大学物理能量和动量
大学物理实验测量高速电子的动量与能量关系
概述
Mössbauer谱学: 研究具有一定体积的原子核与周围环
境电或磁的相互作用。
原子核:具有电荷、电四极矩和磁偶极矩; 环 境:在核处形成的电荷分布、电场梯度
和磁场;
概述
该谱学的创建主要是Mössbauer的贡献, 不是由于实验方法和技术的逐渐改进和积 累而成的;
能量分辨率极高,且设备比较简单; 该谱学的应用涉及到物理和其他学科的许
1、化学位移
由Mössbauer核电荷与核所在处电场 之间的静电作用引起的;
cs sod dy
动态同质异能移位
二次多普勒移位 同质异能移位 谱线的中心移位
对半径为R的原子核:
Ze
V
r
r Ze R
3 2
r2 2R2
rR rR
E Ze R
R
0
3 2
r2 2R2
R r
AT
ei 1 1
AT
1
G 1
2、放射源
嵌入对称性好的基底材料中,以使原子核发射单线谱。
56Fe(d , n) 57Co 58Ni( p, 2 p) 57Co
5 2
9%
3 2
1 2 57 Fe
7 2 57Co
EC 99.8%
136.3keV
91%
14.4keV 0
57Co衰变图
270d
11 2
119Sn 250d 89.54keV
3 2
23.87keV
1 2
0
119Sn衰变图
2.1、获得Mö ssbauer核的方式
EC 、衰变 同质异能跃迁 库仑激发(带电粒子加速器)
2.2、对放射源的要求
应有较窄的洛伦兹谱线 t1 2 0.1 1s
大学物理习题及解答(运动学、动量及能量)
1-1.质点在Oxy 平面内运动,其运动方程为j t i t r )219(22-+=。
求:(1)质点的轨迹方程;(2)s .t 01=时的速度及切向和法向加速度。
1-2.一质点具有恒定加速度j i a 46+=,在0=t 时,其速度为零,位置矢量i r 100=。
求:(1)在任意时刻的速度和位置矢量;(2)质点在oxy 平面上的轨迹方程,并画出轨迹的示意图。
1-3. 一质点在半径为m .r 100=的圆周上运动,其角位置为342t +=θ。
(1)求在s .t 02=时质点的法向加速度和切向加速度。
(2)当切向加速度的大小恰等于总加速度大小的一半时,θ值为多少?(3)t 为多少时,法向加速度和切向加速度的值相等?题3解: (1)由于342t +=θ,则角速度212t dt d ==θω,在t = 2 s 时,法向加速度和切向加速度的数值分别为 222s 2t n s m 1030.2-=⋅⨯==ωr a22s t t s m 80.4d d -=⋅==t r a ω(2)当2t 2n t 212a a a a +==时,有2n 2t 3a a=,即 22212)24(3)r t (tr = s 29.0s 321==t此时刻的角位置为 rad.t 153423=+=θ (3)要使t n a a =,则有2212)24()t (r tr =s .t 550=3-1如图所示,在水平地面上,有一横截面2m 20.0=S 的直角弯管,管中有流速为1s m 0.3-⋅=v 的水通过,求弯管所受力的大小和方向。
解:在t ∆时间内,从管一端流入(或流出)水的质量为t vS m ∆=∆ρ,弯曲部分AB 的水的动量的增量则为()()A B A B v v t vS v v m p -∆=-∆=∆ρ依据动量定理p I ∆=,得到管壁对这部分水的平均冲力()A B v v I F -=∆=Sv t ρ从而可得水流对管壁作用力的大小为N 105.2232⨯-=-=-='Sv F F ρ作用力的方向则沿直角平分线指向弯管外侧。
大学物理中的能量与动量守恒物理定律的应用
大学物理中的能量与动量守恒物理定律的应用在大学物理学中,能量守恒定律和动量守恒定律是两个基本的物理定律。
它们在研究物体的运动和相互作用中起着重要作用。
在实际应用中,能量守恒和动量守恒的原理被广泛运用于各个领域,包括力学、热学、电磁学等。
本文将详细介绍能量与动量守恒物理定律的应用。
1. 动量守恒动量守恒定律指出,在一个封闭系统内,物体的总动量保持不变。
这意味着,当没有外力作用时,物体的总动量将保持不变。
应用动量守恒定律,我们可以解释许多日常生活中的现象。
