开关电源变压器的设计

合集下载

正激反激式双端开关电源高频变压器设计详解

正激反激式双端开关电源高频变压器设计详解

正激反激式双端开关电源高频变压器设计详解高频变压器作为电源电子设备中的重要组成部分,起到了将输入电压进行变换的作用。

根据不同的使用环境和要求,电源电路中的电感元件可分为正激式、反激式和双端开关电源。

下面就分别对这三种电源的高频变压器设计进行详解。

1.正激式电源变压器设计正激式电源变压器是将输入电压通过矩形波进行激励的一种变压器。

其基本结构包括主磁线圈和副磁线圈两部分,主磁线圈用来耦合能量,副磁线圈用来提供输出电压。

正激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。

(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。

(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。

(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。

(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。

(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。

2.反激式电源变压器设计反激式电源变压器是通过反馈控制来实现变压的一种变压器。

其基本结构包括主磁线圈、副磁线圈和反馈元件等。

反激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。

(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。

(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。

(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。

(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。

(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。

(7)选择合适的反馈元件:根据反馈控制的需要来选择合适的反馈元件,并设计合适的反馈回路。

开关电源中变压器及电感设计1

开关电源中变压器及电感设计1

开关电源中变压器及电感设计1开关电源中变压器及电感设计1一、变压器设计1.根据电源输出需求确定变压器的额定功率和工作频率。

2.计算变压器的变比。

变压器的变比决定了输入电压和输出电压之间的关系。

通常变压器的变比为输入和输出电压之比的倒数,即输出电压/输入电压。

3.根据变比计算次级匝数。

变压器的次级匝数等于输入匝数乘以变比。

4.根据次级匝数计算主绕组匝数。

主绕组匝数等于次级匝数除以变比。

5.计算主绕组和次级绕组的截面积。

主绕组的截面积一般比次级绕组大,以满足输送更大电流。

6.计算铁芯截面积。

铁芯截面积的大小关系到变压器的能量传输效率,一般选择铁芯截面积略大于主绕组的截面积。

7.选择合适的铁芯材料和线材材料。

铁芯材料的导磁性能和线材材料的电阻等参数会影响变压器的损耗和效率。

8.进行变压器的相关参数计算和模拟。

可以使用相关软件进行变压器参数的计算和仿真,以评估变压器的性能。

9.制作变压器的绕组和组装。

根据计算结果进行绕线并组装变压器。

10.进行变压器的测试和调整。

使用仪器测试变压器的性能,并根据测试结果调整变压器的参数,以满足设计要求。

二、电感设计1.根据电源输出需求确定电感的额定电流和工作频率。

2.根据电感的额定电流和工作频率计算电感的感值。

电感的感值和额定电流和工作频率之间有一定的关系,可以根据公式进行计算。

3.根据感值计算电感的绕组数。

电感的绕组数决定了电感的电流走向和电感的大小。

4.选择合适的磁芯和线材材料。

合适的磁芯材料和线材材料会影响电感的损耗和效率。

5.进行电感的相关参数计算和模拟。

可以使用相关软件进行电感参数的计算和仿真,以评估电感的性能。

6.制作电感的绕组和组装。

根据计算结果进行绕线并组装电感。

7.进行电感的测试和调整。

使用仪器测试电感的性能,并根据测试结果调整电感的参数,以满足设计要求。

总结:变压器和电感的设计是开关电源设计中关键的一环,直接影响到电源的性能和稳定性。

在设计过程中,需根据电源输出需求确定额定功率和工作频率,并计算变压器和电感的相关参数。

开关电源变压器设计

开关电源变压器设计

开关电源变压器设计开关电源变压器是一个重要的电力电子设备,用于将输入电压变换到需要的输出电压。

它由铁芯和线圈组成,通过交变磁场将输入电压变化到输出电压。

在设计开关电源变压器时,需要考虑到很多因素,包括转换效率、功率损耗、热量分布和轻负载性能等。

首先,在设计开关电源变压器时,需要确定所需的输出电压和电流。

输出电压和电流的选择直接取决于所需的应用和负载需求。

例如,对于音频放大器,输出电压可能是几百伏特,而对于计算机设备,输出电压可能是12伏特。

决定了输出电压和电流之后,可以计算变压器的必要参数,如匝数比、线圈电阻和反馈电路。

其次,在选择铁芯材料时,需要考虑到磁通密度和能量损耗。

磁通密度代表了铁芯能够承受的最大磁场强度,因此需要选择一个能够满足输出电流和磁通密度要求的铁芯材料。

同时,能量损耗是通过变压器中电能转换为磁能和热能的过程。

为了降低能量损耗,可以选择低磁滞或非饱和的铁芯材料。

另外,热量分布也是设计开关电源变压器时需要考虑的因素之一、由于转换过程中会有一定的能量损耗,会产生一定的热量。

为了确保变压器的正常工作,需要将热量分布在铁芯和线圈上,并通过冷却系统将其排出。

热量分布的合理设计可以提高变压器的效率和寿命。

最后,为了提高开关电源变压器的轻负载性能,可以采取一些措施,如引入补偿线圈或使用纳米铁芯等新材料。

补偿线圈可以提高变压器的稳定性和混响补偿能力,从而提高轻负载性能。

而使用纳米铁芯可以减小磁损耗和体积,从而提高变压器的效率和功率密度。

总体上,开关电源变压器的设计需要综合考虑输出电压和电流要求、铁芯材料选择、热量分布和轻负载性能等因素。

通过合理的设计和优化,可以提高变压器的性能和可靠性,满足不同应用和负载要求。

单管正激式开关电源变压器设计

单管正激式开关电源变压器设计

单管正激式开关电源变压器设计引言:设计目标:设计一个单管正激式开关电源变压器,输入电压为220V,输出电压为12V,输出电流为1A。

主要的设计目标如下:1.高能效:确保转换效率达到90%以上。

2.稳定性:在负载变化范围内,输出电压波动小于5%。

3.安全性:确保设计的变压器具有过载和短路保护功能。

4.成本:在满足以上要求的情况下,尽量降低设计成本。

设计过程:1.计算变压器的变比:由于输入电压为220V,输出电压为12V,所以变压器的变比为220/12=18.332.计算次级电流:输出电流为1A,因此次级电流为1A。

