69东北师大附属中学高三第一轮复习导学案-不等式选讲(3)B
东北师大附属中学高三第一轮复习教案不等式选讲大练习
[本练习目标:以近几年的高考题为例,练习不等的解法,证明]一、选择题:1. (2011年高考山东卷理科4)不等式|5||3|10x x -++≥的解集为 (A )[-5.7] (B )[-4,6] (C )(,5][7,)-∞-⋃+∞ (D )(,4][6,)-∞-⋃+∞ 【答案】D【解析】由不等式的几何意义知,式子|3||5|++-x x 表示数轴的点)(x 与点(5)的距离和与点(-3)的距离之和,其距离之和的最小值为8,结合数轴,选项D 正确 二、填空题1. (2011年高考天津卷理科13)已知集合{}1|349,|4,(0,)A x R x x B x R x t t t⎧⎫=∈++-≤=∈=+∈+∞⎨⎬⎩⎭,则集合A B ⋂=________. 【答案】{}52|≤≤-∈x R x【解析】∵{}{}54|9|4||3||≤≤-∈=≤-++∈=x R x x x R x A ,()()⎭⎬⎫⎩⎨⎧+∞∈-⨯≥∈=⎭⎬⎫⎩⎨⎧+∞∈-+=∈=,0,6142|,0,614|t t t x R x t t t x R x B {}2|-≥∈=x R x ,∴{}{}{}52|2|54|≤≤-∈=-≥∈≤≤-∈=x R x x R x x R x B A I I . 对于实数x ,y ,若11≤-x ,12≤-y ,则12+-y x 的最大值为 . 【答案】53. (2011年高考广东卷理科9)不等式130x x +--≥的解集是______. 【解析】}1|{≥x x 。
由题得1)3()1(|3||1|22≥∴-≥+∴-≥+x x x x x 所以不等式的解集为}1|{≥x x 。
4.(2011年高考陕西卷理科15)(不等式选做题)若关于x 的不等式12a x x ≥++-存在实数解,则实数a 的取值范围是 【答案】(,3][3,)-∞-+∞U【解析】:因为12|12|3x x x x ++-≥+-+=所以12a x x ≥++-存在实数解, 有3a ≥3a ≤-或3a ≥ 三、解答题:1.(2011年高考辽宁卷理科24)(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x-2|-|x-5|. (I )证明:-3≤f (x )≤3;(II )求不等式f (x )≥x 2-8x+15的解集.解:(I )3,2,()|2||5|27,25,3, 5.x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩当25,327 3.x x <<-<-<时 所以3() 3.f x -≤≤ (II )由(I )可知,当22,()815x f x x x ≤≥-+时的解集为空集;当225,()815{|55}x f x x x x x <<≥-+-≤<时的解集为;当25,()815{|56}x f x x x x x ≥≥-+≤≤时的解集为.综上,不等式2()815{|56}.f x x x x x ≥-+-≤≤的解集为2. (2011年高考全国新课标卷理科24)(本小题满分10分) 选修4-5不等选讲 设函数0,3)(>+-=a x a x x f (1)当1=a 时,求不等式23)(+≥x x f 的解集;(2)如果不等式0)(≤x f 的解集为{}1-≤x x ,求a 的值。
吉林省东北师范大学附属中学2021届高三文科数学一轮复习:不等式选讲(3)
不等式选讲[3][文教案]即21-≥m ,又0<m ∴021<≤-m (如图1)②当[]1,0∈=m t ,即10≤≤m 时,()012442<+-=∆m m m ,即0122<--m m ,∴2121+<<-m ,又[]1,0∈m ,∴10≤≤m (如图2)③当1>=m t 时,()0212211>=++-=m m g 恒成立. ∴1>m (如图3)故由①②③可知:21-≥m .变式一:条件改为:若()()02933<--+⋅xx x f k f 对任意x ∈R 恒成立, 例2.已知向量a =(2x ,x+1),b = (1-x ,t)。
若函数b a x f ⋅=)(在区间(-1,1)上是增函数,求t 的取值范围。
分析:利用导数将“函数)(x f 在区间(-1,1)上是增函数”的问题转化为“0)(≥'x f 在(-1,1)上恒成立”的问题,即转化成为“二次函数023)(2≥++-='t x x x f 在区间(-1,1)上恒成立” ,利用分别系数法将t 分别出来,通过争辩最值来解出t 的取值范围。
【解析】依定义t tx x x x t x x x f +++-=++-=232)1()1()(。
则t x x x f ++-='23)(2, 若)(x f 在(-1,1)上是增函数,则在(-1,1)上可设0)(≥'x f 恒成立。
