2 第2课时算数平方根
(人教版)2020八年级数学上册 第11章 数的开方 11.1 平方根与立方根 1 平方根 第2课时 算术平方根教案
A.重点□B.难点□C.易错点□
这节课的重点是算术平方根的概念教学和正数的算术平方根的求法,在讲解概念时应注意概念的自然的引导和概念的解释,注意平方根与算术平方根的区别与联系,这里一定要强调清楚.
③[师生互动反思]
通过师生间频繁的互动,使学生深刻理解概念,准确表述,并通过练习巩固掌握.
例5若 =2,则(m+2)2=________.
例6算术平方根等于它本身的数有________.
例7若已知 + =0,则x-y的算术平方根为________.
使学生通过所学的知识,在原来的基础上有拓宽、有提升,并能与过去的知识相结合,达到综合应用的目的.
活动
四:
课堂
总结
反思
当堂训练:
1.求下列各数的算术平方根:
例2[课本P3例2]将下列各数开平方:
(1)49(2)
例3[课本P4例3]用计算器求下列各数的算术平方根.
(1)529;(2)44.81(精确到0.01).
体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是 .
旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.
让学生知道平方的逆运算是开平方.
例2是由求算术平方根来得到一个数的平方根,是求平方根的另一种方法
例3是了解用计算器求算术平方根.
【拓展提升】
例4 的算术平方根为________; 的算术平方根是________.
问题解决
经历算术平方根激起性质的产生过程,能用概念及性质解决有关问题.
平方根-第二课时-用计算器求算术平方根及大小比较课件 2022—2023学年人教版数学七年级下册
解: 3 ≈ .
0.03 ≈ .
300 ≈ .
30000 ≈173.2
由 3不能说出 30的值,因为不符合规律。
解决问题
• 小丽想用一块面积为400cm2的正方形纸片,
• 沿着边的方向裁出一块面积为300cm2的长方
因为62 =36, 72 =49,
所以6< 45 <7
所以 45的整数部分是6,
小数部分是 45 -6
即时练习
• 已知 7+7的小数部分是a,7- 7的小数部分是b,
• 求a+b的值。
解:∵22 =4,32 =9
∴2< 7<3
∴ 9< 7+7<10, 4<7- 7<5
∴ 7+7的整数部分是9,小数部分是 7+7-9= 7-2
•
⋯⋯
即时练习
1.估计 41的值在( D )
A.3到4之间
B. 4到5之间
C.5到6之间
D. 6到7之间
2.已知a,b是两个连续整数,且a< 23< b,
则a+b=
9
.
3.与 14-2最接近的自然数是
2 。
新知探究
我们知道 45是一个无限循环小数,那么它的
整数部分是多少?小数部分是多少呢?
对 45估算:
100个1
50个2
。
Hale Waihona Puke 巩固练习• 5.已知m是 45-3的整数部分,n是 23+1的
• 小数部分,求m+n- 23的值。
•
解:因为6 < 45 < 7,4 < 23 < 5
人教版七年级数学下册第2课时 用计算器求一个正数的算术平方根
(3) 5 1与 0.5
2
(4) 5 1 与 1
2
5 1 4 1 0.5
2
2
5 1 9 1 1
2
2
基础巩固
随堂演练
1. 17的整部分是___4___. 2. 若 2≤ x ≤ 5,x为整数,则x的值是____2.
3.比较下列各组数的大小: (1) 3与2 (2) 与1.412
所以 1.414 < 2 < 1.415.
如此进行下去,可以得到 2的更精确的近
似值. 事实上 2=1.414 213 562 373 …,它是一
个无限不循环小数.
2
无限不循环小数是
指小数位数无限,
且小数部分不循环 的小数. 你以前见 过这种数吗?
练习
1.实数 3 的值在( B )
A.0和1之间 B.1和2之间
用这块纸片裁出符合要求的纸
片吗?
解:设剪出的长方形的两边长分别为3x cm 和2x cm,根据边长与面积的关系得
3x ∙ 2x = 300 , 6x2 = 300 , x2 = 50, x= 50 ,
故长方形纸片的长为 3 50,宽为2 50 .
因为50 > 49,所以 50 > 7.
由上可知3 50> 21,即长方形纸片的长 应该大于21cm.
探究新知 知识点1 用夹逼法求一个数的算术平方根的近似值
探究
能否用两个面积为1dm2的小正方形拼成一个 面积为2dm2的大正方形?
如图,把两个小正方形分别沿对角线剪开, 将所得的4个直角三角形拼在一起. 就得到一个面 积为2dm2的大正方形.
你知道这个大正方形的边长是多少吗?