3.计算主磁环的Ae(过剩面积):根据磁环材料的选择,可以得到主磁环的Ae值。

4.计算主磁环的直径D:根据所选择的磁环材料的饱和磁感应强度,可以得到主磁环的直径D。

5.计算次级绕组的匝数:次级绕组的匝数可以根据变比计算得出。

6.计算次级绕组的截面积:由于次级电流和次级绕组匝数已知,可以计算出次级绕组的截面积。

7.选择铁芯截面积:根据所需的变压器功率,可以选择合适的铁芯截面积。

8.计算输出电压波动:根据设计目标的要求,计算负载变化时输出电压的波动范围。

9.设计过载和短路保护:根据设计目标的要求,设计过载和短路保护电路,以确保变压器的安全性。

设计要点:1.磁环材料的选择:磁环材料应具有高饱和磁感应强度和低磁滞损耗,以提高变压器的效率。

2.绕组材料的选择:绕组材料应具有良好的导电性和低电阻,以减小损耗和提高效率。

3.绝缘材料的选择:绝缘材料应具有良好的绝缘性能和耐高温性能,以确保变压器的安全性和可靠性。

4.冷却系统的设计:变压器在工作中会产生一定的热量,需要设计合适的冷却系统,以保持变压器的温度在安全范围内。

总结:单管正激式开关电源变压器是一种常见的电源转换器,设计时需要考虑效率、稳定性、安全性和成本等因素。

在设计过程中,需要计算变压器的变比、次级电流、主磁环的Ae和直径、次级绕组的匝数和截面积,选择合适的铁芯截面积,设计合适的过载和短路保护电路,并选用合适的磁环材料、绕组材料和绝缘材料。

开关电源变压器设计实例(详细公式)

开关电源变压器设计实例(详细公式)

高频率变压器的设计例: 输入电压:85~264V输入电压频率:50/60HZ输出电压::12VDC输出电流:5A一、选择CORE的大小:通常按输出功率查CORE厂商的资料,根据CORE高度,在100KHz,与之对应的功率选择功率型的CORE.查TDK PQ2620 PC4 Ui=2300Nh Ae=119mm2 Bs=380mT(100℃) Br=140mT(23℃)二、计算输入电流平均值:PoutIav=η*Vin〈min〉Vin〈min〉=90V*√2-20〈直流涟波及整流管压降〉=110〈V〉η----效率 V out≧12V η=80~85%V out<12V η=75~80%此处选η=80%60Iav= = 0.68〈A〉0.8*110三、计算输入峰值电流大小:2 IavIp2连续工作模式(CCM) 不连续工作模式(DCM) CCM----连续工作模式,L ηEMC 差适合小功率DCM----不连续工作模式, L ηEMC 好适合大功率2*0.68Ipk= = 1.92〈A〉(1+0.55)*.45四、计算初级电感:Vin(min).DmaxLp=Ip‧fDmax=0.4~0.5 此处选Dmax=0.45工作频率选f=62KHz110*0.45Lp= <H>=0.423mH =423uH1.95*60*103五、计算初级匝数:Lp*Ip Vin‧TonNp= = *104Ae‧B B‧Ae1Ton= * 0.45 = 7.5us60*103Ae---- 铁芯截面积B---- 2000~2500 高斯,此处选B=2250高斯.110*7.5Np= * 104 =30.8(TS) 选取 31TS2250*1.19六、计算次级匝数Vin(min)‧Ns‧Dam=(V o+V D)‧Np‧(1-Dam)(V o+V D)‧Np‧(1-Dam) ( 12+0.5 )*31*0.55Ns= = =4.3(Ts) Vin(min)‧Dmax 110*0.45此处选Ns= 5Ts七、修正初级圈数和电感:Vin(min).Ns.Dmax 110*5*0.45Np= = = 36匝(V o+V D)‧Np‧(1-Dam) 12.5*0.55Np.Ae.BLp= *10-4 uH36*119*2250=八、计算Nb(V o+V D)Nb=6.68Ts 选 Nb=7Ts 故 Np:Ns:Nb=36:5:7 Lp=500uH九、计算电流的大小:1.初级电流有效值IrmsIrms=Ipk.√Dmax.(Krp2/3-Krp+1) 或 (Irms=Ipk/√6)Kpp----最小值 0.6<连续模式>,最小值1.0<不连续模式>此处选Krp=0.92 Irms=1.95/√6=0.8A2.次级峰值电流IspkNp. Ipk=Ns IspkIspk=1.95*36/5=14(A)3.次级电流有效值Isrms=Ispk.√(1-Dmax).Krp2/3-Krp+1)或 9(Isrms=Ispk/√6)Isems=14/√6=5.75(A)。

开关电源变压器怎样设计?开关电源变压器参数介绍

开关电源变压器怎样设计?开关电源变压器参数介绍

开关电源变压器怎样设计?开关电源变压器参数介绍在开关电源变压器结构的设计上要考虑以下几点,漏磁一定要小,这样可以减小绕组的漏感。

在结构设计上使其便于绕线和引出线这样不仅使变压器的安装简单和方便,同时对变压器的维修和生产都是非常的具有帮助。

在设计前进行合理的规划,让电压器可以有充足的空间和机能进行散热。

如果在设计开关电源变压器上全面的考虑到了以上这几点因素,那么这样的设计可以使开关电源变压器更加的安全,寿命更加的持久。

在设计开关电源变压器时材料的选择十分的重要,而在磁心的选择上就是开关电源变压器的重中之重,依据开关电源变压器的用途不同材料的选择也有所不同。

在我们的身边使用的最为广泛的磁心就是锰锌铁氧化磁心,在用于电源输入滤波器的部分也会使用到高导磁率磁心。

由于软磁铁氧体价格低廉、适应性能好、高频性能好等优势,在我们今天被广泛的使用。

这里确定芯片工作频率为70KHz,芯片的频率可以通过外部的RC来设定,工作频率就等于开关频率,这个外设的功能有利于我们更好的设计开关电源,也可以采取外同步功能。

与UC384X 功能相近,变压器磁芯为EER28/28L,一般AC2DC 的变换器,工作频率不宜设超过100kHz,主要是开关电源的频率过高以后,不利于系统的稳定性,更不利于EMC的通过性,频率太高,相应的di/dt dv/dt 都会增加,除PI 132kHz的工作频率之外,大家可以多参考其它家的芯片,就会总结自己的经验出来。

