第十一章 三角形知识点 - 填空

合集下载

初二数学上册(人教版)第十一章三角形11.1知识点总结含同步练习及答案

初二数学上册(人教版)第十一章三角形11.1知识点总结含同步练习及答案

描述:例题:初二数学上册(人教版)知识点总结含同步练习题及答案第十一章 三角形 11.1 与三角形有关的线段一、学习任务1. 理解三角形及其有关的概念.2. 掌握三角形三边关系,并能够熟练运用这个三角形的三边关系判定已知的三条线段能否构成三角形.3. 知道三角形具有稳定性,并且能够运用到实际问题中去.二、知识清单三角形的相关概念 三角形的三边关系 三角形的稳定性三、知识讲解1.三角形的相关概念三角形由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形(triangle ).按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形.三角形的高从三角形的一个顶点向它的对边画垂线,顶点和垂足之间的线段叫做三角形的高(altitude ).三角形的中线连接三角形的一个顶点和它对边中点的线段叫做三角形的中线(median ).三角形的角平分线三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线(angular bisector ).三角形的重心三角形三条中线的交点叫做三角形重心.三角形的内心三角形三条内角平分线的交点叫做三角形内心.三角形的垂心三角形三边上的三条高所在直线交于一点叫做三角形垂心.三角形的外心三角形三边的垂直平分线的交点叫做三角形外心.三角形的旁心三角形的一条内角平分线与其他两个角的外角平分线交于一点叫做三角形的旁心.一个三角形的三个内角的度数之比为 ,这个三角形是( )2:3:7中阴影部分的面积是_______.1∠DAE线,则 的度数为______.描述:例题:3.三角形的稳定性三角形具有稳定性,有着稳固、坚定、耐压的特点.四、课后作业 (查看更多本章节同步练习题,请到快乐学)(1) ,,;(2) ,,;(3) ,,();(4) ,,().解:(1) 不能;(2) 不能;(3) 能;(4) 不能.(1) 与 的和小于 ,所以不能组成三角形;(2) 与 的和等于 ,所以不能组成三角形;(3) , 均小于 ,而 ,因为 ,所以 ,所以 ,它们可以组成三角形;(4) 最大,而 ,因此不能组成三角形.3610358+3a 2+4a 2+7a 2a ≠03a 5a 8a a >03610358+3a 2+4a 2+7a 2(+3)+(+4)=2+7=(+7)+a 2a 2a 2a 2a 2a ≠0>0a 2(+3)+(+4)>+7a 2a 2a 28a 3a +5a =8a 一个不等边三角形的边长都是整数,且周长是 ,这样的三角形共有多少?分析:已知中的数较少,只知道周长为 ,应该抓住不等边三角形的边长都是整数这一个条件,依据三角形三边关系先确定出最大边的取值范围,则问题迎刃而解.解:设 ,则 ,即 ,所以 .因为 ,, 都是正整数,所以若 ,则其他两边必然为 ,.由于 ,即 ,故线段 ,, 不能组成三角形.当然 更不可能是 或 ,因而有 .当 时,,,不符合条件;当 时,,,符合条件.所以符合条件的三角形只有 个.1212a <b <c a +b +c >2c 2c <12c <6a b c c =3a =1b =21+2=3a +b =c a b c c 124⩽c <6c =4a =2b =3c =5a =3b =41下列图形中具有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形解:C.答案: 1. 如图,在 中, 的对边是A .B .C .D .C △ABF ∠B ()ADAE AF AC2. 如果一个三角形的两边长分别为 和 ,则第三边长可能是 A .B .C .D .24()2468高考不提分,赔付1万元,关注快乐学了解详情。

莆田市八年级数学上册第十一章【三角形】知识点总结(含答案解析)

莆田市八年级数学上册第十一章【三角形】知识点总结(含答案解析)

一、选择题1.若过六边形的一个顶点可以画n 条对角线,则n 的值是( )A .1B .2C .3D .42.若一个多边形的每个内角都等于160°,则这个多边形的边数是( )A .18B .19C .20D .213.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒4.若一个三角形的三个内角的度数之比为11:13:24,那么这个三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形 5.如果一个三角形的两边长分别为4和7,则第三边的长可能是( )A .3B .4C .11D .126.在ABC 中,若一个内角等于另两个内角的差,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90°7.如图,△ABC 中AC 边上的高是哪条垂线段.( )A .AEB .CDC .BFD .AF8.如图,在五边形ABCDE 中,AB ∥CD ,∠A =135°,∠C =60°,∠D =150°,则∠E 的大小为( )A .60°B .65°C .70°D .75°9.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ). A .a b = B .180a b =+° C .180b a =+︒ D .360b a =+︒ 10.如图所示,ABC ∆的边AC 上的高是( )A .线段AEB .线段BAC .线段BD D .线段DA 11.做一个三角形的木架,以下四组木棒中,符合条件的是( )A .3cm,2cm,1cmB .3cm,4cm,5cmC .6cm,6cm,12cmD .5cm,12cm,6cm二、填空题12.如图是一块正多边形的碎瓷片,经测得30ACB ∠=︒,则这个正多边形的边数是_________.13.如图,点D 在ABC 的边BA 的延长线上,点E 在BC 边上,连接DE 交AC 于点F ,若3117DFC B ∠∠==︒,C D ∠=∠,则BED ∠=________.14.如图,已知ABC 中,90,50ACB B D ︒︒∠=∠=,为AB 上一点,将BCD △沿CD折叠后,点B 落在点E 处,且//CE AB ,则ACD ∠的度数是___________.15.若,,a b c 是△ABC 的三边长,试化简a b c a c b +-+--= __________.16.过n 边形的一个顶点有9条对角线,则n 边形的内角和为______.17.如图,,AE AD 分别是△ABC 的高和角平分线,且6B 3︒∠=,6C 7︒∠=则DAE ∠的度数为__.18.如图,点P 是三角形三条角平分线的交点,若∠BPC=100︒,则∠BAC=_________.19.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.20.一个多边形的内角和比它的外角和的3倍还多180°,则它是___________边形,从该多边形的一个顶点,可以引__________条对角线.21.如图,P为正五边形ABCDE的边AE上一点,过点P作PQ//BC,交DE于点Q,则∠EPQ 的度数为_____.三、解答题22.图①、图②、图③都是5×5的网格,每个小正方形的顶点称为格点,△ABC的顶点均在格点上,在图①、图②、图③给定网格中,仅用无刻度的直尺,按下列要求完成画图,并保留作图痕迹.(1)在图①中边AB上找到格点D,并连接CD,使CD将△ABC面积两等分;(2)在图②中△ABC的内部找到格点E,并连接BE、CE,使△BCE是△ABC面积的14.(3)在图③中△外部画一条直线l,使直线l上任意一点与B、C构成的三角形的面积是△ABC的18.23.△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C=60°,求∠DAE 的度数;(2)如图2,∠B <∠C ,则DAE 、∠B ,∠C 之间的数量关系为___________;(3)如图3,延长AC 到点F ,∠CAE 和∠BCF 的角平分线交于点G ,求∠G 的度数.24.如图,∠CBF ,∠ACG 是△ABC 的外角,∠ACG 的平分线所在的直线分别与∠ABC ,∠CBF 的平分线BD ,BE 交于点D ,E .(1)若∠A=70°,求∠D 的度数;(2)若∠A=a ,求∠E ;(3)连接AD ,若∠ACB=β,则∠ADB= .25.已知:180,BDG EFG B DEF ∠+∠=︒∠=∠.(1)如图1,求证://DE BC .(2)如图2,当90A EFG ∠=∠=︒时,请直接写出与C ∠互余的角.一、选择题1.下列长度的三条线段可以组成三角形的是( )A .1,2,4B .5,6,11C .3,3,3D .4,8,12 2.如图,在ABC 中,AB 边上的高为( )A .CGB .BFC .BED .AD3.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .10°B .15°C .20°D .25°4.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30°5.如图,D 是ABC 的边BC 上任意一点,E 、F 分别是线段AD CE 、的中点,且ABC 的面积为220cm ,则BEF 的面积是( )2cmA .5B .6C .7D .86.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( ) A .2m B .3m C .5m D .7m7.正十边形每个外角等于( )A .36°B .72°C .108°D .150°8.小红有两根长度分别为4cm 和8cm 的木棒,他想摆一个三角形,现有长度分别为3cm ,4cm ,8cm ,15cm 四根木棒,则他应选择的木棒长度为( ).A .3cmB .4cmC .8cmD .15cm9.如图,已知AE 交CD 于点O ,AB ∥CD ,∠A =50°,∠E =15°,则∠C 的度数为( )A .50°B .65°C .35°D .15°10.如图所示,ABC ∆的边AC 上的高是( )A .线段AEB .线段BAC .线段BD D .线段DA 11.如图,105DBA ∠=︒,125ECA ∠=︒,则A ∠的度数是( )A .75°B .60°C .55°D .50°二、填空题12.已知三角形三边长分别为m ,n ,k ,且m 、n 满足2|9|(5)0n m -+-=,则这个三角形最长边k 的取值范围是________.13.若,,a b c 是△ABC 的三边长,试化简a b c a c b +-+--= __________. 14.七边形的外角和为________.15.如果三角形两条边分别为3和5,则周长L 的取值范围是________ 16.如图,飞机P 在目标A 的正上方,飞行员测得目标B 的俯角为30°,那么APB ∠的度数为______°.17.如图,在一个四边形ABCD 中,AE 平分∠BAD ,DE 平分∠ADC ,且∠ABC=80°,∠BCD=70°,则∠AED=_________.18.鹿鸣社区里有一个五边形的小公园,如图所示,王老师每天晚饭后都要到公园里去散步,已知图中的∠1=95︒,王老师沿公园边由A 点经B→C→D→E ,一直到F 时,他在行程中共转过了_____度.19.多边形每一个内角都等于90︒,则从此多边形一个顶点出发的对角线有____条. 20.若线段AM ,AN 分别是ABC ∆的高线和中线,则线段AM ,AN 的大小关系是AM _______AN (用“≤”,“≥”或“=”填空). 21.如图,ABC 面积为1,第一次操作:分别延长,,AB BC CA 至点111,,A B C 使111,,A B AB B C BC C A CA ===顺次结111,,A B C ,得到111A B C △,第二次操作:分别延长111111,,A B B C C A 至点222A B C ,使211121112111,,A B A B B C B C C A C A ===,顺次连结222,,A B C ,得到222A B C △…,按此规律,则333A B C △的面积为_______.三、解答题22.如图,ABC 中,AD 平分BAC ∠,P 为AD 延长线上一点,PE BC ⊥于E ,已知80ACB ∠=︒,24B ∠=︒,求P ∠的度数.23.如图,已知△ABC 中,∠B =60°,AD 是BC 边上的高,AE 是∠BAC 的平分线,且∠DAE=10°,求∠C 的度数.24.如图,BM是ABC的中线,AB=5cm,BC=3cm,那么ABM与BCM的周长的差是多少?25.平面内,四条线段AB,BC,CD,DA首尾顺次连接,∠ABC=24°,∠ADC=42°.(1)∠BAD和∠BCD的角平分线交于点M(如图1),求∠AMC的大小.(2)点E在BA的延长线上,∠DAE的平分线和∠BCD平分线交于点N(如图2),求∠ANC.一、选择题1.下列命题中,是假命题的是( )A .直角三角形的两个锐角互余B .在同一个平面内,垂直于同一条直线的两条直线平行C .同旁内角互补,两直线平行D .三角形的一个外角大于任何一个内角 2.若一个三角形的三边长分别为3,7,x ,则x 的值可能是( )A .6B .3C .2D .113.如图,//AB CD ,40C ∠=︒,60A ∠=︒,则F ∠的度数为( )A .10°B .20°C .30°D .40°4.如图,ABC 中,55,B D ∠=︒是BC 延长线上一点,且130ACD ∠=︒,则A ∠的度数是( )A .50︒B .65︒C .75︒D .85︒5.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30°6.如图,ABC 中,将A ∠沿DE 翻折,若30A ∠=︒,25BDA '∠=︒,则CEA '∠多少度( )A .60°B .75°C .85°D .90°7.下列长度(单位:cm )的三条线段能组成三角形的是( )A .13,11,12B .3,2,1C .5,12,7D .5,13,5 8.一个多边形的内角和是外角和的4倍,则这个多边形的边数为( )A .10B .8C .6D .49.下列长度的三条线段,能组成三角形的是( )A .3,5,6B .3,2,1C .2,2,4D .3,6,10 10.设四边形的内角和等于,a 五边形的外角和等于,b 则a 与b 的关系是( ) A .a b = B .120a b =+ C .180b a =+︒ D .360b a =+︒ 11.如图,王师傅用六根木条钉成一个六边形木框,要使它不变形,至少还要再钉上________根木条( )A .2B .3C .4D .5二、填空题12.在一个三角形中,若其中一个内角的度数是另一个内角的2倍,则我们称这个三角形为“倍角三角形”.已知某“倍角三角形”的一个内角的度数为60°,则其它两个内角的度数分别是_______.13.如图,C 为∠AOB 的边OA 上一点,过点C 作CD ∥OB 交∠AOB 的平分线OE 于点F ,作CH ⊥OB 交BO 的延长线于点H ,若∠EFD =α,现有以下结论:①∠COF =α;②∠AOH =180°﹣2α;③CH ⊥CD ;④∠OCH =2α﹣90°.其中正确的是__(填序号).14.如图,则A B C D E ∠+∠+∠+∠+∠的度数为________.15.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.16.用边长相等的正三角形和正六边形铺满地面,一个结点周围有m 块正三角形,n 块正六边形,则m+n =______.17.如图,在ABC ∆中,4ACB A ∠=∠,点D 在边AC 上,将BDA ∆沿BD 折叠,点A 落在点A '处,恰好BA AC '⊥于点E 且//BC DA ',则BDC ∠的度数为__________度.18.如图,在ABC 中,点D 、E 、F 分别是边BC 、AD 、CE 上的中点,则6ABC S =,则BEF S =△______.19.已知ABC 的高为AD ,65BAD ∠=︒,25CAD ∠=︒,则BAC ∠的度数是_______. 20.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP∠=___________度.21.一个三角形的三个内角度数之比为2:3:5,那这个三角形一定是三角形__________.三、解答题22.如图,△ABC中,D为AC上一点,且∠ADB=∠ABC=α(0°<α<180°),∠ACB的角平分线分别交BD、BA于点E、F.(1)若α=90°,判断∠BEF和∠BFE的大小关系并说明理由;(2)是否存在α,使∠BEF大于∠BFE?如果存在,求出α的范围,如果不存在,请说明理由.23.从7根长度都是1的牙签中选取部分或者全部来摆放三角形(牙签不可以折断),你能摆放出多少种形状不同的三角形(两个全等三角形视为一种三角形)?并请你一一写出每种三角形的三边长.24.如图,在ABC中,AD是高,AE、BF是角平分线,它们相交于点O,60∠=︒,BAC∠=︒.求EADC70∠和∠BOE的度数.∠的角平分线交于点P.25.如图,CAD∠与CBD(1)若35C ∠=︒,29D ∠=︒,求P ∠的度数; (2)猜想D ∠,C ∠,P ∠的等量关系.。

八年级数学上册“第十一章三角形”必背知识点

八年级数学上册“第十一章三角形”必背知识点

八年级数学上册“第十一章三角形”必背知识点一、三角形的定义与基本性质1. 三角形的定义:不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

三角形有三条边、三个内角和三个顶点。

2. 三角形的分类:按边分:不等边三角形、等腰三角形 (包括等边三角形,即三边都相等的特殊等腰三角形)。

按角分:锐角三角形、直角三角形、钝角三角形。

3. 三角形的主要线段:高:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段。

中线:连接三角形的一个顶点和它所对边的中点的线段。

三角形的中线将三角形分为面积相等的两部分。

角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段。

三角形的三条角平分线都在三角形内部,且交于一点(内心)。

4. 三角形的稳定性:三角形的形状是固定的,具有稳定性。

这一性质在生产生活中应用广泛。

二、三角形的三边关系基本定理:三角形的任意两边之和大于第三边,任意两边之差小于第三边。

推论:根据三边关系可以判断三条线段是否能组成三角形,或已知两边时确定第三边的取值范围。

三、三角形的内角与外角1. 内角和定理:三角形的三个内角的和等于180°。

推论:直角三角形的两个锐角互余。

2. 外角的定义与性质:定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

性质:三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。

外角和定理:三角形的外角和为360°。

四、与三角形有关的角的其他性质等腰三角形的性质:等腰三角形的两个底角相等 (等边对等角)。

等边三角形的性质:等边三角形的三个内角都相等,且均为60°。

五、多边形的基本概念与性质多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

多边形的内角与外角:内角:多边形相邻两边组成的角。

外角:多边形的一边与它的邻边的延长线组成的角。

多边形的对角线:连接多边形不相邻的两个顶点的线段。

初二数学第十一章三角形详细知识点及题型总结

初二数学第十一章三角形详细知识点及题型总结

第十一章三角形第一讲与三角形有关的线段1.定义:不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。

注意:三条线段必须①不在一条直线上,②首尾顺次相接。

组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。

三角形ABC用符号表示为△ABC.三角形ABC的顶点C所对的边AB可用c 表示,顶点B所对的边AC可用b表示,顶点A所对的边BC可用a表示.2.三角形三边的不等关系三角形的任意两边之和大于第三边. 三角形的任意两边之差小于第三边。

3.三角形的高:从三角形的向它的作垂线,顶点和垂足之间的线段叫做三角形的高,(注意八字形)注意:高与垂线不同,高是线段,垂线是直线。

三角形的三条高相交于一点。

.............4.三角形的中线:三角的三条中线相交于一点。

(三角形中线分三角形面积相等的两个三角形)5.三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,与之间的线段,叫做三角形的角平分线.三角形三个角的平分线相交于一点...............三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐三角形的三条高......................................的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交........................................点在三角形的外部。