1.1 碰撞碰撞是动量守恒定律应用最常见的领域之一。
假设有两个物体A和B,质量分别为m1和m2,速度分别为v1和v2。
在碰撞过程中,如果没有外力作用,物体A和物体B的总动量保持不变。
根据动量守恒定律,可以得到以下等式:m1v1 + m2v2 = m1v1' + m2v2'其中v1'和v2'分别为碰撞后的速度。
1.2 枪击在枪击过程中,子弹被发射出去,枪本身也会产生反向的后坐力。
根据动量守恒定律,子弹和枪的总动量应该相互抵消,保持为零。
这是因为如果没有外力作用,总动量将始终保持不变。
2. 能量守恒能量守恒定律指出,在一个封闭系统内,能量的总量保持不变。
能量可以存在于不同的形式,如动能、势能、热能等。
能量守恒定律的应用非常广泛,在许多领域都有重要的意义。
2.1 自由落体自由落体是一个经典的物理学实验,在应用能量守恒定律中起到关键作用。
假设一个物体在无阻力的情况下自由落体,根据能量守恒定律,物体在下落的过程中动能增加,而势能减少。
总能量保持不变。
这可以表示为以下等式:mgh = (1/2)mv^2其中m为物体的质量,g为重力加速度,h为高度,v为速度。
2.2 能量转换能量守恒定律还适用于能量在不同形式之间进行转换的情况。
例如,当一个物体从高处滑下时,其势能逐渐转化为动能。
同样,当摩擦力作用于滑块上时,其机械能将逐渐转化为热能。
大学物理 第三章 动量守恒定律和能量守恒定律 3-5 保守力与非保守力
m' m m' m 引力的功 引力的功 WAB = −(−G r ) − (−G r ) B A
A点势能: 点势能: 且令E 设B点为无限远 即rB=∞ 且令 PB=0 点为无限远
m' m WAB = −G rA
= − ( E pB − E pA ) = E pA
功与路径无关,只决定于初末位置。 功与路径无关,只决定于初末位置。 第三章 动量守恒和能量守恒
4
} ⇒ dW
物理学
第五版
3-5 保守力与非保守力 势能 -
F
dW
O
x1
x2
dx
x2 x
W = ∫ Fdx = ∫
x1
x2
x1
1 2 1 2 − kxdx = −( kx2 − kx1 ) 2 2
5
第三章 动量守恒和能量守恒
W p → p0 = −( Ep0 − Ep ) = −∆Ep
E p ( x, y, z) =
∫
E p0 = 0
( x, y,z )
F ⋅ dr
任意一点的势能等于在保守力作用下 从该点到势能零点保守力所作的功
第三章 动量守恒和能量守恒 10
物理学
第五版
3-5 保守力与非保守力 势能 -
W AB = − ( E pB − E pA ) = − ∆ E P
引力的功 引力的功
m' m m' m WAB = −(−G ) − (−G ) rB rA
引力势能 引力势能
m' m Ep = −G r
弹性势能 弹性势能
弹力的功 弹力的功
W AB 1 1 2 2 = − ( kx B − kx A ) 2 2
大学物理-狭义相对论-相对论性动量和能量
我国于 1958 年建成的首座重水反应堆
我国已 建成的岭澳 核电站
我国在 建的单机容 量最大的田 湾核电站
原子弹核裂变
2 轻核聚变
氘核 氦核 质量亏损
释放能量
轻核聚变条件 温度要达到
有
的动能,足以克服两
力.
时,使 具 之间的库仑排斥
1967年6 月17日,中国 第一颗氢弹爆 炸成功
五 动量与能量的关系
而
,所以光速 C 为物体的极限速度 .
当
时
相对论动量守恒定律
当
时
常矢量
若
,则相对论动量守恒 经典动量守恒 .
常矢量
三 质量与能量的关系
相对论质能关系
静能
:物体静止时所具有的能量 .
质能关系预言:物质的质量就是能量的一种储藏 .
爱因斯坦认为(1905)
懒惰性
惯性 ( inertia )
活泼性
物理意义
惯性质量的增加和能量的增加相联系,质量的 大小应标志着能量的大小,这是相对论的又一极其 重要的推论 .
相对论的质能关系为开创原子能时代提供了理 论基础 , 这是一个具有划时代的意义的理论公式 .
质能关系预言:物质的质量就是能量的一种储藏.
例:
现有 100 座楼,每楼 200 套房,每套房用电功率
能量 ( energy )
物体的懒惰性就 是物体活泼性的度量 .
相对论能量和质量守恒是一个统一的物理规律.
