Rt ΔBDE (HL ),∴∠3=∠4,设∠5=∠6=β,∵∠1=∠2=α,∴∠1+∠5=∠2+∠6=α+β,在ΔFAD 中,∠1+∠5=∠DFC在ΔAMD 中,∠2+∠6=∠3,∴∠DFC =∠3,∴∠DFC =∠4,在ΔCFD 和ΔEBD 中,∠DCF =∠DEB ∠CFD =∠EBD FD =BD,∴ΔCFD ≌ΔEBD (AAS ),∴∠CFD =∠4,∵∠C =90°,在ΔABC 中,∠4=90°-2α,∴∠CFD =90°-2α,∴∠FDB =90°+90°-2α=180°-2α,∵∠BAC =∠1+∠2=2α,∴∠FDB +∠BAC =180°-2α+2α=180°,(3)∵AF =AM ,且AF =1.5,∴AM =1.5,∵AB =9.5,∴MB =AB -AM =9.5-1.5=8,∵MB =BE ,且ME +BE =BM ,∴BE =12BM =4【点睛】本题考查了三角形全等的性质与判定,角平分线的定义,掌握以上知识是解题的关键.3如图,AD 是△ABC 的角平分线,H ,G 分别在AC ,AB 上,且HD =BD .(1)求证:∠B 与∠AHD 互补;(2)若∠B +2∠DGA =180°,请探究线段AG 与线段AH 、HD 之间满足的等量关系,并加以证明.【答案】(1)见解析;(2)AG =AH +HD ,证明见解析【分析】(1)在AB 上取一点M ,使得AM =AH ,连接DM ,则利用SAS 可得出ΔAHD ≌ΔAMD ,从而得出HD =MD =DB ,即有∠DMB =∠B ,通过这样的转化可证明∠B 与∠AHD 互补.(2)由(1)的结论中得出的∠AHD =∠AMD ,结合三角形的外角可得∠DGM =∠GDM ,可将HD 转化为MG ,从而在线段AG 上可解决问题.【详解】证明:(1)在AB 上取一点M ,使得AM =AH ,连接DM∵AH =AM∠CAD =∠BADAD =AD∴ΔAHD ≌ΔAMD ∴HD =MD ,∠AHD =∠AMD∵HD =DB∴DB =MD∴∠DMB =∠B∵∠AMD +∠DMB =180°∴∠AHD +∠B =180°即∠B 与∠AHD 互补.(2)由(1)∠AHD=∠AMD,HD=MD,∠AHD+∠B=180°,∵∠B+2∠DGA=180°,∠AHD=2∠DGA∴∠AMD=2∠DGM又∵∠AMD=∠DGM+∠GDM∴2∠DGM=∠DGM+∠GDM即∠DGM=∠GDM∴MD=MG∴HD=MG∵AG=AM+MG∴AG=AH+HD.【点睛】本题考查角平分线的性质,应用角平分线构造全等是常用的构造全等的方法,遇到角平分线常有“翻折构造全等”“作角边的垂线段”两种辅助线方法.4已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.求证:(1)AD=AE=EC.(2)BA+BC=2BF.【答案】证明详见解析【详解】分析:(1)根据角平分线的性质,得到∠ABD=∠CBD,然后根据SAS证得△ABD≌△EBC,然后根据全等三角形的性质和三角形的外角得到等腰△ACE,由此可证;(2)过点E作EG⊥BC于点G,根据三角形全等的判定“HL”证得Rt△BEG≌Rt△BEF和Rt△CEG≌Rt△AFE,然后根据全等三角形的对应边相等,等量代换求解.详解:证明:(1)∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,BD=BC∠ABD=∠CBD BE=BA,∴△ABD≌△EBC(SAS),∴∠BCE=∠BDA,∵∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=EC=AE.(2)过点E作EG⊥BC于点G,∵E是BD上的点,EF⊥AB,EG⊥BC,∴EF=EG,∵在Rt△BEG和Rt△BEF中,BE=BE EF=EG,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,∵在Rt△CEG和Rt△AFE中,EF=EG AE=CE,Rt△CEG≌Rt△AFE,∴AF=CG,∴BA+BC=BF+FA+BG-CG,=BF+BG=∠BF,∴BA+BC=2BF.点睛:此题考查了角平分线定理,全等三角形的判定与性质,以及等腰三角形的性质,利用了转化及等量代换的数学思想,熟练掌握判定与性质是解本题的关键.【类型二】倍长中线5如图,AB=CD,E为BC的中点,∠BAC=∠BCA,求证:AD=2AE.【答案】见解析.【分析】延长AE至点F,使得EF=AE,连接BF,易证△AEC≌△FEB(SAS),得到BF=AC,∠FBE=∠ACE=∠BAC,可得∠ABF=∠DCA,然后通过SAS证明△ABF≌△△DCA即可.【详解】证明:延长AE至点F,使得EF=AE,连接BF,∵∠BEF=∠CEA,BE=CE,∴△AEC≌△FEB(SAS),∴BF=AC,∠FBE=∠ACE=∠BAC,∴∠ABF=∠FBE+∠ABE=∠BAC+∠ABC=∠DCA,在△ABF和△DCA中,AB=CD∠ABF=∠DCA BF=AC,∴△ABF≌△△DCA(SAS),∴AD=FA=2AE.【点睛】本题主要考查三角形全等的判定和性质,正确作出辅助线是解题关键,一般的中线辅助线都是用的倍长中线.6如图,已知ΔABC中,点M是BC边长的中点,过M作∠BAC的角平分线AD的平行线交AB于E,交CA的延长线于F,求证:(1)AE=AF.(2)BE=CF.【答案】见详解.【分析】(1)要证AE=AF,利用等角对等边只需证出∠AFE=∠AEF,利用平行不难发现这两个角和角平分线分成的两角是内错角和同位角;(2)利用倍长中线法构造出全等三角形即可.【详解】证明:(1)∵MF∥DA∴∠AFE=∠CAD,∠AEF=∠DAE又∵AD平分∠CAB∴∠CAD=∠DAE∴∠AFE=∠AEF∴AE=AF(2)将FM延长至N使FM=MN,连接BN.