∴0)(≥'x f x x t 232-≥⇔在(-1,1考虑函数x x x g 23)(2-=,(如图4)由于)(x g 的图象是对称轴为31=x ,开口向上的抛物线,故要使x x t 232-≥在(-1,1)上恒成立)1(-≥⇔g t ,即5≥t 。
而当5≥t 时,)(x f '在(-1,1)上满足)(x f '>0,即)(x f 在(-1,1)上是增函数。
吉林省东北师范大学附属中学高考数学第一轮复习 导数的应用学案 理
课题:导数的应用一、知识梳理: (阅读选修教材2-2第18页—第22页)1.函数的单调性与导数的关系:利用导数研究多项式函数单调性的一般步骤:()1求()f x ';()2确定()f x '在(),a b 内符号;()3若()0f x '>在(),a b 上恒成立,则()f x 在(),a b 上是增函数;若()0f x '<在(),a b 上恒成立,则()f x 在(),a b 上是减函数①()0f x '>⇒()f x 为增函数(()0f x '<⇒()f x 为减函数). ②()f x 在区间(),a b 上是增函数⇒()f x '≥0在(),a b 上恒成立;()f x 在区间(),a b 上为减函数⇒()f x '≤0在(),a b 上恒成立.2.极值:极大值: 一般地,设函数()f x 在点0x 附近有定义,如果对0x 附近的所有的点,都有0()()f x f x <,就说0()f x 是函数()f x 的一个极大值,记作y 极大值0()f x =,0x 是极大值点.极小值:一般地,设函数()f x 在0x 附近有定义,如果对0x 附近的所有的点,都有0()()f x f x >就说0()f x 是函数()f x 的一个极小值,记作y 极小值0()f x =,0x 是极小值点. 极大值与极小值统称为极值在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点:(1)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小.(2)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个.(3)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值. (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. 判别0()f x 是极大、极小值的方法:若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值.求可导函数()f x 的极值的步骤:()1确定函数的定义区间,求导数)(x f '()2求方程()0f x '=的根()3用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查)(x f '在方程根左右的值的符号,如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正,那么()f x 在这个根处取得极小值;如果左右不改变符号,那么()f x 在这个根处无极值.如果函数在某些点处连续但不可导,也需要考虑这些点是否是极值点 .3.函数的最大值和最小值: 一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值.说明:()1在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值.如函数xx f 1)(=在),0(+∞内连续,但没有最大值与最小值;()2函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.()3函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件.()4函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个. 利用导数求函数的最值步骤:由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数)(x f 在[]b a ,上连续,在(,)a b 内可导,则求)(x f 在[]b a ,上的最大值与最小值的步骤如下:()1求)(x f 在(,)a b 内的极值;()2将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值.二、题型探究 【探究一】:讨论函数的单调性例1:设 函数 ,试讨论函数的单调性(解析:注意讨论K 的范围,注意函数的定义域) 时,单调递增;时,单调递减;(,1)单调递增。
东北师大附属中学高三第一轮复习导学案函数的概念及表示B