设大正方形的边长为 x dm,则 x2 = 2
初中数学_平方根第二课时教学设计学情分析教材分析课后反思
6.1平方根教学设计(第二课时)【教学目标】知识与能力:1.会用平方法比较两个数的大小。
2.了解用夹逼法估无理数的值。
3.会用估值法比较两个数的大小。
过程与方法:1.通过拼图活动发展学生的形象思维。
2.在探究活动中,让学生经历发现无理数的过程,认识到无理数的存在。
情感、态度与价值观:通过教学激发学生的参与性和求知欲,使学生体验小组合作学习的快乐,充分认识到社会生活与数学的密切联系,感受生活处处皆数学。
【教学重点】利用平方法和估值法比较数的大小。
【教学难点】 探究的大小【教学过程】课前交流:模拟购物街:一台笔记本价值在4000~5000元之间,给你三次机会你来估一下它的实际售价。
如果你猜中的价格与实际价格差距在50元范围内,这台电脑就送给你。
学生活动设计:学生估价,一名学生负责提示估价是高了还是低了。
教师活动设计:引导学生分析估价的方法,关注学生不要只顾活动,而忽略了情境里面蕴含的数学问题。
设计意图:从现实生活中提出估值的技巧,让学生在活动中体会夹逼法(二分法)在生活中的应用,同时唤起学生的生活经验,为后面利用夹逼法估的值作迁移准备。
本着从学生的生活经验出发,在做中学的理念,让学生在轻松的氛围中积极参与对数学问题的讨论,使学生感受到生活处处皆数学。
一、复习导入1、 什么叫算术平方根?2、 算术平方根的大小与被开方数的关系3、 判断下列各数有没有算术平方根,如果有请求出它们。
100,1, ,0,—0.0025,4, 师: 的算术平方根是多少?生:。
师:你是怎么想的。
师:你发现与我们前面求出的平方根有什么不一样的地方? 师:那么对于这样的数你有什么疑问吗?1211644二、 新课师:是呀,这样的数到底存不存在呢?如果存在到底有多大呢?今天我们就来研究这样的数。
板书:《平方根》1、拼一拼:首先我们来研究一下能否用两个面积为1的小正方形拼成一个面积为2的大正方形? 师:直接拼行不行?为什么?那面积符合吗?那看来要通过拼剪的方法。
1.第2课时算术平方根PPT课件(沪科版)
;(3) .;(4) (-) .
第2课时
算术平方根
解: (1)因为 52=25,所以 =5.
(2)因为
2
= ,所以
= .
(3)因为(0.2)2=0.04,所以 .=0.2.
(4)因为(-4) =16=4 ,所以 (-) = =4.
2
2
第2课时
平方米,
= =0.8(米).
所以这种正方形地板砖的边长为 0.8 米.
第2课时
算术平方根
总结反思
算
术
平
方
根
概
念
正数a的正的 平方根叫做a的
算术平方根, 0的算术平方根
是0
求一个非负数的
算术平方根
应
用
用计算器求一个数
的算术平方根
算术平方根的实
际应用
性
质
算术平方根的
双重非负性:
± ≥0
(a ≥0)
第2课时
算术平方根
小结
知识点一 算术平方根的概念
正数 a 的正的平方根叫做 a 的算术平方根,用 Nhomakorabea
表示.
[点拨] 算术平方根的双重非负性: 是一个非负数,
而被开方数 a 也是一个非负数,因此 具有双重非负性,即
a≥0, ≥0.
第2课时
算术平方根
知识点二
算术平方根的性质
一下,用 25 块某种正方形的地板砖正好铺满客厅,请你计算一下
这种正方形地板砖的边长.
第2课时
算术平方根
[解析] 根据题意可知,25 块这种正方形地板砖的面积
《平方根第2课时》示范公开课教学设计【北师大版八年级数学上册】
第二章 实数2. 2 平方根第 2 课时 教学设计平方根及算术平方根是两个重要的概念,是全章的教学重点.学生对平方根及算术平方根的概念常常混淆,因此,在教学中引导学生真正理解这两个概念的本质是什么,并能分清它们的区别与联系,引导学生建立清晰的概念系统,有针对性的、有梯度的、形式多样的课堂练习题,让学生在练习中巩固和加深知识的理解和掌握,促使学生尽快地把新知识纳入到自己原有的认知结构中.1. 能说出平方根和算术平方根的概念,会用根号表示一个数的平方根;知道开平方与平方表示的是非负数a 的平方根.2. 通过对比体会平方根、算术平方根的联系和区别;在学习开平方运算求一个数的平方根、算术平方根的过程中,体会开平方运算与平方运算之间的互逆关系.3. 进一步感受到所学数学知识之间的内在联系. 【教学重点】 平方根和算术平方根的概念和求法.【教学难点】弄清平方根与算术平方根的意义有两个边长为1的正方形,剪刀.一、复习回顾1. 什么叫算术平方根?2. 我们已经学习过哪些运算?它们中互为逆运算的是什么?思考:乘方有没有逆运算?二、合作交流,探究新知(一)平方根的概念及性质(1) 3 的平方等于9,那么9 的算术平方根就是_____.(2)25的平方等于425,那么425的算术平方根就是____.(3) 展厅地面为正方形,其面积49 m2,则边长为___m.问题:平方等于9,425,49 的数还有吗?平方根的定义:一般地,如果一个数x 的平方等于a,即x2=a,那么这个数x 就叫做a 的平方根(或二次方根).平方根的表示方法、读法试一试:1. 144 的平方根是什么?2. 0 的平方根是什么?3. 425平方根是什么? 4. -4 有没有平方根?为什么?平方根的性质:1. 