∵M 为CB 中点∴CM =MB在△FMC 和△NMB 中CM =MB∠FMC =∠NMBFM =MN∴△FMC ≌△NMB (SAS )∴CF =BN ,∠F =∠N又∵∠AFE =∠AEF ,∠AEF =∠BEN∴∠N =∠BEN∴BE =BN∴BE =CF【点睛】此题考查的(1)平行线的性质和等角对等边;(2)倍长中线法构造全等三角形.7在△ABC 中,∠ABC =45°,AM ⊥MB ,垂足为M ,点C 是BM 延长线上一点,连接AC .(1)如图1,点D 在线段AM 上,且DM =CM .求证:△BDM ≌△ACM ;(2)如图2,在(1)的条件下,点E 是△ABC 外一点,且满足EC =AC ,连接ED 并延长交BC 于点F ,且F 为线段BC 的中点,求证:∠BDF =∠CEF.【答案】(1)见解析;(2)见解析.【分析】(1)根据已知条件,利用(SAS )即可证明三角形全等;(2)延长EF 至点G ,使FG =EF ,由上题中△BDM ≌△ACM ,得出AC =BD ,再证△BFG ≌△CFE ,可得BG =CE ,∠G =∠CEF ,从而得BD =CE =BG ,即可得∠BDF =∠G =∠CEF .【详解】解:(1)如图,∵∠ABC =45°,AM ⊥MB∴BM =AM在△BMD 和△AMC 中∵DM =CM ∠BDM =∠AMC BM =AM∴△BDM ≌△ACM (SAS ).(2)如图,延长EF 至点G ,使FG =EF ,连接BG∵△BDM ≌△ACM∴BD =AC又∵CE =AC∴BD =CE在△BFG 和△CFE 中∵BF =FC ∠BFG =∠EFC FG =FE∴△BFG ≌△CFE (SAS )∴BG =CE ,∠G =∠CEF∴BD =CE =BG∴∠BDF =∠G =∠CEF .【点睛】本题主要考查全等三角形的判定与性质、等腰直角三角形的性质等知识点,熟练掌握全等三角形的判定和性质是解题的关键.8规定:有两组边相等,且它们所夹的角互补的两个三角形叫兄弟三角形.如图,OA =OB ,OC =OD ,∠AOB =∠COD =90°,回答下列问题:(1)求证:△OAC 和△OBD 是兄弟三角形.(2)取BD 的中点P ,连接OP ,请证明AC =2OP .【答案】(1)证明见解析(2)证明见解析【分析】(1)根据OA =OB ,OC =OD ,∠AOC +∠BOD =180°即可证明;(2)延长OP 至E ,使PE =OP ,先证△BPE ≌△DPO ,推出BE =OD ,∠E =∠DOP ,进而推出BE ∥OD ,再证△EBO ≌△COA ,即可推出OE =AC ,由此可证AC =2OP .【详解】(1)证明:∵∠AOB =∠COD =90°,∴∠AOC +∠BOD =360°-∠AOB -∠COD =360°-90°-90°=180°,又∵AO =OB ,OC =OD ,∴△OAC 和△OBD 是兄弟三角形.(2)证明:延长OP 至E ,使PE =OP,∵P 为BD 的中点,∴BP =PD ,∵在△BPE 和△DPO 中,PE =PO∠BPE =∠DPO BP =DP,∴△BPE ≌△DPO SAS ,∴BE =OD ,∠E =∠DOP ,∴BE ∥OD ,∴∠EBO +∠BOD =180°,又∵∠BOD +∠AOC =180°,∴∠EBO =∠AOC ,∵BE =OD ,OD =OC ,∴BE =OC ,在△EBO 和△COA 中,OB =AO∠EBO =∠AOCBE =OC∴△EBO ≌△COA SAS ,∴OE =AC ,又∵OE =2OP ,∴AC =2OP .【点睛】本题考查全等三角形的判定与性质、平行线的判定与性质,解题的关键是正确作出辅助线,构造全等三角形.【类型三】截长补短9如图,在△ABC 中,AB =AC ,∠A =108°,BD 平分∠ABC 交AC 于D ,试说明:BC =AB +CD.【答案】见解析【分析】在线段BC 上截取BE =BA ,连接DE .则只需证明CD =CE 即可.结合角度证明∠CDE =∠CED .【详解】解:证明:在线段BC 上截取BE =BA ,连接DE .∵BD 平分∠ABC ,∴∠ABD =∠EBD =12∠ABC .在△ABD 和△EBD 中,BE =BA∠ABD =∠EBD BD =BD,∴△ABD ≌△EBD .(SAS )∴∠BED =∠A =108°,∠ADB =∠EDB .又∵AB=AC,∠A=108°,∠ACB=∠ABC=12×(180°-108°)=36°,∴∠ABD=∠EBD=18°.∴∠ADB=∠EDB=180°-18°-108°=54°.∴∠CDE=180°-∠ADB-∠EDB=180°-54°-54°=72°.∴∠DEC=180°-∠DEB=180°-108°=72°.∴∠CDE=∠DEC.∴CD=CE.∴BC=BE+EC=AB+CD.【点睛】此题考查全等三角形的判定和性质及等腰三角形的判定,综合性较强.10如图,在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC.【答案】证明见解析【分析】根据三角形内角和定理和角平分线的定义,得到∠AOC=120°,∠AOE=∠COD=60°,在AC上截取AF=AE,连接OF,分别证明△AOE≌△AOF SAS,△COD≌△COF ASA,得到CD=CF,即可证明结论.【详解】证明:∵∠B=60°,∴∠BAC+∠ACB=180°-∠B=120°,∵AD、CE分别平分∠BAC、∠ACB,∴∠OAC=∠OAB=12∠BAC,∠OCA=∠OCB=12∠ACB,∴∠OAC+∠OCA=12∠BAC+12∠ACB=12∠BAC+∠ACB=60°,∴∠AOC=120°,∴∠AOE=∠COD=180°-∠AOC=60°,如图,在AC上截取AF=AE,连接OF,在△AOE和△AOF中,AE=AF∠OAE=∠OAF AO=AO,∴△AOE≌△AOF SAS,∴∠AOE=∠AOF=60°,∴∠COF=∠AOC-∠AOF=120°-60°=60°,∵∠COD=60°,∴∠COD=∠COF,在△COD和△COF中,∠OCD=∠OCF CO=CO∠COD=∠COF,∴△COD≌△COF ASA,∴CD=CF,∵AF=AE,∴AF+CF=AE+CD=AC.