函数的概念与表示 (学案)一、知识梳理:(阅读教材必修1第15页—第26页) 1、 函数 (1)、函数的定义: (2)、构成函数的三要素:函数的定义含有三个要素,即定义域A ,值域C ,对应法则f ,当定义域A ,对应法则f 相同时,两个函数表示是同一个函数,解决一切函数问题必须认真确定函数的定义域,函数的定义域包含四种形式: 自然型;限制型;实际型;抽象型;(3)函数的表示方法:解析式法,图象法,列表法 2、 映射映射的定义: 函数与映射的关系:函数是特殊的映射 3、分段函数分段函数的理解:函数在它的定义域中对于自变量x 的不同取值上的对应关系不同,则可以用向个不同的解析式表法该函数,这种形式的函数叫分段函数,分段函数是一个函数而不是多个函数。
4、函数解析式求法求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方程组法;(5) 应用题求函数解析式常用方法有待定系数法等.二、题型探究探究一:求函数的定义域1.(郑州模拟)函数0( )A.{x|x<0}B.{x|x>0}C.{x|x<0且x ≠-1}D.{x|x ≠0且x ≠-1,x ∈R}2、若函数f(x+1)的定义域是[1,2],则函数)的定义域为________.3、函数y=253x x --的值域是{y|y ≤0或y ≥4},则此函数的定义域为________.探究二:求函数的解析式 例2.(1)已知3311()f x x xx +=+,求()f x ; (2)已知2(1)lg f x x+=,求()f x ;(3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知()f x 满足12()()3f x f x x+=,求()f x .三、方法提升1、判断一个对应是否为映射关键在于是否“取值任意性,成象唯一性;判断是否为函数“一看是否为映射,二看A ,B 是否为非空的数集”2、函数是中学最重要的概念之一,学习函数的概念首先要掌握函数的三要素基本内容与方法,由给定的函数的解析式求其定义域是这类问题的代表,实际上是求使函数有意义的x 有取值范围;求函数定义域一般有三类问题:(1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;(2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;(3)已知()f x 的定义域求[()]f g x 的定义域或已知[()]f g x 的定义域求()f x 的定义域:①掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域; ②若已知()f x 的定义域[],a b ,其复合函数[]()f g x 的定义域应由()a g x b ≤≤解出.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方程组法;(5)应用题求函数解析式常用方法有待定系数法等.四、 反思感悟五、课时作业课时训练 函数的解析式与定义域【说明】 本试卷满分100分,考试时间90分钟. 一、选择题(每小题6分,共42分) 1.(2010江苏南京一模,2)函数y=322--x x +log 2(x+2)的定义域为( )A.(-∞,-1)∪(3,+∞)B.(-∞,-1]∪[3,+∞)C.(-2,-1]D.(-2,-1]∪[3,+∞) 2.若f(x+1)=21f(x),则下列函数中f(x)为( ) A.2x B.x+21C.2-xD.21log x 3.g(x)=1-2x,f [g(x)]=221x x -(x ≠0),则f(21)等于( )A.1B.3C.15D.30 4.设函数f(x)=lgx,g(x)=4x -2x+1-3,则函数f [g(x)]的定义域是( ) A.(-∞,2) B.(2,+∞) C.(log 23,+∞) D.(-∞,log 23)A.S=1+2t-3B.S=23log 2t C.S=21(t 2-1) D.S=-2t+5.5 6.已知函数y=f(x)的图象如下图,那么f(x)等于( )A.122+-x x B.1||22+-x x C.|x 2-1|D.x 2-2|x|+17.(2010全国大联,8)已知函数y=f(2x )的定义域是[-1,1],则函数y=f(log 2x)的定义域是( )A.(0,+∞)B.(0,1)C.[1,2]D.[2,4] 二、填空题(每小题5分,共15分) 8.函数f(x)=xx -++211的定义域为_______________. 9.已知f(x+1)的定义域是[1,2],那么函数f(x )的定义域为___________________. 10.设函数f(x)=log a x(a>0且a ≠1),函数g(x)=-x 2+bx+c 且f(2+2)-f(2+1)=21,g(x)的图象过点A (4,-5)及B (-2,-5),则a=____________;函数f [g(x)]的定义域为_______________.