AMESim中绘制伯德图
如何绘制伯德图
0 -1 -2 -3 -4 Thursday, January 09, 1 20141
10T 5T 1 2T 1 T 2 T 5 T 10 T
-0.2 0.04 0 0 -0.2 0.04
-1 0 -1
-3 -7 -14.2 -20.04 0 -6 -14 -0.2 -20 -0.04
0.1
A( )
0.2 0.5
0.707
T
Thursday, January 09, 2014
11
振荡环节的波德图
L( ) 20 ( dB )
10
0.1 0.2 0.3 0.5 0.7 1 .0
16 12 8 4 0
(1 T 2 2 ) 2 ( 2 T ) 2
0 ,A(0 )
1 L , (0 ) 20 lg 2 。 2
因此在转折频率附近的渐近线依不同阻尼系数与实际曲线可能 有很大的误差。 Thursday, January 09, 10
2014
幅值 A( )与 T 的关系:
纯微分环节的波德图
① 纯微分: 20 A( ) L( ) 20 log A( ) 20 log 0 0.1 20 ( )
2
L( )(dB)
20dB / dec
微分环节
(rad / s )
1
10 20dB / dec
积分环节
( )(deg)
K 0
log
相频特性: ( ) K 0
2
积分环节的Bode图
K ⒉ 积分环节的频率特性:G( s) s K K K j e 2 频率特性: G ( j ) j K K A( ) ( ) tg 1 ( 0) 2 K L( ) 20 log A( ) 20 log L( ) / dB
基于AMESim的蓄能器回路动态特性研究
参考文献
[] 1 官忠范. 液压传动 系统[]北京 : 工业 出版社 , 0 J. 机械 2O O
[] 2 马雅丽, 黄志 坚. 蓄能器实用技 术[ ] 北京 : 学出版社 , O . J. 化 2 76 O
[ ] 占森. ME i 系统建模 和仿真从 入 门到精通 [ ] 北京 : 3王 A Sm J. 北京
已知 盼 睛况下 , 选 用 蓄 能 器 的体 积 、 合理 蓄能 器 前 管路 中
油液质量和蓄能器内油液质量以及油液的截面积 ; 而且要
使蓄 能器 前液 阻尽 可 能小 , 管 长越 小 则 液 阻越 小 , 而 因 故
蓄能 器越靠 近液 压泵 , 吸收脉 动 的效果越 好 。 它
图4 蓄 能 器 回路 压 力 脉 动 情 况
航 空 航 天 大 学 出版 禾 0 5 L2o
作者简介 : 黄超(96 , 汉族, 18 一) 男, 贵州大学机械工程学院机械 电
子工程专业在读研 究生 , 主要从 事数 字控 制与测试技 术
t e d n m c ma h ma ia d l fa c mu ao o sa l h d t n l z h h i e s n f h f c f h c u ltra — h y a te t l i c mo e c u l trl p i e tb i e o a ay e t e t e m n r a o s o e e e t e a c mua o b o o s s a t ot
.
3 . 3
基 于 A Sm 的 蓄 能器 回路 动 态 特 性研 究 ME i
黄超 , 杨成银
( 1 贵州 大学 机械工程 学院 , 贵州 贵 阳 5( )) 5I 3 X
系统仿真AMESim软件使用说明
系统仿真AMESim软件使用说明目录1.AMESim是什么?2.AMESim 建模步骤?3.AMESim接口4.AMESim标准库5.AMESim软件包6.AMESim参数和变量观察7.AMESim建模(调用已有模型,讲解各元件及相互间联系)1.AMESim是什么?AMESim表示工程系统仿真高级建模环境(Advanced Modeling Environment for performing Simulations of engineering systems).基于直接图形接口,在整个仿真过程中草图系统可以显示在环境中。
AMESim 使用图标符号代表各种系统的元件,这些图标符号要么是国际标准组织(如工程领域的ISO为液压元部件)确定的标准符号、控制系统确定的方块图符号,或者当不存在这样的标准符号时可以为该系统给出一个容易接受的非标准图形特征。