.........6.三角形的稳定性:例1.一个等腰三角形的周长为32 cm,腰长的3倍比底边长的2倍多6 cm.求各边长.例2.已知:△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求:△ABC 的各边的长。

例3.已知△ABC的周长是24cm,三边a、b、c满足c+a=2b,c-a=4cm,求a、b、c的长.例4.已知等腰三角形的周长是16cm.(1)若其中一边长为4cm,求另外两边的长;(2)若其中一边长为6cm,求另外两边长;(3)若三边长都是整数,求三角形各边的长.例5.已知等腰三角形的周长是25,一腰上的中线把三角形分成两个,两个三角形的周长的差是4,求等腰三角形各边的长。

八年级上册数学第十一章三角形知识点总结

八年级上册数学第十一章三角形知识点总结

八年级上册数学第十一章三角形知识点总结一、与三角形有关的线段1. 三角形的概念- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

- 三角形有三条边、三个内角和三个顶点。

2. 三角形的分类- 按角分类:- 锐角三角形:三个角都是锐角的三角形。

- 直角三角形:有一个角为直角的三角形。

直角三角形可以用“Rt△”表示,直角所对的边称为斜边,另外两条边称为直角边。

- 钝角三角形:有一个角是钝角的三角形。

- 按边分类:- 不等边三角形:三边都不相等的三角形。

- 等腰三角形:有两边相等的三角形。

相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

等腰三角形中,三边都相等的三角形叫做等边三角形(也叫正三角形),等边三角形是特殊的等腰三角形。

3. 三角形的三边关系- 三角形两边之和大于第三边,即a + b>c,a + c>b,b + c>a。

- 三角形两边之差小于第三边,即| a - b|<c,| a - c|<b,| b - c|<a。

- 判断三条线段能否组成三角形,只需判断较短两条线段之和是否大于最长的线段。

4. 三角形的高、中线与角平分线- 三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。

三角形有三条高,锐角三角形的三条高都在三角形内部;直角三角形有两条高即两条直角边,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部。

- 三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

三角形的三条中线相交于一点,这点称为三角形的重心。

三角形的每一条中线都把三角形分成面积相等的两个部分。

- 三角形的角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

三角形的三条角平分线相交于一点。

二、与三角形有关的角1. 三角形的内角- 三角形内角和定理:三角形三个内角的和等于180°。

人教版八年级上册第十一章三角形知识点归纳

人教版八年级上册第十一章三角形知识点归纳

三角形几何A 级概念:(要求深刻理解、熟练运用、主要用于几何证明)1.三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图)B DC A几何表达式举例:(1)∵AD 平分∠BAC ∴∠BAD=∠CAD (2)∵∠BAD=∠CAD ∴AD 是角平分线2.三角形的中线定义:在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)3.三角形的高线定义:从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线.(如图)※4.三角形的三边关系定理:三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)5.等腰三角形的定义:有两条边相等的三角形叫做等腰三角A几何表达式举例:(1)∵AD 是三角形的中线∴ BD = CD BDC (2)∵ BD = CD ∴AD 是三角形的中线A几何表达式举例:(1)∵AD 是ΔABC 的高∴∠ADB=90°BDC (2)∵∠ADB=90°∴AD 是ΔABC 的高A几何表达式举例:(1)∵AB+BC >AC ∴……………BC (2)∵ AB-BC <AC ∴……………几何表达式举例:(1)∵ΔABC 是等腰三角形形.(如图)6.等边三角形的定义:有三条边相等的三角形叫做等边三角形.(如图)BA∴ AB = AC (2)∵AB = ACB C∴ΔABC 是等腰三角形几何表达式举例:A(1)∵ΔABC 是等边三角形∴AB=BC=AC C(2)∵AB=BC=AC ∴ΔABC 是等边三角形7.三角形的内角和定理及推论:(1)三角形的内角和180°;(如图)(2)直角三角形的两个锐角互余;(如图)几何表达式举例:(1)∵∠A+∠B+∠C=180°(3)三角形的一个外角等于和它不相邻的两个内角的和;(如图)∴…………………※(4)三角形的一个外角大于任何一个和它不相邻的内角.BCA(2)∵∠C=90°∴∠A+∠B=90°(3)∵∠ACD=∠A+∠BAAC BBCD(1)(2)(3)(4)∴…………………(4)∵∠ACD >∠A ∴…………………8.直角三角形的定义:有一个角是直角的三角形叫直角三角形.(如图)A几何表达式举例:(1)∵∠C=90°∴ΔABC 是直角三角形CB(2)∵ΔABC 是直角三角形∴∠C=90°9.等腰直角三角形的定义:几何表达式举例:两条直角边相等的直角三角形叫等腰直角三角形.(如图)A(1)∵∠C=90° CA=CB ∴ΔABC 是等腰直角三角形BC(2)∵ΔABC 是等腰直角三角形∴∠C=90° CA=CB10.全等三角形的性质:(1)全等三角形的对应边相等;(如图)(2)全等三角形的对应角相等.(如图)B CFGAE几何表达式举例:(1)∵ΔABC ≌ΔEFG ∴ AB = EF ………(2)∵ΔABC ≌ΔEFG ∴∠A=∠E………几何表达式举例:(1)∵ AB = EF ∵∠B=∠F G11.全等三角形的判定:“SAS ”“ASA ”“AAS ”“SSS ”“HL ”.(如图)B AECF又∵ BC = FG∴ΔABC ≌ΔEFG (2)………………(3)在Rt ΔABC 和Rt ΔEFG 中(1)(2)CBGFA E∵ AB=EF又∵ AC = EG ∴Rt ΔABC ≌Rt ΔEFG(3)12.角平分线的性质定理及逆定理:(1)在角平分线上的点到角的两边距离相等;(如图)(2)到角的两边距离相等的点在角几何表达式举例:(1)∵OC 平分∠AOB 又∵CD ⊥OA CE ⊥OB ∴ CD = CE平分线上.(如图)DA(2)∵CD ⊥OA CE ⊥OB 又∵CD = CEB13.线段垂直平分线的定义:垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图)14.线段垂直平分线的性质定理及逆定理:(1)线段垂直平分线上的点和这条ACN M PAO F CO E∴OC 是角平分线几何表达式举例:E(1)∵EF 垂直平分ABB∴EF ⊥AB OA=OB (2)∵EF ⊥AB OA=OB ∴EF 是AB 的垂直平分线几何表达式举例:(1)∵MN 是线段AB 的垂直平分线B线段的两个端点的距离相等;(如图)(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.(如图)15.等腰三角形的性质定理及推论:∴ PA = PB (2)∵PA = PB∴点P 在线段AB 的垂直平分线上几何表达式举例:(1)等腰三角形的两个底角相等;(即等边对等角)(如图)(1)∵AB = AC (2)等腰三角形的“顶角平分线、底边中线、底边上的高”∴∠B=∠C 三线合一;(如图)(3)等边三角形的各角都相等,并且都是60°.(如图)A(2)∵AB = AC 又∵∠BAD=∠CAD ∴BD = CDAAAD ⊥BC ………………B C(1)B D C(2)BC(3)(3)∵ΔABC 是等边三角形∴∠A=∠B=∠C =60°16.等腰三角形的判定定理及推论:几何表达式举例:(1)如果一个三角形有两个角都相等,那么这两个角所对边(1)∵∠B=∠C 也相等;(即等角对等边)(如图)(2)三个角都相等的三角形是等边三角形;(如图)∴ AB = AC (2)∵∠A=∠B=∠C(3)有一个角等于60°的等腰三角形是等边三角形;(如图)∴ΔABC 是等边三角形(4)在直角三角形中,如果有一个角等于30°,那么它所对(3)∵∠A=60°的直角边是斜边的一半.(如图)AA又∵AB = ACA∴ΔABC 是等边三角形(4)∵∠C=90°∠B=30°BC(1)BC(2)(3)CB(4)1∴AC =2AB17.关于轴对称的定理(1)关于某条直线对称的两个图形是全等形;(如图)MAO CFGN E几何表达式举例:(1)∵ΔABC 、ΔEGF 关于MN 轴对称∴ΔABC ≌ΔEGF(2)∵ΔABC 、ΔEGF 关于MN 轴对称∴OA=OE MN ⊥AEB(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线.(如图)18.勾股定理及逆定理:几何表达式举例:(1)∵ΔABC 是直角三角形∴a2+b2=c2(2)∵a2+b2=c2(1)直角三角形的两直角边a 、b 的平方和等于斜边c 的平方,即a2+b2=c2;(如图)(2)如果三角形的三边长有下面关CBA∴ΔABC 是直角三角形系: a2+b2=c2,那么这个三角形是直角三角形.(如图)19.Rt Δ斜边中线定理及逆定理:(1)直角三角形中,斜边上的中线是斜边的一半;(如图)(2)如果三角形一边上的中线是这边的一半,那么这个三角形是直角三角形.(如图)几何B 级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.3.如图,三角形中,有一个重要的面积等式,即:若CD ⊥AB ,BE ⊥CA ,则CD ·AB=BE ·CA.4.三角形能否成立的条件是:最长边<另两边之和.DAE BCC A几何表达式举例:∵ΔABC 是直角三角形∵D 是AB 的中点DB1∴CD =2AB(2)∵CD=AD=BD ∴ΔABC 是直角三角形5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和.6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.7.如图,双垂图形中,有两个重要的性质,即:A D(1) AC·CB=CD·AB;(2)∠1=∠B,∠2=∠A ..8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边..10.等边三角形是特殊的等腰三角形.“文字叙述题”需要自己画图,写已知、求证、证明11.几何习题中,.12.符合“AAA”“SSA”条件的三角形不能判定全等(3)代(2)方程分析法;(1)分析综合法;13.几何习题经常用四种方法进行分析:入分析法;(4)图形观察法.(2)作角等于已知角;(3)作已(1)作线段等于已知线段;14.几何基本作图分为:(5)作线段的中垂线;(6)过已知(4)过已知点作已知直线的垂线;知角的平分线;点作已知直线的平行线.、“等边三角15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什.么;注意:每步作图都应该是几何基本作图17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图.※18.几何重要图形和辅助线:(1)选取和作辅助线的原则:①构造特殊图形,使可用的定理增加;②一举多得;③聚合题目中的分散条件,转移线段,转移角;.④作辅助线必须符合几何基本作图(2)已知角平分线.(若BD是角平分线)①在BA上截取BE=BC构造全等,转移线②过D点作DE∥BC交AB于E,构造等腰三段和角;B EA角形 .DC BEADC(3)已知三角形中线(若AD是BC的中线)①过D点作DE∥AC交AB于②延长AD到E,使DE=AD③∵AD是中线E,构造中位线;B EA连结CE构造全等,转移线段和角;A∴SΔABD= SΔADC(等底等高的三角形等A面积)B D CD C(4)已知等腰三角形ABC中,AB=ACE B D C①作等腰三角形ABC底边的中线AD (顶角的平分线或底边的高)构造全等三角形;A ②作等腰三角形ABC一边的平行线DE,构造新的等腰三角形.A AEB DC BD CDBEC(5)其它作等边三角形ABC一边的平行线DE,构造新的等边三角形;E A B C②作CE∥AB,转移角;③延长BD与AC交于E,AE不规则图形转化为规则图形;DAEDB CB D C④多边形转化为三角⑤延长BC到D,使CD=BC,⑥若a∥b,AC,BC是角平形;E 连结AD,直角三角形转化为等腰三角形;ODA 分线,则∠C=90°.ACbBaAB CB C D。

八年级数学上册第十一章《三角形》知识点总结

八年级数学上册第十一章《三角形》知识点总结

一、选择题1.下列长度的三条线段可以组成三角形的是( )A .1,2,4B .5,6,11C .3,3,3D .4,8,12 2.小李同学将10,12,16,22cm cm cm cm 的四根木棒首尾相接,组成一个凸四边形,若凸四边形对角线长为整数,则对角线最长为( )A .25cmB .27cmC .28cmD .31cm 3.如图,AB 和CD 相交于点O ,A C ∠=∠,则下列结论中不正确的是( ).A .B D ∠=∠B .1A D ∠=∠+∠C .2D ∠>∠D .C D ∠=∠ 4.下列长度的三条线段能构成三角形的是( ) A .1,2,3B .5,12,13C .4,5,10D .3,3,6 5.如图,AD 是ABC 的外角CAE ∠的平分线,35B ∠=︒,60=︒∠DAC ,则ACD∠的度数为( )A .25︒B .85︒C .60︒D .95︒ 6.如图,在ABC 中,55A ∠=︒,65C =︒∠,BD 平分ABC ∠,//DE BC ,则BDE∠的度数是( )A .50°B .25°C .30°D .35°7.内角和为720°的多边形是( ).A .三角形B .四边形C .五边形D .六边形8.如图,ABC 中,55,B D ∠=︒是BC 延长线上一点,且130ACD ∠=︒,则A ∠的度数是( )A .50︒B .65︒C .75︒D .85︒ 9.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( )A .2mB .3mC .5mD .7m 10.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒ 11.在△ABC 中,∠A =x °,∠B =(2x +10)°,∠C 的外角大小(x +40)°,则x 的值等于( )A .15B .20C .30D .40 12.一个多边形的内角和是外角和的4倍,则这个多边形的边数为( )A .10B .8C .6D .4 13.下列说法正确的有( )个①把一个角分成两个角的射线叫做这个角的角平分线;②连接C 、D 两点的线段叫两点之间的距离;③两点之间直线最短;④射线上点的个数是直线上点的个数的一半;⑤n 边形从其中一个顶点出发连接其余各顶点,可以画出()3n -条对角线,这些对角线把这个n 边形分成了()2n -个三角形.A .3B .2C .1D .014.小红有两根长度分别为4cm 和8cm 的木棒,他想摆一个三角形,现有长度分别为3cm ,4cm ,8cm ,15cm 四根木棒,则他应选择的木棒长度为( ).A .3cmB .4cmC .8cmD .15cm15.下列说法正确的个数为( )①过两点有且只有一条直线;②两点之间,线段最短;③若ax ay =,则x y =;④若A 、B 、C 三点共线且AB BC =,则B 为AC 中点;⑤各边相等的多边形是正多边形. A .①②④ B .①②③ C .①④⑤ D .②④⑤二、填空题16.如图,已知//,AB CD E 是直线AB 上方一点,G 为直线AB 下方一点,F 为直线CD 上一点,148EAF ︒∠=,3BAF BAG ∠=∠,3DCE DCG ∠=∠,则E ∠和G ∠的数量关系为___________.17.2016年2月6日凌晨,宝岛高雄发生6.7级地震,得知消息后,中国派出武警部队探测队,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的,A B 两处,用仪器探测生命迹象C ,已知探测线与地面的夹角分别是30︒和60︒(如图),则C ∠的度数是_________.18.如图,将纸片ABC 沿DE 折叠,点A 落在点P 处,已知12124+∠=∠︒,A ∠=___________.19.将一副直角三角尺所示放置,已知//AE BC ,则AFD ∠的度数是__________.20.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果147∠=︒,220∠=︒,那么3∠= __________.21.如图,在ABC 中,80B ∠=︒,BAC ∠和BCD ∠的平分线交于点E ,则E ∠的度数是______.22.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________,最小值是___________.23.鹿鸣社区里有一个五边形的小公园,如图所示,王老师每天晚饭后都要到公园里去散步,已知图中的∠1=95︒,王老师沿公园边由A 点经B→C→D→E ,一直到F 时,他在行程中共转过了_____度.24.一块含45°角的直角三角板如图放置,其中,直线//a b ,185∠=︒,则2∠=______度.25.如图,∠BAK +∠B +∠C +∠CDE +∠E +∠F +∠MGN +∠H +∠K =________.26.如图,△ABC 中,D 为BC 边上的一点,BD :DC=2:3,△ABC 的面积为10,则△ABD 的面积是_________________三、解答题27.在锐角三角形ABC 中,∠C=2∠B ,求∠B 的取值范围28.如图,已知点D ,E 分别在ABC 的边AB ,AC 上,//DE BC .(1若80ABC ∠=︒,40AED ∠=︒,求A ∠的度数:(2)若180BFD CEF ∠+∠=︒,求证:EDF C ∠=∠.29.(问题引入)(1)如图1,△ABC ,点O 是∠ABC 和∠ACB 相邻的外角平分线的交点,若∠A=40°,请求出∠BOC 的度数.(深入探究)(2)如图2,在四边形ABDC 中,点O 是∠BAC 和∠ACD 的角平分线的交点,若∠B+∠D=110°,请求出∠AOC 的度数.(类比猜想)(3)如图3,在△ABC中,∠CBO=13∠DBC,∠BCO= 13∠ECB,∠A=α,则∠BOC=___(用α的代数式表示,直接写出结果,不需要写出解答过程).(4)如果BO,CO分别是△ABC的外角∠DBC,∠ECB的n等分线,它们交于点O,∠CBO=∠1n DBC∠BCO=1n∠ECB,则∠BOC=___(用n、a的代数式表示,直接写出结果,不需要写出解答过程).30.如图,PB和PC是ABC的两条外角平分线.求证:1902BPC BAC ∠=︒-∠.。

八年级数学上册第十一章三角形知识点总结归纳完整版(带答案)

八年级数学上册第十一章三角形知识点总结归纳完整版(带答案)