一些微观粒子和轻核的静能量
粒子
符号
光子
电子(或正电子) e(或 +e
质子
)p
中子
n
氘
氚
氦( 粒子)
静能量 MeV 0 0.510
大学物理第三章-动量守恒定律和能量守恒定律-习题及答案
即:作用在两质点组成的系统的合外力的冲量等于系统内两质点动量之和的增 量,即系统动量的增量。 2.推广:n 个质点的情况
t2 t2 n n n n F d t + F d t m v mi vi 0 i外 i内 i i i 1 i 1 i 1 i 1 t1 t1
yv 2
同乘以 ydy,得
y 2 gdty y
积分 得
y
0
y
gdty
yvdt( yv)
0
1 3 1 gy ( yv) 2 3 2
因而链条下落的速度和落下的距离的关系为
2 v gy 3
1/ 2
7
第4讲
动量和冲量
考虑到内力总是成对出现的,且大小相等,方向相反,故其矢量和必为零, 即
F
i 0
n
i内
0
设作用在系统上的合外力用 F外力 表示,且系统的初动量和末动量分别用
5
第4讲
动量和冲量
P0 和 P 表示,则
t2 n n F d t m v mi vi 0 i i 外力 t1
F外 dt=dPFra bibliotek力的效果 关系 适用对象 适用范围 解题分析
*动量定理与牛顿定律的关系 牛顿定律 动量定理 力的瞬时效果 力对时间的积累效果 牛顿定律是动量定理的 动量定理是牛顿定律的 微分形式 积分形式 质点 质点、质点系 惯性系 惯性系 必须研究质点在每时刻 只需研究质点(系)始末 的运动情况 两状态的变化
1
第4讲
动量和冲量
§3-1 质点和质点系的动量定理
实际上,力对物体的作用总要延续一段时间,在这段时间内,力的作用将 积累起来产生一个总效果。下面我们从力对时间的累积效应出发,介绍冲量、 动量的概念以及有关的规律,即动量守恒定律。 一、冲量 质点的动量定理 1.动量:Momentum——表示运动状态的物理量 1)引入:质量相同的物体,速度不同,速度大难停下来,速度小容易停下;速 度相同的物体,质量不同,质量大难停下来,质量小容易停下。 2)定义:物体的质量 m 与速度 v 的乘积叫做物体的动量,用 P 来表示 P=mv 3)说明:动量是矢量,大小为 mv,方向就是速度的方向;动量表征了物体的 运动状态 -1 4)单位:kg.m.s 5)牛顿第二定律的另外一种表示方法 F=dP/dt 2.冲量:Impulse 1)引入:使具有一定动量 P 的物体停下,所用的时间Δt 与所加的外力有关, 外力大,Δt 小;反之外力小,Δt 大。 2)定义: 作用在物体外力与力作用的时间Δt 的乘积叫做力对物体的冲量, 用 I 来表 示 I= FΔt 在一般情况下,冲量定义为
大学物理基本公式(二)2024
大学物理基本公式(二)引言概述:大学物理中,物理基本公式是学习和应用物理学概念和原理的基础。
本文将重点介绍大学物理中的一些基本公式(二),包括力学、电磁学和波动光学等领域的公式。
通过学习这些公式,能够更好地理解和应用物理学知识。
正文:1. 力学公式:1.1 牛顿第二定律: F = ma,描述物体在外力作用下的加速度。
1.2 动能公式: E_k = (1/2)mv^2,计算物体的动能。
1.3 势能公式: Ep = mgh,计算物体在重力场中的势能。
1.4 动量公式: p = mv,描述物体的动量。
1.5 万有引力定律: F = G(m1m2/r^2),计算两个物体之间的引力。
2. 电磁学公式:2.1 库仑定律: F = k(q1q2/r^2),描述两个电荷之间的作用力。
2.2 电场强度公式: E = F/q,描述电荷在电场中所受的力。
2.3 电压公式: V = IR,描述电流通过导体时的电势差。
2.4 磁场强度公式: B = µ0(I/2πr),计算在电流通过导线时的磁场强度。
2.5 磁感应强度公式: B = µ0N/lI,计算螺线管中的磁感应强度。
3. 波动光学公式:3.1 光速公式: c = λν,描述光的传播速度。
3.2 折射定律: n1sinθ1 = n2sinθ2,描述光在两种介质中的折射现象。
3.3 成像公式: 1/f = 1/v + 1/u,计算透镜成像的距离。
3.4 焦距公式: f = R/2,计算球面镜的焦距。
3.5 干涉公式: Δd = mλ,描述两束光相干干涉时的光程差。
4. 其他公式:4.1 热力学公式: Q = mcΔT,计算物体的热量变化。
4.2 波函数公式: Ψ(x,t) = A sin(kx - ωt + φ),描述波动的波函数。
4.3 相对论能量公式: E = mc^2,描述物体的能量与质量之间的关系。
4.4 等离子体频率公式: ω^2 = (e^2n)/(ε0m),计算等离子体中的电磁波频率。
大学物理第三章动量守恒定律和能量守恒定律
动量守恒定律的表述
总结词
动量守恒定律表述为系统不受外力或所 受外力之和为零时,系统总动量保持不 变。
VS
详细描述
动量守恒定律是自然界中最基本的定律之 一,它表述为在一个封闭系统中,如果没 有外力作用或者外力之和为零,则系统总 动量保持不变。也就是说,系统的初始动 量和最终动量是相等的。