对于磁芯的选择,是在开关频率和功率的基础,更多的是经验选取。

当然计算的话,你需要得到更多的磁芯参数,包括磁材,居里温度,频率特性等等,这个是需要慢慢建立的。

20W ~ 40W 范围内EE25 EER25 EER28 EFD25 EFD30 等均都可以。

设计变压器进行计算上面计算了变压器的电感量,现在我们还需要得到相应的匝数才可以完成整个变压器的工作1)计算导通时间Ton周期时间T = Ton + Toff = 1/FswTon = T * DmaxFsw ,Dmax 都是已知量70kHz,0.45 代入上式可得Ton = 6.43us2)计算变压器初级匝数Np = Vin(min)*Ton/(ΔB × Ae) = 120Vdc * 6.43us/(0.2 * 82mm2) = 47T(这里的数是一定要取整的,而且是进位取整,我们变压器不可能只绕半圈或其它非整数圈)3)计算变压器12V 主输出的匝数输出电压(V o):12 Vdc整流管压降(Vd):0.7 Vdc绕组压降(Vs):0.5Vdc原边匝伏比(K) = Vi_min / Np= 120 Vdc / 47 T = 2.55输出匝数(Ns) = (输出电压(V o) +整流管压降(Vd) + 绕组压降(Vs)) / 原边匝伏比(K)= (12 Vdc + 0.7Vdc + 0.5Vdc) / 2.55 = 6 T(已取整)4)计算变压器辅助绕组(aux turning)输出的匝数计算方法与12V主绕组输出一样因为ST VIPer53DIP 副边反馈需低于14.5Vdc,故选取12 Vdc 作为辅助电压;Na = 6 T到这一步,我们基本上就得出了变压器的主要参数原边绕组:47T 原边电感量:0.77mH 漏感《5%* 0.77mH = 39uH12V输出:6T辅助绕组:6T下一步我们只要将绕组的线径股数脚位耐压等安规方面的要求提出,就可以发给变压器厂去打样了至于气隙的计算,以及返回验证Dmax 这些都是一些教科书上的,不建议大家死搬硬套,自己灵活一些。

单管正激式开关电源变压器设计

单管正激式开关电源变压器设计

单管正激式开关电源变压器设计设计一个单管正激式开关电源变压器的主要目标是将输入电压转换为所需的输出电压,并提供适当的电流输出。

这种类型的电源变压器由一个开关管、一个变压器、一个整流电路和一个滤波电路组成。

以下是一个设计单管正激式开关电源变压器的基本步骤:1.确定功率需求:首先,确定所需的输出功率,这将指导变压器的尺寸和开关管的容量选择。

输出功率通常以所需的输出电压和电流来计算,即P=V*I。

2.选择变压器参数:根据所需的输出功率和输入电压范围,选择适当的变压器参数。

变压器一般由工作频率、变比(输出电压与输入电压之比)和功率容量来定义。

变压器的变比可以通过变压器的匝数比来实现,即N2/N1,其中N2是次级(输出)匝数,N1是主级(输入)匝数。

3.选择开关管:选择能够承受所需输出功率的开关管。

开关管的选择与其导通电阻、封装、耐压和工作频率相关。

常用的开关管有晶体管和功率MOSFET。

4.设计整流电路:整流电路用于将开关管的高频交流输出转换为直流输出。

常见的整流电路包括单相桥式整流器和满桥式整流器。

整流电路的设计需要考虑所需的输出电压、电流和纹波功率因素。

5.设计滤波电路:滤波电路用于去除整流电路输出的高频纹波,并提供平滑的直流输出。

常见的滤波电路包括电容滤波器和电感滤波器。

滤波电路的设计需要考虑所需的输出电压纹波和效率。

6.进行模拟和数字仿真:使用计算机软件进行电路的模拟和数字仿真,以验证设计的正确性和性能。

7.制作原型并测试:根据设计的电路图和布局,制作原型并进行测试。

测试包括输出电压和电流的测量、纹波和效率的评估。

8.进行优化:根据测试结果进行设计的优化。

优化的目标包括提高效率、减小纹波和噪声,以及改进稳定性和可靠性。

上述步骤提供了一个基本的单管正激式开关电源变压器设计的框架。

具体的设计细节和参数将取决于所需的输出功率和输出电压等要求。

为了确保电路的稳定性和可靠性,建议在设计过程中仔细考虑电源的保护和故障检测机制。

开关电源变压器设计介绍

开关电源变压器设计介绍

2010.5.12 R&D
开关电源 变压器
开关电源变压器
That is all Thank
you!
2010.5.12 R&D
4. 初级绕组圈数 NP=LP*IP*104/Ae*B NP----- 初级绕组圈数 NP= 1.0*10-3 *0.595*104 /0.395*0.17 NP= 88 (Ts)
5. 次级绕组圈数 NS=NP*US*(1-αMAX)/UPMIN*αMAX NS----- 次级绕组圈数 US----- 次级最大电压 NS= 88*(5.0+0.7) *(1-0.4)/115*0.4
8 76 5
UC3842B 1 23 4
3.12 2.48 0.05 1.84
D2 IN4148
C3 33uF/25V + R10 100R
Q1 R10' 10K
4
R13 5R6
3 EF-22
D4 MBR2045CT
6.8uH
C12 472 +
C14 104
R14
C16 + 104
R15
750R
750R
Ae*Ap=2(5.0+0.7)*102/2*75*103*0.17*2.5*0.8*0.2 Ae*Ap= 0.112(cm4)
2010.5.12 R&D
反激式开关电源变压器计算
举例
根据磁芯数据,我们可以选择EE2219磁芯 (东磁); 它的 Ae*Ap 值是 0.408*0.397=0.162(cm4)
C13 1000uF/16V
C15 470uF/16V
300uH
R5 5.1K
C7

开关电源变压器设计

开关电源变压器设计

开关电源变压器设计1.前言2.变压器设计原则3.系统输入规格4.变压器设计步骤4.1选择开关管和输出整流二极管4.2计算变压器匝比4.3确定最低输入电压和最大占空比4.4反激变换器的工作过程分析4.5计算初级临界电流均值和峰值4.6计算变压器初级电感量4.7选择变压器磁芯4.8计算变压器初级匝数、次级匝数和气隙长度4.9满载时峰值电流4.10 最大工作磁芯密度Bmax4.11 计算变压器初级电流、副边电流的有效值4.12 计算原边绕组、副边绕组的线径,估算窗口占有率4.13 计算绕组的铜损4.14变压器绕线结构及工艺5.实例设计—12W Flyback变压器设计1. 前言◆反激变换器优点:电路结构简单成本低廉容易得到多路输出应用广泛,比较适合100W以下的小功率电源◆设计难点变压器的工作模式随着输入电压及负载的变化而变化低输入电压,满载条件下变压器工作在连续电流模式 ( CCM )高输入电压,轻载条件下变压器工作在非连续电流模式 ( DCM )2. 变压器设计原则◆温升安规对变压器温升有严格的规定。