Figure 1.1: AMESim中使用符号(标准液压,机械和控制符号表达的一个工程系统)Figure 1.2: 汽车制动系统的符号(非标准图形特征)2.如何使用AMESim?可按如步骤进行系统建模仿真:• sketch mode (草图模式)----从不同的应用库中选取现存的图形• submodel mode (子模型模式)----为每个图形选择子模型(即给定合适的数学模型假设)• parameter mode (参数设置模式)----每个图形模型设置特定的参数• simulation mode (仿真模式)----运行仿真并分析仿真结果大多数自动化系统都可按上述步骤执行,在每一步都可以看到系统草图。
3.接口与脚本you have the possibility of interfacing with Matlab/Simulink to test the Electronic Control Unit (ECU) of the complete gearbox and have the complete simulation platform for the conception of every kind of gearboxes3.1接口3.2 脚本4.标准库标准库提供了控制和机械图标,子模型允许你完成大量工程系统的动态仿真。
如何绘制伯德图PPT课件
G( j ) 00
(5-63) (5-64)
100 00
900 1800
10 100 1000
图5-11 放大环节的Bode图
如图5-11所示,它是一条与角频率ω无关且与ω轴重合的直线。
5
(二)积分环节 积分环节的频率特性是
G( j) 1 j 1 1 e j90 j
7
当有n个积分环节串联时,即
dB L()
G(
j
)
(
1
j
)n
其对数幅频特性为
20 lg
G(
j )
20 lg
1
பைடு நூலகம்n
40
( 5-70 )
0
(5-71)
0.01 0.1
40 dB / dec
1
10
n 20 lg
G( j ) n 900
(5-72) 度 ()
6
设 ' 10 ,则有
20lg ' 20lg 10 20 20lg
dB L()
可见,其对数幅频特性是一条在
60
(5-68)
ω =1(弧度/秒)处穿过零分贝线 (ω 轴),且以每增加十倍频降 低20分贝的速度(-20dB/dec ) 变化的直线。
40
20dB / dec
1
L() dB
如何绘制伯德图PPT课件
是一条斜率为-n×20dB/dec,且在 00
ω =1(弧度/秒)处过零分贝线(ω
0.01 0.1
1
轴)的直线。相频特性是一条与ω 900
无关,值为-n×900且与ω 轴平行的 1800 直线。两个积分环节串联的Bode图
如图5-13所示。
图5-13 两个积分环节串联的Bode图
8
(三) 惯性环节
1
L() dB
40
20
0
0.01 0.1
1
-20
-40
( )
90o
45o
0
0.01 0.1
1
-45o
-90o
10
100
10
100
2
用伯德图分析系统有如下优点: (1) 将幅频特性和相频特性分别作图,使系统(或环
节) 的幅值和相角与频率之间的关系更加清晰;
(2) 幅值用分贝数表示,可将串联环节的幅值相乘变为相 加运算,可简化计算;
一阶微分环节的对数幅频特性如图5-16所示,渐近线的转折频
率 为1,转折频率处渐近特性与精确特性的误差为
,
其误20差lg 均2为正3d分B 贝数,误差范围与惯性环节类似。
相频特性是
当 时, G( j ); arctg
(5-78)
0 G( j0) 00
12
当 1 时,G( j 1) 450 ;
成的折线称为对数幅频特性的渐近线。如图5-14所示。
9
惯性环节的相频特性为
G( j ) arctgT (5-75)
当 0时,G( j0) 00;
当 1 时,G( j 1 ) 450;
如何绘制伯德图.ppt
j?
??
其幅频特性为
1
G ( j? ) ? ?
对数幅频特性是
(5-65) (5-66)
1
20 lg G ( j? ) ? 20 lg ? ? 20 lg ? ?
(5-67)
当 ? ? 0 . 1 时,20 lg G ( j 0 . 1 ) ? ? 20 lg 0 . 1 ? 20 ( dB ) ; 当 ? ? 1 时,20 lg G ( j1) ? ? 20 lg 1 ? 0 ( dB ) ;
当 ? ? 10 时,20 lg G ( j10 ) ? ? 20 lg 10 ? ? 20 ( dB ) 。
6
设 ? ' ? 10 ? ,则有
? 20 lg ? ' ? ? 20 lg 10 ? ? ? 20 ? 20 lg ?