动量守恒定律的适用条件
能量守恒定律可以通过电磁学 的基本公式推导出来。
能量守恒定律可以通过相对论 的质能方程推导出来。
能量守恒定律的应用实例
01
02
03
04
机械能守恒
在无外力作用的系统中,动能 和势能可以相互转化,但总和
保持不变。
热能守恒
在一个孤立系统中,热量只能 从高温物体传递到低温物体,
最终达到热平衡状态。
电磁能守恒
详细描述
根据牛顿第三定律,作用力和反作用力大小相等、方向相反。如果将一个物体施加一个力F,则该力会产生一个 加速度a,进而改变物体的速度v。由于力的作用是相互的,反作用力也会对另一个物体产生相同大小、相反方向 的加速度和速度变化。因此,在系统内力的相互作用下,系统总动量保持不变。
02
能量守恒定律
能量守恒定律的表述
感谢观看
01
能量守恒定律表述为:在一个封闭系统中,能量不能被创造或消灭, 只能从一种形式转化为另一种形式。
02
能量守恒定律是自然界的基本定律之一,适用于宇宙中的一切物理过 程。
03
能量守恒定律是定量的,可以用数学公式表示。
04
能量守恒定律是绝对的,不受任何物理定律的限制。
能量守恒定律的适用条件
能量守恒定律适用于孤立系统,即系统与外界没有能量 交换。
大学物理 第三章 动量守恒定律和能量守恒定律 3-9 质心 质心运动定律
第五版
3-9 质心 -
质心运动定律
一 质心
1 质心的概念
板上C点的运动轨迹是抛物线 板上 点的运动轨迹是抛物线 其余点的运动=随 点的平动+绕 点的 点的平动 点的转动 其余点的运动 随C点的平动 绕C点的转动
第三章 动量守恒和能量守恒
1
物理学
第五版
3-9 质心 -
质心运动定律
2 质心的位置 由n个质点组成 个质点组成 的质点系, 的质点系,其质心 的位置: 的位置:
13
物理学
第五版
3-9 质心 n n v v v m'vC = ∑ mi vi = ∑ pi = p i =1 i =1
质心运动定律
求一阶导数, 再对时间 t 求一阶导数,得
质心加速度
dp v m'aC = dt v v dp ex 根据质点系动量定理 = Fi dt
第三章 动量守恒和能量守恒
}⇒
x2 = 2 xC
17
第三章 动量守恒和能量守恒
物理学
第五版
3-9 质心 -
质心运动定律
例4 用质心运动定律 y F 来讨论以下问题. 来讨论以下问题. 一长为l 一长为 、密度均匀的 y 柔软链条, 柔软链条,其单位长度的质 c yC 量为 λ .将其卷成一堆放在 地面. 若手提链条的一端, 地面. 若手提链条的一端, o 以匀速v 将其上提.当一端 以匀速 将其上提. 被提离地面高度为 y 时,求手的提力. 求手的提力.
竖直方向作用于链条的合外力为 F − λyg
第三章 动量守恒和能量守恒
20
物理学
第五版
3-9 质心 -
质心运动定律
v 得到 F − yλg = lλ ⋅ l
大学物理实验---高速运动电子的动量与动能关系
相对标准误差计算表
页3
实验报告
D/cm 22 23.5 25 26.5 27.2 28 29.5 31 峰道址 314.9 396.7 493.4 558.7 609.1 638.9 714.6 804.3
所以实验中测量的八个不同位置出射电子的动量和能量数据如下表: 动量和能量数据计算表
p = BeR 其中 B=621.6GS B=0.06216T 实际能量大小用定标公式计算得到的值加上修正公式计算出的能量。 修正公式如下:
∆E = 0.226 − 0.00763D = 0.226 − 0.01526R 用动量计算相对论理论能量的公式如下:
其中 c 为光速。 经典理论值:
Ek = �p2c2 + m02c4 − m0c2
电子动量
修正后的能
出射点位置
电子运动半 径 R/cm
p(10−23kg* m/s)
经典理论值 /MeV
相对论能量 大小/MeV
实验测得的 能量/ MeV
量大小 /MeV
22
6
59.6736 1.221642 0.71824 0.61428 0.83936
23.5
6.75
67.1328 1.546140 0.84665 0.76561 0.99058
3、 实验处理时对测量能量值的修正是为了弥补密封窗对粒子 的阻碍,而这也只能在一个平均状态下修正能量值,并不能准 确的修正每一个值;
4、 在实验测量半径读数时,由于测量直尺本身的误差和人眼 度数的误差,会导致对粒子半径的测量存在误差。
思考题:
1、 定标时 Cs137 光电峰处于 350 道附近,为什么? 答: 350 道址附近对应的粒子能量值是 0.661MeV,而本实验存
大学物理第三章动量守恒定律和能量守恒定律
探索其他守恒定律
鼓励了对其他守恒定律的探索,如角动量守恒定律、电荷守恒定律等。
THANKS
感谢观看
探索性实验:动量与能量的关系研究
实验目的
研究动量与能量的关系,探索两者之间的联系和 区别。
实验步骤
选择合适的实验器材,如弹性碰撞器、非弹性碰 撞器等,设计不同的碰撞条件,记录实验数据。
实验原理
