2020最新苏教版高一数学必修1全册完整课件
合集下载
苏教版高中数学必修1第1章集合§1.2子集、全集、补集课件
反思感悟
(1)判断集合关系的方法 ①视察法:一一列举视察. ②元素特征法:第一确定集合的元素是什么,弄清集合元素的特 征,再利用集合元素的特征判断关系. ③数形结合法:利用数轴或Venn图. (2)求元素个数有限的集合的子集的两个关注点 ①要注意两个特殊的子集:∅和自身. ②按集合中含有元素的个数由少到多,分类一一写出,保证不重 不漏.
2.补集
定义
设A⊆S,由S中 不属于A 的所有元素组成的集合称 文字语言
为S的子集A的补集
符号语言
∁SA=_{_x_|x_∈__S_,__且__x_∉_A_}_
图形语言
性质 (1)A⊆S,∁SA⊆S;(2)∁S(∁SA)= A ;(3)∁SS= ∅ ,∁S∅=_S__
注意点:
(1)“全集”是一个相对的概念,并不是固定不变的,它是根据具体 的问题加以选择的. (2)∁UA包含三层含义:①A⊆U;②∁UA是一个集合,且∁UA⊆U; ③∁UA是U中所有不属于A的元素构成的集合.
(2)满足{1,2} M⊆{1,2,3,4,5}的集合M有__7__个.
由题意可得{1,2} M⊆{1,2,3,4,5},可以确定集合M必含有 元素1,2,且含有元素3,4,5中的至少一个,因此根据集合M的元 素个数分类如下: 含有三个元素:{1,2,3},{1,2,4},{1,2,5};含有四个元素: {1,2,3,4},{1,2,3,5},{1,2,4,5}; 含有五个元素:{1,2,3,4,5}. 故满足题意的集合M共有7个.
跟踪训练1 (1)已知集合M={x|x2-3x+2=0},N={0,1,2},则集合M与N
的关系是
A.M=N
√C.M N
B.N M D.N⊆M
解 方 程 x2 - 3x + 2 = 0 得 x = 2 或 x = 1 , 则 M = {1 , 2} , 因 为 1∈M 且 1∈N,2∈M且2∈N,所以M⊆N.又因为0∈N但0∉M,所以M N.
高中数学苏教版必修1《第1章1.1第1课时集合的含义》课件
2.有同学说,在某一个集合中有 a,-a,|a|三个元素,他说的 对吗?
[提示] 这种说法是错误的,因|a|=a-aa≥a0<0,, 且若 a=0,则 a,-a,|a|均为 0,这些均与元素的互异性矛盾.
3.“中国的直辖市”构成的集合中,元素包括哪些?甲同学说: 北京、上海、天津、重庆;乙同学说:上海、北京、重庆、天津,他 们的回答都正确吗?由此说明什么?怎么说明两个集合相等?
[解] (1)若 a-3=-3,则 a=0,此时满足题意; (2)若 2a-1=-3,则 a=-1,此时 a2-4=-3,不满足集合中 元素的互异性,故舍去. (3)若 a2-4=-3,则 a=±1. 当 a=1 时,满足题意; 当 a=-1 时,由(2)知,不满足题意. 综上可知,a=0 或 a=1.
3.元素与集合的表示
(1)元素的表示:通常用小写拉丁字母_a_,__b_,__c_,__…____表示集合
中的元素.
(2)集合的表示:通常用大写拉丁字母__A_,__B_,__C_,__…___表示集
合.
4.元素与集合的关系
(1)属于(符号:_∈_),a 是集合 A 中的元素,记作_a_∈__A__,读作“a
3.“∈”和“ ”具有方向性,左边是元素,右边是集合.
2 . 设不 等式 3 -2x<0 的解 集 为 M , 下列 关 系中 正 确的 有 ________.(填序号)
①0∈M,2∈M;②0 M,2∈M;③0∈M,2 M;④0 M,2 M. ② [本题是判断 0 和 2 与集合 M 间的关系,因此只需判断 0 和 2 是否是不等式 3-2x<0 的解即可,当 x=0 时,3-2x=3>0,所以 0 M;当 x=2 时,3-2x=-1<0,所以 2∈M.]