【点睛】本题考查了全等三角形的判定和性质,三角形内角和定理,角平分线的定义,做辅助线构造全等三角形是解题关键.11在△ABC中,∠ABC=60°,点D、E分别在AC、BC上,连接BD、DE和AE;并且有AB=BE,∠AED=∠C.(1)求∠CDE的度数;(2)求证:AD+DE=BD.【答案】(1)60°;(2)见解析【分析】(1)由AB=BE,∠ABC=60°,可得△ABE为等边三角形,由∠AEB=∠EAC+∠C,∠CDE=∠EAC+∠AED,∠AED=∠C,可证∠CDE=∠AEB=60°(2)延长DA至F,使AF=DE,连接FB,由∠BED=60°+∠AED,∠BAF=60°+∠C,且∠C=∠AED,可证△FBA≌△DBE(SAS)由DB=FB,可证△FBD为等边三角形,可得BD=FD,可推出结论,【详解】解:(1)∵AB=BE,∠ABC=60°,∴△ABE为等边三角形,∴∠BAE=∠AEB=60°,∵∠AEB=∠EAC+∠C,∠CDE=∠EAC+∠AED,∵∠AED=∠C,∴∠CDE=∠AEB=60°(2)如图,延长DA至F,使AF=DE,连接FB,由(1)得△ABE为等边三角形,∴∠AEB=∠ABE=60°,∵∠BED=∠AEB+∠AED=60°+∠AED,又∵∠BAF=∠ABE+∠C=60°+∠C,且∠C=∠AED,∴∠BED=∠BAF,在△FBA与△DBE中,AB=BE∠BAF=∠BED AF=DE∴△FBA≌△DBE(SAS)∴DB=FB,∠DBE=∠FBA∴∠DBE+∠ABD=∠FBA+∠ABD,∴∠ABE=∠FBD=60°又∵DB=FB,∴△FBD为等边三角形∴BD=FD,又∵FD=AF+AD,且AF=DE,∴FD=DE+AD=BD,【点睛】本题考查等边三角形的判定与性质,三角形全等判定与性质,线段和差,三角形外角性质,关键是引辅助线构造三角形全等证明等边三角形.12(1)如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.求证:AD=BD.(2)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD.(3)如图3,在四边形ABDE中,AB=9,DE=1,BD=6,C为BD边中点,若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.【答案】(1)见详解;(2)见详解;(3)AE=13【分析】(1)由题意易得∠AOD=∠BOD,然后易证△AOD≌△BOD,进而问题可求证;(2)在BC上截取CE=CA,连接DE,由题意易得∠ACD=∠ECD,∠B=30°,则有△ACD≌△ECD,然后可得∠A=∠CED=60°,则根据三角形外角的性质可得∠EDB=∠B=30°,然后可得DE=BE,进而问题可求证;(3)在AE上分别截取AF=AB,EG=ED,连接CF、CG,同理(2)可证△ABC≌△AFC,△CDE≌△CGE,则有∠ACB=∠ACF,∠DCE=∠GCE,然后可得∠ACF+∠GCE=60°,进而可得△CFG是等边三角形,最后问题可求解.【详解】证明:(1)∵射线OP平分∠MON,∴∠AOD=∠BOD,∵OD=OD,OA=OB,∴△AOD≌△BOD(SAS),∴AD=BD.(2)在BC上截取CE=CA,连接DE,如图所示:∵∠ACB=90°,∠A=60°,CD平分∠ACB,∴∠ACD=∠ECD,∠B=30°,∵CD=CD,∴△ACD≌△ECD(SAS),∴∠A=∠CED=60°,AD=DE,∵∠B+∠EDB=∠CED,∴∠EDB=∠B=30°,∴DE=BE,∴AD=BE,∵BC=CE+BE,∴BC=AC+AD.(3)在AE 上分别截取AF =AB =9,EG =ED =1,连接CF 、CG ,如图所示:同理(1)(2)可得:△ABC ≌△AFC ,△CDE ≌△CGE ,∴∠ACB =∠ACF ,∠DCE =∠GCE ,BC =CF ,CD =CG ,DE =GE =1,∵C 为BD 边中点,∴BC =CD =CF =CG =3,∵∠ACE =120°,∴∠ACB +∠DCE =60°,∴∠ACF +∠GCE =60°,∴∠FCG =60°,∴△CFG 是等边三角形,∴FG =CF =CG =3,∴AE =AF +FG +GE =9+3+1=13.【点睛】本题主要考查三角形全等的性质与判定、角平分线的定义、等腰三角形的性质与判定及等边三角形的性质与判定,解题的关键是构造辅助线证明三角形全等.【类型四】直接连接13如图,在Rt △ABC 中,AB =AC ,∠A =90°,点D 为BC 中点,过点D 作DM ⊥DN ,分别交BA ,AC 延长线于点M 、N ,求证:DM =DN.【答案】见解析【分析】连接AD ,可得∠ADM =∠CDN ,可证△AMD ≌△CND ,可得DM =DN .【详解】解:连接AD ,∵D 为BC 中点,∴AD =BD ,∠BAD =∠C ,∵∠ADM +∠MDC =90°,∠MDC +∠CDN =90°,∴∠ADM =∠CDN ,∵∠MAD =MAC +DAC =135°,∠NCD =180°-∠ACD =135°在ΔAMD 和ΔCND 中,∠ADM =∠CDNAD =CD ∠MAD =∠NCD,∴ΔAMD ≅ΔCND (ASA ),∴DM =DN .【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AMD ≌△CND 是解题的关键.14△ABC 中,∠A =90°,AB =AC ,D 为BC 中点,E 、F 分别在AC 、AB 上,且DE ⊥DF ,试判断DE 、DF 的数量关系,并说明理由.