可见,其对数幅频特性是一条 在
dB L(? )
60
(5-68)
ω =1(弧度/秒)处穿过零分贝线
(5-73) (5-74)
? ? 20 lg 1 ? T 2? 2
当 ? ?? 1 时, 20 lg G ( j ? ) ? ? 20 lg 1 ? T 2 ? 2 ? 0 ( dB ) ,
T
当 ? ?? 1 时,20 lg G ( j ? ) ? ? 20 lg 1 ? T 2 ? 2 ? ? 20 lg T ? ( dB )
40
(ω 轴),且以每增加十倍频降
20
? 20 dB / dec
低20分贝的速度( -20dB/dec )
0
0.01
0.1
1
10
?
变化的直线。
? 20
积分环节的相频特性是
? G ( j ? ) ? ? 90 0
Matlab画伯德图
我们经常会遇到使用Matlab画伯德图的情况,可能我们我们都知道bode这个函数是用来画bode图的,这个函数是Matlab内部提供的一个函数,我们可以很方便的用它来画伯德图,但是对于初学者来说,可能用起来就没有那么方便了。
譬如我们要画出下面这个传递函数的伯德图:
(这是一个用butter函数产生的2阶的,频率范围为[2020K]HZ的带通滤波器。
)
我们可以用下面的语句:这样,我们就可以得到以下的伯德图
可能我们会对这个图很不满意,第一,它的横坐标是rad/s,而我们一般希望横坐标是HZ;第二,横坐标的范围让我们看起来很不爽;第三,网格没有打开(这点当然我们可以通过在后面加上grid on解决)。
下面,我们来看看如何定制我们自己的伯德图风格:在命令窗口中输入:bodeoptions我们可以看到以下内容:。
基于AMESim的直动式减压阀动态特性仿真分析
基于AMESim的直动式减压阀动态特性仿真分析顾存行;毛虎平;王强;石运才【摘要】Selecting the direct-acting pressure reducing valve for the study,its mathematical model is established.Based on the analysis of direct-acting pressure reducing valve structure and working principle,and the complex multi-disciplinary systems modeling and simulation platform AMESim,steady-state and dynamic properties are in-depthly analysed and simulated.Then the impact of different numerical parameters is analysed to produce the valve dynamic characteristics.The comparison with the simulation curve and the experimental results shows that:reasonable selection of direct-acting pressure reducing valve body parameters can optimize the dynamic analysis of the valve body,and research results can provide a reliable theoretical basis for the direct-acting pressure reducing valve mechanical design.%选择直动式减压阀为研究对象,建立其数学物理模型,并在分析直动式减压阀的结构和工作原理的基础上,基于复杂的多学科领域系统建模仿真平台AMESim,对其进行稳态及动态的深入分析和仿真计算,分析减压阀不同的数值参数对减压阀动态特性的影响,由仿真曲线和实验结果对比可知:直动式减压阀的阀体参数的合理选取对阀体的动态分析以最优化,研究结果可为直动式减压阀的机械设计提供可靠的理论分析依据.【期刊名称】《机械设计与制造》【年(卷),期】2017(000)005【总页数】4页(P234-237)【关键词】直动式减压阀;AMESim;参数;动态特性【作者】顾存行;毛虎平;王强;石运才【作者单位】中北大学机械与动力工程学院,山西太原030051;中北大学机械与动力工程学院,山西太原030051;中北大学机械与动力工程学院,山西太原030051;中北大学机械与动力工程学院,山西太原030051【正文语种】中文【中图分类】TH16;TH137减压阀,又称调压阀,属于压力控制阀的范畴。