三、解答题(11—13题每小题10分,14题13分,共43分) 11.已知函数f(x+a)=|x-2|-|x+2|,且f [f(a)]=3,求a 的值.12.已知函数f(x)=34723++-ax ax x 的定义域为R ,求a 的取值范围.13.如下图,用长为l 的木条围成上部分是半圆下部分是矩形的窗框,中间有2根横档,要使透光效果最好,应如何设计?.14.已知函数f(x)=lg(x+1),g(x)=2lg(2x+t)(t 为参数). (1)写出函数f(x)的定义域和值域;(2)当x ∈[0,1]时,求函数g(x)解析式中参数t 的取值范围; (3)当x ∈[0,1]时,如果f(x)≤g(x),求参数t 的取值范围. 附加题:1.已知2()f x 的定义域为[1,1]-,则(2)xf 的定义域为2.函数1sin 21sin 2xy x +=-的定义域为3、我国是水资源比较贫乏的国家之一,各地采取价格调控等手段来达到节约用水的目的,某地用水收费的方法是:水费=基本费+超额费+损耗费.若每月用水量不超过最低限量a 3m 时,只付基本费8元和每月每户的定额损耗费c 元;若用水量超过a3m 时,除了付同上的基本费和定额损耗费外,超过部分每3m 付b 元的超额费.已知每户每月的定额损耗费不超过5元.4.(2010山东理)(11)函数y =2x-的图像大致是 ( )5.山东卷理)函数的图像大致为 ( ).2x x x x xe e ye e--+=-D。
东北师大附属中学高三一轮导学案:不等式选讲(2)【A】
不等式选讲(1)(教案)A一、基本知识点:(一)、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a 0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。
2、不等式的基本性质:①、如果a>b ,那么b<a ,如果b<a ,那么a>b 。
(对称性) ②、如果a>b ,且b>c ,那么a>c ,即a>b ,b>c ⇒a>c 。
③、如果a>b ,那么a+c>b+c ,即a>b ⇒a+c>b+c 。
推论:如果a>b ,且c>d ,那么a+c>b+d .即a>b , c>d ⇒a+c>b+d . ④、如果a>b ,且c>0,那么ac>bc ;如果a>b ,且c<0,那么ac<bc .⑤、如果a>b >0,那么nn b a >(n ∈N ,且n>1)⑥、如果a>b >0,那么n n b a >(n ∈N ,且n>1)。
(二)、含有绝对值的不等式的两种基本类型第一种类型:设a 为正数。
根据绝对值的意义,不等式a x <的解集是}|{a x a x <<-,它的几何意义就是数轴上到原点的距离小于a 的点的集合是开区间(-a ,a ),如图所示。
a - a如果给定的不等式符合上述形式,就可以直接利用它的结果来解。
第二种类型: 设a 为正数。
根据绝对值的意义,不等式a x >的解集是 {|x a x >或a x -<}它的几何意义就是数轴上到原点的距离大于a 的点的集合是两个开区间),(),,(∞--∞a a 的并集。
69东北师大附属中学高三第一轮复习导学案-不等式选讲(3)A
不等式选讲(2)(教案)A一、 基本知识点:(1).含有参数不等式的解法例1:解关于x 的不等式 34422+>+-m m mx x解:原不等式等价于 3|2|+>-m m x当03>+m 即3->m 时 )3(232+-<-+>-m m x m m x 或∴333-<+>m x m x 或当03=+m 即3-=m 时 0|6|>+x ∴x ≠-6当03<+m 即3-<m 时 x ∈R 。
例2、解关于x 的不等式 20(,1)(cot 232πθθ≤<<-+-x x 解:当1cot >θ即θ∈(0,4π)时 0232<-+-x x ∴x >2或x <1 当1cot =θ即θ=4π时 x ∈φ 当)1,0(cot ∈θ即θ∈(4π,2π)时 0232>-+-x x ∴1<x <2 (2). 不等式的证明方法:比较法(差0法,商1法)例3;若实数1≠x ,求证:.)1()1(32242x x x x ++>++证明:采用差值比较法:2242)1()1(3x x x x ++-++=3242422221333x x x x x x x ------++=)1(234+--x x x=)1()1(222++-x x x =43)21[()1(222++-x x ,04321(,0)1(,122>++>-≠x x x 且从而∴ ,04321[()1(222>++-x x∴ .)1()1(32242x x x x ++>++讨论:若题设中去掉1≠x 这一限制条件,要求证的结论如何变换?例4、已知,,+∈R b a 求证.a b b a b a b a ≥本题可以尝试使用差值比较和商值比较两种方法进行。