【答案】DE =DF ,理由见解析【分析】连接AD ,则有AD =CD ,∠DAF =∠C =45°,且AD ⊥CD ,可得∠CDE +∠EDA =∠ADF +∠EDA =90°,所以∠CDE =∠ADF ,可证△CDE ≌△ADF ,可得结论.【详解】DE =DF ,理由如下:连接AD ,因为∠A =90°,AB =AC ,D 为BC 中点,∴CD =AD ,∠C =∠DAF =45°,AD ⊥CD ,∴∠CDE +∠EDA =∠ADF +∠EDA =90°,∴∠CDE =∠ADF ,在△CDE 和△ADF 中,∠C =∠DAFCD =AD ∠CDE =∠ADF,∴△CDE ≌△ADF (ASA ),∴DE =DF .【点睛】本题主要考查了三角形全等的判定和性质,正确掌握全等三角形的判定方法是解题的关键.15如图所示,在△ABC 中,D 为BC 的中点,DE ⊥BC ,交∠BAC 的平分线AE 于点E ,EF ⊥AB 于点F ,EG ⊥AC 交AC 延长线于点G .求证:BF =CG.【答案】见解析.【分析】连接EB 、EC ,利用已知条件证明Rt △BEF ≌Rt △CEG ,即可得到BF =CG .【详解】证明:连接BE 、EC ,∵ED ⊥BC ,D 为BC 中点,∴BE =EC ,∵EF ⊥AB ,EG ⊥AG ,且AE 平分∠FAG ,∴FE =EG,在Rt △BEF 和Rt △CEG 中,BE =CE EF =EG ,∴Rt △BEF ≌Rt △CEG (HL ),∴BF =CG .【点评】本题考查了全等三角形的判定:解题的关键是全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.16如图,在ΔABC 中,∠ABC =90°,AB =BC ,CD 平分∠ACB 交AB 于D 点,过A 作AE ⊥CD 交CD 延长线于E 点,交CB 延长线于F 点,取FC 中点G ,连接DG ,过C 作CH ⊥AC 交DG 延长线于H ,(1)求证:AF =CD ;(2)求证:AC =CH +2BD.【答案】(1)见解析;(2)见解析【分析】(1)根据垂直推出∠ABF =∠ABC =90°与∠FAB =∠BCD ,则可证明ΔABF ≌ΔCBD ,即可有AF =CD ;(2)连接FD 根据CE ⊥AF ,AB ⊥CF ,推出FD ⊥AC ,即可证明CH ⎳FD ,可有∠HCG =∠DFG ,然后证明ΔFGD ≌ΔCGH 推出CH =FD ,根据已知条件即可有AD =DF ,由(1)知FB =BD ,即可证明AC =CH +2BD .【详解】证:(1)∵∠ABC =90°,CE ⊥AF∴∠ABF =∠ABC =90°∴∠AFB +∠FAB =90°,∠EFC +∠BCD =90°∴∠FAB =∠BCD在ΔABF 与ΔCBD 中,∠ABF =∠CBDAB =CB∠FAB =∠DCB∴ΔABF ≌ΔCBD∴AF =CD (2)连接FD∵CE ⊥AF ,AB ⊥CF∴FD ⊥AC∵CH ⊥AC∴CH ⎳FD∴∠HCG =∠DFG∵G 是FC 中点∴FG =CG在ΔFGD 与ΔCGH 中,∠DFG =∠HCGFG =CG∠FGD =∠CGH∴ΔFGD ≌ΔCGH∴CH =FD ∵CE ⊥AF ,CE 平分∠FCA∴AC =CF∴AD =DF由(1)可知ΔABF ≌ΔCBD∴FB =BD∴CF =CB +BF =AB +BF =AD +DB +BF =CH +2DB即AC =CH +2BD【点睛】本题主要考查了三角形全等的性质与判定,角平分线的性质,在(1)中找出条件证明ΔABF ≌ΔCBD 是关键,在(2)中作出辅助线是解题的关键.【类型五】延长交于一点17如图,△ABC 中,CD 平分∠ACB ,过点A 作AD ⊥CD 于点D ,点E 是AB 的中点,连接DE ,若AC =20,BC =14,求DE的长.【答案】DE 的长为3.【分析】先添加辅助线,构造全等三角形,利用性质求出AD =DF ,最后用中位线定理即可求解.【详解】解:如图,延长AD ,CB 交于点F ,∵CD 平分∠ACB ,∴∠ACD =∠FCD ,∵AD ⊥CD ,∴∠ADC =∠FDC =90°,在△ACD 和△FCD 中,∠ACD =∠FCDCD =CD ∠ADC =∠FDC,∴△ACD ≌△FCD ASA ,∴AD =DF ,AC =CF =20,∴BF =CF -BC =20-14=6,∵点D 为AF 中点,点E 为AB 中点,∴DE 为△ABF 的中位线,∴DF =12BF =3,答:DE 的长为3.【点睛】此题考查了等腰三角形和全等三角形的判定和性质,三角形中位线定理,解题的关键是延长CB 交AD 延长线于F ,证明DE 是△ABF 的中位线.18已知,Rt△ABC 中,∠ACB =90°,AC =BC ,∠ABC 的角平分线交AC 于E ,AD ⊥BE 于D ,求证:AD =12BE .【答案】见解析【详解】试题分析:延长AD 和BC 交于F ,求出∠CBE =∠CAF ,AC =BC ,证△EBC ≌△FAC ,△ABD ≌△FBD ,推出BE =AF ,AD =DF ,即可得出答案.解:如图延长AD 和BC 交于F ,∵Rt △ABC 中,∠ACB =90°,∠BAC =45°,∴∠ABC =45°=∠BAC ,∴AC =BC ,∵∠ACB =90°,∴∠BCE =∠ACF =90°,∵BE 平分∠ABC ,∴∠ABD =∠EBC ,∵BD ⊥AD ,∴∠BCE =∠ADE =90°,∵∠BEC =∠AED ,∴根据三角形内角和定理得:∠DAE =∠CBE ,在△BCE 和△ACF 中,∠FAC =∠CBE AC =BC ∠ACF =∠BCE,∴△BCE ≌△ACF (SAS ),∴BE =AF ,在△ABD 和△FBD 中,∠ABD =∠FDN BD =BD ∠ADB =∠FDB,∴△ABD≌△FBD (ASA ),∴AD =DF ,即AF =2AD ,∴AD =12AF ,∴AD =12BE .