正数有两个平方根,两个平方根互为相反数.2. 0 的平方根还是 0.3. 负数没有平方根.平方根与算术平方根的联系与区别:开平方的定义:求一个数 a 的平方根的运算,叫做开平方,a 叫做被开方数.平方与开平方有什么关系?可以看出,平方与开平方互为逆运算,根据这种关系可以求出一个数的平方根.(二) 2(0)a ≥与 (0)a ≥的性质思考1:根据前面得出的性质填一填,并说明理由.2(0)a≥的性质:一般地,2=a(a ≥0).思考2:根据前面得出的性质填一填,并说明理由.(0)a≥的性质:=a(a ≥0).思考:当a<0=?三、运用新知例1 求下列各数的平方根:(1)64 ;(2)49121(3)0.0004;(4)(- 25)2(5) 11.例2 计算:(1(2)2(例3:化简(1(2四、巩固新知1. 下列说法正确的是_________.①-3是9的平方根; ②25的平方根是5; ③-36的平方根是-6; ④平方根等于0的数是0; ⑤64的算术平方根是8.2. 下列说法不正确的是______.A. 0 的平方根是0B. 22-的平方根是2C. 非负数的平方根互为相反数D. 一个正数的算术平方根一定大于这个数的相反数五、归纳小结略.第二章实数2. 2 算术平方根第 1 课时学生对数的认识由有理数扩展到实数范围,而本课是学习无理数的前提,是学习实数的衔接与过度,通过学习算术平方根,建立初步的数感和符号感,发展抽象思维,算术平方根的学习为后面的平方根学习以及立方根的学习奠定坚实的基础.1.了解算术平方根的概念,会用根号表示一个正数的算术平方根;了解一个正数的算术平方根与平方是互逆的运算,会利用这个互逆关系求某些非负数的算术平方根;了解算术平方根的性质.2.加强概念形成的教学,提高学生的思维水平;鼓励学生进行探索和交流,培养他们的创新意识和合作精神.3.让学生积极参与教学活动,培养他们对数学的好奇心和求知欲;训练学生动脑,动口和动手的能力.【教学重点】算术平方根的概念,性质,会用根号表示一个正数的算术平方根.【教学难点】算术平方根的概念,性质.多媒体课件,白板.一. 情境导入从身边小事儿说起,请同学们欣赏本课导图,并回答问题.学校为了趣味接力比赛,要在运动场上圈出一个面积为100平方米的正方形场地,这个正方形场地的边长应为多少?1.学校要举行美术作品比赛,小鸥很高兴,她想裁出一块面积为25分米2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?(谁来说这块正方形画布的边长应取多少分米?你是怎么算出来的?)二.合作探究1.完成下表:这个实例中的问题、填表中的问题实际上是一个问题,什么问题?它们都是已知正方形面积求边长的问题.(通过解决这个问题,我们就引出了算术平方根的概念.)正数3的平方等于9,我们把正数3叫做9的算术平方根.正数4的平方等于16,我们把正数4叫做16的算术平方根.说说6和36这两个数?……(多让几位同学说,学生说得不正确的地方教师随即纠正)说说1和1这两个数?(师让学生拿出提前准备好这样的10张卡片,一面写1-10,另一面写1-10的平方.生任意抽一张卡片,让其他学生回答平方或算术平方根.)说了这么多,同学们大概已经知道了算术平方根的意思.那么什么是算术平方根呢?揭示课题.2.什么是算术平方根呢?(出示算术平方根的定义)请大家把算术平方根概念理解着读两遍.(生读)3.讲解算术平方根的双重非负性.探究a:(1)a可以取任何数吗?(2)a是什么数?目的:进一步明确a在什么情况下有意义,什么情况下无意义,理解算术平方根的双重非负性.4.练一练(1)下列各式中哪些有意义?哪些无意义?为什么?(2)如果3b-6没有算术平方根,则b; (3)下列各式有意义的条件是什么?();3;3;3;52---5.小结 以上我们学习了算术平方根,会用跟号表示出算术平方根,并且能求出一个非负数 的算术平方根.接下来我们做一些习题.三.巩固提高1.小游戏,记忆1—20的平方.2.能力提升(1)判断题①41的算术平方根是21± . ( ) ②5是 ()25-的算术平方根. ( )③一个正数的算术平方根总小于它本身. ( )④-64的算术平方根是8. ( )(2)填空题① 正数的算术平方根是( )数,0的算术平方根是( ),算术平方根等于它 本身的数是( ).② ( -4 )2的算术平方根是( ). ③ 491的算术平方根的相反数的绝对值是( ). (3)回答下列各数的算术平方根0.000 0013.强化练习(1)若x ²=16,则5-x 的算术平方根是_______ .(2)若4a +1的算术平方根是5,则a ²的算术平方根是______.(3)的算术平方根等于______ .4.综合运用已知(x -2)2+3-y +4-z =0,求2x -3y +z 的值.5.能力提高36(1)64 -36的算术平方根是 .(2)若9-a +41-b =0,则a =_____,b =_____. (3)已知y =x -2+2-x +3=0,求xy 的算术平方根.四.总结同学们,这节课你学会了什么?(学生总结,进一步梳理知识)五.布置作业略.。
二次根式的性质(第2课时 商的算术平方根的性质及最简二次根式)
我们可以运用它来进行二次根式的解题和化简,化去根号
内的分母.