证明:1) 差值比较法:注意到要证的不等式关于b a ,对称,不妨设.0>≥b a 0)(0≥-=-∴≥---b a b a b b a b b a b a b a b a b a b a ,从而原不等式得证。
东北师大附属中学高三一轮导学案:不等式选讲(3)【B】
不等式选讲(2)(学案)B一、 基本知识点:(1).含有参数不等式的解法例1:解关于x 的不等式 34422+>+-m m mx x例2、解关于x 的不等式 )20(,1)(cot 232πθθ≤<<-+-x x(2). 不等式的证明方法:比较法(差0法,商1法)例3;若实数1≠x ,求证:.)1()1(32242x x x x ++>++例4、已知,,+∈R b a 求证.ab b a b a b a ≥(3)不等式的证明方法:分析法、综合法 例1、b a ,都是正数。
求证:.2≥+abb a例2、设0,0>>b a ,求证.2233ab b a b a +≥+议一议:根据上面的例证,你能指出综合法和分析法的主要特点吗? 例3、已知a ,b ,m 都是正数,并且.b a <求证:.bam b m a >++(4).含参数不等式的恒成立“含参数不等式的恒成立”的问题,是近几年高考的热点,它往往以函数、数列、三角函数、解析几何为载体具有一定的综合性,解决这类问题,主要是运用等价转化的数学思想:即一般的,若函数()x f 在定义域为D ,则当x ∈D 时,有()M x f ≥恒成立()M x f ≥⇔min ;()M x f ≤恒成立()M x f ≤⇔max .因而,含参数不等式的恒成立问题常根据不等式的结构特征,恰当地构造函数,等价转化为含参数的函数的最值讨论.1.定义在R 上的函数()x f 既是奇函数,又是减函数,且当⎪⎭⎫⎝⎛∈2,0πθ时,有 ()()022sin 2cos 2>--++m f m f θθ恒成立,求实数m 的取值范围.变式一:条件改为:若()()02933<--+⋅x xxf k f 对任意x ∈R 恒成立,2.已知向量=(2x ,x+1),= (1-x ,t)。
若函数b a x f ⋅=)(在区间(-1,1)上是增函数,求t 的取值范围。
东北师大附属中学高三第一轮复习教案不等式选讲
不尊武选讲(2) {教案)基本知识点:[阅读选讲4-5](1).含有参数不等式的解法例1:解关于x的不等式x2 4mx 4m2m3当m30即m3时x 2m m3或x2m(m 3)••• x3m3或xm 3当m30即m3时| x 6| 0• x 6当m30即m3时x R o例2、解关于x的不等式(cot ) x 2 3x 21,(0解:当cot1即(0,—)时4 2x3x 20• x>2 或x<1当cot1即=一时x40当cot(0,1)即(一,4-)时2 2x3x 20• 1<x<2⑵•不等式的证明方法:比较法(差0法,商1法)例3;若实数x1,求证:3(1 x2 4 \x )(1 x2\2x )・解:原不等式等价于|x 2m |证明:采用差值比较法:m 33( 1 x2x4) (12\2x )3x4x2x42x 2x22x3xx2(x 43x2(x 1)2(x 2 2(x 1)2[(x3 x 3x 21)1)1)2 3]刁;]2x 1,从而(x 1) 1 22(x 1)2[(x -)23(1 x 2 x 4)(1 xx 2)2.讨论:若题设中去掉x 1这一限制条件,要求证的结论如何变换? 例 4、已知 a,b R ,求证 a a b b a b b a .本题可以尝试使用差值比较和商值比较两种方法进行。
证明:1)差值比较法:注意到要证的不等式关于a,b 对称,不妨设a b 0.a b b b (a ab b ab )0,从而原不等式得证。
2)商值比较法:设a b 0,a曲a1,a b 0, 畀1 (旦)a b 1故原不等式得证。
ba b b注:比较法是证明不等式的一种最基本、最重要的方法。
用比较法证明不等式的 步骤是:作差(或作商)、变形、判断符号。
(3)不等式的证明方法:分析法、综合法a b例1、a,b 都是正数。
求证:2.b a证明:由重要不等式 A 2 B 2 2AB 可得本例的证明是综合法。
68东北师大附属中学高三第一轮复习导学案-不等式选讲(2)A
③、如果a>b,那么a+c>b+c,即a>b a+c>b+c。
推论:如果a>b,且c>d,那么a+c>b+d.即a>b, c>d a+c>b+d.
④、如果a>b,且c>0,那么ac>bc;如果a>b,且c<0,那么ac<bc.
⑤、如果a>b >0,那么 (n N,且n>1)
⑥、如果a>b >0,那么 (n N,且n>1)。
(二)、含有绝对值的不等式的两种基本类型
第一种类型:设a为正数。根据绝对值的意义,不等式 的解集是 ,它的几何意义就是数轴上到原点的距离小于a的点的集合是开区间(-a,a),如图所示。
如果给定的不等式符合上述形式,就可以直接利用它的结果来解。
第二种类型:设a为正数。根据绝对值的意义,不等式 的解集是{ 或 }
1.