Class A的绝对温度不超过90°C;Class B不能超过110°C。

因此,温升在规定范围内,是我们设计变压器必须遵循的准则。

◆成本开关电源设计中,成本是主要的考虑因素,而变压器又是电源系统的重要组成部分,因此如何将变压器的价格,体积和品质最优化,是开关电源设计者努力的方向。

3. 系统输入规格输入电压:Vacmin~ Vacmax输入频率:f L输出电压:Vo输出电流:Io工作频率:fS输出功率:Po预估效率:η最大温升:40℃4.0变压器设计步骤4.1选择开关管和输出整流二极管开关管MOSFET:耐压值为Vmos输出二极管:肖特基二极管最大反向电压VD正向导通压降为VF4.2计算变压器匝比考虑开关器件电压应力的余量(Typ.=20%)开关ON :0.8·V D > V in max / N + V o开关 OFF :0.8·V MOS > N·( V o+ V F) + V in max匝比:N min < N < N max4.3 确定最低输入电压和最大占空比输入滤波电容:2µF~3µF/W 最低输入电压 ( 假设tc=3ms )V in min = √(√2V ac min )2−2 × P in ( T 2− t c )C in最低输入电压,最大功率时,占空比最大D maxD max = N ∙ ( V o + V F )N ∙ ( V o + V F ) + V in min4.4 反激变换器的工作过程分析低输入电压时,负载从轻载到重载,变压器经历从DCM →BCM →CCM 的过程 高输入电压时,负载从轻载到重载,变压器一直工作在DCM4.5 计算初级临界电流均值和峰值按照最小输入电压,最大输出功率(Pomax)的条件计算 P o = 1/3P o max 时,变换器工作在BCM P o < 1/3P o max 时,变换器工作在DCM P o > 1/3P o max 时,变换器工作在CCMBCM 模式下,最小输入电压时的平均输入电流I in-avg =13∙ P in V in min变压器初级临界电流峰值∆I p1 = I pk1 =2 × I in−avgD max4.6 计算变压器初级电感量最低输入电压,BCM 条件下,最大通时间T on max = 1f s× Dmax变压器初级电感量Lp =V in min × T on max∆I p14.7 选择变压器磁芯基于输出功率和开关频率计算面积乘积,根据面积乘积来选择磁芯AP p =P o × 1062 × η × K o × K c × f s × B m × jK o 是窗口的铜填充系数:取 K o =0.4K c 是磁芯填充系数;对于铁氧体磁芯取 K c =1 Bm 是变压器工作磁通密度,取 B m ≤12 Bsat j 是电流密度,取 j = 4.2A/mm 2考虑绕线空间,尽量选择窗口面积大的磁芯,查表选择Aw 和Ae4.8 计算变压器初级、次级匝数、辅助绕组匝数和气隙长度初级绕组的匝数N p =V in min × t on maxA e ×B m×108增加或者减小匝数只会分别引起磁芯损耗减小或增加在100kHz 条件下,损耗与B2.86成正比,匝数减小5%会使磁芯损耗增加15%次级绕组匝数 N s = N p / N辅助绕组匝数 N cc = ( V cc + 1 ) × N s / ( V o + V F )气隙长度 : l g = 0.4 π × A e × N 2L p4.9 满载时峰值电流CCM 时,T on max 固定不变输入电压不变,BCM 的T on max 等于CCM 的T on max T on max 内,电感电流线形上升增量 ∆I p1 = V in min × T on maxL p= ∆Ip2低输入电压,满载条件下 P o =12×η× L p × (I 2pk2 – I 2pk0 ) × f s 变压器初级峰值电流 I pk2 = P o / ηV in min × D max+∆I P224.10 最大工作磁芯密度B maxB max =L p × I pk2A e × N p×108 < B sat如果B max <B sat ,则证明所选择的磁芯通过,否则应重新选择4.11 计算变压器初级电流、副边电流的有效值梯形波电流的中值 :I a = I pk - ∆I 2电流直流分量 :I dc = D max × I a电流有效值 : I prms = I a √D max电流交流分量 :I ac = I a √D max (1−D max )4.12 计算原边绕组、副边绕组的线径,估算窗口占有率导线的横截面积自然冷却时,一般取电流密度j = 4A / mm2初级绕组:Sp = Iprms( A ) / 4 ( A / mm2 )副边绕组:Ss = Isrms( A ) / 4 ( A / mm2 )线径及根数集肤深度δ= 6.61 / √f s cm导线线径不超过集肤深度的2倍,若超过集肤深度,则需多股并绕根据安规要求考虑加一定宽度的挡墙窗口占有率K0A w≥ N p ×π×R p2+ N s ×π×R s2+ N cc ×π×R cc24.13计算绕组的铜损根据导线的电阻和集肤深度,确定每个绕组的铜损耗总损耗一定要小于预算损耗,温升经验公式∆T ≈loss34 × √A e×A w4.14变压器绕线结构及工艺骨架的选取:累计高度、宽度绕法:初级和次级交错式(三明治)绕法:漏感小5. 设计实例—12W开关电源变压器设计5.1系统输入规格输入电压:90Vac~265Vac输入频率:50Hz输出电压:12V输出电流:1.0A输出功率:Po=12W开关频率:50kHz预估效率:0.75输入最大功率:Pin=16W变压器最大温升:40℃5.2开关管MOSFET和输出整流二极管开关管MOSFET耐压: Vmos=600V输出二极管:反向压降VD =100V ( 正向导通压降VF=0.5V )5.3计算变压器匝比0.8 ∙ V D > V in max / N + V o 0.8 × 100 > 375 / N +120.8 ∙ V mos > N ∙ ( V o + V F ) + V in max 0.8 × 600 > N × ( 12 + 0.5 ) +3755.5 < N < 8.4取 N = 65.4 最低输入电压和最大占空比选择C in =22µF 最低输入电压:V in min = √(√2V ac min )2− 2 × P in ( T2 − t c )C in= √1272−2 ×16 ×7 × 10−322 × 10−6≈77V最大占空比 :Dmax = N ∙ (V o + V F )N ∙ ( V o + V F )+ V in min = 6 × 12.56 ×12.5+77= 0.495.5 计算初级临界电流均值和峰值I in-avg = 13∙ P in V in min=163 ×77= 0.07 A∆I p1 = I pk1 = 2 × I in−avgD max=2 ×0.070.49= 0.285 A5.6最大导通时间和初级电感量最大导通时间 : T on max =1f s× Dmax= 9.8 μs变压器初级电感量 : L p =V in min ×T on max∆I p1=77 ×9.8 × 10−60.285≈ 2.7mH5.7 变压器磁芯面积AP p =12 × 1062 ×0.75 ×0.42 × 50 × 103 ×1600 ×4= 0.066 cm 2( 铁氧体磁芯 B sat = 3900G , 取 B m = 1600G )查表EF20 A e = 0.335 cm 2,A w = 0.6048 cm 2AP = A w * A e = 0.202 cm 2 > 0.066 cm 25.8 变压器初级匝数、次级匝数、辅助绕组匝数和气隙长度N p =77 ×9.8 × 10−60.335 ×1600×108 = 140.7 取 N p= 140 TsN s = 140 / 6 = 23.3 Ts 取 N s = 23 TsN cc = 19 × 23 / 12.5 ≈ 35 Tsl g =0.4π ×33.5 × 14022.6= 0.2 mm5.9 满载时峰值电流、最大工作磁通密度I pk2 =Po / ηVin min×Dmax+∆Ip 2=1677 ×0.49+ 0.14 = 0.56 ABmax =Lp ×Ipk2Ae ×Np=2.6×10−3 × 0.560.335 ×140×108 = 3100G < 3900G5.10 变压器初级电流、副边电流的有效值原边各电流:电流中值I pa = 0.42A 电流有效值I prms = 0.29A电流直流值I pdc = 0.20A 电流交流值I pac = 0.208A副边各电流:电流直流值I sdc = 1A 电流有效值I srms = 1.38A电流中值I sa = 1.92A 电流交流值I ac = 0.959A5.11 计算原边、副边绕组的线径,估算窗口占有率线径及根数集肤深度δ= 6.61 / √f s= 6.61 / √50 × 103 = 0.29 cm导线的横截面积:电流密度j = 4.2~5A / mm2初级绕组:S p=0.068mm2→Φ0.25mm ×1P→R DC = 4.523mΩ/cm( 100℃ )副边绕组:S s = 0.328mm2→Φ0.40mm×2P→R DC = 0.892mΩ/cm ( 100℃ )Vcc绕组:S cc = 0.1/4.2 = 0.024mm2→Φ0.1mm×2P窗口占有率:0.4 × 60.48 ≥ 140 ×π× 0.1252 + 23 ×π× 0.22 + 35 ×π×0.08224.2 ≥ 13.6 OK5.12 计算绕组的铜损= 23.5 mm平均匝长 lav各绕组绕线长度:= 140 × 23.5 = 329 cm原边lNp副边l= 23 × 23.5 = 54.0 cmNs各绕组直、交流电阻:原边R pdc=1.45Ω R pac=2.38Ω副边R sdc=0.024Ω R sac=0.038ΩVcc绕组电流过小,忽略绕组损耗各绕组损耗:P u = 0.30W {P p=I prms2× R pdc+ I pac2 × R pac=0.22W P s=I srms2× R sdc+ I sac2 × R sac=0.08W5.13 计算绕组的铁损计算铁损:查磁芯损耗曲线,PC40在ΔB = 0.15T时为80mW / cm3铁损P Fe = 80 × 1.5 = 0.12 W估算温升总损耗P loss = 0.12 + 0.30 = 0.42 W经验公式∆T ≈34 × √33.5 ×60.48= 22℃ < 40℃设计 OK5.14 变压器绕线结构及工艺绕线宽度高度累计查EF20 Bobbin 绕线宽度W=12.1mm,高度H=2.9mm0.25mm,最大外径0.275mm 每层35T,W1=9.62mm0.40mm,最大外径0.52mm 每层23T,W2=11.9mm0.10mm,最大外径0.13mm 每层35T,W3=9.1mm(0.1mm×2P)总高度 = 0.275×4 + 0.52 × 2 + 0.13 × 3 + 0.03 × 7 = 2.74 mm绕线结构次级→初级→次级。