例1
化简:
(1)
解:(1)
3
25
;(2)
3
3
3
= .
5
25
25
(2)
=
45
.
169
45
45
9×5 3 5
=
= 2= .
169
169
13
13
议一议
如何化去
根号内的分母?
1
可以先利用分式的基本性质将 的分子与分母同乘2
2
,使分母成为完全平方数,再利用商的算术平方根
A. 7
B. C.
D.
3
1
2
2
)
3.化简:
解:
3
(1)
;
100
75
(2)
;
27
3
3
3
(1)
=
=
.
100
100 10
75
(2)
=
27
补充解法:
52 × 3
52 5
=
= .
2
2
3 ×3
3
3
5 3 5
75
75
=
= .
=
27
3 3 3
27
81
(3)
>0 ;
2
25
还有其他解法
吗?
81
(3)
>0 ;
2
2 二次根式的性质
第2课时 商的算术平方根的性质及最简二次根式
学习目标
1.理解商的算术平方根的性质. (重点)
七年级-人教版-数学-下册-第2课时-用计算器求算术平方根(估算)
例1 请大家用计算器求下列各式的值:
(1) 3 136 ;(2) 2(精确到 0.001).
解:(1)依次按键
3 136 ,
显示:56.
∴ 3 136 =56.
不同品牌的计算器,按键顺序有所不同.
例1 请大家用计算器求下列各式的值: (1) 3 136 ;(2) 2(精确到 0.001).
解:(2)依次按键 2 ,
显示:1.414 213 562. ∴ 2 ≈1.414.
计算器上显示的1.414 213 562是 2 的近似值.
(1)利用计算器计算下表中的算术平方根,并将计算结果填 在表中,你发现了什么规律?你能说出其中的道理吗?
… 0.0625 0.625 6.25 62.5 625 6 250 62500 … … 0.25 0.790 6 2.5 7.906 m,宽为2x cm. 根据边长与面积的关系得
3x 2x 300, 6x2 300, x2 50, x 50 .
因此长方形纸片的长为 3 50 cm. 因为50 49 ,所以 50 7.
由上可知 3 50 21,即长方形纸片的长应该大于21 cm. 因为 400 20,所以正方形纸片的边长只有20 cm,这样,长 方形纸片的长将大于正方形纸片的边长.
从运算结果可以发现,被开方数的小数点向右或向左移动 2 位,它的算术平方根的小数点就相应地向右或向左移动 1 位.
(2)用计算器计算 3 (精确到0.001),并利用你在(1)中 发现的规律说出 0.03, 300 , 30 000 的近似值,你能根据 3 的 值说出 30 是多少吗?
由 3 1.732 ,得 0.03 0.173 2, 300 17.32, 30 000 173.2.
初中数学_平方根第二课算术平方根教学设计学情分析教材分析课后反思
教学设计一、指导思想:依据学生已有的基础及教材所处的地位和作用,在教学中让学生在学习知识技能的同时,注意数学思想方法和良好学习习惯的养成。
二、关于教法和学法采用启发式教学法及情感教学,创设问题情境,引导学生主动思考,激发学生兴趣,调节学习情绪,让学生在乘方和算术平方根的性质法则的比较中发现问题;在练习训练中提高解题能力,培养良好学习习惯。
同时,采用媒体辅助教学,增大教学密度,提高教学效率。
三、关于教学程序的设计在教学程序设计上,充分体现教师为主导,学生为主体的教学原则,突出以下几个注重:①面向全体学生,启发式与探究式教学。
②注重学生参与知识的形成过程,增强学习数学的信心。
③让学生在获取知识的同时,掌握方法,灵活运用。
学情分析1、学生现有基础:学生在上学期时已学过了乘方的运算,有助于本节的学习活动。
2、学习的现状:此阶段的学生对新鲜事物或新内容特别感兴趣,但缺乏学习的方法。
效果分析本节课的主要内容是让学生理解算术平方根的含义,会求正数的算术平方根并会用符号表示;了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
本节内容基本能按照事先设计上下来,学生的反应良好,能较好地掌握所学地新知识,本节课的内容不是很多,这是学好算术平方根的关键,也为后面学习立方根及运用平方根进行基本运算和解决实际问题打下基础,但在教学过程中也存在以下主要问题:1、忽视平方根表示的规范化由于我忽视了在课堂上的平方根表示的示范,使得有不少学生能够知道一个数的平方根,但是表示不规范。
2.没有对概念进行总结在实际操作时,由于临近下课,时间较仓促,所以无论是学生的总结还是教师的总结都显得比较贫乏,没有抓住实质。
在今后的总结中,应注意引导学生从知识方面,数学思想方法等不同方面进行有效的小结,而不要只流于形式。
总之,对于这样一节概念课,如果学生对概念的理解只停留在死记硬背,机械模仿的阶段,那绝对不是数学概念课所要提倡的教学方法。
2024八年级数学上册第十四章实数14.1平方根第2课时算术平方根习题课件新版冀教版
所以
b - a 的算术平方根是 ,
=
b - a = ,则 b =- .