2.
4. (-1<x<0)
5. 时解关于x的不等式
( ; ; )
6、解不等式:
(当a>1时 当0<a<1时 )
7、解不等式: (-1<x<3)
8、已知 求证: 。
证明 ,∴ ,
由例1及上式, 。
9、7、
10、
练习:
1、已知 求证: 。
2、已知 求证: 。
[题型探究四]:指对不等式解法:
例1、解不等式
解:原不等式可化为: ∵底数2>1
∴ 整理得:
东北师大附属中学高三一轮导学案:基本不等式及其应用【B】
基本不等式及应用(学)B一、知识梳理:1、基本不等式(1)重要不等式:如果a,b ,那么+2ab.当且仅当a=b时,等号成立.(2)基本不等式: 如果a,b>0.那么可以表述为两正数的算术平均数不小于它们的几何平均数.2、重要结论:(1)a+ 2 (a)1(2)a+2(a)1(3)、(4)、+ab+bc+ca(5)、( a,b>0.)(6)、+3、如果a,b ,那么(不等式证明选讲内容)4、推广:对于n个正数它们的算术平均数不小于它们的几何平均数.即二、题型探究探究一:利用基本不等式求最值:例1:(1)x,y ,x+y=S(和为定值),则当x=y时,积xy取得最大值;(2)x,y , xy=P(积为定值),则当x=y时,和x+y取得最小值2即:和定,积最大;积定,和最小。
应用基本不等式的条件:(1)、一正:各项为正数;(2)、二正:“和”或“积”为定值;(3)、三等:等号一定能取到,这三个条件缺一不可。
例1:解答下列问题(1)已知x,求x+的最小值;(2)已知0,求函数f(x)=x(8-3x)的最大值;(3)求函数y=(4)已知x,且x+y=1,求+。
探究二:基本不等式的实际应用在应用基本不等式解决实际问题时,要注意以下四点:(1)、先理解意,设变量时一般把要求的最值的变量定为函数;(2)、建立相应的函数关系式,把实际问题抽象为函数的最值问题;(3)、在定义域内,求出函数的最值;(4)、正确写了答案。
例2:某单位建造一间地面面积为12平方米的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过a米,房屋正面的造价为400元/ 平方米,房屋侧面的造价为150元/ 平方米,屋顶和地面的造价费用合计5800元,如果墙高为3米,且不房屋背面的费用。
(1)、把房屋总选价y表示为x的函数,并写出该函数的定义域;(2)、当侧面的长度为多少时?房屋的总造价最低,最低造价是多少?三、方法提升基本不等式(也称均值定理)具有将“和式”,“积式”相互转化的功能,应用比较广泛,为了用好该不等式,首先要正确理解该不等式中的三人条件(三要素)正(各项或各因式为正值)、定(“和”或“积”为定值)、等(各项或各因式都能取得相等的值,即具备等号成立的条件),简称“一正,二定,三相等”,这三个条件缺一不可,当然还要牢记结论:和定,积最大;积定,和最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式选讲(2)(学案)B一、 基本知识点:(1).含有参数不等式的解法例1:解关于x 的不等式 34422+>+-m m mx x例2、解关于x 的不等式 20(,1)(cot 232πθθ≤<<-+-x x(2). 不等式的证明方法:比较法(差0法,商1法)例3;若实数1≠x ,求证:.)1()1(32242x x x x ++>++例4、已知,,+∈R b a 求证.ab b a b a b a ≥(3)不等式的证明方法:分析法、综合法例1、b a ,都是正数。
求证:.2≥+a b b a例2、设0,0>>b a ,求证.2233ab b a b a +≥+议一议:根据上面的例证,你能指出综合法和分析法的主要特点吗?例3、已知a ,b ,m 都是正数,并且.b a <求证:.ba mb m a >++(4).含参数不等式的恒成立“含参数不等式的恒成立”的问题,是近几年高考的热点,它往往以函数、数列、三角函数、解析几何为载体具有一定的综合性,解决这类问题,主要是运用等价转化的数学思想:即一般的,若函数()x f 在定义域为D ,则当x ∈D 时,有 ()M x f ≥恒成立()M x f ≥⇔min ;()M x f ≤恒成立()M x f ≤⇔max .因而,含参数不等式的恒成立问题常根据不等式的结构特征,恰当地构造函数,等价转化为含参数的函数的最值讨论.1.定义在R 上的函数()x f 既是奇函数,又是减函数,且当⎪⎭⎫ ⎝⎛∈2,0πθ时,有 ()()022sin 2cos 2>--++m f m f θθ恒成立,求实数m 的取值范围.变式一:条件改为:若()()02933<--+⋅x x x f k f 对任意x ∈R 恒成立, 2.已知向量a =(2x ,x+1),b = (1-x ,t)。