反激式开关电源变压器设计

反激式开关电源变压器设计
反激式开关电源变压器设计
学习培训教材
汇报时间:12月20日
Annual Work Summary Report
一、变压器的设计步骤和计算公式: 1.1 变压器的技术要求: 输入电压范围; 输出电压和电流值; 输出电压精度; 效率η; 磁芯型号; 工作频率f; 最大导通占空比Dmax; 最大工作磁通密度Bmax; 其它要求。 1.2 估算输入功率,输出电压,输入电流和峰值电流: 1)估算总的输出功率:Po=V01xI01+V02xI02…… 2)估算输入功率:Pin= Po/η 3)计算最小和最大输入电流电压 Vin(MIN)=ACMINx1.414(DCV) Vin(MAX)=ACMAXx1.414(DCV)
4)计算最小和最大输入电流电流 Iin(MIN)=PINxVIN (MAX) Iin(MAX)=PINxVIN (MIN) 5)估算峰值电流: K POUT IPK = VIN (MIN) 其中:K=1.4(Buck 、推挽和全桥电路) K=2.8(半桥和正激电路) K=5.5(Boost,Buck- Boost 和反激电路)
1.3 确定磁芯尺寸 确定磁芯尺寸有两种形式,第一种按制造厂提供的图表,按各种磁芯可传递的能量来选择磁芯,例如下表: 表一 输出功率与大致的磁芯尺寸的关系 输出功率/W MPP环形 E-E、E-L等磁芯 磁芯直径/(in/mm) (每边)/(in/mm) <5 0.65(16) 0.5(11) <25 0.80(20) 1.1(30) <50 1.1(30) 1.4(35) <100 1.5(38) 1.8(47) <250 2.0(51) 2.4(60)
2.2 估算输入功率、输入电压、输入电流和峰值电流 1)输出功率:Po=5V*1A+2*12V*1A+24V*1.5A=65W 2) 输入功率:Pin=Po/η=65W/0.8=81.25W 3) 最低输入电压:Vin(min)=AC90V*1.414=DC127V 4) 最高输入电压:Vin(max)=AC240V*1.414=DC340V 5) 最大平均输入电流: Iin(max)=Pin/Vin(min)=81.25WDC127V=DC0.64A 6) 最小平均输入电流: Iin(min)=Pin/Vin(max)=81.25WDC340V=DC0.24A 7) 峰值电流:Ipk=5.5Po/Vin(min)=5.5*65W/127V=2.81A 2.3 确定磁芯型号尺寸 按照表1,65W可选用每边约35mm的EE35/35/10材料为PC30磁芯 磁芯Ae=100mm2, Acw=188mm2, W=40.6g 2.4 计算一次电感最小值Lpri Vin(min).Dmax 127*0.5 Lpri= = = 452*10-6H=452uH Ipk.f 2.81*50*103 此处选Dmax=0.5