ab = × − × − = .
又因为
=
,所以
,
= .
即 ab 的算术平方根是 .
1
2
3
4
5
6
返回
7
8
9
10
11
12
13
14
15
利用特殊到一般思想探究 的性质
所以2 xy =2× ×(-3)=-15.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
【点要点】
对于任意一个数 a ,若 a ≥0,- a ≥0,则 a =0.
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
易错点 在求带根号的数的算术平方根时,忽略根号的作用
而致错
的算术平方根.
11. [新考法·过程辨析法]求
所以原式=- a - b +( a - b )-( a + b )=- a - b +
a - b - a - b =- a -3 b .
返回
1
2
3
4
八年级数学上册第2章实数2平方根第2课时平方根新版北师大版
20
20. 实践与探究.
(1)计算: =
(−) =
=
1
2
; . =
3
0.5
−
=
6 ;
;
;
0 .
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
(2)根据(1)中的计算结果,回答下列问题:
① 一定等于 a 吗?为什么?你发现其中的规律了吗?
请用பைடு நூலகம்己的语言描述出来.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
.
15
16
17
18
19
20
10. 【 2024延安期中新视角·程序框图题】按照如图所示的
-2或-8
程序框图,若输出 y =6,则输入 x 的值为
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
.
11. 【新考法 方程建模法】在半径为9 cm的圆形黏土片上裁
=± .
解: ±
1
( . )2=0.000 4.
4
5
6
7
8
- (−.) =-0.1.
9
10
八年级数学上册《平方根》(第2课时) 教案 湘教版
【教学目标】1、了解算术平方根的概念,会用根号表示数的算术平方根。
2、了解开方与乘方互为逆运算,会用平方根运算求某些非负数的算术平方根。
3、能运用算术平方根解决一些简单的实际问题。
【教学重点难点】理解算术平方根的意义,能运用算术平方根解决一些简单的实际问题【教学方法】观察、比较、合作、交流、探索.【设计思路】本节课通过问题情景使学生在计算、探索、交流的过程中能感悟到算术平方根的意义,并且能运用算术平方根解决一些简单的实际问题。
在教学中要让每个学生都参与到活动中去,感受学习的乐趣,提高学习数学的兴趣,教学千万不能在走老路,先告诉规律,然后讲例题,在做练习。
【教学过程】(一)创设情景,感悟新知情景一:小明家装修新居,计划用100块地板砖来铺设面积为25平方米的客厅地面,请帮他计算:每块正方形地板砖的边长为多少时,才正好合适(不浪费)?情景二:求4个直角边长为10厘米的等腰直角三角形纸片拼合成的正方形的边长?【设计说明:将生活实际与数学联系起来,更能激发学生的兴趣,便于学生主动发现一个数的算术平方根——正的平方根,为解决问题提供方便】教师讲解:正数有个平方根,其中正数的正的平方根,叫的算术平方根.例如,4的平方根是2±,2叫做4的算术平方根,记作4=2;2的平方根是2±,2叫做2的算术平方根,记作22=。
(二)探索规律,揭示新知例题讲解: 例2求下列各数的算术平方根:(1)625;(2)0.0081;(3)6;(4)0。
【设计说明:在书写时仍采用结合文字语言叙述是写法,以利于学生加深对开平方与平方互为逆运算关系的理解。
此题虽然比较简单但也考查了学生对算术平方根的理解情况,我们从学生的角度尤其学习有困难的学生来思考的话也许讲解起来学生更容易理解了】(三)尝试反馈,领悟新知完成下列习题,做题后思考讨论交流。
(1)=01.0 (2)()=25 (3)241⎪⎪⎭⎫ ⎝⎛= (4) 216= , (5) ()=-216 , (6)()25-= 。
《平方根(第2课时)》参考教案
2.2平方根(二)教学目标:(一)教学知识点1.了解平方根的概念、开平方的概念.2.明确算术平方根与平方根的区别与联系.3.进一步明确平方与开方是互为逆运算.(二)能力训练要求1.加强概念形成过程的教学,让学生不仅掌握概念,而且知晓它的理论数据.2.提倡学生进行自学,并能与同学互相交流与合作,变学会知识为会学知识.3.培养学生的求同和求异思维,能从相似的事物中观察到P X 们的共同点和不同点.(三)情感与价值观要求通过学生在学习中互相帮助、相互合作,并能对不同概念进行区分,培养大家的团队精神,以及认真仔细的学习态度,为学生将来走上社会而做准备,使他们能在工作中保持严谨的态度,正确处理好人际关系,成为各方面的佼佼者.教学重点:1.了解平方根、开平方的概念.2.