高中数学苏教版必修一课件:第一章 1. 1 第2课时 集合的表示
则Δ=64-64k=0,即k=1.
从而x1=x2=4,∴集合A={4}. 综上所述,实数k的值为0或1.当k=0时,A={2};
当k=1时,A={4}.
【探究 2】 把探究 1 中条件“有一个元素”改为“有两个元素”, 求实数 k 取值集合. 解 由题意可知方程 kx2-8x+16=0 有两个不等实根. ∴kΔ≠=06,4-64k>0 ,解得 k<1,且 k≠0. 所以 k 取值集合为{k|k<1,且 k≠0}.
第2课时 集合的表示
学习目标 1.掌握用列举法表示有限集(重点);2.理解描述法 格式及其适用情形(难点、重点);3.学会在集合不同的表示 法中作出选择和转换(难点);4.理解集合相等、有限集、无 限集、空集等概念(重点).
预习教材 P6-7,完成下面问题: 知识点一 集合的表示方法
表示方法
定义
【探究3】 若集合A={x∈Z|-2≤x≤2},B={y|y=x2+ 2 000,x∈A},则用列举法表示集合B=________. 解析 由A={x∈Z|-2≤x≤2}={-2,-1,0,1,2},所以 x2∈{0,1,4},x2+2 000的值为2 000,2 001,2 004,所以B= {2 000,2 001,2 004}. 答案 {2 000,2 001,2 004}
3.方程x2+2x+1=0的所有实数解构成的集合为______. 解析 方程x2+2x+1=0有两相等实根x1=x2=-1,根据 集合中元素的互异性,这两个实根构成的集合为{-1}. 答案 {-1}
4.方程xx+ -yy= =25, 的解集用列举法表示为 ____________________________________________________; 用描述法表示为________________.
苏教版高一数学必修1全套精美课件
苏教版高一数学必修1全套精美课 件
2.1 函数的概念和图像
苏教版高一数学必修1全套精美课 件
2.2 指数函数
苏教版高一数学必修1全套精美课 件
2.3 对数函数
苏教版高一数学必修1全套精美 课件目录
0002页 0054页 0114页 0183页 0211页 0240页
第一章 集合 1.2 子集 全集 补集 第二章 函数概念与基本初等函数 2.2 指数函数 2.4 幂函数 2.6 函数模型及其应用
第一章 集合
苏教版高一数学必修1全套精美课 件
1.1 集合的含义与表示
苏教版高一数学必修1全套精美课 件
1.2 子集 全集 补集
苏教版高一数学必修1全套精美课 件
1.3 交集 并集
苏教版高一数学必修1全套精美课 件
第二章 函数概念与基本初等函 数
苏教版高一数学必修1全套精美课 件
2.4 幂函数
苏教版高一数学必修1全套精美课 件
2.5 函数与方程
苏教版高一
2.1 函数的概念和图像
苏教版高一数学必修1全套精美课 件
2.2 指数函数
苏教版高一数学必修1全套精美课 件
2.3 对数函数
苏教版高一数学必修1全套精美 课件目录
0002页 0054页 0114页 0183页 0211页 0240页
第一章 集合 1.2 子集 全集 补集 第二章 函数概念与基本初等函数 2.2 指数函数 2.4 幂函数 2.6 函数模型及其应用
第一章 集合
苏教版高一数学必修1全套精美课 件
1.1 集合的含义与表示
苏教版高一数学必修1全套精美课 件
1.2 子集 全集 补集
苏教版高一数学必修1全套精美课 件
1.3 交集 并集
苏教版高一数学必修1全套精美课 件
第二章 函数概念与基本初等函 数
苏教版高一数学必修1全套精美课 件
2.4 幂函数
苏教版高一数学必修1全套精美课 件
2.5 函数与方程
苏教版高一
2020学年高中数学第1章集合1.3交集、并集第2课时交集、并集、补集的综合应用课件苏教版必修1
集合的交、并、补综合运算 已知全集 U={x|-5≤x≤3},A={x|-5≤x<-1},B ={x|-1≤x<1},求∁UA,∁UB,(∁UA)∩(∁UB).
【解】 将集合 U、A、B 分别表示在数轴上,如图所示.