八年级数学上册第十一章三角形知识点总结归纳完整版单选题1、下列长度的三条线段与长度为5的线段能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,2答案:D分析:若四条线段能组成四边形,则三条较短边的和必大于最长边,由此即可完成.A、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误;B、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误;C、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误;D、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确;故选:D.小提示:本题考查了两点间线段最短,类比三条线段能组成三角形的条件,任两边的和大于第三边,因而较短的两边的和大于最长边即可,四条线段能组成四边形,作三条线段的和大于第四条边,因而较短的三条线段的和大于最长的线段即可.2、要得知作业纸上两相交直线AB,CD所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案Ⅰ、Ⅱ,说法正确的是()A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行答案:C分析:用夹角可以划出来的两条线,证明方案Ⅰ和Ⅱ的结果是否等于夹角,即可判断正误方案Ⅰ:如下图,∠BPD即为所要测量的角∵∠HEN=∠CFG∴MN∥PD∴∠AEM=∠BPD故方案Ⅰ可行方案Ⅱ:如下图,∠BPD即为所要测量的角在△EPF中:∠BPD+∠PEF+∠PFE=180°则:∠BPD=180°−∠AEH−∠CFG故方案Ⅱ可行故选:C小提示:本题考查平行线的性质和判定,三角形的内角和;本题的突破点是用可画出夹角的情况进行证明3、刘零想做一个三角形的框架,她有两根长度分别为6cm和8cm的细木条,需要将其中一根木条分为两段,如果不考虑损耗和接头部分,那么可以分成两段的是()A.6cm的木条B.8cm的木条C.两根都可以D.两根都不行答案:B分析:利用三角形的三边关系可得答案.解:利用三角形的三边关系可得应把8cm的木条截成两段,如将8cm的线段分成3cm和5cm或4cm和4cm,所截成的两段线段之和大于6,所以,可以,而6cm的线段无论如何分,分成的两段线段之和都小于8,所以,不可以.故选:B.小提示:此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.4、如图,若干个全等的正五边形排成圆环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10B.9C.8D.7答案:D分析:先根据多边形的内角和公式(n−2)·180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.解:∵五边形的内角和为(5−2)×180°=540°,∴正五边形的每一个内角为540°÷5=108°,∴正五边形的每一个外角为180°−108°=72°,如图,延长正五边形的两边相交于点O,则∠1=180°−2×72°=36°,360°÷36°=10,∵已经有3个五边形,∴10−3=7,即完成这一圆环还需7个五边形.故选:D.小提示:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.5、已知△ABC中,D、E分别是边AB、AC上的点,连接DE、BE、DC,下列各式中正确的是().A.S△ADES△ABC =ADABB.S△ADES△ABC=AEACC.S△ADCS△ABC =ADABD.S△ADES△EDC=AEAC答案:C分析:A选项,设点E、C到AB的距离分别为ℎ1,ℎ2,则ℎ1<ℎ2,根据三角形面积公式进行判断即可;B选项设点D、B到AC的距离分别为x,y,则x≠y,x<y,根据三角形面积公式进行判断即可;C选项,设点C到AB距离为h,△ADC=12AD⋅ℎ,S△ABC=12AB⋅ℎ,根据三角形面积公式进行判断即可;D选项,设点D到AC距离为ℎ3,则S△ADE=12AE⋅ℎ3,S△EDC=12CE⋅ℎ3,根据三角形面积公式进行判断即可A选项:设点E、C到AB的距离分别为ℎ1,ℎ2,则ℎ1<ℎ2,S△ADE=12AD⋅ℎ1,S△ABC=12AB⋅ℎ2,∴S△ADES△ABC =12AD⋅ℎ112AB⋅ℎ2=AD⋅ℎ1AB⋅ℎ2≠ADAB,故A错误;B选项:设点D、B到AC的距离分别为x,y,则x≠y,x<y,S△ADE=12AE⋅x,S△ABC=12AC⋅y,S△ADES△ABC=12AE⋅x12AC⋅y=AE⋅xAC⋅y≠AEAC,故B错误;C选项:设点C到AB距离为h,△ADC=12AD⋅ℎ,S△ABC=12AB⋅ℎ,∴S△ADCS△ABC =12AD⋅ℎ12AB⋅ℎ=ADAB,故C正确;D选项:设点D到AC距离为ℎ3,则S△ADE=12AE⋅ℎ3,S△EDC=12CE⋅ℎ3,∴S△ADES△EDC =12AE⋅ℎ312CE⋅ℎ3=AECE=AEAC−AE≠AEAC,故D错误.故选C.小提示:本题考查了与三角形的高有关的计算,掌握三角形的高的定义,根据三角形的面积计算是解题的关键.6、一个多边形截去一个角后,变成16边形,那么原来的多边形的边数为()A.15或16或17B.15或17C.16或17D.16或17或18答案:A分析:分三种情况讨论,当截线不经过多边形的顶点时,当截线经过多边形的一个顶点时,当截线经过多边形的两个顶点时,再利用数形结合的方法可得答案.解:如图,当截线不经过多边形的顶点时,被截后的多边形比原多边形增加一条边,所以当被截后的多边形为16边形,则原多边形为15边形,如图,当截线经过多边形的一个顶点时,被截后的多边形与原多边形边数相同,所以当被截后的多边形为16边形,则原多边形为16边形,如图,当截线经过多边形的两个顶点时,被截后的多边形比原多边形少一条边,所以当被截后的多边形为16边形,则原多边形为17边形,故选:A.小提示:本题考查的是用直线截多边形的一个角后,被截后的多边形的边数与原多边形的边数之间的关系,解题的关键是清晰的分类讨论.7、当n边形边数增加2条时,其内角和增加()A.180°B.360°C.540°D.720°答案:B分析:根据n边形的内角和定理即可求解.解:原来的多边形的边数是n,则新的多边形的边数是n+2.(n+2−2)•180−(n−2)•180=360°.故选:B.小提示:本题主要考查了多边形的内角和定理,多边形的边数每增加一条,内角和就增加180度.8、在△ABC中,∠A=12∠B=13∠C,则△ABC为()三角形.A.锐角B.直角C.钝角D.等腰答案:B分析:根据∠A=12∠B=13∠C分别设出三个角的度数,再根据三角形的内角和为180°列出一个方程,解此方程即可得出答案.∵∠A=12∠B=13∠C∴可设∠A=x,∠B=2x,∠C=3x根据三角形的内角和可得:x+2x+3x=180°解得:x=30°∴∠A=30°,∠B=60°,∠C=90°因此△ABC是直角三角形故答案选择B.小提示:本题主要考查的是三角形的基本概念.9、如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=( )A.35°B.95°C.85°D.75°答案:C分析:根据CE是△ABC的外角∠ACD的平分线,∠ACE=60°,得出∠ACD=120°;再根据三角形的外角等于与它不相邻的两个内角和即可求解.解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°∴∠ACD=2∠ACE=120°∵∠ACD=∠B+∠A∴∠A=∠ACD-∠B=120°-35°=85°故选:C.小提示:本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.10、能说明“锐角α,锐角β的和是锐角”是假命题的例证图是().A.B.C.D.答案:C分析:先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案.解:A、如图1,∠1是锐角,且∠1=α+β,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;B、如图2,∠2是锐角,且∠2=α+β,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;C、如图3,∠3是钝角,且∠3=α+β,所以此图说明“锐角α,锐角β的和是锐角”是假命题,故本选项符合题意;D、如图4,∠4是锐角,且∠4=α+β,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意.故选:C.小提示:本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键.填空题11、如图,∠A+∠B+∠C+∠D+∠E=______.答案:180度##180°分析:如图,连接BC,记CD,BE的交点为G,先证明∠D+∠E=∠GBC+∠GCB,再利用三角形的内角和定理可得答案.解:如图,连接BC,记CD,BE的交点为G,∵∠D+∠E=180°−∠DGE,∠GBC+∠GCB=180°−∠BGC,∠DGE=∠BGC,∴∠D+∠E=∠GBC+∠GCB,∴∠A+∠ABG+∠GBC+∠GCB+∠ACG=180°,∴∠A+∠ABG+∠ACG+∠D+∠E=180°,所以答案是:180°小提示:本题考查的是三角形的内角和定理,作出合适的辅助线构建三角形是解本题的关键.12、如图,点D在△ABC的边BA的延长线上,点E在BC边上,连接DE交AC于点F,若∠DFC=3∠B=117°,∠C=∠D,则∠BED=________.答案:102°分析:首先根据∠DFC=3∠B=117°,可以算出∠B=39°,然后设∠C=∠D=x°,根据外角与内角的关系可得39+x+x=117,再解方程即可得到x=39,再根据三角形内角和定理求出∠BED的度数.解:∵∠DFC=3∠B=117°,∴∠B=39°,设∠C=∠D=x°,39+x+x=117,解得:x=39,∴∠D=39°,∴∠BED=180°−39°−39°=102°.所以答案是:102°.小提示:此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.13、已知AD、AE分别是△ABC的高和中线,若BD=2,CD=1,则DE的长为______.答案:0.5或1.5分析:根据题意作出草图,分类讨论即可求解.解:AD、AE分别是△ABC的高和中线,BD=2,CD=1,如图,当△ABC是钝角三角形时,∴BC=BD−CD=1∴DE=BD−BE=BD−12BC=2−12=32当△ABC是锐角三角形时,∵BC=BD+DC=2+1=3∴BE=12BC=32∴DE=BD−BE=2−32=12当△ABC是直角三角形时,CD=0,不合题意,所以答案是:12或32 小提示:本题考查了三角形的高线,中线的定义,线段的和差关系,分类讨论是解题的关键.14、一个多边形外角和是内角和的29,则这个多边形的边数为________. 答案:11分析:多边形的内角和定理为(n −2)×180°,多边形的外角和为360°,根据题意列出方程求出n 的值. 解:根据题意可得:29×(n −2)×180°=360°, 解得:n =11 ,所以答案是:11.小提示:本题主要考查的是多边形的内角和公式以及外角和定理,属于基础题型.记忆理解并应用这两个公式是解题的关键.15、如图,△ABC 中,∠A =60°,∠B =40°,DE ∥BC ,则∠AED 的度数是______.答案:80°分析:根据三角形内角和定理可得∠C =80°,根据平行线的性质即可得答案.∵∠A =60°,∠B =40°,∴∠C =180°﹣∠A ﹣∠B =80°,∵DE ∥BC ,∴∠AED =∠C =80°,所以答案是:80°小提示:本题考查三角形内角和定理及平行线的性质,任意三角形的内角和等于180°;两直线平行,同位角相等;熟练掌握相关性质及定理是解题关键.解答题16、如图,在△ABC中,AD是BC边上的中线,△ABD的周长比△ADC的周长多1,AB与AC的和为11(1)求AB、AC的长;(2)求BC边的取值范围.答案:(1)AB=6,AC=5(2)1<BC<11分析:(1)根据三角形中线的定义,BD=CD.所以△ABD和△ADC的周长之差也就是AB与AC的差,然后联立关于AB、AC的二元一次方程组,利用加减消元法求解即可.(2)根据三角形三边关系解答即可.(1)解:∵AD是BC边上的中线,∴BD=CD,∴△ABD的周长﹣△ADC的周长=(AB+AD+BD)−(AC+AD+CD)=AB−AC=1,即AB−AC=1①,又AB+AC=11②,①+②得:2AB=12,解得AB=6,②−①得:2AC=10,解得AC=5,∴AB和AC的长分别为:AB=6,AC=5;(2)∵AB=6,AC=5;∴1<BC<11.小提示:本题考查了三角形的三边关系,三角形的中线定义,二元一次方程组的求解,利用加减消元法求解是解题的关键.17、如图,在△ABC中,CD平分∠BCA,E为CD延长线上一点,EF⊥AB于点F,已知∠ACB=70°,∠E= 30°.求∠A的度数.答案:25°分析:利用垂直的定义和三角形内角和定理求出∠EDF,利用对顶角的性质求出∠CDB,再利用角平分线的定义求出∠DCB,进而利用三角形内角和定理求出∠B,∠A.解:∵EF⊥AB,∴∠EFD=90°,又∵∠E=30°,∴∠EDF=180°−∠E−∠EFD=60°,∴∠CDB=∠EDF=60°.∵CD平分∠BCA,∠ACB=70°,∴∠DCB=12∠ACB=12×70°=35°.∴∠B=180°−∠CDB−∠DCB=180°−60°−35°=85°,∴∠A=180°−∠B−∠ACB=180°−85°−70°=25°,即∠A的度数为25°.小提示:本题考查角平分线、对顶角、三角形内角和定理的应用,解题的关键是熟练掌握对顶角的性质和三角形内角和定理.18、如图,在△ABC中,CD、CE分别是△ABC的高和角平分线,∠BAC=α,∠B=β(α>β).(1)若α=70°,β=40°,求∠DCE的度数;(2)试用α、β的代数式表示∠DCE的度数_________.答案:(1)∠DCE=15°(2)α−β2分析:(1)根据三角形的内角和定理求出∠ACB的值,再由角平分线的性质以及直角三角形的性质求出∠DCE.(2)由(1)的解题思路即可得正确结果.(1)解:∵∠BAC=70°,∠B=40°∴∠ACB=180°−(∠BAC+∠B)=180°−(70°+40°)=70°,∵CE是∠ACB的平分线,∴∠ACE=12∠ACB=35°.∵CD是高线,∴∠ADC=90°,∴∠ACD=90°−∠BAC=20°,∴∠DCE=∠ACE−∠ACD=35°−20°=15°.(2)解:∵∠BAC=α,∠B=β∴∠ACB=180°−(∠BAC+∠B)=180°−(α+β),∵CE是∠ACB的平分线,∴∠ACE=12∠ACB=12×[180°−(α+β)]=90°−α+β2.∵CD是高线,∴∠ADC=90°,∴∠ACD=90°−∠BAC=90°−α,∴∠DCE=∠ACE−∠ACD=90°−α+β2−90°+α=α−β2.小提示:本题主要考查角平分线,高线以及角的转换,掌握角平分线,高线的性质是解题的关键.。

人教版八年级上册第十一章 三角形知识点复习及习题练习

人教版八年级上册第十一章 三角形知识点复习及习题练习

第十一章三角形知识框架【三角形的概念】1、三角形的定义由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

要点:①三条线段;②不在同一条直线上;③首尾顺次相连。

2、基本概念:三角形有三条边,三个内角,三个顶点。

边:组成三角形的线段,表示方法:AB(c)、BC(a)、AC(b)内角:相邻两边所组成的角,表示方法:∠A、∠B、∠C顶点:相邻两边的公共端点,表示方法:A、B、C三角形ABC用符号表示为△ABC。

夹边、夹角、对边、对角3、数三角形个数技巧1)按组成三角形的图形个数来数(如单个三角形、由2个图形组成的三角形……最后求和)2)从图中的某一条线段开始,按一定的顺序找出能组成三角形的另外两条边;3)先固定一个顶点,再变换另外两个顶点,找出不共线的三点共有多少组。

练:1、下列说法中正确的是()A、由三个角组成的图形叫三角形B、由三条直线组成图形叫三角形C、由不在同一直线上的三条线段首尾顺次相接所组成的图形叫三角形D、由三条线段组成的图形叫三角形2、右图中三角形的个数是()A、6B、7C、8D、93、如右图所示:(1)图中有几个三角形?把它们一一写出来。

(2)写出△ABD的三个内角。

(3)以∠C为内角的三角形有哪些?(4)以AB为边的三角形有哪些?【分类】在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

练:1、如果三角形的一个外角是锐角,则此三角形的形状是()A、锐角三角形B.钝角三角形C.直角三角形D.无法判断2、若△ABC三边长分别为m,n,p,且| m - n |+( n - p)2= 0 ,则这个三角形为()A、等腰三角形B、等边三角形C、直角三角形D、等腰直角三角形3、三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形4、根据下列所给条件,判断△ABC的形状(若已知的是角,则按角的分类标准去判断;若已知的是边,则按边的分类标准去判断)(1)∠A=45°,∠B=65°,∠C=70°;(2)∠C=90°;(3)∠C=120°;(4)AB=BC=4,AC=5.【三边的关系】①三角形任意两边之和大于第三边,b + c > a;②三角形任意两边之差小于第三边,b - c < a。

八年级数学上册第十一章三角形必考知识点归纳(带答案)

八年级数学上册第十一章三角形必考知识点归纳(带答案)