开关电源功率变压器设计方法

开关电源功率变压器设计方法

开关电源功率变压器设计方法开关电源是目前广泛应用于电子设备中的一种电源,其特点是体积小、效率高、稳定性好。

功率变压器是开关电源的核心部件之一,负责将输入电压变换成适应开关电源工作的输出电压。

本文将介绍开关电源功率变压器的设计方法。

首先,确定功率变压器的规格。

要确定功率变压器的规格,需要考虑到电源电压、输出电压、输出电流、工作频率和电源负载的要求等因素。

根据这些因素,计算出功率变压器的额定功率和相应的比例关系。

其次,进行磁路设计。

磁路设计是指确定功率变压器铁芯的形状、尺寸和材料,以及线圈的匝数和截面积。

在磁路设计中,考虑到功率变压器的效率和功率损耗,需要注意铁芯的磁导率和饱和磁密的选择。

在磁路设计的基础上,进行线圈设计。

线圈设计是指确定功率变压器的线圈匝数、截面积和绕制方式。

线圈设计需要根据功率变压器的额定工作电流和电压降来计算电流密度和线圈的尺寸。

然后,进行绕制和制造。

根据功率变压器的线圈设计,将铜线按照规定的匝数绕制成线圈,然后将线圈和铁芯组装起来。

在绕制和制造的过程中,需要保证线圈的绝缘性能和绕制质量。

最后,进行测试和调试。

在完成功率变压器的制造后,需要进行测试和调试,以确保其满足设计要求。

测试和调试的内容包括额定功率、效率、温升和波形等指标的测试。

根据测试结果,进行必要的调整和优化。

综上所述,开关电源功率变压器的设计方法包括确定规格、磁路设计、线圈设计、绕制和制造、以及测试和调试。

在设计过程中,需要综合考虑功率变压器的电路特性、热特性、机械特性等因素,以实现功率变压器的高效、稳定和可靠运行。

几种开关电源变压器设计计算方法

几种开关电源变压器设计计算方法

几种开关电源变压器设计计算方法
开关电源变压器设计计算方法有多种,根据输入和输出电压、电流、效率等参数的不同,可以选择不同的设计方法。

下面介绍几种常见的开关电源变压器设计计算方法。

1.均压系数法:
均压系数法是一种常见的设计方法,适用于输出电压稳定、负载变化较小的情况。

计算步骤如下:
1)确定输入和输出电压、电流;
2)选择变压器的变压比和绕组匝数;
3)根据电流传输比,计算输入和输出绕组的截面积和电流;
4)根据磁通密度,计算变压器的磁芯截面积;
5)计算变压器的工作频率和磁通密度。

2.欧姆法:
欧姆法是一种比较精确的设计方法,适用于需求较高的应用场景。

计算步骤如下:
1)确定输入和输出电压、电流,以及允许的电压降;
2)根据欧姆定律和功率关系,计算输入和输出绕组的电阻;
3)根据电流传输比,计算输入和输出绕组的导线截面积;
4)根据磁通密度,计算变压器的磁芯截面积;
5)计算变压器的工作频率和磁通密度。

3.饱和系数法:
饱和系数法是一种适用于高频开关电源设计的方法,可以有效降低开
关电源的损耗和杂散辐射。

计算步骤如下:
1)确定输入和输出电压、电流,以及允许的饱和电流;
2)根据输入和输出电流计算变压器的有效电流;
3)根据输入电流和变压比,计算输入和输出绕组的有效导线截面积;
4)根据磁通密度,计算变压器的磁芯截面积;
5)计算变压器的工作频率和磁通密度。

以上是几种常见的开关电源变压器设计计算方法。

在实际设计中,还
需要考虑变压器的损耗、绝缘、温升等因素,并结合具体的应用要求进行
优化和调整。

开关电源中变压器的设计

开关电源中变压器的设计
图1.3 骨架俯视图及绕组相位图
Fig.1.3 Skeleton top view and winding phase diagram
1.3
反激式电源的磁芯需要进行中柱磨气隙,否则磁芯会很容易饱和,如图1.4所示。在开气隙时采用边磨气隙边测初级电感的方法,当初级电感量达到0.58mH时就证明气隙磨好了。由于气隙会使空气介入,相当于串入一个大磁阻介质,故气隙越大,电感量越小,变压器能储存的能量越多。为了保证变压器的稳定工作,气隙不能开太大,因为能量主要是存储在气隙里,气隙过大会使漏感增加,对EMC和效率都有影响;气隙也不能开太小,气隙过小会导致变压器能够储存的能量变少,当气隙无法容纳正常工作电感所产生的能量时,磁芯就会饱和从而损坏变压器。
开关电源中变压器的设计
开关电源为电子设备提供稳定的功率输出,它的性能好坏直接决定了电子产品的质量,而这种电源性能又与变压器设计优劣密切相关。可以说变压器在开关电源中占据着关键作用,决定着电路的关键技术参数指标及工作状态,因此对于大多数电源而言,电源的设计归根结底就是变压器的设计。开关电源属于一种高频供电系统,频率高必然使变压器体积降低,传递的能量密度升高,温升变大;同时在高频环境下,变压器绕线中的寄生电容很容易与电路中的电感发生谐振,产生噪音,恶化电源的电磁兼容性能。但是在磁性元件没有重大的技术突破之前,这些问题始终会存在,因此我们只能通过其它的方式来对变压器进行优化,从而提高开关电源的整体性能。
④方案一和方案二中变压器的同级线圈少绕一层,这样会使分布电容变小,增强变压器的电磁兼容性能。
综上所述,三明治绕法的变压器漏感小、损耗低、温升少、效率高,但绕制较麻烦;普通绕法的变压器EMC性能更好,且绕制较简单。所以为了提高电源的稳定性与效率,则应该采用方案三。如果电源对电磁兼容性有严格要求,就应该采用方案一。