了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.3.了解平方根与算术平方根的区别与联系.教学难点:1.平方根与算术平方根的区别与联系.2.负数没有平方根,即负数不能进行开平方运算的原因.教学方法:讨论比较法.即主要靠大家讨论得出结论,同时对相似的概念进行比较.这样不仅能正确区分这些概念,还能使学生学得更扎实.教学过程:Ⅰ.创设问题情境,引入新课上节课我们学习了算术平方根的概念,性质.知道若一个正数x的平方等于a,即x2=a.则x叫a的算术平方根,记作x=a,而且a也是非负数,比如正数22=4,则2叫4的算术平方根,4叫2的平方,但是(-2)2=4,则-2叫4的什么根呢?下面我们就来讨论这个问题.Ⅱ.讲授新课1.平方根、开平方的概念[师]请大家先思考两个问题.(1)9的算术平方根是3,也就是说,3的平方是9,还有其他的数,它的平方也是9吗?(2)平方等于254的数有几个?平方等于0.64的数呢? [生]-3的平方也是9.52的平方是254,-52的平方也是254,即平方等于254的数有两个. [生]平方等于9的数有两个,平方等于254的数有两个,由此可知平方等于0.64的数也有两个. [师]根据上一节课的内容,我们知道了是9的算术平方根,52是254的算术平方根,那么-3,-52叫9、254的什么根呢?请大家认真看书后回答. [生]-3,-52分别叫9、254的平方根. [师]那是不是说3叫9的算术平方根,-3也叫9的算术平方根,即9的算术平方根有一个是3,另一个是-3呢?[生]不对.根据平方根的定义,一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个x 就叫a 的平方根(square root),也叫二次方根,3和-3的平方都等于9,由定义可知3和-3都是9的平方根,即9的平方根有两个3和-3,9的算术平方根只有一个是3.[师]由平方根和算术平方根的定义,大家能否找出它们有什么相同和不同之处呢?请分小组讨论后选代表回答.[生]平方根的定义中是有一个数x 的平方等于a ,则x 叫a 的平方根,x 没有肯定是正数还是负数或零;而算术平方根的定义中是有一个正数x 的平方等于a ,则x 叫a 的算术平方根,这里的x 只能是正数.由此看来都有x 2=a ,这是它们的相同之处,而x 的要求不同,这是它们的不同之处.[师]这位同学分析判断能力特棒,下面我再详细作一总结.平方根与算术平方根的联系与区别联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)存在条件相同:平方根和算术平方根都是只有非负数才有. (3)0的平方根,算术平方根都是0.区别:(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“非负数a的非负平方根叫a的算术平方根”.(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个.(3)表示法不同:正数a的平方根表示为±a,正数a的算术平方根表示为a.(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个. [师]什么叫开平方呢?[生]求一个数a的平方根的运算,叫开平方(extraction of square root),其中a叫被开方数.[师]我们共学了几种运算呢,这几种运算之间有怎样的联系呢?请大家讨论后回答.[生]我们共学了加、减、乘、除、乘方、开方六种运算.加与减互为逆运算,乘与除互为逆运算,乘方与开方互为逆运算.2.平方根的性质[师]请大家思考以下问题.(1)一个正数有几个平方根.(2)0有几个平方根?(3)负数呢?[生]第一个问题在前面已作过讨论,一个正数9有两个平方根3和-3;因为只有零的平方为零,所以0有一个平方根是零.因为任何数的平方都不是负数,所以负数没有平方根,例如-3没有平方根.[师]太精彩了.一个正数有两个平方根,且它们互为相反数;0有一个平方根是0,负数没有平方根.3.讲解例题[例]求下列各数的平方根.(1)64;(2)12149;(3)0.0004;(4)(-25)2;(5)11. 4.想一想 (1)(64)2等于多少?(12149)2等于多少? (2)(2.7)2等于多少? (3)对于正数a ,(a )2等于多少?Ⅲ.课堂练习(一)随堂练习1.求下列各数的平方根1.44,0,8,49100,441,196,10-42.填空(1)25的平方根是_________; (2)2)5(- =_________; (3)(5)2=_________.3.5,12a b ==当.(二)补充练习1.判断下列各数是否有平方根?并说明理由.(1)(-3)2;(2)0;(3)-0.01;(4)-52;(5)-a 2;(6)a 2-2a +22.求下列各数的平方根.(1)121;(2)0.01;(3)297;(4)(-13)2;(5)-(-4)3 Ⅳ.课时小结本节课学了如下内容.1.平方根的概念.2.平方根的性质.3.平方根与算术平方根的区别与联系.4.求某些非负数的算术平方根和平方根.Ⅴ.课后作业P29习题2.4.Ⅵ.活动与探究1.对于任意数a,2a一定等于a吗?2.a中的被开方数a在什么情况下有意义,(a)2等于什么?解:因为任意数的平方都是非负数,也就是非负数才有平方根,所以被开方数a 必须是正数或零,即非负数时有意义.所以(a)2=a(a≥0)板书设计:。