4.2 伯德图法设计
用超前校正网络设计 设超前校正网络的传递函数为 K (s + z) G c (s) = 其中|z|<|p| (s + p) 设计要求是(1)系统对斜坡输入响应的稳态误差 小于10%,Kv=10;(2)系统对阶跃输入的超调量小 于10%;(3)按2%准则调节时间Ts不超过3s 根据给定的设计要求,有关公式如下
按Bode图法设计校正网络后 绘制校正后系统的Bode图 K=1800; numg=[1];deng=[1 15 50 0]; numgc=K*[1 3.5];dengc=[1 25]; [num,den]=series(numgc,dengc,numg,deng); w=logspace(-1,2,200); [mag,phase,w]=bode(num,den,w); [Gm,Pm,Weg,Wep]=margin(mag,phase,w); bode(num,den,w) title(['Gaom,argom=',num2str(Gm),'Phase margin=',num2str(Pm)]);
开环对数频率特性的一般要求
伯德图
γ = 30° ~ 60°
h > 6dB
L(dB)低频段
中频段
高频段
(1)中频段以-20dB/dec的斜率 穿越零分贝线,而且这一斜率占 有足够的频带宽度,则系统的稳 0 定性好 (2)截止频率wc越高,则系 统的快速性越好
-20dB/dec
ωc
ω
s −1
(3)低频段的斜率陡,增益高,表示系统的稳态精度好(即静差率小,调 速范围宽)
(4)高频段衰减得越快,即高频特性负分贝值 低,说明系统抗高频噪声干扰的能力越强
4.2.2 Bode图法
!!!AMESim操作图解
Chapter 2: AMESim 工作空间章节描述::• AMESim用户接口• AMESim的四个工作模式• 一些诀窍和技巧2.1 AMESim用户接口AMESim 用户接口是基本工作区域,取决于工作模式,你可选择各种工具。
• 主窗口• 菜单条• 工具栏• 右击鼠标菜单• 各种库2.1.1 主窗口启动AMESim当启动AMESim时, 菜单窗口是空的。
Figure 2.23: AMESim主窗口标题栏最小化,恢复,关闭按钮你可以:• 要么打开一个空文本系统:• 下载一个已经存在的系统:当你下载一个已经存在的系统时,会出现一个浏览器以便指示你要打开系统的路径。
.Figure 2.24: 浏览器1. 选择你要打开的系统并点击打开项“Open”,2. 或者双击要打开的系统。
关闭AMESim当你关闭主窗口时,就自动退出了AMESim。
要关闭主窗口,按如下即可:• 点击关闭按忸(close),• 按Ctrl+Q键,• 在主菜单中选择文件菜单中退出键(File _ Quit),我们将描述AMESim W主接口的组成(请参见图表2.23)2.1.2 主菜单主菜单使你进入AMESim的主特征。
Figure 2.25: 主菜单注:通过菜单中已经给出的键盘快捷键还有其它一些特征,请参见键盘快捷键列表。
2.1.3 工具栏工具栏显示了对应于AMESim主特征的按钮。
你可以选择好多种工具栏:• 在所有模式下:• 文件操作工具栏• 模型操作工具栏• 注释工具栏• 瞬时分析工具栏•在运行模式下:• 后台处理工具栏• 线性分析工具栏要了解AMESim更多的工作模式,请见34页“AMESim的四个工作模式”。
文件操作工具栏要创建草图,请打开新系统。
要修改或完成已经存在的系统请打开它。
保存你创建系统。
模式操作工具栏Figure 2.26: 草图模式Figure 2.27: 子模型模式Figure 2.28: 参数模式Figure 2.29: 运行模式模式操作工具栏依你正在工作的模式而改变。
5.3.2开环系统bode图的绘制
5.3.2 开环系统Bode 图的绘制将开环传递函数()G s 表示成式(5-48)形式的典型环节组合形式,有12121212()20lg ()20lg[()()()]20lg ()20lg ()20lg ()()()()()()()()l l l l L A A A A A A A L L L ω=ω=ωωω⎧⎪=ω+ω++ω⎪⎨=ω+ω++ω⎪⎪ϕω=ϕω+ϕω+ϕω⎩ (5-58) 式中,)(ωi L 和)(ωϕi 分别表示各典型环节的对数幅频特性和对数相频特性。
式(5-58)表明,只要能作出)(ωj G 所包含的各典型环节的对数幅频和对数相频曲线,将它们进行代数相加,就可以求得开环系统的Bode 图。
实际上,在熟悉了对数幅频特性的性质后,可以采用更为简捷的办法直接画出开环系统的Bode 图,具体步骤如下。