开关电源变压器设计要点

开关电源变压器设计要点

开关电源变压器设计 (草稿)开关变压器是将DC 电压,通过自激励震荡或者IC 它激励间歇震荡形成高频方波,通过变压器耦合到次级,整流后达到各种所需DC 电压.变压器在电路中电磁感应的耦合作用,达到初.次级绝缘隔离,输出实现各种高频电压. 目的:减小变压器体积,降低成本,使设备小形化,节约能源,提高稳压精度.N工频变压器与高频变压器的比较:高频E =4.0f N Ae Bm f=50KHZ | N Ae Bm (P2 / P2+Pm+ P C )n >90% ((P2 / P2+Pm )(系统 100W 供电 142W)Cosw>0.90 (系统 100W 供电 111W)(U20-U2 / U20*100) △ U<0.2%好 小SPS ^昌昌雷源方框圄E =4.4f N Ae Bm效率: 功率因素: 稳压精度: 适配.控制性能: 体积.重量工频f=50HZ n =60-80 %Cosw=0.6-0.7△ U%=1%差 大AC(典形雷路)开关变压器主要工作方式一 .隔离方式: 有隔离;非隔离 (TV&TVM11) 二 .激励方式: 自激励;它激励 (F +& IC) 三 .反馈方式:自反馈;它反馈(F- & IC) 四 .控制方式: PWM: PFM(T & T ON )五 .常用电路形式:FLYBACK & FORWARD一.隔离方式:有隔离P-S 不共用地非隔离P-S 共用地,俗稀熟底板自激勘••用燮屋器F +自激a 震藻它激a ••用集成IC 它激a^歇震藻分立元件震BP=300V 220W2-VD取檄二.激励方式:S1=120VS2=57VF +激IaS3=16V分立元件P=300V单端反激励(Flyback) Vi ViTr 控制重路Tr控制甯路 I RL 开关变压器主要设计参数 ----- 静态测试参数:IR. HI-POT. IV O p Cp. Z.动态测试参数「Vo单端正激励(Forward)Tr:Ton R DC . L .L K . L DC .TR. Q.Vi. Io.Vo. TaU. FDmax材料选择参数C ORE: P .Pc.ui.A L Ae. Bs WIRE:BOBBIN: ①ImaxUL94 V--O.( PBT. HI-POT ..........PHENOLIC. NYLON) TAPE:HI-POTP N -(SOL.SPC).PN//PN.PN -PN.S N (SOL.SPC).① n. M.。

反激式开关电源变压器的设计

反激式开关电源变压器的设计

反激式开关电源变压器的设计反激式开关电源变压器是一种常见的变压器类型,广泛应用于电子设备和通信设备中。

它具有体积小、效率高以及输出电压稳定等优点。

本文将分别从设计原理、工作方式和设计步骤等方面对反激式开关电源变压器的设计进行详细介绍。

一、设计原理二、工作方式反激式开关电源变压器的工作方式可以分为两个阶段:储能和传输。

在储能阶段,开关管打开,电流通过变压器一侧的绕组进行储能;在传输阶段,开关管关闭,储存的能量被转移到变压器另一侧的绕组上,最后输出所需的电压。

三、设计步骤1.确定输入电压和输出电压的需求。

根据实际应用需求确定输入电压和输出电压的范围。

2.计算变压器的变比。

根据输入电压和输出电压的比例计算变压器的变比N。

3.计算变压器的功率。

根据输出电压和输出电流计算变压器的功率,确保变压器能够承受所需的功率。

4.确定变压器的工作频率。

根据实际应用需求选择合适的工作频率,通常在20kHz到200kHz之间。

5.计算变压器的参数。

根据变压器的变比、工作频率和功率计算变压器的参数,包括绕组的匝数、铁芯的尺寸等。

6.选择合适的磁性材料。

根据变压器的参数选择适合的磁性材料,常用的材料有软磁合金和磁性氧化铁等。

7.进行原型设计和测试。

根据上述设计参数制作变压器的原型,并进行测试以验证设计结果的准确性。

8.进行参数调整和优化。

根据原型测试结果进行参数调整和优化,以实现更好的性能和效果。

9.进行批量生产。

当设计满足要求时,可以进行批量生产并进行产品验证和测试。

总结:。

开关电源中变压器的设计

开关电源中变压器的设计

开关电源中变压器的设计开关电源为电子设备提供稳定的功率输出,它的性能好坏直接决定了电子产品的质量,而这种电源性能乂与变压器设计优劣密切相关。

可以说变压器在开关电源中占据着关键作用,决定着电路的关键技术参数指标及工作状态,因此对于大多数电源而言,电源的设计归根结底就是变压器的设计。

开关电源属于一种高频供电系统,频率高必然使变压器体积降低,传递的能量密度升高,温升变大; 同时在高频环境下,变压器绕线中的寄生电容很容易与电路中的电感发生谐振, 产生噪音,恶化电源的电磁兼容性能。

但是在磁性元件没有重大的技术突破之前, 这些问题始终会存在,因此我们只能通过其它的方式来对变压器进行优化,从而提高开关电源的整体性能。

1开关电源变压器的设计步骤变压器是开关电源的核心,它直接决定了一个电源的技术指标,因此变压器的设计至关重要。

本文以反激式开关电源为例对变压器进行分析。

在设计一个开关变压器之前,要通过理论分析计算出原副边匝数、反馈绕组匝数、原边电感量、磁芯的Ap值、绕组线径大小,要注意的是计算出来的数据仅仅是参考,不能脱离实际。

当这些关键参数都被大致确定后,就可以进行变压器的实际设计了。

本论文就第4. 3章节中的基于SE8510的LED电源进行变压器设计,通过计算得出原边匝数为54,原边绕组线径为0. 5mm,副边匝数为50, 副边线圈线径为0.4mm,原边电感量为0. 58mH0磁芯Ap值为0. 2593cm4,1.1.磁芯选择开关变压器的磁芯体积大小与功率成正比,因此功率越大变压器体积越大。

在用Ap法选择磁芯时要同时兼顾电路的工作频率、PCB的布线形状、环境温度和允许的温升等应用情况,AP法公式如下:(450x0.3 xBgx )根据公式(1. 1)计算出Ap值为0. 2593cm1,查表选择EFD25磁芯,EFD25 的Ap 值为0.3938cm,,这样可以保证一定的裕量,降低电路损耗。