北师大版初二数学上册2.2 平方根(第2课时)
第二章实数2. 平方根(第2课时)灞源初中:祝娟娟一、教学目标:①了解平方根、开平方的概念,明确算术平方根与平方根的区别和联系.②进一步明确平方与开平方是互逆的运算关系.③经历平方根概念的形成过程,让学生不仅掌握概念,而且提高和巩固所学知识的应用能力.二、教学重难点:教学重点:①了解平方根、开平方的概念.②了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.③了解平方根与算术平方根的区别与联系.教学难点:①平方根与算术平方根的区别和联系.②负数没有平方根,即负数不能进行开平方的运算.三、教学过程:第一环节复习旧知引入新知1)9的算术平方根是3,也就是说,3的平方是9还有其它的数,它的平方也是9吗?4的数有几个?平方等于0.64的数呢?(2)平方等于25第二环节: 新课学习(一)形成概念一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.而把正的平方根叫做a的算术平方根..表达式为:若x2=a,那么x叫做a的平方根.记作a例如:(±4)2=16,则+4和-4都是16的平方根;即16的平方根是±4;4是16的算术平方根.(三)探索平方与开平方的关系:给出几组具体的数据,由平方探知开平方与平方的互逆关系.(四)概念辨析平方根与算术平方根的联系与区别联系 1.包含关系 平方根包含算术平方根,算术平方根是平方根的一种.2.只有非负数才有平方根和算术平方根.3. 0的平方根是0,算术平方根也是0.区别 1.个数不同:一个正数有两个平方根,但只有一个算术平方根.2.表示法不同:平方根表示为 a ± ,而算术平方根表示为a . 第三环节 例题和新知巩固(一)例题示范求下列各数的平方根:(1)64;(2)49121;(3) 0.0004;(4)()225-;(5) 11 解 (1)()2648=±,648∴±的平方根是,8±=±即;(2)()24949771211211111,=∴±±的平方根为,711±=±即;(3)()20.0004,0.00040.020.02=∴±±的平方根是,0.02=±即;(4)()()()22,25252525=∴±±--2的平方根是, 25=±即;(5)11±的平方根是(二)思考提升()()?a a ,???等于多少对于正数等于多少等于多少等于多少2222)3(2.7)2(12149)64)(1(⎪⎪⎭⎫ ⎝⎛(三)巩固练习1、 求下列各数的平方根:(1)81 (2)0.49(3) 2 (4)16/25(5)8 (6)27(7)(-4)2 (8)10-22、你能求出下列各式中的未知数x吗?(1)x2=49(2)(x-1)2=25第四环节课堂小结引导学生总结本课时的知识、方法.第五环节作业布置习题2.4四、教学设计反思本节课是八年级上册第二章《平方根》的第二课时.主要知识是平方根的学习和运用.类比概念“平方根”和“算术平方根”的区别和联系,“平方”和“开平方”运算,深刻理解两个概念的区别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.1平方根(第2课时)
教学设计思想:
平方根及算术平方根是两个重要的概念,是全章的教学重点.学生对平方根及算术平方根的概念常常混淆,因此,在教学中引导学生真正理解这两个概念的本质是什么,并能分清它们的区别与联系,这是两节课的主要教学目标.在教学设计中,力求在以下两方面突出特点:
1.引导学生建立清晰的概念系统,首先在第1课进要求学生正确理解平方根的概念的意义和平方根的表示法;其次在第2课时专门讨论算术平方根的概念及其表示.对于a表示a的算术平方根的条件是,被开方数a表示非负数,而a本身也表示非负数,因此在教
学中不能要求学生死记硬背,要向学生说明规定的合理性.为此,提出算术平方根的一种几何解释,即面积为a的正方形(a为正数),它的边长为a(a也是正数),从而直观、形
象地说明了算术平方根约定的合理性.
2.编选了有针对性的、有梯度的、形式多样的课堂练习题,让学生在练习中巩固和加深知识的理解和掌握,促使学生尽快地把新知识纳入到自己原有的认知结构中.
教学目标:
知识与技能:
1.能说出平方根和算术平方根的概念,会用根号表示一个数的平方根。
2.知道开平方与平方是互逆的运算,会利用这个互逆运算关系求某些非负数的平方根。
3a表示的是非负数a的平方根。
过程与方法:
1.通过对比体会平方根、算术平方根的联系和区别;
2.在学习开平方运算求一个非负数的平方根、算术平方根的过程中,体会开平方运算与平方运算之间的互逆关系.