动量和能量是描述物体运动状态的物理量,两者 之间存在一定的关系。通过研究不同运动状态下 物体的动量和能量变化,可以深入理解两者之间 的关系。
05
实验验证与探索
动量守恒定律的实验验证
实验目的
通过实验验证动量守恒定律, 加深对动量守恒定律的理解。
实验原理
动量守恒定律指出,在没有外 力作用的情况下,系统的总动 量保持不变。
实验步骤
选择合适的实验器材,如滑轨、 滑块、碰撞器等,按照实验要求 进行操作,记录实验数据。
实验结果
通过分析实验数据,验证动量 守恒定律的正确性。
动量守恒定律的应用实例
总结词:举例说明
详细描述:应用动量守恒定律的实例包括行星运动、碰撞、火箭推进等。例如,在行星运动中,行星绕太阳旋转时动量守恒 ;在碰撞过程中,两物体相互作用时的动量变化遵循动量守恒定律;火箭推进则是通过燃料燃烧产生高速气体,利用反作用 力推动火箭升空,这一过程中动量守恒。
03
守恒定律的意义
强调了守恒定律在物理学中的重要地位,以及在解决实际问题中的应 用价值。
对动量守恒定律和能量守恒定律的思考
守恒的哲学思考
探讨了守恒定律在哲学上的意义,以及它们 对宇宙观的影响。
《大学物理》动量守恒定律和能量守恒定律练习题及答案解析
《大学物理》动量守恒定律和能量守恒定律练习题及答案解析一、选择题1.对动量和冲量,正确的是(B )(A)动量和冲量的方向均与物体运动速度方向相同。
(B)质点系总动量的改变与内力无关。
(C)动量是过程量,冲量是状态量。
(D)质点系动量守恒的必要条件是每个质点所受到的力均为0。
2如图所示,子弹入射在水平光滑地面上静止的木块后而穿出,以地面为参考系,下列说法中正确的是( C )(A)子弹减少的动能转变成木块的动能(B)子弹—木块系统的机械能守恒(C)子弹动能的减少等于子弹克服木块阻力所做的功(D)子弹克服木块阻力所做的功等于这一过程中产生的热。
3.对质点组有下列几种说法:(1)质点组总动量的改变与内力无关(2)质点组总动能的改变与内力无关(3)质点组机械能的改变与内力无关(4)质点组机械能的改变与保守内力无关正确的是( C )(A)(1)和(3)正确(B)(2)和(3)正确(C)(1)和(4)正确(D)(2)和(4)正确4.对于保守力,下列说法错误的是(C)(A)保守力做功与路径无关(B)保守力沿一闭合路径做功为零(C)保守力做正功,其相应的势能增加(D)只有保守力才有势能,非保守力没有势能。
5.对功的概念有以下几种说法:(1)保守力作正功时系统内相应的势能增加.(2) 质点运动经一闭合路径,保守力对质点作的功为零.(3)作用力与反作用力大小相等、方向相反,所以两者所作的功的代数合必为零.在上述说法中:(4)摩擦力一定做负功( C )(A) (1) 、(2)、(4)是正确的.(B) (2) 、(3) 、(4)是正确的.(C)只有(2)是正确的.(D)只有(3)是正确的.6.当重物减速下降时,合外力对它做的功( B )(A)为正值(B)为负值(C)为零(D)无法确定。
7、考虑下列四个实例,你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A)(A)物体在拉力作用下沿光滑斜面匀速上升(B)物体作圆锥摆运动(C)抛出的铁饼作斜抛运动(不计空气阻力)(D)物体在光滑斜面上自由滑下8.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,判断下列说法中正确的是( A )(A)重力和绳子的张力对小球都不作功。
大学物理-第三章-动量守恒定律和能量守恒定律
20
★一对作用力与反作用力的功只与相对位移有关
f ji
ri
f ij
rij
rj
0
dW
jidWij
f
ji
dri
fij drj
f ji fij
fji f ji
(dd(rriidrrjj))
f ji
drij
S
S u
动量的相 对性和动量定 理的不变性
F(t)
t1 m
v1
光滑
v 2
m t2
参考系 t1 时刻 t2 时刻
动量定理
S系
S’系
mv1
mv2
m(v1 u) m(v2 u)
t2 t1
F (t )dt
mv2
mv1
5
例3-1: 作用在质量为1kg 的物体上的力 F=6t+3,如果物体在这
0=m1(v1+v2)+m2v2
v2
m1v1 m1 m2
x
t 0
v2dt
m1 m1 m2
t 0
v1dt
L
t
0 v1dt
x m1L 0.8m m1 m2
负号表示船移动的方向与人前进的方向相反。
17
3-4 动能定理
一、功的概念(work) 功率(power) 1、恒力的功
2、动能定理
2
1
或
F
dr
F
dr
1 2
mv22
大学物理第三章动量守恒定律和能量守恒定律
3、质点系动量定理的微分形式:
根据:
I
p
p0
在无限小的时间间隔内:
4、说明:F外dt
dp
1)只有外力对系统动量的增量有贡献;
2)系统内力不改变系统总动量,但可使 系统内各质点的动量变化。
12
第三章 教学基§本3要-1求.2 质第点三系章的动量动守量恒定定律理和能量守恒定律
注意
内力不改变质点系的动量
三 掌握动能定理 、功能原理和机械能守 恒定律, 掌握运用守恒定律分析问题的思想和方 法.