若函数x f ⋅=)(在区间(-1,1)上是增函数,求t 的取值范围。
(5)、能成立问题(部分成立)(存在性问题)若在区间D 上存在实数x 使不等式f(x)>A 成立,即f(x)>A 在区间D 上能成立, ⇔f(x)max > A ;若在区间D 上存在实数x 使不等式f(x)<A 成立,即f(x)<A 在区间D 上能成立, ⇔ f(x)min < A 。
例1.已知两个函数2()816f x x x k =+-,32()254g x x x x =++,其中k 为实数.(1)若对任意的[]33,-∈x ,都有)()(x g x f ≤成立,求k 的取值范围;(2)若对任意的[]3321,、-∈x x ,都有)()(21x g x f ≤,求k 的取值范围.(3)若对于任意1x []3,3∈-,总存在[]03,3x ∈-使得)()(10x f x g =成立,求k 的取值范围.例2.设函数2()()2ln(1)f x a x x =+-+,且()f x 在0x =处取得极值。
(1)求实数a 的值(2)若存在0[0,1]x ∈使不等式0)(0≤-m x f 能成立,求实数m 的最小值;(6)、利用图形解不等式:借助图形的直观性来研究不等式的问题,是学习不等式的一个重要方法,特别是利用绝对值和绝对值不等式的几何意义来解不等式或者证明不等式,往往能使问题变得直观明了,帮助我们迅速而准确地寻找到问题的答案。
关键是在遇到相关问题时,能否准确地把握不等式的图形,从而有效地解决问题。
我们再来通过几个具体问题体会不等式图形的作用。
例1.解不等式121+≤-+-x x x 。
例2.画出不等式1≤+y x 的图形,并指出其解的范围。
(7)含有参数不等式的解法例1、解关于x 的不等式 a x x a l o g l o g <例2、解关于x 的不等式 )22(223x x x x m --<-(8)、反证法:但对于一些较复杂的不等式,有时很难直接入手求证,这时可考虑采用间接证明的方法。
所谓间接证明即是指不直接从正面确定论题的真实性,而是证明它的反论题为假,或转而证明它的等价命题为真,以间接地达到目的。
其中,反证法是间接证明的一种基本方法。
反证法在于表明:若肯定命题的条件而否定其结论,就会导致矛盾。
具体地说,反证法不直接证明命题“若p 则q ”,而是先肯定命题的条件p ,并否定命题的结论q ,然后通过合理的逻辑推理,而得到矛盾,从而断定原来的结论是正确的。
利用反证法证明不等式,一般有下面几个步骤:第一步 分清欲证不等式所涉及到的条件和结论;第二步 作出与所证不等式相反的假定;第三步 从条件和假定出发,应用证确的推理方法,推出矛盾结果;第四步 断定产生矛盾结果的原因,在于开始所作的假定不正确,于是原证不等式成立。
例1、设二次函数q px x x f ++=2)(,求证:)3(,)2(,)1(f f f 中至少有一个不小于21.议一议:一般来说,利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况。
试根据上述两例,讨论寻找矛盾的手段、方法有什么特点?例2、设0 < a , b , c < 1,求证:(1 - a )b , (1 - b )c , (1 - c )a ,不可能同时大于41(9)、不等式的证明方法之四:放缩法与贝努利不等式所谓放缩法,即是把要证的不等式一边适当地放大(或缩小),使之得出明显的不等量关系后,再应用不等量大、小的传递性,从而使不等式得到证明的方法。
这种方法是证明不等式中的常用方法,尤其在今后学习高等数学时用处更为广泛。
下面我们通过一些简单例证体会这种方法的基本思想。
例1、若n 是自然数,求证.213121112222<++++n例2、求证:.332113*********<⨯⨯⨯⨯++⨯⨯+⨯++n(10)柯西不等式定理1:(柯西不等式的代数形式)设d c b a ,,,均为实数,则22222)())((bd ac d c b a +≥++,其中等号当且仅当bc ad =时成立。
