高一下数学期末考试必修三必修五含答案
高一数学必修三必修五综合测试(期末)
高一数学必修三必修五综合(二)一、选择题1.数列{a n }中,a 1=3,a 2=6,a n+2=a n+1﹣a n ,那么a 5=〔 〕 A .6B .﹣6C .3D .﹣32.在等差数列{a n }中,假设a 2=2,a 5=5,那么数列{a n }的通项公式为〔 〕 A .a n =n B .a n =2nC .a n =n ﹣1D .a n =2n ﹣13.不等式x 〔1﹣3x 〕>0的解集是〔 〕 A .〔﹣∞,〕 B .〔﹣∞,0〕∪〔0,〕C .〔,+∞〕D .〔0,〕4.x ,y 满足约束条件,那么z=2x+y 的最大值为〔 〕A .3B .﹣3C .1D .5.在△ABC 中,角A 、B 、C 所对的对边长分别为a 、b 、c ,sinA 、sinB 、sinC 成等比数列,且c=2a ,那么cosB 的值为〔 〕 A .B .C .D .6.a <0,﹣1<b <0,那么〔 〕 A .a >ab >ab 2B .ab 2>ab >aC .ab >a >ab 2D .ab >ab 2>a7.等差数列中,a 1+a 2+a 3=﹣24,a 18+a 19+a 20=78,那么此数列前20项和等于〔 〕 A .160 B .180 C .200 D .2208.等比数列{a n }的各项都是正数,且3a 1, a 3,2a 2成等差数列,那么=〔 〕A .1B .3C .6D .99.假设x ,y ∈R +,且2x+8y ﹣xy=0,那么x+y 的最小值为〔 〕 A .12 B .14 C .16 D .1810.等比数列{a n }的公比为正数,且a 3a 9=2a 52,a 2=2,那么a 1=〔 〕 A .B .C .D .211.数列{a n } 的前n 项和S n =3n ﹣2,n ∈N *,那么〔 〕 A .{a n }是递增的等比数列B .{a n }是递增数列,但不是等比数列 C .{a n }是递减的等比数列D .{a n }不是等比数列,也不单调 12.不等式x 2+2x <对任意a ,b ∈〔0,+∞〕恒成立,那么实数x 的取值围是〔 〕A 〔﹣2,0〕B 〔﹣∞,﹣2〕∪〔0,+∞〕C 〔﹣4,2〕D 〔﹣∞,﹣4〕∪〔2,+∞〕 二、填空题13.一个工厂有假设干车间,今采用分层抽样方法从全厂某天生产的1024件产品中抽取一个容量为64的样本进展质量检查.假设某车间这一天生产128件产品,那么从该车间抽取的产品件数为. 14.S n 为等差数列a n 的前n 项和,S 2=S 6,a 4=1那么a 5=. 15.设a >0,b >0,假设a+b=4,那么的最小值为.16.如图,在一个半径为3,圆心角为3的扇形画一个切圆, 假设向扇形任投一点,那么该点落在该切圆的概率是 三、解答题17.三角形ABC 中,BC=7,AB=3,且.〔Ⅰ〕求AC ;〔Ⅱ〕求∠A.18.数列{a n }的前n 项和为S n ,a 1=1,a n+1=S n 〔n ∈N *〕. 〔1〕求a 2,a 3,a 4的值;〔2〕求数列{a n }的通项公式.19.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图〔如下列图〕.〔1〕根据频率分布直方图完成以上表格;〔2〕用组中值估计这10 000人月收入的平均值;〔3〕为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,那么在[2000,3500〕〔元〕月收入段应抽出多少人?20.某种产品有一等品、二等品、次品三个等级,其中一等品和二等品都是正品.现有6件该产品,从中随机抽取2件来进展检测.〔1〕假设6件产品中有一等品3件、二等品2件、次品1件.①抽检的2件产品全是一等品的概率是多少?②抽检的2件产品中恰有1件是二等品的概率是多少?〔2〕如果抽检的2件产品中至多有1件是次品的概率不小于45,那么6件产品中次品最多有多少件?一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.数列{a n }中,a 1=3,a 2=6,a n+2=a n+1﹣a n ,那么a 5=〔 〕 A .6B .﹣6C .3D .﹣3【考点】数列递推式.【专题】方程思想;转化思想;等差数列与等比数列. 【分析】利用递推关系即可得出.【解答】解:∵数列{a n }中,a 1=3,a 2=6,a n+2=a n+1﹣a n , ∴a 3=a 2﹣a 1=3,同理可得:a 4=3﹣6=﹣3,a 5=﹣3﹣3=﹣6. 应选:B .【点评】此题考察了递推关系,考察了推理能力与计算能力,属于中档题.2.