八年级数学上册第十一章三角形必考知识点归纳单选题1、两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠E=45°,∠C=30°,AB与DF交于点M.若BC//EF,则∠BMD的大小为()A.60°B.67.5°C.75°D.82.5°答案:C分析:根据BC//EF,可得∠FDB=∠F=45°,再根据三角形内角和即可得出答案.由图可得∠B=60°,∠F=45°,∵BC//EF,∴∠FDB=∠F=45°,∴∠BMD=180°−∠FDB−∠B=180°−45°−60°=75°,故选:C.小提示:本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键.2、如图,图中直角三角形共有()A.1个B.2个C.3个D.4个答案:C分析:有一个角是直角的三角形是直角三角形.解:如图,直角三角形有:△ABC、△ABD、△ACD.故选C.小提示:本题考查直角三角形的定义.掌握直角三角形的定义是关键,要做到不重不漏.3、如果一个多边形内角和是外角和的4倍,那么这个多边形有()条对角线.A.20B.27C.35D.44答案:C分析:根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解,多边形对角线的条数可以表.示成n(n−3)2解:设这个多边形是n边形,根据题意得,(n-2)•180°=4×360°,解得n=10.10×(10-3)÷2=35(条).故选:C.小提示:本题考查了多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,及多边形对角线的条数公式.4、如图,一束太阳光线平行照射在放置于地面的正六边形上,若∠1=19°,则∠2的度数为()A.41°B.51°C.42°D.49°答案:A分析:先求出正六边形的内角和外角,再根据三角形的外角性质以及平行线的性质,即可求解.解:∵正六边形的每个内角等于120°,每个外角等于60°,∴∠FAD=120°-∠1=101°,∠ADB=60°,∴∠ABD=101°-60°=41°∵光线是平行的,∴∠2=∠ABD=41°,故选A小提示:本题主要考查平行线的性质,三角形外角性质以及正六边形的性质,掌握三角形的外角性质以及平行线的性质是解题的关键.5、将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°),使点E落在AC边上,且ED//BC,则∠AEF的度数为( )A.145°B.155°C.165°D.170°答案:C分析:根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等求出∠2,然后根据∠CEF=∠DEF -∠2计算出∠CEF,即可求出∠AEF.解:∵∠A=60°,∠F=45°,∴∠1=90°-60°=30°,∠DEF=90°-45°=45°,∵ED∥BC,∴∠2=∠1=30°,∠CEF=∠DEF-∠2=45°-30°=15°,∴∠AEF=180°-15°=165°.故选C.小提示:本题考查了平行线的性质,直角三角形两锐角互余的性质是基础题,熟记性质是解题的关键.6、如图,在△ABC中,AB=20,AC=18,AD为中线.则△ABD与△ACD的周长之差为()A.1B.2C.3D.4答案:B分析:利用三角形中线的定义、三角形的周长公式进行计算即可得出结果.∵在△ABC中,AD为中线,∴BD=CD.∵C△ABD=AB+BD+AD,C△ACD=AC+CD+AD,∴C△ABD−C△ACD=AB−AC=20−18=2.故选:B.小提示:本题考查三角形的中线的理解与运用能力.三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线.明确三角形的中线的定义,运用两个三角形的周长的差等于两边的差是解本题的关键.7、如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠3=∠4D.∠1=∠5答案:A分析:根据平行线的性质和对顶角的性质进行判断.解:A、∵∠1与∠2是对顶角,∴∠1=∠2,本选项说法正确;B、∵AD与AB不平行,∴∠2≠∠3,本选项说法错误;C、∵AD与CB不一定平行,∴∠3≠∠4,本选项说法错误;D、∵CD与CB不平行,∴∠1≠∠5,本选项说法错误;故选:A.小提示:本题考查平行线的应用,熟练掌握平行线的性质和对顶角的意义与性质是解题关键.8、在△ABC中,若一个内角等于另外两个角的差,则()A.必有一个角等于30°B.必有一个角等于45°C.必有一个角等于60°D.必有一个角等于90°答案:D分析:先设三角形的两个内角分别为x,y,则可得第三个角(180°-x-y),再分三种情况讨论,即可得到答案.设三角形的一个内角为x,另一个角为y,则第三个角为(180°-x-y),则有三种情况:①x=|y−(180°−x−y)|⇒y=90∘或x+y=90∘②y=|x−(180∘−x−y)|⇒x=90∘或x+y=90∘③(180∘−x−y)=|x−y|⇒x=90∘或y=90∘综上所述,必有一个角等于90°故选D.小提示:本题考查三角形内角和的性质,解题的关键是熟练掌握三角形内角和的性质,分情况讨论.9、下列多边形具有稳定性的是()A.B.C.D.答案:D分析:利用三角形具有稳定性直接得出答案.解:三角形具有稳定性,四边形、五边形、六边形都具有不稳定性,故选D.小提示:本题考查三角形的特性,牢记三角形具有稳定性是解题的关键.10、如图,小亮同学用绘画的方法,设计的一个正三角形的平面镶嵌图,其中主要利用的是正三角形和正六边形.如果整个镶嵌图△ABC的面积为75,则图中阴影部分的面积是()A.25B.26C.30D.39答案:B分析:正ΔABC中有多种图形,将不规则图形拆分后,可归结为四种图形,每种图形都可划分为面积最小的正三角形的组合,最后正ΔABC全部由小正三角形组成,根据阴影部分小正三角形的个数所占全部小正三角形个数比例与面积相乘即可得出答案.如图所示,将不规则部分进行拆分,共有四种图形:正六边形、较大正三角形、平行四边形、小正三角形;其中一个正六边形可以分成6个小正三角形,较大正三角形可以分成4个小正三角形,平行四边形可以分成6个小正三角形,由图可得:正六边形有13个,可分成小正三角形个数为:13×6=78(个);较大正三角形有26个,可分成小正三角形个数为:26×4=104(个);平行四边形有5个,可分成小正三角形个数为:5×6=30(个);小正三角形个数为13个;∴一共有小正三角形个数为:78+104+30+13=225(个),∴图中阴影部分面积为:75×78=26,225故选:B.小提示:题目主要考查创新思维,将其进行分类分解是解题难点.填空题11、如图,在三角形ABC中,AB⊥AC,AD⊥BC,垂足为D,AB=3,AC=4,BC=5,则AD=______.答案:2.4分析:根据面积相等可列式12AB·AC=12BC·AD,代入相关数据求解即可.解:∵AB⊥AC,AD⊥BC,∴12AB·AC=12BC·AD∵AB=3,AC=4,BC=5,∴AD=AB·ACBC =125=2.4故答案諀:2.4小提示:此题主要考查了运用等积关系求线段的长,准确识图是解答本题的关键.12、如图,射线AB与射线CD平行,点F为射线AB上的一定点,连接CF,点P是射线CD上的一个动点(不包括端点C),将△PFC沿PF折叠,使点C落在点E处.若∠DCF=62°,当点E到点A的距离最大时,∠CFP=_____.答案:59°##59度分析:利用三角形三边关系可知:当E落在AB上时,AE距离最大,利用AB∥CD且∠DCF=62°,得到∠CFA=62°,再根据折叠性质可知:∠EFP=∠CFP,利用补角可知∠EFP+∠CFP=118°,进一步可求出∠EFP=∠CFP=59°.解:利用两边之和大于第三边可知:当E落在AB上时,AE距离最大,如图:∵AB∥CD且∠DCF=62°,∴∠CFA=62°,∵△PCF折叠得到△PEF,∴∠EFP=∠CFP,∵∠EFP+∠CFP=118°,∴∠EFP=∠CFP=59°.所以答案是:59°小提示:本题考查三角形的三边关系,平行线的性质,折叠的性质,补角,角平分线,解题的关键是找出:当E落在AB上时,AE距离最大,再解答即可.13、三角形的中线把三角形分成了面积相等的两部分,而三条中线交于一点,这一点叫此三角形的_________心.答案:重分析:根据三角形的重心的定义即可求解.三角形的三条中线交于一点,这一点叫此三角形的重心;所以答案是:重.小提示:本题主要考查了三角形的重心,重心是三角形三边中线的交点;三角形的中线将三角形的面积分成了相等的两部分,重心到顶点的距离与重心到对边中点的距离之比为2:1.14、如图,BD是△ABC的中线,AB=5cm,BC=3cm,那么△ABD的周长比△CBD的周长多_____.答案:2cm分析:根据三角形的中线的概念得到AD=DC,根据三角形的周长公式计算,得到答案.解:∵BD是△ABC的中线,∴AD=DC,∴△ABD的周长-△CBD的周长=(AB+AD+BD)-(BC+DC+BD)=AB-BC=5-3=2(cm),∴△ABD的周长比△CBD的周长多2cm,所以答案是:2cm.小提示:本题考查的是三角形的中线的概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.15、如图,孔明在驾校练车,他由点A出发向前行驶200米到B处,向左转45°.继续向前行驶同样的路程到C 处,再向左转45°.按这样的行驶方法,回到点A总共行驶了 __.答案:1600米##1600m分析:根据题意可知汽车所走的路程正好是一个外角为45°的多边形的周长,求出多边形的周长即可.解:根据题意得:360°÷45°=8,则他走回点A时共走的路程是8×200=1600(米).故回到A点共走了1600米.所以答案是:1600米.小提示:本意主要考查了多边形的外角和定理,即任意多边形的外角和都是360°.解答题16、如图,已知在△ABC中,∠B=30°,∠C=50°,AE是BC边上的高,AD是∠BAC的角平分线,求∠DAE的度数.答案:10°分析:先根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE的度数即可得到答案.解:∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=100°,∵AD是∠BAC的角平分线,∴∠BAD=1∠BAC=50°,2∵AE是BC边上的高,∴∠AEB=90°,∴∠BAE=90°-∠B=60°,∴∠DAE=∠BAE-∠BAD=10°.小提示:本题主要考查了三角形内角和定理,角平分线的定义,直角三角形两锐角互余,熟知相关知识是解题的关键.17、如图,AD是△ABE的角平分线,过点B作BC⊥AB交AD的延长线于点C,点F在AB上,连接EF交AD于点G.(1)若2∠1+∠EAB=180°,求证:EF∥BC;(2)若∠C=72°,∠AEB=78°,求∠CBE的度数.答案:(1)见解析;(2)24°分析:(1)先根据AD是△ABE的角平分线得出∠EAB=2∠GAF,,再由2∠1+∠EAB=180°得出∠AGF+∠GAF=90°,进而可得出结论;(2)根据三角形内角和定理及外角的性质求解即可.(1)证明:∵AD是△ABE的角平分线,∴∠EAB=2∠GAF,∵2∠1+∠EAB=180°,∴2∠1+2∠GAF=180°,∵∠1=∠AGF,∴2∠AGF+2∠GAF=180°,∴∠AGF+∠GAF=90°,∴∠AFG=90°,∵BC⊥AB,∴∠AFG=∠ABC==90°,∴EF∥BC;(2)解:∵∠C=72°,∠ABC==90°,∴∠CAB==90°-∠C==90°-72°==18°,∴∠EAB=2∠CAB=36°,∵∠AEB=78°,∴∠ABE==180°-(∠AEB+∠EAB)==90°-(78°+36°)==66°,∴∠CBE=90°-∠ABE==90°-66°==24°.小提示:此题考查了平行线的判定及三角形的内外角性质,熟记平行线的判定定理是解题的关键.18、在一个各内角都相等的多边形中,每一个内角都比相邻外角的3倍还大20°.(1)求这个多边形的边数;(2)若将这个多边形剪去一个角,剩下多边形的内角和是多少?答案:(1)9;(2)1080º或1260º或1440º.分析:(1)设多边形的一个外角为x,则与其相邻的内角等于3x+20°,根据内角与其相邻的外角的和;是180°列出方程,求出x的值,再由多边形的外角和为360°,求出此多边形的边数为360°x(2)剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,根据多边形的内角和定理即可求出答案.解:(1)设每一个外角为x,则与其相邻的内角等于3x+20°,∴180°−x=3x+20°,∴x=40°,即多边形的每个外角为40°,∵多边形的外角和为360°,∴多边形的外角个数为:360°=9,40°∴这个多边形的边数为9;(2)因为剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,①若剪去一角后边数减少1条,即变成8边形,∴内角和为(8−2)×180°=1080°,②若剪去一角后边数不变,即变成9边形,∴内角和为(9−2)×180°=1260°,③若剪去一角后边数增加1,即变成10边形,∴内角和为(10−2)×180°=1440°,∴将这个多边形剪去一个角后,剩下多边形的内角和为1080°或1260°或1440°.小提示:本题考查了多边形的内角和定理,外角和定理,多边形内角与外角的关系,熟练掌握相关知识点是解题的关键.。

11.4 《三角形》章末复习(能力提升)-2021-2022学年八年级数学上册(人教版)

11.4  《三角形》章末复习(能力提升)-2021-2022学年八年级数学上册(人教版)

第十一章 三角形11.4 《三角形》章末复习(能力提升)【知识点梳理】知识点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.知识点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.知识点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.知识点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.知识点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.知识点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.知识点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.知识点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.知识点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.知识点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.知识点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.知识点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.知识点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .知识点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.知识点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.知识点六、镶嵌的概念和特征1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.知识点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系例1.一个三角形的三边长分别是3,2a-1,6,则整数a的值可能是 ( ).A.2,3 B.3,4 C.2,3,4 D.3,4,5 【答案】B【解析】解:∵一个三角形的三条边长分别为3,2a-1,6,∴21 219 aa-⎧⎨-⎩>3<解得:2<a<5,则整数a的值可能是3,4,故选B.举一反三:【变式】已知a、b、c是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.【答案】解:∵a、b、c是三角形三边长,∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,=b+c-a-b+c+a-c+a+b-a+b-c=2b.例2.如图,O是△ABC内一点,连接OB和OC.(1)你能说明OB+OC<AB+AC的理由吗?(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?【答案与解析】解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,在△ABE中,AB+AE>BE;在△EOC中,OE+EC>OC,两不等式相加,得AB+AE+OE+EC>BE+OC.由图可知,AE+EC=AC,BE=OB+OE.所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.类型二、三角形中的重要线段例3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角例4.已知△ABC中,AE平分∠BAC(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EPF=是否成立,并说明理由.【答案与解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==36°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵AE平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.举一反三:【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性例5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。

人教版八年级数学上册第十一章三角形知识点 整理(完整版)

人教版八年级数学上册第十一章三角形知识点 整理(完整版)

人教版八年级数学上册知识点整理(完整版)第十一章三角形一、三角形的有关概念(一)三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

(二)基本元素1、三个顶点:点A、点B、点C2、三个内角:∠A、∠B、∠C3、三条边(1)表示方法①线段AB、AC、BC②a(∠A所对的边BC用a表示)、b、c(2)三角形的三边关系(依据:两点之间线段最短)①三角形两边之和大于第三边,数学语言:a+b>c,a+c>b,b+c>a。

;②三角形两边之差小于第三边,数学语言:a−b<c,a−c<b,b−c<a。

③判断三条线段能否组成三角形,只需判断“两条较短的线段之和大于第三条”即可。

4、三角形的表示方法:顶点是A、B、C的三角形,记作∆ABC,读作“三角形ABC”。

(三)三角形的稳定性:三角形三条边的长度确定之后,三角形的形状就唯一确定了。

二、三角形的分类(一)按边分类1、三边都不相等的三角形2、等腰三角形(1)概念:有两条边相等的三角形叫做等腰三角形,其中相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