3
第三章§教3学.1基.1本冲要量求 ,动第三量章,动量质守点恒定动律量和能定量理守恒定律
定义: 力的冲量(impulse)
质点的动量(momentum)—
p
mv
F
d(mv )
d
p
dt dt
15
第三章 教学§基本3.要2 求动量第守三章恒动定量守律恒定律和能量守恒定律 (law of conservation of momentum)
初始速度 vg0 vb0 0 mb 2mg 则
推开后速度 vg 2vb
推开前后系统动量不变
且方向p相反p0则
p0 0 p 0
13
第三章 教学基§本3要-1求. 2质第点三系章的动量动守量恒定定律理和能量守恒定律
甲队
乙队
例如:两队运动员拔河,有的人说甲队力气大, 乙队力气小,所以甲队能获胜,这种说法是否正 确?
第三章 教学基本要求 第三章动量守恒定律和能量守恒定律
1
第三章§教3学.1基.1本冲要量求 ,动第三量章,动量质守点恒定动律量和能定量理守恒定律 前言
大学物理第二章 力 动量 能量
一、功
1. 恒力的功 等于恒力在位移上的投影与位移的乘积 .
W Fs cos W F r
r s
F
F
2. 变力功的计 r 算 (1) 无限分割轨道;取位移 dr, dr ds ;
(2) 位移元上的力F 在ds上可视为恒力; r b O (3) 利用恒力功计算式计算 F r F 在 dr 上的功(元功); r a dW F dr F cosds
t
F1
F21 F12
m1
F2
m2
故
t
t0
( F1 F2 )dt (m1v1 m2 v2 ) (m1v01 m2 v02 )
推广到由多个质点组成的系统
t
t0
n n Fdt pi p0i n i 1 i 1 i 1
<Ek0, W <0 , 外力对物体作负功,或物体克服阻力作功.
四、质点组的动能定理
受外力 ,内力 、 ,初 F1 F、 F12 F21 2
两个质点质量为 m1、m2 ,
质点系
v10 v 速度为 、 , 末速度v1 v 2 20 为 、 位移为 、 . r2 r1,
冲量是矢量,其方向为合外力的方向.
冲量的单位: N· s,(牛顿 · 秒).
明确几点: 1. 动量是状态量;冲量是过程量. 2. 动量方向为物体运动速度方向;冲量方向为合外力
方向,即加速度方向或速度变化方向.
3. 平均冲力 由于力是随时间变化的,当变化较快时,力的瞬 时值很难确定,用一平均的力 F 代替该过程中的变力.
大学物理动量定理
子弹穿过两木块所用的时间分别为t1和t2,木块对子 弹的阻力为恒力F,则子弹穿出后,木块A的速度大小
为
,木块B的速度大小为
.
解:
F t1 m1vA m2vA
vA
F m1
t1 m2
F t2 m2vB m2vA
vB
F t2 m2
vA
F t2 m2
F m1
t1 m2
2-8. 一质量为m的质点在xoy平面上运动,其位置矢量
机械能守恒:
1 2
m2 v02
1 2
(m1
m2 )v2
1 2
kxm2 ax
1 xmax 2 x0
下次课内容:
§3-1 刚体运动的描述 §3-2-1 力矩 §3-2-2 刚体绕定轴转动定律
j
t
i
v bs
a in t
sin j]
t
i
b cost Fx m 2 x
j
dt
m2[x i y j ]
Fy m2 y
A(a,0) B(0, b)
Wx
0
a Fxdx m2
0 xdx 1 ma22
a
2
Wy
b
0 Fydy m 2
bydy 1 mb2 2
0
2
质点动能定理
W
为
r
a
cos
t
i b sin t j
(SI).
式中a,b, 是正值常
数, 且a > b.
(1)求质点在A点(a,0)和B 点(0,b)的动能; (2)求质点所 受的作用力 F 以及质点从A点运动到B点 的过程中 F 的分力Fx和Fy分别做的功.
解:
大学物理动量守恒定律和能量守恒定律
注意:
1、计算势能必须规定零势能参考点。势能是相对量, 其量值与零势能点的选取有关。
2、势能函数的形式与保守力的性质相关,对应于一种 保守力的函数就可以引进一种相关的势能函数。
3、势能是属于以保守力形式相互作用的物体系统所共 有的。
第三章 动量守恒定律和能量守恒定律
守恒定律
动量守恒定律 机械能守恒定律 能量守恒定律
物理学大厦 的基石
3-1 质点和质点系的动量定理
一、冲量 质点的动量定理
F dpd(mv) dt dt
牛顿第二定律 动量 pm v
F d td pd(m v)
I t 1 t2 F d t p p 1 2 d p p 2 p 1 m v 2 m v 1
vv 21 vv 2m m 1v 1 rvm r 23 .1 2 7 .1 71 0 1 3 0m 3m /s /s
3-4 动能定理
一、功、功率
1、功
r
i
F
B
i
恒力功: W F s c o s F s
变力功
A
元功:
d W Fd r
取得有限位移 W dW r2Fdr r1
冲量: I t2 Fdt t1
力对时间的累积效应
作用于物体上的合外力的冲量等于物体动量的增量
——质点的动量定理
分量表示式
t1t2FxdtIx mv2xmv1x t1 t2FydtIymv2ymv1y t1t2FzdtIz mv2zmv1z
问题:动量增量方向?