考点:全等三角形的判定与性质.19如图,在Rt △ABC 中,∠ACB =90°,∠BAC 的角平分线AD 交BC 于D ,交∠ABC 的角平分线于E ,过点E 作EF ⊥AE ,交AC 于点F ,求证:AF +BD =AB.【答案】见解析【分析】延长EF ,BC 相交于点M ,分别证明△AEB ≌△MEB 和△AEF ≌△MED 即可得解.【详解】证明:延长EF ,BC 相交于点M ,∵∠ACB =90°,∴∠CAB +∠CBA =90°,∵AE 平分∠BAC ,BE 平分∠ABC ,∴∠EAB +∠EBA =45°,∴∠AEB =180°-45°=135°,∴∠DEB =180°-135°=45°,∵AE ⊥EF ,∴∠MEB =∠MED +∠DEB =90°+45°=135°=∠AEB ,在△AEB 和△MEB 中,∠AEB =∠MEBEB =EB ∠ABE =∠MBE,∴△AEB ≌△MEB ASA ,∴∠EAB =∠M ,AE =ME ,AB =MB ,∵AE 平分∠BAC ,∴∠FAE =∠EAB ,∴∠FAE =∠M ,在△AEF 和△MED 中,∠FAE =∠MAE =ME ∠AEF =∠MED =90°,∴△AEF ≌△MED ASA ,∴AF =MD ,∴AF +BD =MD +BD =MB =AB .【点睛】本题考查角平分线的定义和全等三角形的判定和性质.熟练掌握角平分线的定义,通过添加辅助线证明三角形全等是解题的关键.20如图,在△ABC 中,AB =AC ,∠C =45°,点D 为AC 中点,AE ⊥BD 交BC 于点E ,交BD 于点F.求证:(1)∠CAE=∠ABD;(2)BD=AE+ED.【答案】(1)见解析(2)见解析【分析】(1)根据三角形的内角和定理得出∠BAC=90°,再根据直角三角形两锐角互余得出∠CAE+∠BAF=∠ABD+∠BAF=90°,即可求证;(2)过点C作CA的垂线交AE延长线于点M,先证明△ACM≌△BAD ASA,得出AD=CM,BD= AM,则CM=CD,再证明△MCE≌△DCE SAS,得出EM=ED,即可求证.【详解】(1)证明:∵AB=AC,∠C=45°,∴∠CBA=45°,∴∠BAC=90°,∵AE⊥BD,∴∠AFB=90°∴∠CAE+∠BAF=∠ABD+∠BAF=90°,∴∠CAE=∠ABD.(2)证明:过点C作CA的垂线交AE延长线于点M∵CM⊥CA,∴∠MCA=90°即∠MCA=∠CAB,在△ACM和△BAD中,∠CAE=∠ABD AB=AC∠MCA=∠CAB∴△ACM≌△BAD ASA,∴AD=CM,∵D为AC中点,∴AD=CD,∴CM=CD∵∠MCA=90°,∠ACB=45°,∴∠ACB=∠MCB,在△MCE和△DCE中,CM=CD∠ACB=∠MCB CE=CE,∴△MCE≌△DCE SAS∴EM=ED,∴AM=AE+EM=AE+ED,∴BD=AE+ED.【点睛】本题主要考查了三角形的内角和定理,全等三角形的判定和性质,解题的关键是掌握三角形的内角和为180°,直角三角形两锐角互余,以及正确画出辅助线,构造全等三角形,根据全等三角形的性质进行证明.【类型六】半角模型21如图,△ABC中,AB=AC,∠BAC+∠BDC=180°.(1)求证:AD为∠BDC的平分线;(2)若∠DAE=12∠BAC,且点E在BD上,直接写出BE、DE、DC三条线段之间的等量关系.【答案】(1)见解析;(2)DE=B E+DC.【分析】(1)过A作AG⊥BD于G,AF⊥DC于F,先证明∠BAG=∠CAF,然后证明△BAG≌△CAF得到AG=AF,最后由角平分线的判定定理即可得到结论;(2)过A作∠CAH=∠BAE,证明△EAD≌△HAD,得到AE=AH,再证明△EAB≌△HAC中,即可得出BE、DE、DC三条线段之间的等量关系.【详解】证明:(1)如图1,过A作AG⊥BD于G,AF⊥DC于F,∵AG⊥BD,AF⊥DC,∴∠AGD=∠F=90°,∴∠GAF+∠BDC=180°,∵∠BAC+∠BDC=180°,∴∠GAF=∠BAC,∴∠GAF-∠GAC=∠BAC-∠GAC,∴∠BAG=∠CAF,在△BAG和△CAF中,∠AGB=∠F=90°∠BAG=∠CAF AB=AC∴△BAG≌△CAF(AAS),∴AG=AF,∴∠BDA=∠CDA,(2)BE、DE、DC三条线段之间的等量关系是DE=B E+DC,理由如下:如图2,过A作∠CAH=∠BAE交DC的延长线于H,∵∠DAE=12∠BAC,∴∠DAE=∠BAE+∠CAD,∵∠CAH=∠BAE,∴∠DAE=∠CAH+∠CAD=∠DAH,在△EAD和△HAD中,∠EAD=∠HAD AD=AD∠ADE=∠ADH ,∴△EAD≌△HAD(ASA),∴DE=DH,AE=AH,在△EAB和△HAC中,AB=AC∠BAE=∠CAH AE=AH,∴△EAB≌△HAC(SAS),∴BE=CH,∴DE=DH=DC+CH=DC+BE,∴DE=DC+BE.故答案是:DE=DC+BE.【点睛】本题考查了全等三角形的性质和判定,角平分线的判定定理,线段和差的证明,掌握截长法和补短法是解答此题的突破口.22(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,若∠EAF=12∠BAD,可求得EF、BE、FD之间的数量关系为.(只思考解题思路,完成填空即可,不必书写证明过程)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,若∠EAF=12∠BAD,判断EF、BE、FD之间的数量关系还成立吗,若成立,请完成证明,若不成立,请说明理由.【答案】(1)BE+DF=EF;(2)EF+DF=BE.理由见解析.【分析】(1)线段EF、BE、FD之间的数量关系是BE+DF=EF.如图,延长CB至M,使BM=DF,连接AM,利用全等三角形的性质解决问题即可.(2)结论:EF+DF=BE.如图中,在BE上截取BM=DF,连接AM,证明△ABM≌△ADF SAS,推出AM=AF,∠BAM=∠DAF,再证明△AEM≌△AEF SAS,可得结论.