(2)等边三角形:三边都相等的三角形叫做等边三角形(特殊的等腰三角形)。

(二)按角分类1、锐角三角形:三个内角都是锐角。

2、直角三角形:有一个内角是直角的三角形。

3、钝角三角形:有一个内角是钝角的三角形。

三、与三角形有关的线段(一)三角形的高1、定义:从三角形的一个顶点向它所对的边所在直线画垂线,顶点和垂足之间的线段叫做三角形的这条边上的高。

从∠ABC的顶点A向它所对的边BC所在直线画垂线,垂足为D,所得线段AD叫做∠ABC 的边BC上的高,记作AD∠BC于点D。

3、几何语言(1)AD是三角形的边BC上的高。

(2)AD⊥BC于点D。

4、三角形三条高的位置(1)锐角三角形:三条高及其交点都在三角形内部。

(2)直角三角形:有两条高与两条直角边重合,斜边上的高在三角形内部,三条高交于三角形的直角顶点。

第十一章 三角形

第十一章 三角形

第十一章三角形知识点+练习一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n-·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:从n边形的一个顶点出发可以引n(3)n-/2条对角线第十一章 三角形检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.若一个三角形的两边长分别为3和7,则第三边长可能是( )A.6B.3C.2D.112.在△ABC 中,∠A ︰∠B ︰∠C =3︰4︰5,则∠C 等于( )A.45°B.60°C.75°D.90°3.如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B =35°,∠ACE =60°,则∠A =() A.35° B.95° C.85° D.75°4.已知△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,则∠BOC 一定( )A.小于直角B.等于直角C.大于直角D.不能确定5.下列说法中正确的是( )A.三角形可分为斜三角形、直角三角形和锐角三角形B.等腰三角形任何一个内角都有可能是钝角或直角C.三角形的外角一定是钝角D.在△ABC 中,如果∠A ∠B ∠C ,那么∠A 60°,∠C 60°第3题图6.(2016·山东枣庄中考)如图,在△ABC 中,AB =AC ,∠A =30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 的度数为( )A.15°B.17.5°C.20°D.22.5°7.不一定在三角形内部的线段是( )A.三角形的角平分线B.三角形的中线C.三角形的高D.以上皆不对8.已知△ABC 中, ,周长为12, ,则b 为( )A.3B.4C.5D.6 9.如图,在△ABC 中,点D 在BC 上,AB =AD =DC ,∠B =80°,则∠C 的度数为( )A.30°B.40°C.45°D.60°10.直角三角形的两锐角平分线相交成的角的度数是( )A.45°B.135°C.45°或135°D.以上答案均不对二、填空题(每小题3分,共24分)11.(广州中考)在△ABC 中,已知6080A B ∠=︒∠=︒,,则C ∠的外角的度数是______°.12.如图所示是一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=_______°.13.若将边形边数增加1倍,则它的内角和增加__________. 第12题图第9题图第6题图14.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =120°,则∠AED 的度数是.15.设为△ABC 的三边长,则_______.16.在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是 .17.如图所示,AD 是正五边形ABCDE 的一条对角线,则∠BAD =_______°.18.如图,点D 在△ABC 边BC 的延长线上,CE 平分∠ACD ,∠A=80°,∠B =40°,则∠ACE 的大小是_____度.三、解答题(共46分)19.(6分)一个凸多边形,除了一个内角外,其余各内角的和为2 750°,求这个多边形的边数.20.(6分)如图所示,在△ABC 中,AB =AC ,AC 边上的中线把三角形的周第17题图 第18题图第14题图长分为24 cm和30 cm的两部分,求三角形各边的长.第20题图21.(6分)有人说,自己的步子大,一步能走四米多,你相信吗?用你学过的数学知识说明理由.22.(6分)已知一个三角形有两边长均为,第三边长为,若该三角形的边长都为整数,试判断此三角形的形状.23.(6分)如图所示,武汉有三个车站A、B、C成三角形,一辆公共汽车从B站前往到C站.(1)当汽车运动到点D时,刚好BD=CD,连接AD,AD这条线段是什么线段?这样的线段在△ABC中有几条?此时有面积相等的三角形吗?(2)汽车继续向前运动,当运动到点E时,发现∠BAE=∠CAE,那么AE这条线段是什么线段?在△ABC中,这样的线段又有几条?(3)汽车继续向前运动,当运动到点F时,发现∠AFB=∠AFC=90°,则AF是什么线段?这样的线段有几条?第23题图第24题图24.(8分)(2016·南京中考)用两种方法证明“三角形的外角和等于360°”.如图,∠BAE,∠CBF,∠ACD是△ABC的三个外角.求证:∠BAE+∠CBF+∠ACD=360°.证法1:∵,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°.∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3).∵,∴∠BAE+∠CBF+∠ACD=540°-180°=360°.请把证法1补充完整,并用不同的方法完成证法2.25.(8分)规定,满足(1)各边互不相等且均为整数,(2)最短边上的高与最长边上的高的比值为整数k,这样的三角形称为比高三角形,其中k叫做比高系数.根据规定解答下列问题:(1)求周长为13的比高三角形的比高系数k的值;(2)写出一个只有4个比高系数的比高三角形的周长.第十一章三角形检测题参考答案1.A 解析:设第三边长为x,则7-3<x<3+7,即4<x<10,故选A.点拨:本题考查了三角形的三边关系,熟记“两边之和大于第三边,两边之差小于第三边”是解题的关键.2.C 解析:根据三角形内角和为180°,得∠C=180°×53+4+5=180°×512=75°,即∠C=75°.3.D 解析:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°.∵∠ACD=∠B+∠A,∴∠A=∠ACD-∠B=120°-35°=85°.故选C.4.C 解析:因为在△ABC中,∠ABC+∠ACB180°,所以12所以∠BOC90°.故选C.5.D 解析:A.三角形包括直角三角形和斜三角形,斜三角形又包括锐角三角形和钝角三角形,所以A错误;B.等腰三角形只有顶角可能是钝角或直角,所以B错误;C.三角形的外角可能是钝角、锐角,也可能是直角,所以C错误;D.因为△ABC中,∠A∠B∠C,若∠A≤60°,则∠A+∠B+∠C<60°+60°+60°=180°;若∠C ≥60°,则∠A+∠B+∠C>60°+60°+60°=180°,与三角形的内角和为180°相矛盾,所以原结论正确,故选D.6.A 解析:如图,∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4.∵∠ACE=∠A+∠ABC,即∠3+∠4=∠A +∠1+∠2,∴ 2∠4=2∠2+∠A.∵ ∠4=∠2+∠D ,∴ ∠A =2∠D ,∴ ∠D =∠A =×30°=15°.故选A.点拨:本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角等于和它不相邻的两个内角的和这一性质进行分析.7.C 解析:因为三角形的中线、角平分线都在三角形的内部,而钝角三角形的高有的在三角形的外部,所以答案选C .8.B 解析:因为,所以.又,所以故选B.9.B 解析: , 80AB AD ADB B =∴∠=∠=︒Q . , ,AD DC C CAD =∴∠=∠Q280, 40ADB C CAD C C ∴∠=∠+∠=∠=︒∴∠=︒.10.C 解析:如图所示:∵ AE 、BD 是直角三角形中两锐角平分线,∴ ∠OAB +∠OBA =90°÷2=45°.两角平分线组成的角有两个:∠BOE 与∠EOD ,根据三角形外角的性质,∠BOE =∠OAB +∠OBA =45°,∴ ∠EOD =180°-45°=135°,故选C . 11.140 解析:根据三角形内角和定理得∠C =40°,则∠C 的外角为18040140︒-︒=︒. 12.270 解析:如图,根据题意可知∠5=90°,∴ ∠3+∠4=90°,∴ ∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°.第10题答图第12题答图第16题答图13. 解析:利用多边形内角和定理进行计算.因为边形与边形的内角和分别为和,所以内角和增加.14.80°解析:方法1:如图①,延长DE交AB于点F.∵BC∥DE,∴∠AFE=∠B.∵AB∥CD,∴∠B+∠C=180°.∵∠C=120°,∴∠AFE=∠B=60°.∵∠A=20°,∴∠AED=∠A+∠AFE=80°.①②方法2:如图②,延长AE交BC于点F.∵BC∥DE,∴∠AED=∠AF C.∵AB∥CD,∴∠B+∠C=180°.∵∠C=120°,∴∠B=60°.∵∠A=20°,∴∠AED=∠AFC=∠A+∠B=80°.15. 解析:因为为△ABC的三边长,所以,,所以原式=第16题答图第14题答图16.4∶3 解析:如图所示,过点D 作DM ⊥AB ,DN ⊥AC ,垂足分别为点M 和点N ,∵ AD 平分∠BAC ,∴ DM =DN .∵ AB ×DM ,AC ×DN ,∴ 142132ABD ACD AB DM S AB S AC AC DN ´´===△△. 17.72 解析:正五边形ABCDE 的每个内角为(52)1805-⨯︒=108°,由△AED 是等腰三角形得,∠EAD =12(180°-108°)=36°,所以∠DAB =∠EAB -∠EAD =108°-36°=72°. 18.60 解析:∵ ACD ∠是△ABC 的一个外角,∴ 8040120ACD A B ∠=∠+∠=︒+︒=︒. ∵ CE 平分∠ACD , ∴ 111206022ACE ACD ∠=∠=⨯︒=︒.19.分析:由于除去的一个内角大于0°且小于180°,因此题目中有两个未知量,但等量关系只有一个,在一些竞赛题目中常常会出现这种问题,这就需要依据条件中两个未知量的特殊含义去求值.解:设这个多边形的边数为(为自然数),除去的内角为°(0<<180),根据题意,得∵ ∴∴ ,∴ .点拨:本题在利用多边形的内角和公式得到方程后,又借助角的范围,通过解不等式得到了这个多边形的边数.这也是解决有关多边形的内、外角和问题的一种常用方法.20.分析:因为BD 是中线,所以AD =DC ,造成所分两部分周长不相等的原因就在于腰长与底边长的不相等,故应分情况讨论.解:设AB =AC =2,则AD =CD =.(1)当AB+AD=30,BC+CD=24时,有2=30,∴=10,2 =20,BC=24-10=14.三边长分别为:20 cm,20 cm,14 cm.(2)当AB+AD=24,BC+CD=30时,有=24,∴=8,,BC=30-8=22.三边长分别为:16 cm,16 cm,22 cm.21.分析:人的两腿可以看作是两条线段,走的步子也可看作是线段,则这三条线段正好构成三角形的三边,就应满足三边关系定理.解:不能.如果此人一步能走四米多,由三角形三边的关系得,此人两腿长的和大于4米,这与实际情况不符.所以他一步不能走四米多.22.分析:已知三角形的三边长,根据三角形的三边关系,列出不等式,再求解.解:根据三角形的三边关系,得<<,.0<<6-,0<<32因为2,3-x均为正整数,所以=1.所以三角形的三边长分别是2,2,2.因此,该三角形是等边三角形.23.分析:(1)由于BD=CD,则点D是BC的中点,AD是中线,三角形的中线把三角形分成两个面积相等的三角形;(2)由于∠BAE=∠CAE,所以AE是三角形的角平分线;(3)由于∠AFB=∠AFC=90°,则AF是三角形的高线.解:(1)AD是△ABC中BC边上的中线,三角形中有三条中线.此时△ABD与△ADC的面积相等.(2)AE是△ABC中∠BAC的平分线,三角形中角平分线有三条.(3)AF是△ABC中BC 边上的高线,三角形有三条高线.24.∠BAE+∠1=∠CBF+∠2=∠ACD+∠3=180°(1分))∠1+∠2+∠3=180°(3分证法2:如图,过点A作射线AP,使AP∥B D.(4分)∵AP∥BD,∴∠CBF=∠PAB,∠ACD=∠EAP.(6分)∵∠BAE+∠PAB+∠EAP=360°,∴∠BAE+∠CBF+∠ACD=360°.(8分)解析:(1)因为∠1与∠BAE互为邻补角,∠2与∠CBF互为邻补角,∠3与∠ACD互为邻补角,所以根据邻补角的定义,得∠BAE+∠1=∠CBF+∠2=∠ACD+∠3=180°.因为∠1,∠2,∠3是△ABC的三个内角,所以根据三角形的内角和定理,得∠1+∠2+∠3=180°.(2)过点A作射线AP∥BD,根据两直线平行,同位角相等,得∠CBF=∠PAB,∠ACD=∠EAP.根据∠BAE+∠PAB+∠EAP=360°,问题得证.注意:三角形的内角和为180°以及邻补角等都是题目中的隐含条件,在做证明题时注意隐含条件的使用.25.分析:(1)根据定义结合三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,进行分析;(2)根据比高三角形的知识结合三角形三边关系求解只有4个比高系数的比高三角形的周长.解:(1)根据定义和三角形的三边关系,知此比高三角形的三边长是2,5,6或3,4,6,则k=3或2.(2)如周长为37的比高三角形,只有4个比高系数.当比高系数为2时,这个三角形三边长分别为9、10、18或8、13、16;当比高系数为3时,这个三角形三边长分别为6、13、18;当比高系数为6时,这个三角形三边长分别为3、16、18;当比高系数为9时,这个三角形三边长分别为2、17、18.。

人教版初中八年级数学上册第十一章《三角形》知识点总结(含答案解析)(1)

人教版初中八年级数学上册第十一章《三角形》知识点总结(含答案解析)(1)