则∁UA={x|-1≤x≤3}; ∁UB={x|-5≤x<-1,或 1≤x≤3}; 法一:(∁UA)∩(∁UB)={x|1≤x≤3}. 法二:因为 A∪B={x|-5≤x<1}, 所以(∁UA)∩(∁UB)=∁U(A∪B) ={x|1≤x≤3}.
并集的性质及其应用 已知集合 A={x|x2-3x+2=0},B={x|x2-ax+a-1 =0},C={x|x2-mx+2=0},且 A∪B=A,A∩C=C.求 a 与 m 的值或取值范围.
【解】 A={x|x2-3x+2=0}={1,2}, B={x|(x-1)[x-(a-1)]=0}. 因为 A∪B=A,所以 B⊆A. 又因为 1∈B,所以 B≠∅,则 a-1∈A. 所以 a-1=1 或 a-1=2,解得 a=2 或 a=3. 又因为 A∩C=C,所以 C⊆A, 所以 C 有∅,{1},{2},{1,2}四种情况.
解:因为 A={1,2},所以 B={2,4},所以 A∪B={1,2, 4}, 所以∁U(A∪B)={3,5}.
交集的性质及其应用 已知集合 A={1,b,a},B={1,a2},问是否存在这 样的实数 a,使得 B⊆A,且 A∩B={1,a}?若存在,求出 a 值;若不存在,说明理由.
【解】 因为 B⊆A,所以 A∩B=B.又 A∩B={1,a},B= {1,a2},所以 a2=a,解得 a=0 或 a=1. 又因为由集合元素的互异性知 a≠1,a≠b,所以当 b=0 时, 这样的实数 a 不存在;当 b≠0 时,这样的实数 a 存在,且 a =0.
苏教版高中数学必修第一册第1章1.2第1课时子集、真子集【授课课件】
第1课时 子集、真子集
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
由 1 个元素构成的子集为:{-4},{-1},{4}; 由 2 个元素构成的子集为:{-4,-1},{-4,4},{-1,4}; 由 3 个元素构成的子集为:{-4,-1,4}; 故集合 A 的子集为:∅,{-4},{-1},{4},{-4,-1},{- 4,4},{-1,4},{-4,-1,4}共 8 个子集. 真子集为:∅,{-4},{-1},{4},{-4,-1},{-4,4},{- 1,4}共 7 个.
∴P=Q.
第1课时 子集、真子集
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
(4)A={x|x 是等边三角形},B={x|x 是三角形}; [解] 等边三角形是三边相等的三角形,故 A B.
第1课时 子集、真子集
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
3 [集合 A={0,1},其真子集分别为∅,{0},{1},共 3 个.]
第1课时 子集、真子集
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
02
关键能力·合作探究释疑难
类型1 类型2 类型3
第1课时 子集、真子集
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
苏教版高一数学必修1全册课件【完整版】
苏教版高一数学必修1全册课件 【完整版】目录
0002页 0081页 0133页 0203页 0232页 0267页
第一章 集合 1.2 子集 全集 补集 2.1 函数的概念和图像 2.3 对数函数 2.5 函数与方程 探究案例 钢琴与指数曲线
第一章 集合
苏教版高一数学必修1全册课件【 完整版】
1.1 集合的含义与表示
苏教版高一数学必修1全册课件【 完整版】
2.1 函数的概念和图像
苏教版高一数学必修1全册课件【 完整版】
2.2 指数函数
苏教版高一数学必修1全册课件【 完整版】
2.3 对数函数
苏教版高一数学必修1全册课件【 完整版】
1.2 子集 全
1.3 交集 并集
苏教版高一数学必修1全册课件【 完整版】
0002页 0081页 0133页 0203页 0232页 0267页
第一章 集合 1.2 子集 全集 补集 2.1 函数的概念和图像 2.3 对数函数 2.5 函数与方程 探究案例 钢琴与指数曲线
第一章 集合
苏教版高一数学必修1全册课件【 完整版】
1.1 集合的含义与表示
苏教版高一数学必修1全册课件【 完整版】
2.1 函数的概念和图像
苏教版高一数学必修1全册课件【 完整版】
2.2 指数函数
苏教版高一数学必修1全册课件【 完整版】
2.3 对数函数
苏教版高一数学必修1全册课件【 完整版】
1.2 子集 全
1.3 交集 并集
苏教版高一数学必修1全册课件【 完整版】
苏教版高中数学必修第一册第1章章末综合提升【授课课件】
综上所述,a,b 的值为ab= =-1 1, 或ab= =11, 或ab= =-0,1.