(1) 将开环传递函数写成尾1标准形式:()211()2211(1)[()21]()(1)[()21]m p pzh i h i zh zh n q v qv pk j k j pk pks s s K z G s s s s s p -==--==+++=+++∏∏∏∏ξωωξωω 确定系统开环增益K 和型别v ,把各典型环节的转折频率由小到大依次标在频率轴上。
(2) 绘制开环对数幅频特性低频段的渐近线。
由于低频段渐近线的频率特性为()v K j ω,所以它就是过点(K lg 20,1)、斜率为20dB/dec v -的直线。
(3) 在低频段渐近线的基础上,沿频率增大的方向每遇到一个转折频率就改变一次斜率,其规律是遇到惯性环节的转折频率,斜率变化20dB/dec -;遇到一阶复合微分环节的转折频率,斜率变化20dB/dec ;遇到二阶复合微分环节的转折频率,斜率变化40dB/dec ;遇到振荡环节的转折频率,斜率变化40dB/dec -;直到所有转折全部进行完毕。
最右端转折频率之后的渐近线斜率应该是20()dB/dec n m --,其中,m n ,分别为)(s G 分母、分子的阶数。
如何绘制伯德图
2 20 log
A( )
20 log
K
40
K 10
20log K 20log ,
20
当K 1时, 1, L() 0;
20 40
()
1 10 100 K 1
10,L() 20 可见斜率为-20dB/dec 当K 0时, 1, L() 20 log K;
1 10 100
T
2
可见,相角的变化范围从0~180度。
Wednesday, May 29, 2024
17
二阶微分环节的波德图
( )(deg)
180°
1.0
150° 0.7
120° 90°
0.5 0.3 0.2
60° 0.1
30°
0°
L( )(dB)
40dB / Dec
L( ) 20
(dB)
比例环节的bode图
二、典型环节的波德图
⒈ 比例环节:G(s) K, (K 0),G( j) K 幅频特性:A() K;相频特性:() 0
L() / dB
20log K
20log K
20log K
()
180
K 1
K 1 log
0 K 1
对数幅频特性:
0
L() 20lg K 0
0
K 0 log
相频特性:
() K 0
180
Wednesday, May 29, 2024
K 1 K 1 0 K 1
1
积分环节的Bode图
⒉ 积分环节的频率特性:G(s) K
s
频率特性:
G( j )
K
j
K
K
e2
第五章 伯德图与那奎斯特图的画法
横坐标取值范围:最小转角频率左边两个十倍频程,最大转角 频率右边两个十倍频程,注意取整。所以实际范围是多少?
0.01 1000 rad s 1
9
5.2.3 绘制系统伯德图的一般步骤
80
L( ) dB
-80
②
20 0 -20 90 0 -90 -180 -270 -360
G ( j )
20dB / dec
/ rad s 1
通常每90°作为一个基本单位,其值尽可能大。
-180
3
5.2.3 绘制系统伯德图的一般步骤
幅频曲线叠加时的要点 首先:典型曲线绘制要标准、要清楚。幅频图各曲线斜率应按 参考斜率平移绘制。各转角频率相互位置取值要准确。 其次:幅频图叠加时起始段主要是比例环节和积分 ( 或微分 ) 环 节起作用,应先将它们进行叠加;叠加方法:过比例环节中ω=1
段 ( 频率趋于无穷大 ) 的位置,可用所有典型环节的相频特性求 和来判断(演草纸中完成)。
( ) G1 ( j ) G2 ( j ) Gn ( j )
0
lim ( ) ?
lim ( ) ?
6
5.2.3 绘制系统伯德图的一般步骤
22 3
1
j 1) 3 G ( j ) j ( j )2 j j ( 1)[ 1] 2 2 2 7.5(
④
100
①
rad s 1
0.01
20
1000
( )
2
0.01 1 2 3
⑤
③
④
③
100
1 ① rad s
1000
⑤
G ( j )
②
最新AMESIM介绍资料
第二章 AMESim的应用方法2.1 AMESim简介AMESim表示系统工程高级建模和仿真平台(Advanced Modeling Environment for Simulations of engineering systems)。
它能够从元件设计出发,可以考虑摩擦、油液、和气体的本身特性、环境温度等非常难以建模的部分,直到组成部件和系统进行功能性能仿真和优化,并能够联合其他优秀软件进行联合仿真和优化,还可以考虑控制器在环构成闭环系统进行仿真,使设计出的产品完全满足实际应用环境的要求。