1.2骨架线圈绕制磁芯选择好以后,根据相应的骨架幅宽及绕组线径大小确定合适的匝数,遵循的原则就是让每一层的绕线占满整个幅宽,如图6.1为变压器骨架侧视图。

反激式开关电源变压器设计

反激式开关电源变压器设计

反激式开关电源变压器设计一、设计原理反激式开关电源变压器基于开关电源的工作原理,利用开关元件(开关管或者MOS管)、变压器、滤波电容和反激电容等组成。

其基本原理为:输入交流电经过整流滤波得到直流电压,然后由开关元件进行开关控制,将直流电压通过变压器变换为所需的输出直流电压,最后通过滤波电容输出稳定的直流电压。

二、关键技术1.变压器设计:反激式开关电源变压器的设计是整个电源设计中最为关键的部分。

在设计变压器时,要考虑输出功率、输入电压范围、输出电压等参数。

通常采用环型铁芯、锥形铁芯或者斜式铁芯,以减小漏电感和磁性损耗,提高效率。

同时,在设计过程中还要考虑绕组的匝数、电流和绝缘等级等方面的因素。

2.开关元件选择:开关元件是实现能量转换和控制的关键部分。

常用的开关元件有开关管、MOS管等。

选择合适的开关元件需要综合考虑电源输出功率、开关频率、开关速度、导通压降以及温升等因素。

3.控制电路设计:控制电路主要负责控制开关元件的导通和关断。

常见的控制电路有单片机控制和集成电路控制两种。

单片机控制的优点是灵活性高、可编程性强,但需要额外增加单片机等硬件,造成成本增加;集成电路控制则更简单,但灵活性较差。

三、注意事项1.确保变压器设计合理:变压器设计要保证核心材料的选取合理,应该选择磁性能好、耐高温的材料。

此外,变压器的绕组要均匀绝缘,并合理设计匝数,以减小漏电感和损耗。

2.开关元件的选择要合适:开关元件选择要根据实际工作条件来确定,如输出功率、输入电压范围、输入电流等。

3.控制电路设计要稳定可靠:控制电路要设计稳定可靠,能够保证开关元件的正常工作。

如果选用单片机控制,还需考虑保护电路的设计,以避免过电流和过压等问题。

4.散热设计要合理:反激式开关电源在工作过程中会产生较多的热量,因此散热设计要合理。

可以采用散热片、散热风扇等降低温度。

总结:反激式开关电源变压器的设计涉及变压器设计、开关元件选择和控制电路设计等多个方面。

几种开关电源变压器设计计算方法

几种开关电源变压器设计计算方法

几种开关电源变压器设计计算方法开关电源变压器是一种电力转换装置,用于将交流电转换为需要的电压或电流。

它是开关电源的核心部分之一、在开关电源的设计中,变压器的设计计算非常重要。

下面介绍几种开关电源变压器设计计算方法。

1.变压器的变比设计计算方法:变压器的变比决定了输出电压的大小。

在开关电源设计中,根据需要的输出电压和输入电压,可以计算出变压器的变比。

变压器的变比计算公式如下:变比=输出电压/输入电压2.变压器的功率计算方法:变压器的功率决定了能够输出的最大功率。

在开关电源设计中,需要根据负载的功率要求和开关管的功率能力来计算变压器的功率。

变压器的功率计算公式如下:功率=输出电压×输出电流3.变压器的绕组计算方法:变压器的绕组计算主要是计算变压器的线圈的匝数和截面积。

在开关电源设计中,需要根据变压器的功率、频率和工作温度来计算绕组的截面积。

变压器的绕组计算公式如下:匝数=(磁通×动铁面积)/(磁压×磁路长度)4.变压器的损耗计算方法:变压器的损耗是指在工作过程中的能量损失。

在开关电源设计中,需要计算变压器的铜损和铁损。

变压器的铜损可以通过计算绕组的电阻和负载电流来获取。

变压器的铁损可以通过计算磁铁和磁路的磁滞损耗和涡流损耗来获得。

变压器的损耗计算公式如下:铜损=绕组电阻×负载电流^2铁损=磁滞损耗+涡流损耗5.变压器的有效值计算方法:变压器的有效值是指输入和输出电压的平均值。

在开关电源设计中,需要计算变压器的有效值来确定电压的稳定性。

变压器的有效值计算公式如下:有效值=峰值/根号2综上所述,开关电源变压器的设计计算方法主要包括变比计算、功率计算、绕组计算、损耗计算和有效值计算等方面。

通过合理的设计计算,可以确保开关电源变压器的性能和稳定性,进而提高开关电源的工作效率。

开关电源变压器的设计

开关电源变压器的设计
1)双极性:电路为半桥、全桥、推挽等。变压器一次绕组里正负 半周励磁电流大小相等,方向相反,所以对于变压器磁心里旳磁通 变化,也是对称旳上下移动,B旳最大变化范围为△B=2Bm,磁心中 旳直流分量基本抵消。
2)单极性:电路为单端正激、单端反激等,变压器一次绕组在1个 周期内加上1个单向旳方波脉冲电压(单端反激式如此)。变压器 磁心单向励磁,磁通密度在最大值Bm到剩余磁通密度Br之间变化, 这时旳△B=Bm-Br,若减小Br,增大饱和磁通密度Bs,能够提升 △B,降低匝数,减小铜耗。
2024/10/1
13
开关电源用铁氧体磁性材应满足下列要求: (1)具有较高旳饱和磁通密度Bs和较低旳剩余磁通密度Br 磁通密度Bs旳高下,对于变压器和绕制成果有一定影响。从 理论上讲,Bs高,变压器绕组匝数能够减小,铜损也随之减小 在实际应用中,开关电源高频变换器旳电路形式诸多,对于变 压器而言,其工作形式可分为两大类:
2024/10/1
20
变压器视在功率PT:对于反激拓扑来说,
PT
Pin
Pout
Pout
Pout
(211) *3 (211) *3 148.5W 0.8
2. 计算AP (用Excel表格来计算AP值)
式中:
AP
PT *104
0.783cm4
Bm * fs *1000 * J * Ku
J电流密度,一般取395A/cm2;
Ku是铜窗有效使用系数,根据安规要求和输出路数决定,一般
取0.2~0.4。在此计算取0.4
2024/10/1
21
根据上图,选择不小于计算AP值旳磁 芯EE3528,有关参数是: Ae:84.8mm2 AP:1.3398cm4 Wa:158mm2 AL:2600nH/H2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档