o v0
x
冲量的方向?动量增量的 方向,一般与力的方向不一致。
功的单位:焦耳(J)
《大学物理学》动量守恒和能量守恒定律部分练习题(马)
《大学物理学》动量守恒和能量守恒定律部分练习题一、选择题1. 用铁锤把质量很小的钉子敲入木板,设木板对钉子的阻力与钉子进入木板的深度成正比。
在铁锤敲打第一次时,能把钉子敲入 1.00cm 。
如果铁锤第二次敲打的速度与第一次完全相同,那么第二次敲入多深为 ( )(A ) 0.41cm ; (B ) 0.50cm ; (C ) 0.73cm ; (D ) 1.00cm 。
【提示:首先设阻力为f k x =,第一次敲入的深度为x 0,第二次为∆x ,考虑到两次敲入所用的功相等,则0000x x x x kxd x kxd x +∆=⎰⎰】 2.一质量为0.02 kg 的子弹以200m/s 的速率射入一固定墙壁内,设子弹所受阻力与其进入墙壁的深度x 的关系如图所示,则该子弹能进入墙壁的深度为 ( )(A )0.02m ; (B ) 0.04 m ; (C ) 0.21m ; (D )0 .23m 。
【提示:先写出阻力与深度的关系53100.022100.02x x F x ⎧≤=⎨⨯>⎩,利用212W m v =有0.0253200.021102100.02(200)2x xd x d x +⨯=⨯⨯⎰⎰,求得0.21x m =】 3.对于质点组有以下几种说法:(1)质点组总动量的改变与内力无关; (2)质点组总动能的改变与内力无关;(3)质点组机械能的改变与保守内力无关。
对上述说法判断正确的是 ( )(A ) 只有(1)是正确的; (B )(1)、(2)是正确的;(C )(1)、(3)是正确的; (D )(2)、(3)是正确的。
【提示:(1)见书P55,只有外力才对系统的动量变化有贡献;(2)见书P74,质点系动能的增量等于作用于质点系的一切外力作的功与一切内力作的功之和;(3)见书P75,质点系机械能的增量等于外力与非保守内力作功之和】4.有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则 ( )(A )物块到达斜面底端时的动量相等; (B ) 物块到达斜面底端时的动能相等;(C )物块和斜面(以及地球)组成的系统,机械能不守恒;(D )物块和斜面组成的系统水平方向上动量守恒。
大学物理第五讲 动量、动量守恒、功、动能和动能定理
0.3t)dt
0
36.45 (J)
24
二、质点的动能和动能定理
动能定理的推导
dA
r F
drr
F ds
ma
ds
m
dv dt
ds
mvdv
质点由a到b,力做总功为
Ek
1 mv2 2
r
r Fn
a• r
r F
•dsr
r F
• vb
b
va
Aab
b
dA
a
vb mvdv
M
LL
所以:
vr人车
vr人
m M
vr人
M M
m
vr人
12
t
M m t
0 v人车dt M 0 v人dt
vr人车
M M
m
vr人
L M mx x M L
M
M m
vr车
m M
vr人
v车
v人
m
x
M
X v车dt M v人dt
o
m x m L
M
(mvr )
1
r mv1
x
1
mvr2
7
二、质点系的动量定理
rr 设质点系中第 i 个质点受内力和外力分别为 fi 和Fi ,
应用质点动量定理
r ( Fi
r fi )dt
d
(mi
r vi
)
对整个系统求和
r r (Fi fi )dt d
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:以潜艇为研究对象,受力如图,
在地球系中建立如图坐标
由牛顿第二定律:
mg F kAv m dv dt
v
mdv
t
dt
0 mg F kAv 0
FO f
c
mg +
m ln mg-F-kAv t
v
kA mg F
mg
F
kAv
kAt
em
vm
mg F
v
mg kA
F
1
kAt
em
I内
i 1
t2 t1
F内dt
0
质点系总动量的变化与内力 的冲量无关。
内力的冲量起什么作用?
改变质点系总动量在系内各质点间的分配。
牛顿第二定律反映了力的瞬时效应;而动量 定理则反映力对时间的累积效应,即加速度 与合外力对应,而动量变化与合外力的冲量 对应。
例 质量为 m 的匀质链条,全长为 L,
例 一篮球质量0.58kg,从2.0m高度下落,到达地面后,以同样 速率反弹,接触时间仅0.019s.
求 对地平均冲力? 解 篮球到达地面的速率
v 2gh 2 9.8 2 6.3 m/s
F F(max)
对地平均冲力
F
F 2mv 2 0.58 6.3 3.8102 N
t
0.019
O
相当于 40kg 重物所受重力!