一、选择题1.如图,在ABC中,AB边上的高为()A.CG B.BF C.BE D.AD A解析:A【分析】在ABC中,过C点向AB所在的直线作垂线,顶点与垂足之间的线段是AB上的高,由此可得答案.【详解】CG解:ABC中,AB边上的高为:.故选:.A【点睛】本题考查的是三角形的高的含义,掌握钝角三角形的高是解题的关键.y 0,则以x、y的值为两边长的等腰三角形周长是2.已知实数x、y满足|x-8()A.20或16 B.20 C.16 D.18B解析:B【分析】根据绝对值与二次根式的非负性即可求出x与y的值.由于没有说明x与y是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B .【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.3.下列四组线段中,不可以构成三角形的是( )A .4,5,6B .1.5,2,2.5C .13,14,15D .1,3D 解析:D【分析】计算较小两边的和,与最大的边比较,大于最大的边时三角形存在,依此判断即可.【详解】∵4+5>6,∴能构成三角形;∵1.5+2>2.5,∴能构成三角形; ∵14+15>13, ∴能构成三角形;∵<1+2=3,∴不能构成三角形;故选D.【点睛】本题考查了已知线段长判断三角形的存在,熟记三角形存在的条件是解题的关键. 4.已知两条线段15cm a =,8cm b =,下列线段能和a ,b 首尾相接组成三角形的是( )A .20cmB .7cmC .5cmD .2cm A解析:A【分析】根据三角形任意两边的和大于第三边,进行分析判断.【详解】A 、15+8=23>20,能组成三角形,符合题意;B 、7+8=15,不能组成三角形,不合题意;C 、5+8=13<15,不能组成三角形,不合题意;D 、2+8=10<15,不能组成三角形,不合题意.故选:A .【点睛】本题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,三角形的两边差小于第三边.但通常不需一一验证,其简便方法是将较短两边之和与较长边比较.5.如图,AD 是ABC 的外角CAE ∠的平分线,35B ∠=︒,60=︒∠DAC ,则ACD ∠的度数为( )A .25︒B .85︒C .60︒D .95︒D解析:D【分析】 根据角平分线的定义可得∠DAC =∠DAE ,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠D ,然后利用三角形的内角和定理列式计算即可得解.【详解】解:∵AD 是∠CAE 的平分线,60=︒∠DAC ,∴∠DAC =∠DAE =60°,又∵35B ∠=︒由三角形的外角性质得,∠D =∠DAE−∠B =60°−35°=25°,∴在△ACD 中,∠ACD =180°−∠DAC -∠D =180°−60°−25°=95°.故选:D .【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.6.已知长度分别为3cm ,4cm ,xcm 的三根小棒可以摆成一个三角形,则x 的值不可能是( )A .2.4B .3C .5D .8.5D解析:D【分析】先根据三角形的三边之间的关系求解1<x <7,从而可得答案.【详解】 解: 长度分别为3cm ,4cm ,xcm 的三根小棒可以摆成一个三角形, 43∴-<x <43+,1∴<x <7,x 的值不可能是8.5.故选:.D【点睛】本题考查的是三角形的三边之间的关系,掌握三角形的三边之间的关系是解题的关键. 7.以下列各组线段为边,能组成三角形的是( )A .1,2,3B .1,3,5C .2,3,4D .2,6,10C解析:C【分析】 根据三角形三边关系逐一进行判断即可.【详解】A 、1+2=3,不能构成三角形,故不符合题意;B 、1+3=4<5,不能构成三角形,故不符合题意;C 、2+3=5>4,可以构成三角形,故符合题意;D 、2+6=8<10,不能构成三角形,故不符合题意,故选:C .【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键. 8.如图,在ABC ∆中,80,BAC ∠=︒点D 在BC 边上,将ABD △沿AD 折叠,点B 恰好落在AC 边上的点'B 处,若'20B DC ∠=.则C ∠的度数为( )A .20B .25C .35D .40D解析:D【分析】 由折叠的性质可求得'B AB D ∠=∠,利用三角形内角和及外角的性质列方程求解.【详解】解:由题意可得'B AB D ∠=∠∵80,BAC ∠=︒∴∠B+∠C=100°又∵'='=20B AB D C B DC C ∠=∠+∠+∠∠,∴∠C+20°+∠C=100°解得:∠C=40°故选:D .【点睛】本题考查三角形内角和及外角的性质,找准角之间的等量关系列出方程正确计算是解题关键.9.如图,盖房子时,在窗框没有安装之前,木工师傅常常先在窗框上斜钉一根木条,使其不变形,这种做法的根据是( )A .两点之间线段最短B .长方形的对称性C .长方形四个角都是直角D .三角形的稳定性D解析:D【分析】 在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,则分成了两个三角形,据此即可判断是利用了三角形的稳定性.【详解】在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,则分成了两个三角形,利用了三角形的稳定性,D 正确.故答案选D .【点睛】本题比较简单主要考查三角形稳定性的实际应用,通常要使一些图形具有稳定的结构,往往是将其转化为三角形而获得.10.下列说法正确的个数为( )①过两点有且只有一条直线;②两点之间,线段最短;③若ax ay =,则x y =;④若A 、B 、C 三点共线且AB BC =,则B 为AC 中点;⑤各边相等的多边形是正多边形. A .①②④B .①②③C .①④⑤D .②④⑤A解析:A【分析】根据直线的性质、两点间的距离、等式的性质、线段中点定义、多边形的定义依次判断.【详解】①过两点有且只有一条直线,故①正确;②两点之间,线段最短,故②正确;③若ax ay =,当0a =时,x 不一定等于y ,故③错误;④若A ,B ,C 三点共线且AB BC =,则B 为AC 中点,故④正确;⑤各角都相等且各边相等的多边形是正多边形,故⑤错误.∴正确的有①②④,故选:A .【点睛】此题考查理解能力,正确掌握直线的性质、两点间的距离、等式的性质、线段中点定义、正多边形的定义是解题的关键. 二、填空题11.从n 边形的一个顶点出发,连接其余各顶点,可以将这个n 边形分割成17个三角形,则n =______.19【分析】根据从n 边形的一个顶点出发连接这个点与其余各顶点可以把一个n边形分割成(n-2)个三角形的规律作答【详解】解:∵一个多边形从一个顶点出发连接其余各顶点可以把多边形分成(n-2)个三角形∴解析:19【分析】根据从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个n边形分割成(n-2)个三角形的规律作答.【详解】解:∵一个多边形从一个顶点出发,连接其余各顶点,可以把多边形分成(n-2)个三角形,∴n-2=17,n=.∴19故答案为:19.【点睛】本题主要考查多边形的性质,解题关键是熟记多边形顶点数与分割成的三角形个数的关系.12.如图,将一副直角三角尺按图③放置,使三角尺①的长直角边与三角尺②的某直角边在同一条直线上,则图③中的∠1=______°.105【分析】利用三角形外角性质求解【详解】如图∵∠2=∠3=∴∠4=∠2+∠3=∴∠1=故答案为:105【点睛】此题考查三角板的角度计算三角形外角的性质观察图形掌握各角度之间的位置关系是解题的关键解析:105【分析】利用三角形外角性质求解.【详解】如图,∵∠2=30,∠3=45︒,∴∠4=∠2+∠3=75︒,︒-∠=︒,∴∠1=1804105故答案为:105..【点睛】此题考查三角板的角度计算,三角形外角的性质,观察图形掌握各角度之间的位置关系是解题的关键.13.设三角形三内角的度数分别为,,x y z ︒︒︒,如果其中一个角的度数是另一个角的度数的2倍、那我们称数对(,)()y z y z <是x 的和谐数对,当150x =时,对应的和谐数对有一个,它为(10,20);当66x =时,对应的和谐数对有二个,它们是__________.当对应的和谐数对(,)y z 有三个时,请写出此时x 的范围_______.(3876)(3381)【分析】根据和谐数对的定义求出当x=66时的两组数对;再分当时当时当时三种情况讨论从而得出结论【详解】解:当时180-66=114则114÷3=3838×2=76此时和谐数对解析:(38,76),(33,81) 060x ︒<<︒【分析】根据“和谐数对”的定义求出当x=66时的两组数对;再分当060x ︒<<︒时,当60120x ︒<︒时,当120180x ︒<︒时,三种情况讨论,从而得出结论.【详解】解:当66x =时,180-66=114,则114÷3=38,38×2=76,此时和谐数对为(38,76),或66÷2=33,114-33=81,此时和谐数对为(33,81),若对应的和谐数对(,)y z 有三个,当060x ︒<<︒时,它的和谐数对有(1803,2)x x ︒-,3(,180)22x x ︒-,180(3x ︒-,2(180))3x ︒-; 当60120x ︒<︒时,它的和谐数对有3(,180)22x x ︒-,180(3x ︒-,2(180))3x ︒-, 当120180x ︒<︒时,它的和谐数对有180(3x ︒-,2(180))3x ︒-, ∴对应的和谐数对(,)y z 有三个时,此时x 的范围是060x ︒<<︒,故答案为:(38,76),(33,81);060x ︒<<︒.【点睛】本题考查三角形内角和定理,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.14.七边形的外角和为________.360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°∴七边形的外角和为360°故答案为:360°【点睛】本题考查了多边形的外角的性质掌握多边形的外角和等于36 解析:360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵ 多边形的外角和都是360°,∴七边形的外角和为360°,故答案为:360°.【点睛】本题考查了多边形的外角的性质,掌握多边形的外角和等于360°是解题的关键; 15.用边长相等的正三角形和正六边形铺满地面,一个结点周围有m 块正三角形,n 块正六边形,则m+n =______.4或5【分析】先求出正三角形和正六边形的内角大小然后列出关于mn 的二元一次方程然后确定mn 的值最后求m+n 即可【详解】解:∵正三边形和正六边形内角分别为60°120°∴60°m+120°n=360°解析:4或5【分析】先求出正三角形和正六边形的内角大小,然后列出关于m 、n 的二元一次方程,然后确定m 、n 的值,最后求m+n 即可.【详解】解:∵正三边形和正六边形内角分别为60°、120°∴60°m+120°n=360°,即m+2n=6∴当n=1时,m=4;当n=2时,m=2;∴m+n=5或m+n=4.故答案为:4或5.【点睛】本主要考查了正多边形的组合能否进行平面镶嵌,掌握位于同一顶点处的几个角之和能否为360°成为解答本题的关键.16.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.5°【分析】根据角平分线的定义可得再根据折叠的性质可得再根据平分可得进而可得【详解】解:∵的角平分线为∴又∵与关于对称∴∵与关于对称∴又∵平分∴又∵为折痕∴∵∴又∵∴∴又∵∴故答案为:675°【点睛解析:5°.【分析】根据角平分线的定义可得1FBE ∠=∠,再根据折叠的性质可得1MBF FBE ∠=∠=∠,NBF FBD ∠=∠,CBA CBF ∠=∠, 再根据BN 平分CBM ∠可得CBN NBM ∠=∠,进而可得318067.58ABC ∠=⨯=. 【详解】解:∵FBD ∠的角平分线为BE ,∴1FBE ∠=∠, 又∵BM 与BE 关于BF 对称,∴1MBF FBE ∠=∠=∠, ∵BN 与BD 关于BF 对称,∴NBF FBD ∠=∠FBE EBD =∠+∠11=∠+∠21=∠,又∵BN 平分CBM ∠,∴CBN NBM ∠=∠,又∵BC 为折痕,∴CBA CBF ∠=∠CBN NBF =∠+∠21NBM =∠+∠,∵NBM NBF MBF ∠=∠-∠211=∠=∠1=∠,∴31CBA ∠=∠,又∵180CBA CBF FBD ∠+∠+∠=,∴3112121180∠+∠+∠+∠=,∴81180∠=,又∵31ABC ∠=∠,∴318067.58ABC ∠=⨯=, 故答案为:67.5°.【点睛】本题考查了折叠的性质,角平分线的定义,平角的定义,解题的关键是理解题意,找到31808ABC ∠=⨯. 17.如图,在ABC 中,已知66ABC ∠=︒,54ACB ∠=︒,BE 是AC 上的高,CF 是AB 上的高,H 是BE 和CF 的交点,EHF ∠的度数是________.120°【分析】先根据三角形内角和定理求出∠A 的度数再根据CF是AB 上的高得出∠ACF 的度数再由三角形外角的性质即可得出结论【详解】解:∵∠ABC=66°∠ACB=54°∴∠A=60°∵CF 是AB 上解析:120°【分析】先根据三角形内角和定理求出∠A 的度数,再根据CF 是AB 上的高得出∠ACF 的度数,再由三角形外角的性质即可得出结论.【详解】解:∵∠ABC=66°,∠ACB=54°,∴∠A=60°,∵CF 是AB 上的高,∴在△ACF 中,∠ACF=180°-∠AFC-∠A=30°,在△CEH 中,∠ACF=30°,∠CEH=90°,∴∠EHF=∠ACF+∠CEH=30°+90°=120°.故答案为120°.【点睛】 本题考查的是三角形内角和定理及三角形外角的性质、三角形的高线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.如图,把ABC 折叠,点B 落在P 点位置,若12120∠+∠=︒,则B ∠=______.60°【分析】先根据折叠的性质得∠3=∠4∠5=∠6再利用平角的定义得∠3+∠4+∠1=180°∠5+∠6+∠2=180°根据等式的性质得到2∠4+∠1+2∠6=360°把∠1+∠2=120°代入得解析:60°【分析】先根据折叠的性质得∠3=∠4,∠5=∠6,再利用平角的定义得∠3+∠4+∠1=180°,∠5+∠6+∠2=180°,根据等式的性质得到2∠4+∠1+2∠6=360°,把∠1+∠2=120°代入得到∠4+∠6=120°,然后根据三角形内角和定理可计算出∠B的度数.【详解】∵把△ABC的∠B折叠,点B落在P的位置,∴∠3=∠4,∠5=∠6,∵∠3+∠4+∠1=180°,∠5+∠6+∠2=180°,∴2∠4+∠1+∠2+2∠6=360°,而∠1+∠2=120°,∴∠4+∠6=120°,∵∠4+∠6+∠B=180°,∴∠B=180°−120°=60°.故答案为60°.【点睛】本题考查了三角形内角和定理,也考查了折叠的性质,“数形结合”是关键.19.如图,△ABC中,D为BC边上的一点,BD:DC=2:3,△ABC的面积为10,则△ABD 的面积是_________________4【分析】利用面积公式可得出△ABD与△ABC等高只需求出BD与BC的比值即可求出三角形ABD的面积【详解】解:∵BD:DC=2:3∴BD=BC△ABD的面积=BD•h=× BC•h=△ABC的面积解析:4【分析】利用面积公式可得出△ABD与△ABC等高,只需求出BD与BC的比值即可求出三角形ABD 的面积.【详解】解:∵BD:DC=2:3,∴BD=25BC.△ABD的面积=12BD•h=12×25BC•h=25△ABC的面积=25×10=4.故答案为:4.【点睛】本题考查了三角形面积公式以及根据公式计算三角形面积的能力.20.把一副直角三角板按如图所示的方式摆放在一起,其中90∠,90C=∠=,F∠+∠等于___________度.∠=,则12A∠=,4530D210【分析】由题意得:∠1=∠D+∠DGA∠2=∠F+∠FHB然后由对顶角相等的性质得∠1=∠D+CGH∠2=∠F+∠CHG最后由直角三角形两锐角互余的性质可以算出∠1+∠2的值【详解】解:如图给解析:210【分析】由题意得:∠1=∠D+∠DGA,∠2=∠F+∠FHB,然后由对顶角相等的性质得∠1=∠D+CGH,∠2=∠F+∠CHG,最后由直角三角形两锐角互余的性质可以算出∠1+∠2的值.【详解】解:如图,给两三角板的两个交点标上G、H符号,则∠1=∠D+∠DGA=∠D+CGH,∠2=∠F+∠FHB=∠F+∠CHG,∴∠1+∠2=∠D+CGH+∠F+∠CHG=∠D+∠F+(CGH+∠CHG)=30°+90°+90°=210°,故答案为210 .【点睛】本题考查直角三角形的应用,灵活运用直角三角形两锐角互余、三角形的外角性质和对顶角相等的定理求解是解题关键.三、解答题⊥于E,已知21.如图,ABC中,AD平分BAC∠,P为AD延长线上一点,PE BC∠=︒,2480ACB∠的度数.B∠=︒,求P解析:28°【分析】在△ABC 中,利用三角形内角和定理可求出∠BAC 的度数,结合角平分线的定义可得出∠BAD 的度数,在△ABD 中,利用三角形外角性质可求出∠PDE 的度数,再在△PDE 中利用三角形内角和定理可求出∠P 的度数.【详解】解:在ABC 中,80ACB ∠=︒,24B ∠=︒,18076BAC ACB B ∴∠=︒-∠-∠=︒. AD 平分BAC ∠, 1382BAD BAC ∴∠=∠=︒. PDE ∠是ABD △的外角,243862PDE B BAD ∴∠=∠+∠=︒+︒=︒,PE BC ⊥于E ,90PED ∴∠=︒,906228P ∴∠=︒-︒=︒.【点睛】本题考查了三角形内角和定理、角平分线的定义以及对顶角,利用三角形内角和定理及角平分线的定义,求出∠ADC 的度数是解题的关键.22.如图,已知长方形ABCD 中,10cm AD =,6cm DC =,点F 是DC 的中点,点E 从A 点出发在AD 上以每秒1cm 的速度向D 点运动,运动时间设为t 秒.(假定0t 10<<)(1)当5t =秒时,求阴影部分(即三角形BEF )的面积;(2)用含t 的式子表示阴影部分的面积;并求出当三角形EDF 的面积等于3时,阴影部分的面积是多少?(3)过点E 作//EG AB 交BF 于点G ,过点F 作//FH BC 交BE 于点H ,请直接写出在E 点运动过程中,EG 和FH 的数量关系.解析:(1)4522cm ;(2)23302t cm ⎛⎫- ⎪⎝⎭;218cm ;(3)53EG FH = 【分析】(1)由长方形的性质得出10cm BC AD ==,6cm AB DC ==,由5t =得AE=5,DE=10-5=5,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形即可求解;(2)由题意得AE=t ,DE=10-t ,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形表示出阴影部分的面积;由12EDF S DE DF =⋅△求出t 的值,代入计算即可; (3)由长方形ABCD 得AD CD ⊥,根据平行线的性质得EG HF ⊥,根据平行线间的距离相等可得DE ,AE ,DF ,CF 分别等于,,,EGF EGB EHF BHF △△△△的高,由BEF S的面积即可得出结论.【详解】解:(1)∵长方形ABCD 中,10cm AD =,6cm DC =,∴10cm BC AD ==,6cm AB DC ==,∵点F 是DC 的中点,∴3cm DF CF ==,当5t =秒时,AE=5cm ,DE=10-5=5 cm ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()()1111066510353222⨯-⨯-⨯-⨯ =156015152--- =4522cm ; (2)由题意得AE=t ,DE=10-t , ∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()1111066103310222t t ⨯-⨯-⨯-⨯⨯- =360315152t t ---+=3302t -, ∴用含t 的式子表示阴影部分的面积为:23302t cm ⎛⎫-⎪⎝⎭;当三角形EDF 的面积等于3时,12EDF S DE DF =⋅△=()13102t ⨯⨯-=3, 解得:8t =, 8t =时,38=30=182S ⨯-阴影2cm ; (3)∵长方形ABCD ∴AD CD ⊥,//,//AB CD AD BC ,∵//EG AB ,//FH BC ,∴EG HF ⊥,,AD EG CD HF ⊥⊥,∴DE ,AE 分别等于,EGF EGB △△的EG 边上的高,DF ,CF 分别等于,EHF BHF △△的FH 边上的高,∴11112222BEF S EG DE EG AE HF DF HF CF =⋅+⋅=⋅+⋅△, ∴()()1122EG DE AE HF DF CF +=+,即EG AD HF CD ⋅=⋅, ∵10cm AD =,6cm DC =,∴106EG HF =,即53EG FH =.【点睛】本题是一个动点问题,考查了平行线间的距离,三角形面积的计算,解题的关键是熟练掌握平行线的性质和三角形面积的计算方法.23.如图,AF ,AD 分别是ABC 的高和角平分线,且34B ∠=︒,76C ∠=︒,求DAF ∠的度数.解析:21︒【分析】运用三角形的内角和定理即可求出∠BAC 的度数;根据角平分线的定义、三角形的内角和定理的推论以及直角三角形的两个锐角互余即可求出∠FAC 的度数,再由DAF DAC FAC =-∠∠∠即可得出结论.【详解】解:∵AF 是ABC 的高,∴90AFC ∠=︒,∴90907614FAC C ∠=︒-∠=︒-︒=︒,∵180BAC B C ∠+∠+∠=︒,∴180180763470BAC B C ∠=︒-∠-∠=︒-︒-︒=︒,∵AD 是ABC 的角平分线, ∴11703522DAC BAC ==⨯︒=∠∠︒, ∴21DAF DAC FAC =-∠=∠∠︒.【点睛】 本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键. 24.()1若n 边形的内角和等于它外角和的3倍,求边数n .()2已知a ,b ,c 为三角形三边的长,化简:a b c b c a --+--.解析:()18;()22c .【分析】(1)根据多边形的内角和与外角和公式列出方程即可求解;(2)根据三角形的三边关系可得a c b +>,b c a +>,再根据化简绝对值的方法即可求解.【详解】解:()1由题意得:()18023603n ︒-=︒⨯,解得:8n =.()2∵a ,b ,c 为三角形三边的长,∴a c b +>,b c a +>, ∴a b c b c a --+--()()2a b c b c a b c a a c b c =-++-+=+-++-=.【点睛】此题主要考查多边形的内角和与外角和、三角形的三边关系的应用,解题的关键是熟知多边形的性质及去绝对值的方法.25.如果一个n 边形的内角都相等,且它的每一个外角与内角的比为2:5,求这个多边形的边数n .解析:7【分析】先根据外角与内角的比为2:5,求出每个外角度数,再依据外角和360°求边数n .【详解】解:因为多边形的每一个外角与内角之和为180°,所以每个外角度数为180°27⨯=(3607)°. 又n 边形每个内角度数相等,则每个外角度数也相等, 根据多边形外角和360°,可得n =3603607÷=7.答:这个多边形的边数n是7.【点睛】本题主要考查多边形的内角和外角关系以及多边形外角和,运用外角计算边数是这一类题的通用方法.26.已知,a,b,c为ABC的三边,化简|a﹣b﹣c|﹣2|b﹣c﹣a|+|a+b﹣c|.解析:﹣2a+4b﹣2c【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负值,然后去绝对值进行计算即可.【详解】解:∵a,b,c为ABC的三边,∴a+b>c,b+c>a,a+c>b∴|a﹣b﹣c|﹣2|b﹣c﹣a|+|a+b﹣c|=|a-(b+c)|-2|b-(c+a)|+ |a+b﹣c|=﹣[a﹣(b+c)]+2[b﹣(c+a)]+(a+b﹣c)=-a+(b+c)+2b-2(c+a)+a+b-c=﹣a+b+c+2b﹣2c﹣2a+a+b﹣c=﹣2a+4b﹣2c.【点睛】此题主要考查了三角形三边关系,以及绝对值的性质,关键是掌握三边关系定理.27.如图,A、O、B三点在同一直线上,OE,OF分别是∠BOC与∠AOC的平分线.求:(1)当∠BOC=30°时,∠EOF的度数;(2)当∠BOC=60°时,∠EOF等于多少度?(3)当∠BOC=n°时,∠EOF等于多少度?(4)观察图形特点,你能发现什么规律?解析:(1)∠EOF=90°;(2)∠EOF=90°;(3)∠EOF=90°;(4)∠EOF的度数与∠BOC 的大小无关,互为邻补角的两个角的角平分线所组成的角是一个直角.【分析】根据∠BOC求得∠AOC,再由∠BOC和∠AOC的角平分线,即可求得;【详解】解:(1)∵∠BOC=30°,∴∠AOC=180°-30°=150°,∵OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC=15°,∠COF=12∠COA=75°,∴∠EOF=75°+15°=90°;(2)∵∠BOC=60°,∴∠AOC=180°-60°=120°,∵OE 平分∠BOC ,OF 平分∠AOC ,∴∠EOC=12∠BOC=30°,∠COF=12∠COA=60°, ∴∠EOF=60°+30°=90°;(3)∵∠BOC=n ,∴∠AOC=180°-n ,OE 平分∠BOC ,OF 平分∠AOC ,∴∠EOC=12∠BOC=90°-12n ,∠COF=12∠COA=12n , ∴∠EOF=90°-12n+12n=90°; (4)∠EOF 的度数与∠BOC 的大小无关,互为邻补角的两个角的角平分线所组成的角是一个直角.【点睛】本题考查角平分线和规律的总结与归纳,掌握角平分线的性质是解题的关键.28.如图,是A 、B 、C 三个村庄的平面图,已知B 村在A 村的南偏西65°方向,C 村在A 村的南偏东15°方向,C 村在B 村的北偏东85°方向,求从C 村观测A 、B 两村的视角ACB ∠的度数.解析:80ACB ∠=︒【分析】根据平行线的性质以及三角形内角和定理即可得到结论.【详解】解:由已知,265∠=︒,315∠=︒,85DBC ∠=︒∵//BD AE∴1265∠=∠=︒∴41856520DBC ∠=∠-∠=︒-︒=︒在ABC 中18018065152080ACB ABC BAC ∠=︒-∠-∠=︒-︒-︒-︒=︒【点睛】本题考查的是方向角的概念,平行线的性质以及三角形内角和定理,熟练掌握三角形的内角和是解答此题的关键.。

第十一章三角形知识点整理

第十一章三角形知识点整理

第十一章三角形知识点整理
第十一章三角形知识点整理:
1、三角形的定义:三角形是由三条相交的直线所组成的多边形,它有两个内角加上一个外角,两边加起来等于另外一边。

2、直角三角形:直角三角形是指其中的一个内角是90度的三角形,它的三边长等于斜边的平方,斜边的计算公式是
“a^2=b^2+c^2”。

3、等腰三角形:等腰三角形是指其中两条边等长,其它一边为斜边的三角形,其它两边等于斜边的一半,斜边等于其它两边的平方和。

4、等边三角形:等边三角形是指三边都是等长的三角形,其三个内角都是60度,正三角形就是这种类型的三角形,边长可以通过“a=√3s/2”公式求出。

5、旋转三角形:旋转三角形是指三角形中某一边可以旋转形成另一种新的三角形,其计算公式是“a^2+b^2=2abcos(α)”。

6、三角形的周长和面积:三角形的周长是指三角形三条边之和,其计算公式是“P=a+b+c”,三角形的面积则可以通过海伦公式求出,其计算公式是“S=√p(p-a)(p-b)(p-c)”。

人教版八年级数学上册知识点归纳(填空形式)

人教版八年级数学上册知识点归纳(填空形式)