【详解】(1)解:线段EF、BE、FD之间的数量关系是BE+DF=EF.如图,延长CB至M,使BM=DF,连接AM,∵∠ABC=∠D=90°,∠ABC+∠1=180°,即:∠ABC+∠D=180°,∴∠1=∠D,在△ABM 和△ADF 中,AB =AD∠1=∠D BM =DF,∴△ABM ≌△ADF SAS ,∴AM =AF ,∠3=∠2,∵∠EAF =12∠BAD ,∠EAF +∠2+∠4=∠BAD ,∴∠2+∠4=∠EAF ,∴∠EAM =∠3+∠4=∠2+∠4=∠EAF ,在△MAE 和△FAE 中,AM =AF∠MAE =∠FAE AE =AE,∴△MAE ≌△FAE SAS ,∴EF =EM ,∵EM =BM +BE =BE +DF ,∴EF =BE +FD ;故答案为:BE +DF =EF .(2)结论:EF +DF =BE .理由:在BE 上截取BM =DF ,连接AM ,∵∠B +∠ADC =180°,∠ADC +∠ADE =180°,∴∠B =∠ADF ,在△ABM 与△ADF 中,BM =DF∠ABM =∠ADF AB =AD,∴△ABM ≌△ADF SAS ,∴AM =AF ,∠BAM =∠DAF ,则∠BAM +∠MAD =∠DAF +∠MAD ,∴∠BAD =∠MAF∵∠EAF =12∠BAD ,∠EAF +∠EAM =∠MAF ,∴∠EAF =∠EAM ,在△AEM 与△AEF 中,AM =AF∠EAF =∠EAM AE =AE,∴△AEM ≌△AEF SAS ,∴EM =EF ,即BE -BM =EF ,即BE -DF =EF ,∴EF +DF =BE .【点睛】本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.23问题背景:如图1:在四边形ABCD 中,AB =AD .∠BAD =120°.∠B =∠ADC =90°.E ,F 分别是BC .CD 上的点,且∠EAF =60°,探究图中线段BE ,EF ,FD 之间的数量关系.(1)小王同学探究此问题的方法是:延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(直接写结论,不需证明)探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠ADF=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD,(1)中结论是否仍然成立,并说明理由;(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请直接写出它们之间的数量关系.【答案】(1)EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.证明见解析;(3)结论EF=BE+FD不成立,结论是:EF=BE-FD.证明见解析.【分析】(1)延长FD到点G.使DG=BE.连接AG,利用全等三角形的性质解决问题即可;(2)延长CB至M,使BM=DF,连接AM.证明△ABM≌△ADF(SAS),由全等三角形的性质得出AF= AM,∠2=∠3.△AME≌△AFE(SAS),由全等三角形的性质得出EF=ME,即EF=BE+BM,则可得出结论;(3)在BE上截取BG,使BG=DF,连接AG.证明△ABG≌△ADF(SAS).由全等三角形的性质得出∠BAG=∠DAF,AG=AF.证明△AEG≌△AEF(SAS),由全等三角形的性质得出结论.【详解】(1)解:EF=BE+FD.延长FD到点G.使DG=BE.连接AG,∵∠ABE=∠ADG=∠ADC=90°,AB=AD,∴△ABE≌△ADG(SAS).∴AE=AG,∠BAE=∠DAG.∴∠BAE+∠DAF=∠DAG+∠DAF=∠EAF=60°.∴∠GAF=∠EAF=60°.又∵AF=AF,∴△AGF≌△AEF(SAS).∴FG=EF.∵FG=DF+DG.∴EF=BE+FD.故答案为:EF=BE+FD;(2)解:(1)中的结论EF=BE+FD仍然成立.证明:如图②中,延长CB至M,使BM=DF,连接AM.∵∠ABC +∠D =180°,∠1+∠ABC =180°,∴∠1=∠D ,在△ABM 与△ADF 中,AB =AD∠1=∠D BM =DF,∴△ABM ≌△ADF (SAS ).∴AF =AM ,∠2=∠3.∵∠EAF =12∠BAD ,∴∠2+∠4=12∠BAD =∠EAF .∴∠3+∠4=∠EAF ,即∠MAE =∠EAF .在△AME 与△AFE 中,AM =AF∠MAE =∠EAF AE =AE,∴△AME ≌△AFE (SAS ).∴EF =ME ,即EF =BE +BM ,∴EF =BE +DF ;(3)解:结论EF =BE +FD 不成立,结论:EF =BE -FD .证明:如图③中,在BE 上截取BG ,使BG =DF ,连接AG .∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .在△ABG 与△ADF 中,AB =AD∠ABG =∠ADF BG =DF,∴△ABG ≌△ADF (SAS ).∴∠BAG =∠DAF ,AG =AF .∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =12∠BAD .∴∠GAE =∠EAF .∵AE =AE ,∴△AEG ≌△AEF (SAS ),∴EG =EF ,∵EG =BE -BG ,∴EF =BE -FD .【点睛】本题是三角形综合题,考查了三角形全等的判定和性质等知识,解题的关键是添加辅助线,构造全等三角形解决问题.24【问题引领】问题1:如图1.在四边形ABCD 中,CB =CD ,∠B =∠ADC =90°,∠BCD =120°.E ,F 分别是AB ,AD 上的点.且∠ECF =60°.探究图中线段BE ,EF ,FD 之间的数量关系.小王祠学探究此问题的方法是,延长FD 到点G .使DG =BE .连接CG .先证明△CBE ≌△CDG ,再证明△CEF ≌△CGF .他得出的正确结论是.【探究思考】问题2:如图2,若将问题Ⅰ的条件改为:四边形ABCD 中,CB =CD ,∠ABC +∠ADC =180°,∠ECF =。