隔离物体——明确研究对象
具体分析——研究对象的运动情况和受力情况 选定坐标——参考系、坐标系、正方向
建立方程——分量式
Fx
dpx dt
max
Fy
dp y dt
may
Fz
dpz dt
maz
Fτ
m
dv dt
maτ
Fn
m
v2 R
man
例. 一艘质量为m的潜水艇,全部浸没水中,并由静 止开始下沉。设浮力为F ,水的阻力f = kAv,式中A为 潜水艇水平投影面积,k为常数。求潜水艇下沉速度与 时间的关系。
第二节 动量守恒定律
一、质点和质点系的动量
1. 质点的动量
p mv
质点机械运动的量度
2. 质点系的动量 N个质量分别为
m1,
m2
,,
mN
,动量分别为
p1
,
p2
,,
pN
的质点组成质点系,其总动量为
p
p1
m1v1
p2m2v 2 pN
mN
vN
mivi
i
二、动量的时间变化率 力
1.d质p 点 动d量mv的 时d间m变v化 率m dv
I
t2 Fdt
t1
p2 p1
dp
p2
p1
p
质点动量的增量等于质点所受合力的冲量
分量式:
Ix
t2 t1
Fxdt
px
I y
t2 t1
Fydt
p y
Fx
Iz
t2 t1
Fz dt
pz
冲量和平均冲力
I
t2
Fdt
Ft
t1
Fx
O t1
t2 t
Ix
t2
t1
Iz Fzt
冲量 I 是 F 对时间的累积效应,其效果在于改变物
体的动量。
14世纪末,中国明代有一位木匠叫万虎,在几个 徒弟的帮助下,造了一只“飞天椅”。万虎让人把它 绑在椅子上,并点着火箭。但不幸的是,火箭点完后, 他坠地身亡。
世界公认万虎是“真正的 航天始祖”,20世纪60年 代,国际天文学会将月球 上的一座环行山命名为 “万虎山”,以纪念这位 勇士。
ma F
dt dt d t
dt
(v c)
质点动量的时间变化率是质点所受的合力
牛顿第二定律的一般形式
F
dp
特例
F ma
v c
dt
2. 质点系动量的时间变化率
N个质量分别为m1, m2,, mN
动量分别为
p1,
p2
,,
pN
的质点组F成1 一F个1外质 点F1内系,dd各pt1质点所受的合力分别为
时细绳不致松弛所需的最低速率。
A
解:如图所示,小物体在任意位置
时受到两个力的作用:重力mg 细绳张力T
OR
T
按法向、切向分解,其牛顿运动
方程为:
T
mg cos
m
v2
(1)
R
m
B
mg
mg sin maτ
(2)
aτ g sin (3)
解上述方程得 T m( v2 g cos )
R
A点: B点:
0
TA
m( v2 R
g)
TB
m( v2 R
g)
在最高点A时细绳不致松弛所需的条件为TA=0
由TA
m( v2 R
g)
0得
vA,min gR
三、动量定理 力对时间的累积效应
1. 质点的动量定理
微分形式
dp
F
dt
Fdt dp
令 dI Fdt
I
t2
Fdt
t1
— 力的元冲量
— 力的冲量
积分形式
常数,与流体性质有关。今有一质量为m的物体,在t =0
时以初速v0进入粘性流体,并设物体除受阻力外,未受 其它力作用。试求某一时刻 t 物体的速度大小。
答案:
t
v v0e m
v0 v
O
t
例.质量为m的小物体,在半径为R、一端固定于O点 的细绳拉动下在竖直面内作圆周运动。试求小物体位
于圆周最高点A和最低点B处时绳的张力,以及在A点
dt
L
F
f ' ml g
m (3l L
2h)g
例 一粒子弹水平地穿过并排静止放置在光滑水平面上的木块, 已知两木块的质量分别为 m1, m2 ,子弹穿过两木块的时间 各为 t1, t2 ,设子弹在木块中所受的阻力为恒力F
开始时,下端与地面的距离为 h , 当链 条自由下落在地面上时
求 链条下落在地面上的长度为 l ( l<L )时,地面
所受链条的作用力?
解设
ml
l
ml L
链条在此时的速度
v 2g(l h)
Lm h
dm
根据动量定理
fdt 0 (vdt)v
地面受力
f vdtv v 2 2m(l h)g f '
o
t
讨论潜艇 运动情况
t 0 v 0, t v dv , dt
t
v
vm ax
mg F kA
恒量
极限速率(收尾速率)
类似处理:跳伞运动员下落,
有阻力的抛体运动
小球在粘滞流体中下落…...
练习: 物体在粘性流体中运动时会受到流体的阻力作
用成。正实比验 ,证 方明 向, 与当 速物度体方速向度相不反太,即大时f, 阻力v 与,速其度中大为小
t 0.019s
微2分. 质形点式系:的动dd量pt 定F理外
积分形式:
I外
t2 t1
F外dt
p2
dp
p
p1
质点系动量的增量等于质点系所受外力矢量和的冲量。
分量式:
Ix
t2 t1
F外xdt
px
I y
t2 t1
F外ydt
py
Iz
t2 t1
F外zdt
pz
注意:
N
F内 Fi内 0
F2
F2外
F2内
dp2 dt
FN
FN外
FN内
dpN dt
将以上各式相加,并考虑到
N
F内 Fi内 0
得:
即
F1外
F2外
F外
iN1Fi外FN外ddpt
d dt
(
p1
i 1
p2
pN )
结论:质点系所受外力的矢量和等于质点系的总
动量的时间变化率。
牛顿定律的应用