定理2:(柯西不等式的向量形式)设α,β为平面上的两个向量,则||||||βαβα∙≥⋅,其中等号当且仅当两个向量方向相同或相反(即两个向量共线)时成立。
定理3:(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则:231231232232221221)()()()()()(y y x x y y x x y y x x -+-≥-+-+-+-定理4:(柯西不等式的推广形式):设n 为大于1的自然数,i i b a ,(=i 1,2,…,n )为任意实数,则:211212)(∑∑∑===≥ni i i n i i n i ib a b a ,其中等号当且仅当nn a b a b a b === 2211时成立(当0=i a 时,约定0=i b ,=i 1,2,…,n )。
柯西不等式有两个很好的变式:变式1 设),,,2,1(0,n i bi R a i =>∈∑∑∑≥=i i ni i i b a b a 212)( ,等号成立当且仅当)1(n i a b i i ≤≤=λ变式2 设a i ,b i 同号且不为0(i=1,2,…,n ),则:∑∑∑≥=i i i ni i i b a a b a 21)(,等号成立当且仅当n b b b === 21。
(11)排序不等式排序不等式的一般情形一般地,设有两组实数:1a ,2a ,3a ,…,n a 与1b ,2b ,3b ,…,n b ,且它们满足:1a ≤2a ≤3a ≤…≤n a ,1b ≤2b ≤3b ≤…≤n b ,若1c ,2c ,3c ,…,n c 是1b ,2b ,3b ,…,n b 的任意一个排列,则和数n n c a c a c a +++ 2211在1a ,2a ,3a ,…,n a 与1b ,2b ,3b ,…,n b 同序时最大,反序时最小,即:112122112211b a b a b a c a c a c a b a b a b a n n n n n n n +++≥+++≥+++- ,等号当且仅当n a a a === 21或n b b b === 21时成立。
例1、已知c b a ,,为正数,求证:abc cb a ac c b b a ≥++++222222。
例2、设1a ,2a ,3a ,…,n a 为正数,求证:n n n n a a a a a a a a a a a +++≥++++- 211221322221。
(12)数学归纳法数学归纳法:是一个递推的数学论证方法,论证的第一步是证明命题在n =1(或n 0)时成立,这是递推的基础;第二步是假设在n =k 时命题成立,再证明n =k +1时命题也成立,这是递推的依据。
实际上它使命题的正确性突破了有限,达到无限。
证明时,关键是k +1步的推证,要有目标意识。
例1、证明:23333)321(321n n ++++=++++ 。
例2、 设1->x ,*N n ∈,证明贝努利不等式:nx x n +>+1)1(。
二、 方法提升:三、反思感悟:四 、课时作业:1、 利用不等式的图形解不等式:111<--+x x ;2、解下列不等式:(1) 2132≤-x (2) 1743<+<x3.解不等式: 112-<-x x4.解不等式: 321>+++x x5.利用绝对值的几何意义,解决问题:要使不等式34-+-x x <a 有解,a 要满足什么条件?6.解关于x 的不等式34422+>+-m m mx x7、若a , b , c , d ∈R +,求证:21<+++++++++++<ca d db dc c a c b bd b a a8、当 n > 2 时,求证:1)1(log )1(log <+-n n n n9、已知122=+b a ,122=+y x ,求证:1||≤+by ax 。
10、设R d c b a ∈,,,,求证:222222)()(d b c a dc b a +++≥+++。
11、在△ABC 中,ha , hb ,hc 为边长a,b,c 上的高,求证:asinA +bsinB +csinC ≥h a + h b +h c .12、若a >0,b >0,则2222332266b a b a b a b a +⋅+⋅+≥+.13、在△ABC 中,求证:abc c b a c b a c b a c b a 3)()()(222≤-++-++-+.14、设b a ,为正数,*N n ∈,证明:n n n b a b a )2(2+≥+。