中考数学专题复习 全等三角形的相关模型总结(无答案)
全等的相关模型总结一、角平分线模型应用1.角平分性质模型:辅助线:过点G 作GE ⊥射线AC(1).例题应用:①如图1,在中ABC ∆,,cm 4,6,900==∠=∠BD cm BC CAB AD C 平分,那么点D 到直线AB 的距离是 cm.②如图2,已知,21∠=∠,43∠=∠.BAC AP ∠平分求证:.图1 图2①2 (提示:作DE ⊥AB 交AB 于点E )(2).模型巩固:练习一:如图3,在四边形ABCD 中,BC>AB ,AD=CD ,BD 平分BAC ∠..求证:︒=∠+∠180C A图3练习二:已知如图4,四边形ABCD 中,图4练习三:如图5,,,900CAB AF D AB CD ACB ABC Rt ∠⊥=∠∆平分,垂足为,中,交CD 于点E ,交CB 于点F.(1)求证:CE=CF.(2)将图5中的△ADE 沿AB 向右平移到'''E D A ∆的位置,使点'E 落在BC 边上,其他条件不变,如图6所示,是猜想:'BE 于CF 又怎样的数量关系?请证明你的结论.图5 图6练习四:如图7,90A AD BC =︒,∠∥,P 是AB 的中点,PD 平分∠ADC .求证:CP 平分∠DCB .图7练习五:如图8,AB >AC ,∠A 的平分线与BC 的垂直平分线相交于D ,自D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F .求证:BE=CF .图8练习六:如图9所示,在△ABC 中,BC 边的垂直平分线DF 交△BAC 的外角平分线AD 于点D ,F为垂足,DE ⊥AB 于E ,并且AB>AC 。
求证:BE -AC=AE 。
练习七: 如图10,D 、E 、F 分别是△ABC 的三边上的点,CE=BF ,且△DCE 的面积与△DBF 的面积相等,求证:AD 平分∠BAC 。
2.角平分线+垂线,等腰三角形比呈现辅助线:延长ED 交射线OB 于F 辅助线:过点E 作EF ∥射线OB(1).例题应用:①.如图1所示,在△ABC 中,∠ABC=3∠C ,AD 是∠BAC 的平分线,BE ⊥AD 于F 。
【精品】北京市中考数学复习三角形课时训练(二十一)全等三角形
15.[ 2018·丰台期末] 如图K21-15,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.求证:DE=DF.
图K21-15
|拓展提升|
16.[2018·丰台期末] 如图K21-16,△ABC是等边三角形,点D是BC边上一动点,点E,F分别在AB,AC边上,连接AD,DE,DF,且∠ADE=∠ADF=60°.
教学资料参考范本
【精品】北京市中考数学复习三角形课时训练(二十一)全等三角形
撰写人:__________________
部 门:__________________
时 间:__________________
(限时:30分钟)
|夯实基础|
1.[2017·石景山一模] 用尺规作图法作已知角∠AOB的平分线的步骤如下:
想法3:将△ACD绕点A顺时针旋转至△ABG,使得AC和AB重合,然后通过全等三角形的相关知识获证.
….
请你参考上面的想法,帮助小明证明AE=AF.(一种方法即可)
图K21-16
参考答案
1.D
2.A [解析] 根据题目所给条件可得△OAD≌△OBC,则有∠C=∠D=35°.由三角形的一个外角等于和它不相邻的两个内角的和可得到∠EAC=∠O+∠D=85°,再根据三角形的内角和定理得到∠AEC的度数.
14.证明:∵AD∥BC,
又∵点C在第二象限,
∴点C的坐标为(-,1).
5.答案不唯一,如AE=AD或∠B=∠C或∠BEA=∠CDA
6.70°
7.1.5 8.6 9.225°
10.55 [解析] ∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC,△AEC(SAS),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时训练(二十一) 全等三角形
(限时:30分钟)
|夯实基础|
1.[xx·石景山一模]用尺规作图法作已知角∠AOB的平分线的步骤如下:
图K21-1
①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;
②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;
③作射线OC.
则射线OC为∠AOB的平分线.
由上述作法可得△OCD≌△OCE的依据是()
A.SAS
B.ASA
C.AAS
D.SSS
2.如图K21-2,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于()
图K21-2
A.60°
B.50°
C.45°
D.30°
3.如图K21-3,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有
()
图K21-3
A.1个
B.2个
C.3个
D.4个
4.如图K21-4,将正方形ABCO放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为()
图K21-4
A.(-,1)
B.(-1,)
C.(,1)
D.(-,-1)
5.[xx·怀柔期末]如图K21-5,AB=AC,点D,E分别在AB,AC上,CD,BE交于点F,只添加一个条件使△ABE≌△ACD,添加的条件是:(添加一个即可).