AMESim软件共由四个功能模块组成:AMESim、AMESet、AMECustom、AMERun,另外还有软件帮助模块AMEHelp。
其中,AMESim用于面向对象的系统建模、参数设置、仿真运行和结果分析,是该工具软件的主功能模块,主要工作模式为:按系统原理图建模一确定元件子模型一设定元件参数一仿真运行一结果观测和分析。
AMEest用于构建符合用户个人需求的元件子模型,主要通过两步进行:先设定子模型外部参数情况,系统自动生成元件代码框架,再通过用户的算法编程实现满足用户需要的元件,程序使用C或Fortnar77实现;AMECustom用于对软件提供的元件库中的元件进行改造,但不能深入到元件代码层次,只适用于元件的外部参数特性的改造;AMERun是提供给最终用户的只运行模块,最终用户可以修改模型的参数和仿真参数,执行稳态或动态仿真,输出结果图形和分析仿真结果,但不能够修改模型结构,不能够访问或修改元件代码等涉及技术敏感性的信息。
2.2AMESim的特点1.多学科的建模平台AMESim在统一的平台上实现了多学科领域的系统工程的建模和仿真,模型库丰富,涵盖了机械、液压、控制、液压管路、液压元件设计、液压阻力、气动、热流体、冷却、动力传动等领域,且采用易于识别的标准ISO图标和简单直观的多端口框图,方便用户建立复杂系统及用户所需的特定应用实例。
AMESim浅讲
变量拖入setup对话框赋值—run parameters—batch选项—运行—
曲线图右键options选项—相应设置即可。
2.后处理
后处理主要用于绘制基本参量经数学运算后的时域曲线。 主要步骤:运行模式下post processing—将title框中需要处理的 参量拖入该框中—右键add—在expression列输入相应公式—将新变
2012-10-6
会使系统的抗干扰性变差。
4.运行模式 根据需要,设置合适的采样时间间隔,仿真起始时刻可根据 需要设定(不一定为0时刻),将元件各物理量拖至空白处即可 显示时域曲线。 可将运行所得的数据导出至origin等图形处理软件中进一步 处理,步骤为file—export values—存至某盘下—记事本打开
谢 谢!
--复制至excel—导入origin。 2012-10-6
运行所得的曲线也可按如下方式保存,file—export plot
picture—存至某盘下—直接粘贴至word中(初步处理)。
三.重要功能
1.批运行
批运行指用多组不同参数启动的一系列仿真,当需要研究某一参数 的改变对系统特性的影响规律时,该功能较实用。 主要步骤:参数模式下settings—batch parameters—将需设置的
2012-10-6
2.子模型模式
根据所研究的系统对元件特性考虑侧重点的不同,为每个元件 选择合适的子模型,默认情况下的子模型为premier submodel, 子模型不同,参数设置不同。
3.参数模式 根据对元件各参数的理解,依照样本设置各参数,内部封装的 数学模型可查阅help文件。
P--增强系统快速性,减小稳态误差,但同时会使系统稳定性下降; I--提高系统低频响应增益,减小甚至消除稳态误差,但对系统动态特性稍 有影响; D--改善系统的动态特性,如选择适当,可减小超调,减小调整时间,但
如何绘制伯德图
1
s2
K n 2 2ns n2
讨论 0 1时旳情况。当K=1时,频率特征为:
G(
j )
(1 T
1
2 2 )
j2T
幅频特征为:
A( )
1
(1 T 2 2 )2 (2T )2
相频特征为:
(
)
tg
1
1
2T T 2
2
对数幅频特征为:L() 20 log A() 20 log (1 T 2 2 )2 (2T )2
2
当 1 时,有谐振峰值。
2
M p A( p ) 2
1
1 2
由幅频特征
A( )
1
(1 T 2 2 )2 (2T )2
当
0
,A(0 )
1
2
,L(0) 20lg 2 。
所以在转折频率附近旳渐近线依不同阻尼系数与实际曲线可能
有很大旳误差。
11/29/2023
10
幅值 A()与 T 旳关系:
T 2.0 3.0 4.0 5.0 7.0 10 20 50 100
( ) -63.4 -71.5 -76 -78.7 -81.9 -84.3 -87.1 -88.9 -89.4
当 0时,(0) 0;当 1 时,( 1 ) ;当 时,() 。
T
T4
2
由图不难看出相频特征曲线在半对数坐标系中对于(0, -45°)
2
L( ) 20lg (1 T 2 2 )2 (2T )2
低频渐近线: T 1时,L() 0
高频渐近线: T 1时,L( ) 20lg (1 T 2 2 )2 (2T )2 40logT
转折频率为:o
1 T