章末综合提升
1
2
3
巩固层·知识整合 提升层·题型探究 章末综合测评
类型 3 集合的运算 集合的运算主要包括交集、并集和补集运算,这是高考对集合部 分的主要考查点,常与不等式、方程等知识交汇考查.若集合是列举 法给出的,在处理有关交、并、补集的运算时常结合 Venn 图处理.若 与不等式(组)组合命题时,一般要借助于数轴求解.解题时要注意各 个端点能否取到.
章末综合提升
1
2
3
巩固层·知识整合 提升层·题型探究 章末综合测评
类型 2 集合间的关系 集合间的关系主要考查集合与集合之间、元素与集合之间的关 系.解答与集合有关的问题时,应首先认清集合中的元素是什么,是 点集还是数集.根据定义归纳为判断元素与集合间的关系或利用数轴 或 Venn 图表示,进行直观判断.在解决含参数的不等式(或方程)时, 一般对参数进行讨论,分类时要“不重不漏”.
谢谢观看 THANK YOU!
(2)由题意知,A∩B={2},A∪B={1,2,3,4}. 所以∁U(A∪B)={0,5,6}.
章末综合提升
1
2
3
巩固层·知识整合 提升层·题型探究 章末综合测评
【例 4】 已知集合 A={x|2a-2<x<a},B={x|1<x<2},且 A ∁ RB,求 a 的取值范围.
[思路点拨] 解答本题的关键是利用 A ∁RB,对 A=∅与 A≠∅进 行分类讨论,转化为等价不等式(组)求解,同时要注意区域端点的问 题.
章末综合提升
1
2
3
巩固层·知识整合 提升层·题型探究 章末综合测评
不等式的基本性质-【新】苏教版高中数学必修第一册PPT全文课件(69ppt)
17
课
情
堂
景 导
(2)[解] 不等式ax+1>0(a∈R)两边同时加上-1得
小 结
学
探
ax>-1 (不等式性质3),
新
提 素
知
当a=0时,不等式为0>-1恒成立,所以x∈R,
养
合
当a>0时,不等式两边同时除以a得
课 时
作
分
探 究 释
x>-a1 (不等式性质4),
层 作 业
疑
难
不等式的基本性质-【新】苏教版高中 数学必 修第一 册PPT 全文课 件(69pp t)【完 美课件 】
1
课
情
堂
景
小
导 学 探
第3章 不等式
结 提
新
素
知
养
3.1 不等式的基本性质
课
合
时
作
分
探
层
究
作
释
业
疑
难
返 首 页
2
情
学习目标
核心素养
课 堂
景 导
1.结合已有的知识,理解不等式
小 结
学
探 的6个基本性质.(重点)
新
提 素
知 2.会用不等式的性质证明(解)不 通过不等式性质的应用,培养逻 养
合 等式.(重点)
9
课
情
堂
景
小
导
提醒:不等式的基本性质是不等式变形的依据,也是解不等式 结
学
提
探 新
的根据,同时还是证明不等式的理论基础.
素
知
养
(1)在应用不等式时,一定要搞清它们成立的前提条件,不可强
新教材苏教版高中数学必修第一册1.2子集、全集、补集 精品教学课件
【解析】1.因为集合A={x|-1<x<2,x∈Z}={0,1}, 所以集合A={x|-1<x<2,x∈Z}的真子集为⌀,{0},{1},共3个. 答案:3 2.因为解方程x2+x=0,得x=-1或x=0, 所以集合A={x|x2+x=0,x∈R}={-1,0}, 因为集合B满足{0} B⊆A,所以集合B={-1,0}. 答案:{-1,0} {-1,0}
2
【解题策略】 1.集合间基本关系判定的两种方法和一个关键
2.证明集合相等的两种方法 (1)用两个集合相等的定义,证明两个集合 A,B中的元素全部相同,即可证明A=B. (2)证明A⊆B,同时B⊆A ,推出A=B.