图K21-5
6.[xx·东城期末]如图K21-6,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠B的度数为.
图K21-6
7.[xx·通州二模]如图K21-7,Rt△ABC≌Rt△DCB,两斜边交于点O,如果AC=3,那么OD的长为.
图K21-7
8.如图K21-8,点B,E,C,F在同一条直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF= .
图K21-8
9.[xx·石景山二模]如图K21-9为4×4的正方形网格,图中的线段均为格点线段(线段的端点为格点),则∠1+∠2+∠3+∠4+∠5的度数为.
图K21-9
10.如图K21-10,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= °.
图K21-10
11.如图K21-11,在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,交AB于点D,DE⊥BC于点E.若BC=15 cm,则△DEB的周长为cm.
图K21-11
12.[xx·延庆期末]如图K21-12,AE=DF,∠A=∠D,欲证△ACE≌△DBF,需要添加条件,证明全等的理由是.
图K21-12
13.[xx·石景山初二期末]如图K21-13,E是AC上一点,AB=CE,AB∥CD,∠ACB=∠D.求证:BC=ED.
图K21-13
14.[xx·房山二模]如图K21-14,四边形ABCD中,AD∥BC,DC⊥BC于C点,AE⊥BD于点E,且DB=DA.求证:AE=CD.
图K21-14
15.[ xx·丰台期末]如图K21-15,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.求证:DE=DF.
图K21-15
|拓展提升|
16.[xx·丰台期末]如图K21-16,△ABC是等边三角形,点D是BC边上一动点,点E,F分别在AB,AC边上,连接AD,DE,DF,且∠ADE=∠ADF=60°.
小明通过观察、实验,提出猜想:在点D运动的过程中,始终有AE=AF.小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:利用AD是∠EDF的平分线,构造△ADF的全等三角形,然后通过等腰三角形的相关知识获证.
想法2:利用AD是∠EDF的平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.
想法3:将△ACD绕点A顺时针旋转至△ABG,使得AC和AB重合,然后通过全等三角形的相关知识获证.
….
请你参考上面的想法,帮助小明证明AE=AF.(一种方法即可)
图K21-16
参考答案
1.D
2.A[解析] 根据题目所给条件可得△OAD≌△OBC,则有∠C=∠D=35°.由三角形的一个外角等于和它不相邻的两个内角的和可得到∠EAC=∠O+∠D=85°,再根据三角形的内角和定理得到∠AEC的度数.
3.C
4.A[解析] 如图,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E.
∵四边形OABC是正方形,
∴OA=OC,∠AOC=90°,
∴∠COE+∠AOD=90°.
又∵∠OAD+∠AOD=90°,
∴∠OAD=∠COE.
在△AOD和△OCE中,
∴△AOD≌△OCE(AAS),
∴OE=AD=,CE=OD=1.
又∵点C在第二象限,
∴点C的坐标为(-,1).
5.答案不唯一,如AE=AD或∠B=∠C或∠BEA=∠CDA
6.70°
7.1.58.69.225°
10.55[解析] ∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC,
∴∠1=∠CAE.
在△ADB和△AEC中,
∴△ADB≌△AEC(SAS),
∴∠ABD=∠2=30°.
∵∠3=∠1+∠ABD,∴∠3=25°+30°=55°.
11.15[解析] ∵CD平分∠ACB,
∴∠ACD=∠ECD.
∵DE⊥BC于点E,
∴∠DEC=∠A=90°.
又∵CD=CD,∴△ACD≌△ECD,
∴AC=EC,AD=ED.
∴△DEB的周长=DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=15 cm.
12.答案不唯一,如∠E=∠F 两角及夹边对应相等的两个三角形全等,∠ECA=∠FBD 两角及其中一个角的对边对应相等的两个三角形全等,AB=CD(AC=BD)两边及夹角对应相等的两个三角形全等
13.证明:∵AB∥CD,
∴∠A=∠ACD.
在△ABC和△CED中,
∴△ABC≌△CED(AAS),∴BC=ED.
14.证明:∵AD∥BC,
∴∠ADB=∠DBC.
∵DC⊥BC于点C,AE⊥BD于点E,
∴∠C=∠AED=90°.
又∵DB=DA,
∴△AED≌△DCB.
∴AE=CD.
15.证明:∵A D是BC边上的中线,
∴BD=CD,
∵BE∥CF,∴∠DBE=∠DCF.
在△BDE和△CDF中,
∴△BDE≌△CDF(ASA).
∴DE=DF.
16.证明:想法1:在DE上截取DG=DF,连接AG.
∵△ABC是等边三角形,
∴∠B=∠C=60°,
∵∠ADE=∠ADF=60°,AD=AD,
∴△ADG≌△ADF.
∴AG=AF,∠1=∠2.
∵∠ADB=60°+∠3=60°+∠2,
∴∠3=∠2,∴∠3=∠1.
∴∠AEG=60°+∠3,∠AGE=60°+∠1,
∴∠AEG=∠AGE.
∴A E=AG.
∴AE=AF.
想法2:过点A作AG⊥DE于G,AH⊥DF交DF的延长线于H.
∵∠ADE=∠ADF=60°,
∴AG=AH.
∵∠FDC=60°-∠1,
∴∠AFH=∠DFC=60°+∠1.
∴∠AEG=∠AFH,
∴△AEG≌△AFH.
∴AE=AF.
想法3:将△ACD绕着点A顺时针旋转至△ABG,使得AC和AB重合,连接DG.
∴△ABG≌△ACD.
∴AG=AD,∠GAB=∠DAC.
∵△ABC是等边三角形,
∴∠BAC=∠ABC=∠C=60°,
∴∠GAD=60°,
∴△AGD是等边三角形,
∴∠AGD=∠ADG=∠ADF=60°.
∵∠ADE=60°,∴G,E,D三点共线,
∴△AGE≌△ADF,
∴AE=AF.
如有侵权请联系告知删除,感谢你们的配合!。