第十一章全等三角形11.1全等三角形(1)____、______相同的图形能够完全重合;(2)全等形:能够___________的两个图形叫做全等形;(3)全等三角形:能够完全重合的两个三角形叫做全等三角形;(4)_____、_____、______前后的图形全等;(5)对应顶点:全等三角形中______的顶点叫做对应顶点;(6)对应角:全等三角形中________的角叫做对应角;(7)对应边:全等三角形中_________的边叫做对应边;(8)全等表示方法:用“ ”表示,读作“全等于”(注意:记两个三角形全等时,把表示_____顶点的字母写在_______的位置上)(9)全等三角形的性质:①全等三角形的_______相等;②全等三角形的________相等;11.2三角形全等的判定(1)若满足一个条件或两个条件均不能保证两个三角形一定全等;(2)三角形全等的判定:①________对应相等的两个三角形全等;(“边边边”或“SS”S)②________________对应相等的两个三角形全等;(“边角边”或“SAS”)③_____________对应相等的两个三角形全等;(“角边角”或“ASA”)④_________________对应相等的两个三角形全等;(“角角边”或“AAS”)⑤_________________对应相等的两个直角三角形全等;(“斜边直角边”或“HL”)(3)证明三角形全等:判断两个三角形全等的推理过程;(4)经常利用证明三角形_________来证明三角形的边或角相等;(5)三角形的稳定性:三角形的三边确定了,则这个三角形的______、______就确定了;(用“SSS”解释)11.3角的平分线的性质(1)角的平分线的作法:(2)角的平分线的性质定理:角的平分线上的点到_________________________________相等;(3)证明一个几何中的命题,一般步骤:①明确命题中的___________和______________;②根据题意,画出____________,并用数学符号表示已知和求证;③经过分析,找出由已知推出求证的途径,写出__________________;(4)性质定理的逆定理:________________到角两边的__________________的点在角的平分线上;(利用三角形全等来解释)(5)三角形的三条角平分线__________________该点为内心;第十二章轴对称12.1轴对称(1)轴对称图形:如果一个图形沿______折叠,直线两旁的部分能够_______合,那么就称这个图形是轴对称图形;这条直线叫做它的_______;也称这个图形关于这条直线对称;(2)两个图形关于这条直线对称:一个图形沿______折叠,如果它能够与_________重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做________;(3)轴对称图形与两个图形成轴对称的区别:轴对称图形是指_________沿对称轴折叠后这个图形的_____部分能完全重合;而两个图形成轴对称指的是_______图形之间的位置关系,这两个图形沿对称轴折叠后能够重合;(4)轴对称图形与两个图形成轴对称的联系:把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称;把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。

(人教版)南京八年级数学上册第十一章《三角形》知识点总结

(人教版)南京八年级数学上册第十一章《三角形》知识点总结

一、选择题1.下列四组线段中,不可以构成三角形的是()A.4,5,6 B.1.5,2,2.5 C.13,14,15D.1,2,3D解析:D【分析】计算较小两边的和,与最大的边比较,大于最大的边时三角形存在,依此判断即可.【详解】∵4+5>6,∴能构成三角形;∵1.5+2>2.5,∴能构成三角形;∵14+15>13,∴能构成三角形;∵1+2<1+2=3,∴不能构成三角形;故选D.【点睛】本题考查了已知线段长判断三角形的存在,熟记三角形存在的条件是解题的关键.2.如图,ABC中,BC边上的高是()A.AE B.AD C.CD D.CF B解析:B【分析】根据从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,确定出答案即可.【详解】由图可知,过点A作BC的垂线段AD,则ABC中,BC边上的高是AD.故选:B【点睛】本题主要考查了三角形的高的定义,熟记概念是解题的关键.3.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A .20米B .15米C .10米D .5米D解析:D【分析】 连接AB ,根据三角形三边的数量关系得到AB 长的范围,即可得出结果.【详解】解:如图,连接AB ,∵15AO m =,10OB m =,∴15101510AB -<<+,即525AB <<.故选:D .【点睛】本题考查三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边的性质.4.内角和与外角和相等的多边形是( )A .六边形B .五边形C .四边形D .三角形C解析:C【分析】设这个多边形为n 边形,根据题意列出方程,解方程即可求解.【详解】解:设这个多边形为n 边形,由题意得(n-2)180°=360°,解得n=4,所以这个多边形是四边形.故选:C【点睛】本题考查多边形的内角和公式,多边形的外角和360°,熟知两个定理是解题关键. 5.如图,在五边形ABCDE 中,AB ∥CD ,∠A =135°,∠C =60°,∠D =150°,则∠E 的大小为( )A .60°B .65°C .70°D .75°D解析:D【分析】 先根据多边形的内角和公式求出五边形的内角和,根据AB ∥CD 得到∠B+∠C=180°,即可求出∠E 的大小.【详解】解:由五边形的内角和公式得(5-2)×180°=540°,∵AB ∥CD ,∴∠B+∠C=180°,∴∠E=540°-∠A-∠B-∠C-∠D=540°-135°-180°-150°=75°.故选:D【点睛】本题考查了多边形的内角和公式,平行线的性质,熟练掌握多边形的内角和公式是解题关键.6.设四边形的内角和等于,a 五边形的外角和等于,b 则a 与b 的关系是( ) A .a b =B .120a b =+C .180b a =+︒D .360b a =+︒A 解析:A【分析】根据多边形的内角和定理与多边形外角和即可得出结论.【详解】解:∵四边形的内角和等于a ,∴a=(4-2)•180°=360°.∵五边形的外角和等于b ,∴b=360°,∴a=b .故选:A .【点睛】本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键. 7.如图,小明从点A 出发沿直线前进9米到达点,B 向左转45后又沿直线前进9米到达点C ,再向左转45后沿直线前进9米到达点D ……照这样走下去,小明第一次回到出发点A 时所走的路程为( )A.72米B.80米C.100米D.64米A解析:A【分析】根据题意,小明走过的路程是正多边形,先用360°除以45°求出边数,然后再乘以9米即可.【详解】解:∵小明每次都是沿直线前进9米后向左转45度,∴他走过的图形是正多边形,∴边数n=360°÷45°=8,∴他第一次回到出发点A时,一共走了8×9=72(m).故选:A.【点睛】本题考查了正多边形的边数的求法,多边形的外角和为360°;根据题意判断出小明走过的图形是正多边形是解题的关键.的边AC上的高是()8.如图所示,ABCA.线段AE B.线段BA C.线段BD D.线段DA C解析:C【分析】根据三角形的高解答即可,三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.【详解】A.线段AE是△ABC的边BC上的高,故不符合题意;B.线段BA不是任何边上的高,故不符合题意;C.线段BD是△ABC的边AC边上的高,故符合题意;D.线段DA 是△ABD 的边BD 上的高,故不符合题意;故选C .【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.9.做一个三角形的木架,以下四组木棒中,符合条件的是( )A .3cm,2cm,1cmB .3cm,4cm,5cmC .6cm,6cm,12cmD .5cm,12cm,6cm B解析:B【分析】三角形的任意两边的和大于第三边,根据三角形的三边关系就可以求解.【详解】解:根据三角形的三边关系,知:A 中,1+2=3,排除;B 中,3+4>5,可以;C 中,6+6=12,排除;D 中,5+6<12,排除.故选:B .【点睛】本题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.10.如图,105DBA ∠=︒,125ECA ∠=︒,则A ∠的度数是( )A .75°B .60°C .55°D .50°D解析:D【分析】 根据邻补角的定义可求得ABC ∠和ACB ∠,再根据三角形内角和为180°即可求出A ∠.【详解】解:105DBA ∠=︒,125ECA ∠=︒,18010575ABC ∴∠=︒-︒=︒,18012555ACB ∠=︒-︒=︒.180755550A ∴∠=︒-︒-︒=︒.故选D .【点睛】本题考查了邻补角和三角形内角和定理,识记三角形内角和为180°是解题的关键.二、填空题11.如图,BF平分∠ABD,CE平分∠ACD,BF与CE交于G,若∠=︒∠=︒,则∠A的度数为_________.BDC BGC130,9050°【分析】连接BC根据三角形内角和定理可求得∠DBC+∠DCB的度数再利用三角形内角和定理及角平分线的定义可求得∠ABC +∠ACB的度数即可求得∠A的度数【详解】解:连接BC∵∠BDC=130°解析:50°【分析】连接BC,根据三角形内角和定理可求得∠DBC+∠DCB的度数,再利用三角形内角和定理及角平分线的定义可求得∠ABC+∠ACB的度数,即可求得∠A的度数.【详解】解:连接BC,∵∠BDC=130°,∴∠DBC+∠DCB=180°−∠BDC=50°,∵∠BGC=90°,∴∠GBC+∠GCB=180°−∠BGC=90°,∴∠GBD+∠GCD=(∠GBC+∠GCB)−(∠DBC+∠DCB)=40°,∵BF平分∠ABD,CE平分∠ACD,∴∠ABD+∠ACD=2∠GBD+2∠GCD=80°,∴∠ABC+∠ACB=(∠ABD+∠ACD)+(∠DBC+∠DCB)=130°,∴∠A=180°−(∠ABC+∠ACB)=180°−130°=50°.故答案为:50°.【点睛】本题主要考查了与角平分线有关的三角形内角和问题,根据题意作出辅助线,构造出三角形是解答此题的关键.12.已知ABC的三边长分别为a,b,c,则a b c b c a c a b --+--+-+=______.【分析】三角形三边满足的条件是:两边和大于第三边两边的差小于第三边根据此条件来确定绝对值内的式子的正负从而化简计算即可【详解】解:∵△ABC 的三边长分别是abc ∴必须满足两边之和大于第三边两边的差小解析:3c b a +-【分析】三角形三边满足的条件是:两边和大于第三边,两边的差小于第三边,根据此条件来确定绝对值内的式子的正负,从而化简计算即可.【详解】解:∵△ABC 的三边长分别是a 、b 、c ,∴必须满足两边之和大于第三边,两边的差小于第三边,∴0,0,0a b c b c a c a b --<--<-+>,∴a b c b c a c a b --+--+-+=()()()a b c b c a c a b ------+-+=++++a b c b c a c a b --+-+=3c b a +-故答案为:3c b a +-.【点睛】此题考查了三角形三边关系,此题的关键是先根据三角形三边的关系来判定绝对值内式子的正负.13.如图,将纸片ABC 沿DE 折叠,点A 落在点P 处,已知12124+∠=∠︒,A ∠=___________.【分析】根据折叠得到由此得到利用计算得出再根据三角形的内角和定理求出结果【详解】解:∵∴∴∵∴∴故答案为:【点睛】此题考查折叠的性质三角形内角和定理正确理解折叠的性质得到对应角相等是解题的关键解析:62︒.【分析】根据折叠得到ADE EDP ∠=∠,AED DEP ∠=∠,由此得到122()360ADE AED ∠+∠+∠+∠=︒,利用12124+∠=∠︒,计算得出118ADE AED ∠+∠=︒,再根据三角形的内角和定理求出结果.【详解】解:∵ADE EDP ∠=∠,AED DEP ∠=∠,∴1222180180ADE AED ∠+∠+∠+∠+︒=︒,∴122()360ADE AED ∠+∠+∠+∠=︒,∵12124+∠=∠︒,∴118ADE AED ∠+∠=︒,∴180()62A ADE AED ∠=︒-∠+∠=︒.故答案为:62︒.【点睛】此题考查折叠的性质,三角形内角和定理,正确理解折叠的性质得到对应角相等是解题的关键.14.如图所示,在ABC 中,80A ∠=︒,延长BC 到D ,ABC ∠与ACD ∠的平分线相交于1A 点,1A BC ∠与1A CD ∠的平分线相交于A 点,依此类推,4A BC ∠与4A CD ∠的平分线相交于5A 点,则5A ∠的度数是_________.5度【分析】由∠A1CD=∠A1+∠A1BC ∠ACD=∠ABC+∠A 而A1BA1C 分别平分∠ABC 和∠ACD 得到∠ACD=2∠A1CD ∠ABC=2∠A1BC 于是有∠A=2∠A1同理可得∠A1=2∠A 解析:5度【分析】由∠A 1CD=∠A 1+∠A 1BC ,∠ACD=∠ABC+∠A ,而A 1B 、A 1C 分别平分∠ABC 和∠ACD ,得到∠ACD=2∠A 1CD ,∠ABC=2∠A 1BC ,于是有∠A=2∠A 1,同理可得∠A 1=2∠A 2,即∠A=22∠A 2,因此推出∠A=25∠A 5,而∠A=80°,即可求出∠A 5.【详解】解:∵A 1B 、A 1C 分别平分∠ABC 和∠ACD ,∴∠ACD=2∠A 1CD ,∠ABC=2∠A 1BC ,∵∠A 1CD=∠A 1+∠A 1BC ,∠ACD=∠ABC+∠A ,∴∠A=2∠A 1同理可得∠A 1=2∠A 2,即∠A=22∠A 2,…,∴∠A=25∠A 5,∵∠A=80°,∴∠A 5=80°÷32=2.5°.故答案为:2.5°.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了三角形的外角性质以及角平分线性质.15.如图,,AE AD 分别是△ABC 的高和角平分线,且6B 3︒∠=,6C 7︒∠=则DAE ∠的度数为__.20°【分析】根据高线的定义以及角平分线的定义分别得出∠CAD=34°进而得出∠CAE 的度数进而得出答案【详解】解:∵且∴∵平分∴∵是的高∴∴∴∴故答案为:20°【点睛】此题考查三角形的角平分线中线解析:20°【分析】根据高线的定义以及角平分线的定义分别得出68BAC ︒∠=,∠CAD =34°,进而得出∠CAE 的度数,进而得出答案.【详解】解:∵180B BAC C ︒∠+∠+∠=,且6B 3︒∠=,6C 7︒∠=,∴180180367668BAC B C ︒︒︒︒︒∠=-∠-∠=--=,∵AD 平分BAC ∠, ∴11683422CAD BAC ︒︒∠=∠=⨯=, ∵AE 是ABC ∆的高, ∴90AEC ︒∠=,∴90C CAE ︒∠+∠=,∴90907614CAE C ︒︒︒︒∠=-∠=-=,∴341420DAE CAD CAE ︒︒︒∠=∠-∠=-=,故答案为:20°.【点睛】此题考查三角形的角平分线、中线和高,三角形内角和定理,解题关键在于掌握各性质定义.16.如图,在ABC ∆中,4ACB A ∠=∠,点D 在边AC 上,将BDA ∆沿BD 折叠,点A 落在点A '处,恰好BA AC '⊥于点E 且//BC DA ',则BDC ∠的度数为__________度.54°【分析】根据折叠的性质及题意可在Rt △BEC中求解∠C 及∠CBE 的度数从而计算∠ABD 的度数则∠BDC=∠A+∠ABD 即可计算出结果【详解】由题意可得:∠A=∠∠=∠CBE ∴则在Rt △BEC 中 解析:54°【分析】根据折叠的性质及题意,可在Rt △BEC 中求解∠C 及∠CBE 的度数,从而计算∠ABD 的度数,则∠BDC=∠A+∠ABD ,即可计算出结果.【详解】由题意可得:∠A=∠A ',∠A '=∠CBE ,∴44ACB A CBE ∠=∠=∠,则在Rt △BEC 中,∠C+∠CBE=90°,即:5∠CBE=90°,∠CBE=18°,∴∠A=18°,∠C=72°,∠ABC=90°,∴72ABA ABC CBE '=-=︒∠∠∠,由折叠性质可知,ABD A BD '∠=∠,∴=36ABD A BD '∠=∠︒,∴54BDC ABD A ∠=∠+∠=︒故答案为:54°.【点睛】本体三角形的折叠问题,平行线的性质及三角形的外角定理,理解图形变化中的特点,准确结合题意计算是解题关键.17.如图,在ABC 中,80B ∠=︒,BAC ∠和BCD ∠的平分线交于点E ,则E ∠的度数是______.40°【分析】根据角平分线的性质可得∠EAC=∠BAC ∠ECD=∠BCD 最后根据三角形外角的性质解答即可【详解】解:∵∠BAC 的平分线与∠BCD 的平分线交于点E ∴∠EAC=∠BAC ∠ECD=∠BCD 解析:40°【分析】根据角平分线的性质可得∠EAC=12∠BAC,∠ECD=12∠BCD,最后根据三角形外角的性质解答即可.【详解】解:∵∠BAC的平分线与∠BCD的平分线交于点E,∴∠EAC=12∠BAC,∠ECD=12∠BCD,∵∠BCD-∠BAC=∠B=80°,∴∠ECD-∠EAC=12(∠BCD-∠BAC)=40°,∵E是△ACE的外角∴∠E=∠ECD-∠EAC=40°.故答案为40°.【点睛】本题主要考查了三角形内角和定理、角平分线的定义以及三角形的外角的性质等知识点,灵活利用三角形外角的性质是解答本题的关键.18.如图,已知∠A=47°,∠B=38°,∠C=25°,则∠BDC的度数是______.110°【分析】连接AD并延长根据三角殂的外角性质分别表示出∠3和∠4因为∠BDC是∠3和∠4的和从而不难求得∠BDC的度数【详解】解:连接AD并延长∵∠3=∠1+∠B∠4=∠2+∠C∴∠BDC=∠解析:110°【分析】连接AD,并延长,根据三角殂的外角性质分别表示出∠3和∠4,因为∠BDC是∠3和∠4的和,从而不难求得∠BDC的度数.【详解】解:连接AD,并延长.∵∠3=∠1+∠B,∠4=∠2+∠C.∴∠BDC=∠3+∠4=(∠1+∠B)+(∠2+∠C)=∠B+∠BAC+∠C.∵∠A=47°,∠B=38°,∠C=25°.∴∠BDC=47°+38°+25°=110°,故答案为:110°.【点睛】本题考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.∆的高线和中线,则线段AM,AN的大小关系是19.若线段AM,AN分别是ABCAM_______AN(用“≤”,“≥”或“=”填空).;【分析】根据三角形的高的概念得到AM⊥BC根据垂线段最短判断【详解】解:如图∵线段AM是△ABC边BC上的高∴AM⊥BC由垂线段最短可知AN≥AM故答案为:【点睛】本题考查的是中线和高的概念掌握垂解析:≤;【分析】根据三角形的高的概念得到AM⊥BC,根据垂线段最短判断.【详解】解:如图,∵线段AM是△ABC边BC上的高,∴AM⊥BC,由垂线段最短可知,AN≥AM,故答案为:≤.【点睛】本题考查的是中线和高的概念,掌握垂线段最短是解题的关键.20.如图,在ABC中,E、D、F分别是AD、BF、CE的中点,若DEF的面积S=______.是1,则ABC7【分析】连接CDBEAF由三角形中线等分三角形的面积求得S△AEC=2S△DEFS△ABD=2S△DEFS△BFC=2S△DEF由S△ABC=S△AEC+S△ABD+S△BFC+S△DEF即可得出解析:7【分析】连接CD,BE,AF,由三角形中线等分三角形的面积,求得S△AEC=2S△DEF,S△ABD=2S△DEF,S△BFC=2S△DEF,由S△ABC=S△AEC+S△ABD+S△BFC+S△DEF即可得出结果.【详解】解:连接CD,BE,AF,如图所示:∵AE=ED ,由三角形中线等分三角形的面积,可得S △AEF =S △DEF ,同理S △AEF =S △AFC ,∴S △AEC =2S △DEF ;同理可得:S △ABD =2S △DEF ,S △BFC =2S △DEF ,∴△ABC =S △AEC +S △ABD +S △BFC +S △DEF =2S △DEF +2S △DEF +2S △DEF +S △DEF =7S △DEF =7cm 2,故答案为:7.【点睛】本题是面积及等积变换综合题目,考查了三角形的面积及等积变换,解答关键是通过作辅助线,运用三角形中线等分三角形的面积得出结果.三、解答题21.如图,已知在ABC 中,CE 是外角ACD ∠的平分线,BE 是ABC ∠的平分线.(1)求证:2A E ∠=∠.(2)若A ABC ∠=∠,求证://AB CE .解析:(1)证明见解析;(2)证明见解析.【分析】(1)根据角平分线的性质和三角形的外角性质即可求证;(2)由∠A=2∠E ,∠A=∠ABC ,∠ABC=2∠ABE 得∠ABE=∠E ,从而AB ∥CE .【详解】证明:(1)∵ACD ∠是ABC 的一个外角,2∠是BCE 的一个外角,∴ACD ABC A ∠=∠+∠,21E ∠=∠+∠,∴A ACD ABC ∠=∠-∠,21E ∠=∠-∠.∵CE 是外角ACD ∠的平分线,BE 是ABC ∠的平分线,∴22ACD ∠=∠,21ABC ∠=∠,∴2221A ∠=∠-∠2(21)=∠-∠2E =∠.(2)由(1)可知2A E ∠=∠.∵A ABC ∠=∠,2ABC ABE ∠=∠,∴22E ABE ∠=∠,即E ABE ∠=∠,∴//AB CE .【点睛】本题考查了三角形的综合问题,涉及平行线的判定,三角形的外角性质,角平分线的性质,灵活运用所学知识是解题的关键.22.如图,ABC 中,AD 平分BAC ∠,P 为AD 延长线上一点,PE BC ⊥于点E ,若70C ∠=︒,24B ∠=︒,求P ∠的度数.解析:23°【分析】在△ABC 中,利用三角形内角和定理可求出∠BAC 的度数,结合角平分线的定义可得出∠CAD 的度数,在△ACD 中,利用三角形外角定理可求出∠CDP 的度数,结合PE BC ⊥即90PED ∠=︒及三角形外角定理,从而得出P CDP PED ∠=∠-∠即可求得∠P 的度数.【详解】解:在ABC 中,70C ∠=︒,24B ∠=︒,∴180702486BAC ∠=︒-︒-︒=︒,∵AD 平分BAC ∠,∴43CAD ∠=︒,∴4370113CDP CAD C ∠=∠+∠=︒+︒=︒,∵PE BC ⊥,即90PED ∠=︒,∴1139023P CDP PED ∠=∠-∠=︒-︒=︒.【点睛】本题考查了三角形外角定理、角平分线的定义,利用三角形外角定理及角平分线的定义,求出∠CDP 的度数是解题的关键.23.如图,在ABC 中,AD 为高,AE 为BAC ∠的平分线,若28B ∠=︒,52ACD ∠=°,求EAD ∠的度数.解析:50°【分析】由AD 为高,28B ∠=︒,求出52ACD ∠=°,利用外角性质求出24BAC ACD B ∠∠∠=-=︒,根据AE 是角平分线,求出1122BAE BAC ∠∠==︒,即可求出EAD ∠的度数.【详解】解:∵AD 为高,28B ∠=︒,∴62BAD ∠=︒. ∵52ACD ∠=°,∴24BAC ACD B ∠∠∠=-=︒.∵AE 是角平分线, ∴1122BAE BAC ∠∠==︒, ∴50EAD BAD BAE ∠=∠-∠=︒.【点睛】此题考查三角形的角平分线的性质,直角三角形两锐角互余的性质,三角形的外角等于与它不相邻的两个内角的和.24.如图,在ABC 中,90ACB ∠=︒.(1)作出AB 边上的高CD .(2)5AC =,12BC =,13AB =,求高CD 的长.解析:(1)见解析 (2)1360=CD 【分析】(1)过C 点作CD ⊥AB 即可;(2)根据三角形的面积求解即可.【详解】解:(1)如图:(2)∵在ABC 中,5AC =,12BC =,13AB =,∠ACB =90°,∴S △ABC =12AC ×BC =12AB ×CD , ∴125601313AC BC CD AB ⋅⨯=== 【点睛】本题考查了做三角形高线和利用三角形的面积求高,属于常考题型,熟练掌握基本知识是解题的关键.25.如图所示,AD 、AE 分别是△ABC 的高和角平分线,∠B=20°,∠C=80°,求∠EAD 的度数.解析:30° 【分析】由三角形的内角和可求得∠BAC ,则由角平分线定义可求得∠EAC ,三角形的内角和可求得∠DAC 即可.【详解】解:在△ABC 中∵∠B=20°,∠C=80°∴∠BAC=180°-∠B -∠C=180°-20°-80°=80°;∵AE 是△ABC 的角平分线,∴∠EAC=12∠BAC=12×80°=40°; ∵AD 是△ABC 的高∴∠ADC=90°;又∵在△ADC 中,∠C=80°∴∠DAC=180°-∠C -∠ADC=180°-80°-90°=10°;∴∠EAD=∠EAC -∠DAC=40°-10°=30°;【点睛】本题考查了角平分线定义,三角形内角和定理的应用,题目比较好,难度适中. 26.如图,在ABC 中,D 是AB 上一点,E 是AC 上一点,BE 、CD 相交于点F ,62A ∠=︒,35ACD ∠=︒,20ABE ∠=︒.求:(1)BDC ∠的度数;(2)BFD ∠的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学公式)解:(1)∵BDC A ACD ∠=∠+∠( )∴623597BDC ∠=︒+︒=︒(等量代换)(2)∵BFD BDC ABE ∠+∠+∠=______( )∴180BFD BDC ABE ∠=︒-∠-∠(等式的性质)1809720=︒-︒-︒(等量代换)63=︒解析:(1)三角形的外角性质;(2)180,三角形内角和定理【分析】(1)在△ACD 中,利用三角形的外角性质,三角形的一个外角等于与它不相邻的两个内角的和计算即可;(2)在△BFD 中,利用三角形的内角和定理计算即可.【详解】(1)∵∠BDC=∠A+∠ACD (三角形的外角性质),∴∠BDC=62°+35°=97°(等量代换),故答案为:三角形的外角性质;(2)∵∠BFD+∠BDC+∠ABE=180°(三角形内角和定理),∴∠BFD=180°-∠BDC-∠ABE (等式的性质),=180°-97°-20°(等量代换)=63°;故答案为:180°,三角形内角和定理.【点睛】本题主要考查了三角形的外角性质与三角形的内角和定理,熟记性质与定理是解题的关键.27.一个多边形的每个外角都等于40°,求这个多边形的内角和.解析:1260︒【分析】先利用外角和360度除以每个外角的度数求出边数,再利用多边形内角和公式计算得出答案.【详解】 解:这个多边形的边数为36040=9(条), ∴180(92)1260︒⨯-=︒,∴这个多边形的内角和是1260︒.【点睛】此题考查多边形的角度计算,多边形的外角和定理,多边形的内角和计算公式,根据多边形的每个外角都等于40°求出多边形的边数是解题的关键.28.已知在四边形ABCD 中,90A C ∠=∠=︒.(1)如图1,若BE 平分ABC ∠,DF 平分ADC ∠的邻补角,请写出BE 与DF 的位置关系并证明;(2)如图2,若BF 、DE 分别平分ABC ∠、ADC ∠的邻补角,判断DE 与BF 位置关系并证明;(3)如图3,若BE 、DE 分别五等分ABC ∠、ADC ∠的邻补角(即11,55CDE CDN CBE CBM ∠=∠∠=∠),求E ∠度数.解析:(1)BE DF ⊥,证明见解析;(2)//DE BF ,证明见解析;(3)54°【分析】(1)结论:BE ⊥DF ,如图1中,延长BE 交FD 的延长线于H ,证明∠DEG+∠EDG=90°即可;(2)结论:DE//BF ,如图2中,连接BD ,只要证明∠EDB+∠FBD=180°即可;(3)延长DC 交BE 于H .由(1)得:180CDN CBM ∠+∠=︒,利用五等分线的定义可求36CDE CBE ∠+∠=︒,由三角形的外角性质得BCD CBE CDE E ∠=∠+∠+∠,代入数值计算即可.【详解】(1)BE DF ⊥.证明:延长BE 、FD 交于G .在四边形ABCD 中,360A ABC C ADC ,90A C ∠=∠=︒,180ABC ADC ∴∠+∠=︒.180ADC CDN ∠+∠=︒,ABC CDN ∴∠=∠. BE 平分ABC ∠,DF 平分CDN ∠, 12ABE ABC ∴∠=∠,12FDN CDN ∠=∠, ABE FDN ∴∠=∠,∵∠ABE+∠AEB=90°,∠AEB=∠DEG ,∠FDN=∠EDG ,∴∠DEG+∠EDG=90°,∴∠EGD=90°,即BE ⊥DF .(2)//DE BF .证明:连接DB .180ABC MBC ∠+∠=︒,180ADC CDN ∠+∠=︒.又180ABC ADC ∠+∠=︒,180MBC CDN ∴∠+∠=︒.BF 、DF 平分ABC ∠、ADC ∠的邻补角,12CBF MBC ∴∠=∠,12CDE CDN ∠=∠, 90CBF CDE ∴∠+∠=︒.在Rt BDC 中,90CDB DBC ∠+∠=︒,180CDB DBC CBF CDE ∴∠+∠+∠+∠=︒,180EDB DBF ∴∠+∠=︒,//DE BF ∴.(3)延长DC 交BE 于H .由(1)得:180CDN CBM ∠+∠=︒. BE 、DE 分别五等分ABC ∠、ADC ∠的邻补角, 1180365CDE CBE ∴∠+∠=⨯︒=︒, 由三角形的外角性质得,BHD CDE E ∠=∠+∠,BCD BHD CBE ∠=∠+∠,BCD CBE CDE E ∴∠=∠+∠+∠,903654E ∴∠=︒-︒=︒.【点睛】本题考查多边形内角和,三角形外角的性质,三角形内角和定理,平行线的判定等知识,解题的关键是学会添加常用辅助线.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章 三角形
知识点一:三角形
1. 三角形的概念
1、由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