【补偿训练】
判断下列各组中集合之间的关系:
(1)A={x|x是12的约数},B={x|x是36的约数}.
2.设A,B是集合I={1,2,3,4}的子集,A={1,2},则满足A⊆B的B的个数是 ( ) A.5 B.4 C.3 D.2 【解析】选B.满足条件的集合B可以是{1,2},{1,2,3},{1,2,4},{1,2,3,4},所 以满足A⊆B的B的个数是4.
3.若集合M={x|x≤6},a=2 2 ,则下面结论中正确的是 ( )
A.{a} M
B.a M C.{a}∈M D.a∉M
【解析】选A.由集合M={x|x≤6},a=2 2 , 知:在A中,{a} M,故A正确;
在B中,a∈M,故B错误;
在C中,{a} M,故C错误;
在D中,a∈M,故D错误.
4.设集合A={x|x2+x-1=0},B={x|x2-x+1=0},则集合A,B之间的关系是________.
【解析】由已知A=
1
新苏教版高中数学必修第一册第1章1.1第1课时集合的概念【授课课件】
第1课时 集合的概念
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
[跟进训练] 1.判断下列每组对象能否构成一个集合. (1)不超过 20 的非负数; (2)方程 x2-9=0 在实数范围内的解; (3)某校 2021 年在校的所有高个子同学; (4) 3的近似值的全体.
第1课时 集合的概念
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
由集合中元素的特性求解字母取值(范围)的步骤
第1课时 集合的概念
[跟进训练]
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
第1课时 集合的概念
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
[解] (1)对任意一个实数能判断出是不是“不超过 20 的非负 数”,所以能构成集合.
(2)能构成集合.
(3)“高个子”无明确的标准,对于某个人算不算高个子无法客 观地判断,因此不能构成一个集合.
第1课时 集合的概念
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
类型 3 集合中元素的特性及应用 【例 3】 已知集合 A 中含有两个元素 1 和 a2,若 a∈A,求实 数 a 的值.
第1课时 集合的概念
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
苏教版高中数学必修第一册4.2.1对数的概念【授课课件】
x=-5.
4.2.1 对数的概念
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
利用指数与对数的互化求变量值的策略 1已知底数与指数,用指数式求幂. 2已知指数与幂,用指数式求底数. 3已知底数与幂,利用对数式表示指数.
4.2.1 对数的概念
1
2
类型 3 利用对数性质及对数恒等式求值 【例 3】 求下列各式中 x 的值: (1)log2(log5x)=0; (2)log3(lg x)=1; (3)x=71-log75.
4.2.1 对数的概念
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
1.若方程 log2x=0,则 x 等于多少?若 log3x=1,则 x 等于多少? [提示] 若 log2x=0,则 x=1,若 log3x=1,则 x=3. 2.alogaN=N(a>0 且 a≠1,N>0)是怎样推出的? [提示] 因为 ax=N,所以 x=logaN,代入 ax=N 得 alogaN=N.
4.2.1 对数的概念
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
1.利用对数性质求解的 2 类问题的解法 (1)求多重对数式的值解题方法是由内到外,如求 loga(logbc)的 值,先求 logbc 的值,再求 loga(logbc)的值. (2)已知多重对数式的值,求变量值,应从外到内求,逐步脱去 “log”后再求解.
第4章 指数与对数
4.2 对数 4.2.1 对数的概念
新教材高中数学第1章集合3交集并集课件苏教版必修第一册
∴A={2,5,13,17,23},B={2,11,17,19,29}. 易错警示 集合的交、并、补集的混合运算要注意两点:①各个集合的正确化简;②集合的 运算顺序.求解方法有分步求解法和数形结合法.
2 | 利用集合的运算性质求参数的值或取值范围
由集合的运算性质求参数的值或取值范围的思路 1.将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则 可用观察法得到不同集合之间的关系;若是与不等式有关的集合,则可利用数轴得到 不同集合之间的关系. 2.将集合之间的关系转化为方程(组)或不等式(组)是否有解,或解集满足某些条件的 形式. 3.利用解方程(组)或解不等式(组)来确定参数的值或取值范围时,需注意以下两点: (1)由集合间的运算得到的新集合一定要满足集合中元素的互异性.在求解含参数的 问题时,要注意这一隐含条件. (2)对于涉及A∪B=A或A∩B=B的问题,可利用集合的运算性质,转化为相关集合之间 的关系求解,注意空集的特殊性.