情感态度价值观:
进一步感受到所学数学知识之间的内在联系.
教学重难点:
重点:平方根和算术平方根的概念和求法.
难点:弄清平方根与算术平方根的意义
教学方法:
探究学习
课时安排
2课时
教学用具
多媒体
教学过程:
第2课时
一、复习引入:
问:1.625的平方根是多少?这两个平方根的和是多少?2.-7和7是哪个数的平方根?
3.正数m的平方根怎样表示?
4.下列各数的平方根各是什么?
(1)64;(2)0;(3)(-0.4)2;(4)
2
3
2
1⎪
⎭
⎫
⎝
⎛
-;(5)-16;(6)(-4)3.
答:
1.625的平方根是25和-25,这两个平方根的和是0. 2.-7和7是49的平方根.
3.正数m的平方根表示为m
±.
4.(1)64的平方根是±64=±8.
(2)0的平方根是0.
(3)因为(-0.4)2=0.16,所以它的平方根是±16
.0=±0.4.
(4)因为
2
3
2
1⎪
⎭
⎫
⎝
⎛
-=
2
3
5
⎪
⎭
⎫
⎝
⎛
-=
9
25
,所以
2
3
2
1⎪
⎭
⎫
⎝
⎛
-的平方根是±
9
25
=±
3
5
.
(5)因为-16<0,所以-16没有平方根.
(6)因为(-4)3=-16<0,所以(-4)3没有平方根.
问:已知正方形的面积等于a,那么它的一条边长等于多少?
答:设正方形的一条边长为x,则x2=a,根据平方根的定义,x=±a.因为正方形的边
长是正数,所以正方形边长为a.
二、讲解新课
正数a有两个平方根(表示为a
±),我们把其中正的平方根,叫做a的算术平方根,表示为a.
0的平方根也叫做0的算术平方根,因此0的算术平方根是0,即0=0.
用几何图形可以直观地表示算术平方根的意义,如图所示,面积为a(a应是非负数)、边
长为a
就表示a的算术平方根.
“”是算术平方根的符号,a就表示a的算术平方根. a的意义有两点:
(1)被开方数a表示非负数,即a≥0;
(2)a也表示非负数,即a≥0.也就是说,非负数的“算术”平方根是非负数.负数不存在算术平方根,即a<0时,a无意义.
如9=3,8是64的算术平方根,6
-无意义.
这里需要说明的是,算术平方根的符号“”不仅是一个运算符号,如a≥0时,a 表示对非负数a进行开平方运算,另一方面也是一个性质符号,即表示非负数a的正的平方根.
例如9既表示对9进行开平方运算,也表示9的正的平方根.
三、例题精选
例1 求下列各数的算术平方根:
(1)36; (2)0.01; (3) 4
49
;(4)(-16)2;.
解:(1)因为 62=36,
所以 36的算术平方根是6,
6
=.
(2) 因为 (0.1)2=0.01,,
所以 0.01的算术平方根是0.1,
0.1=.
(3) 因为 224749⎛⎫= ⎪⎝⎭
所以 449的算术平方根是27
,
27
=. (4) 因为 (-16)2=162,
所以 (-16)2的算术平方根是16,
16=.
注意:100的平方根是10和-10,而其算术平方根是10.
例2 求下列各式的值:
(2)
(3); (4)
分析:只要求的一个正数的算术平方根,那么这个数的负的平方根就是它的算术平方根的相反数。
解:(1) 因为1.32=1.69,
所以(2) 因为252=625,
所以 -25.
(3) 因为121
25)115(2=, 所以 11
512125=. (4) 因为(-17)2=172,
所以 -17.
注意:由于正数的算术平方根是正数,零的算术平方根是零,可将它们概括成:非负数
的算术平方根是非负数,即当a ≥0时,a ≥0(当a<0时,a 无意义).
四、随堂练习:
1.课后练习1,2
2.求下列各式的值: (1)1; (2)-9
4; (3)21.1; (4)-2
32⎪⎭⎫ ⎝⎛-. 五、小结 平方根和算术平方根是初中代数中的两个重要概念,全面掌握它,就必须分清它们的区别,认清它们之间的联系.
1.平方根和算术平方根的区别.
(1)定义不同.如果x 2 =a,那么x 叫做a 的平方根.
一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.
如果x 2 =a,并且x ≥0,那么x 叫做a 的算术平方根.
一个正数的算术平方根只有一个,非负数的算术平方根一定是非负数.
(2)表示方法不同.正数a 的平方根,表示为±a .正数a 的算术平方根为a .
(3)平方根等于本身的数是0,算术平方根等于本身的数是0或1.
2.平方根和算术平方根的联系.
(1)二者有着包含关系:平方根中包含算术平方根,算术平方根是平方根中的非负的那一个.
(2)存在条件相同.非负数才有平方根和算术平方根.
(3)零的平方根和零的算术平方根都是零.
六、板书设计。