组成三角形的线段叫做______,相邻两边的公共端点叫做_____________,相邻两边所组成的角叫做___________,简称___________.如图 以A 、B 、C 为顶点的三角形ABC ,可以记作_______,读作_____________.△ABC 的三边,有时也用_____________表示,顶点A 所对的边BC 用____表示,顶点B 所对的边CA 用____表示,顶点C 所对的边AB 用____表示.2.三角形按边分类
三角形 直角三角形
斜三角形
锐角三角形 _____. 三角形 不等边三角形
等腰三角形 底和腰不等的等腰三角形 _______.3.在等腰三角形中,相等的两边都叫做 ,另一边叫做 ,两腰的夹角叫做___,腰和底的夹角叫做____.如右图,等腰三角形ABC 中,AB =AC ,那么腰是___,底是____,顶角是____,底角是_____.4. 三角形三边的关系(重点)
三角形的任意两边之和 。

三角形的任意两边之差 。

(这两个条件满足其中一个即可)
用数学表达式表达就是:记三角形三边长分别是a ,b ,c ,则 。

已知三角形两边的长度分别为a ,b ,求第三边长度的范围: 5. 三角形的高
从△ABC 的顶点A 向它 所对的边BC 所在直线画垂线,垂足为D ,所得线段AD 叫做△ABC 的边BC 上的_____ .如图⑴,AD 是△ABC 的高,则AD⊥_____.
三角形的三条高的交于一点,这一点叫做“ ”。

6. 三角形的中线
连接△ABC 的顶点A 和它所对的边BC 的中点D ,所得线段AD 叫做△ABC 的边BC 上的_____ .如图⑵,AD 是△ABC 的中线,则BD =______=
三角形三条中线的交于一点,这一点叫做“ ”。

三角形的中线可以将三角形分为 相等的两个小三角形。

7. 三角形的角平分线
∠BAC 的平分线AD ,交∠BAC 的对边BC 于点D ,所得线段AD 叫做△ABC 的___________.如图⑶,AD 是△ABC 的角平分线,则∠BAD =∠_______.
要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条 ;角的平分线是条 。

三角形三条角平分线的交于一点,这一点叫做“ ”。


⎨⎩⎧⎨⎩
⎧⎨⎩⎧⎨⎩
e A t h
e
i n g
8. 三角形具有 性
9. 四边形及多边形不具有稳定性
要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。

10. 三角形的内角和定理
三角形的内角和为 ,与三角形的形状无关。

11. 直角三角形两个锐角的关系
直角三角形的两个锐角 (相加为90°)。

有两个角互余的三角形是 。

12. 三角形外角的意义
三角形的一边与另一边的延长线组成的角叫做 。

13. 三角形外角的性质
(1)三角形的一个外角与相邻的内角 。


180
41=∠+∠(2)三角形的一个外角等于 。

即 (3)三角形的一个外角大于任何一个与它不相邻的内角。

即 或 14. 两个基本图形
(1) (2) 15.三角形的周长、面积求法和三角形稳定性。

(1)如图1:C △ABC =AB +BC +AC 或 。

(2)如图2:AD 为高,
(3)如图3:△ABC 中,∠ACB=90°,CD 为AB 边上的高,则有:
S △ABC =
·AB·CD=·AC·BC 即:AB·CD=AC·BC 121
2
43
21
知识点二:多边形及其内角和
1. 多边形的概念
在平面中,由一些线段首尾顺次相接组成的图形叫做,多边形中相邻两边组成的角叫做它的。

多边形的边与它邻边的延长线组成的角叫做。

连接多边形不相邻的两个顶点的线段叫做。

一个n边形从一个顶点出发的对角线的条数为条,其所有的对角线条数为 .
2. 凸多边形
画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是。

3. 正多边形
各角相等,各边相等的多边形叫做。

(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)
4. n边形的内角和定理
n边形的内角和为
5. n边形的外角和定理
多边形的外角和等于,与多边形的形状和边数无关。

n n
6.一个边形的对角线有条,过边形一个顶点能作出条
n
对角线,把边形分成了个三角形。

例题讲解
例1 已知一个多边形的内角和与某个外角的度数的总和为1350°,求这个多边形的边数.
例2 下列各组三条线段中,不能组成三角形的是()。

A、三线段之比为1:2:3
B、 a + 1 ,a + 2 ,a + 3(a﹥0)
C、5cm ,6 cm ,10 cm
D、3cm ,4 cm ,9 cm
例3 等腰三角形的两边长分别为12和6,则此三角形的周长为()。

A、24
B、30
C、24或30
D、以上都不对
例4、如图AD、AE分别是△ABC的高和中线,AB=6㎝,AC=8㎝,BC=10㎝,
∠BAC=90°,试求:(1)AD的长;(2)△ABE的面积;(3)△ACE与△ABE的周长的差。

练习题:
1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。

2. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。

3. 要使六边形木架不变形,至少要再钉上 根木条。

4. 在△ABC
中,若∠A=∠C=
∠B,则∠A= ,∠B=
,这个三角形是
1
3。

5、三角形有两条边的长度分别是5和7,则第三条边的取值范围是___________。

a
6、△ABC 中,∠A=50°,∠B=60°,则∠C= 。

7、将一个三角形截去一个角后,所形成的一个新的多边形的内角和___________。

8、等腰三角形的底边长为10cm,一腰上的中线将这个三角形分成两部分,这两部分的周
长之差为2cm,则这个等腰三角形的腰长为_____________________.9、用一条长为18cm 的细绳围成一个等腰三角形.⑴如果腰长是底边的2倍,那么各边的长是多少?⑵能围成有一边长为4cm 的等腰三角形吗?为什么?
10、在△ABC 中,AE 是中线,AD 是角平分线,AF 是高,填空:
⑴BE =______=
_____;⑵121
_______;2
BAD ∠==⑶⑷_____90;AFB ∠==
______.
ABC S ∆=11、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )
A .锐角三角形
B .直角三角形
C .钝角三角形
D .不能确定12、如图,D 是△ABC 的BC 边上一点,且∠1=∠2,∠3=∠4,∠BAC =60°,求∠DAC 的度数.
13、、如图,AB∥CD,点P 是AD 上一点,∠1=∠2,∠3=∠4,那么PB 与PC 有何位置关系?为什么?
41B C。

相关文档
最新文档