解题模板 在探求解决新定义问题的方法时,可以寻找相近知识点,研究它们的不同点和相同点, 通过类比的方法解题.
解析 易知M={y|y=x2,x∈R}={y|y≥0}={x|x≥0}. ∵N={x|-3≤x≤3}, ∴M∩N=N∩M={x|0≤x≤3}, ∴M-N=∁M(M∩N)={x|x>3},N-M=∁N(N∩M)={x|-3≤x<0}. 又∵M△N=(M-N)∪(N-M), ∴M△N={x|-3≤x<0或x>3}.
符号语言 A∪B=⑥ {x|x∈A,或x∈B}
图形语言
运算性质 A∪B=B∪A,A∪A=A,A∪⌀=A=⌀∪A,A⊆(A∪B),B⊆(A∪B),A⊆B⇔A∪B=B
2.两个常用结论 (1)∁U(AB).
2 | 利用集合的运算性质求参数的值或取值范围
由集合的运算性质求参数的值或取值范围的思路 1.将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则 可用观察法得到不同集合之间的关系;若是与不等式有关的集合,则可利用数轴得到 不同集合之间的关系. 2.将集合之间的关系转化为方程(组)或不等式(组)是否有解,或解集满足某些条件的 形式. 3.利用解方程(组)或解不等式(组)来确定参数的值或取值范围时,需注意以下两点: (1)由集合间的运算得到的新集合一定要满足集合中元素的互异性.在求解含参数的 问题时,要注意这一隐含条件. (2)对于涉及A∪B=A或A∩B=B的问题,可利用集合的运算性质,转化为相关集合之间 的关系求解,注意空集的特殊性.
解题模板 在探求解决新定义问题的方法时,可以寻找相近知识点,研究它们的不同点和相同点, 通过类比的方法解题.
解析 易知M={y|y=x2,x∈R}={y|y≥0}={x|x≥0}. ∵N={x|-3≤x≤3}, ∴M∩N=N∩M={x|0≤x≤3}, ∴M-N=∁M(M∩N)={x|x>3},N-M=∁N(N∩M)={x|-3≤x<0}. 又∵M△N=(M-N)∪(N-M), ∴M△N={x|-3≤x<0或x>3}.
符号语言 A∪B=⑥ {x|x∈A,或x∈B}
图形语言
运算性质 A∪B=B∪A,A∪A=A,A∪⌀=A=⌀∪A,A⊆(A∪B),B⊆(A∪B),A⊆B⇔A∪B=B
2.两个常用结论 (1)∁U(AB).
苏教版高中数学必修第一册第1章1.2第2课时全集、补集【授课课件】
则 a 的值是( )
A.4
B.8
C.-4 或 8
D.4 或 8
D A=∁U(∁UA)={1,2,9}={1,|a-6|,9}, ∴|a-6|=2,解得 a=4 或 8,故选 D.
第2课时 全集、补集
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
类型 2 补集与子集的综合应用 【例 2】 已知全集 U=R,集合 A={x|-2≤x≤5},B={x|a+ 1≤x≤2a-1}且 A⊆∁UB,求实数 a 的取值范围.
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
1.思考辨析(正确的打“√”,错误的打“×”)
(1)全集一定含有任何元素.
()
(2)集合∁RA=∁QA.
()
(3)一个集合的补集一定含有元素.
()
(4)研究 A 在 S 中的补集时,A 可以不是 S 的子集. ( )
{x|x<-3 或 x=5} 将集合 U 和集合 A 分别表示在数轴上,如图 所示.
由补集定义可得∁UA={x|x<-3 或 x=5}.
第2课时 全集、补集
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
常见补集的求解方法 1列举求解.适用于全集 U 和集合 A 可以列举的简单集合. 2画数轴求解.适用于全集 U 和集合 A 是不等式的解集. 3利用 Venn 图求解.
第2课时 全集、补集
1
2
3
4