在等差数列{a n }中,假设a 2=2,a 5=5,那么数列{a n }的通项公式为〔 〕 A .a n =n B .a n =2nC .a n =n ﹣1D .a n =2n ﹣1【考点】等差数列的通项公式. 【专题】等差数列与等比数列.【分析】设出等差数列的公差,由a 2=2,a 5=5列式求得公差,代入a n =a m +〔n ﹣m 〕d 得答案. 【解答】解:在等差数列{a n }中,设公差为d , 那么a 5=a 2+3d , ∵a 2=2,a 5=5,∴5=2+3d,解得:d=1.∴a n =a 2+〔n ﹣2〕d=2+1×〔n ﹣2〕=n .应选:A .【点评】此题考察了等差数列的通项公式,在等差数列中,假设给出任意一项a m ,那么a n =a m +〔n ﹣m 〕d ,是根底题.3.不等式x 〔1﹣3x 〕>0的解集是〔 〕 A .〔﹣∞,〕 B .〔﹣∞,0〕∪〔0,〕 C .〔,+∞〕 D .〔0,〕【考点】一元二次不等式的解法.【专题】转化思想;转化法;不等式的解法及应用.【分析】根据不等式x 〔1﹣3x 〕>0对应的方程以及二次函数的关系,即可写出该不等式的解集. 【解答】解:不等式x 〔1﹣3x 〕>0对应的方程x 〔1﹣3x 〕=0的两个实数根为0和, 且对应二次函数y=x 〔1﹣3x 〕的图象开口向下, 所以该不等式的解集为〔0,〕. 应选:D .【点评】此题主要考察二次函数的性质,函数的恒成立问题,属于根底题.4.x ,y 满足约束条件,那么z=2x+y 的最大值为〔 〕A .3B .﹣3C .1D .【考点】简单线性规划. 【专题】计算题.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y 表示直线在y 轴上的截距,只需求出可行域直线在y 轴上的截距最大值即可. 【解答】解:作图 易知可行域为一个三角形,当直线z=2x+y 过点A 〔2,﹣1〕时,z 最大是3, 应选A .【点评】本小题是考察线性规划问题,此题主要考察了简单的线性规划,以及利用几何意义求最值,属于根底题.5.在△ABC中,角A、B、C所对的对边长分别为a、b、c,sinA、sinB、sinC成等比数列,且c=2a,那么cosB的值为〔〕A.B.C.D.【考点】正弦定理的应用;余弦定理的应用.【专题】解三角形.【分析】利用等比数列的性质,结合正弦定理可得b2=ac,再利用c=2a,可得,利用cosB=,可得结论.【解答】解:∵sinA、sinB、sinC成等比数列,∴sin2B=sinAsinC,∴由正弦定理可得b2=ac,∵c=2a,∴,∴cosB===.应选B.【点评】此题考察正弦定理、余弦定理的运用,考察等比数列的性质,考察学生的计算能力,正确运用正弦定理、余弦定理是关键.6.a <0,﹣1<b <0,那么〔 〕 A .a >ab >ab 2B .ab 2>ab >aC .ab >a >ab 2D .ab >ab 2>a【考点】不等关系与不等式. 【专题】不等式的解法及应用.【分析】根据题意,先确定最大的数ab >0,再确定最小的数a ,从而得出正确的结论. 【解答】解:∵a<0,﹣1<b <0时, ∴ab>0,1>b 2>0, ∴0>ab 2>a , ∴ab>ab 2>a . 应选:D .【点评】此题考察了不等式的性质的应用问题,解题时应根据题意,确定每个数值的大小,也可以用特殊值法进展判断,是根底题.7.等差数列中,a 1+a 2+a 3=﹣24,a 18+a 19+a 20=78,那么此数列前20项和等于〔 〕 A .160 B .180 C .200 D .220 【考点】等差数列的性质. 【专题】计算题.【分析】先根据a 1+a 2+a 3=﹣24,a 18+a 19+a 20=78可得到a 1+a 20=18,再由等差数列的前20项和的式子可得到答案.【解答】解:∵a 1+a 2+a 3=﹣24,a 18+a 19+a 20=78 ∴a 1+a 20+a 2+a 19+a 3+a 18=54=3〔a 1+a 20〕 ∴a 1+a 20=18 ∴=180应选B【点评】此题主要考察等差数列的前n 项和公式的应用.考察等差数列的性质.8.等比数列{a n }的各项都是正数,且3a 1, a 3,2a 2成等差数列,那么=〔 〕A .1B .3C .6D .9【考点】等差数列与等比数列的综合. 【专题】等差数列与等比数列.【分析】设各项都是正数的等比数列{a n }的公比为q ,〔q >0〕,由题意可得关于q 的式子,解之可得q ,而所求的式子等于q 2,计算可得.【解答】解:设各项都是正数的等比数列{a n }的公比为q ,〔q >0〕 由题意可得2×a3=3a 1+2a 2,即q 2﹣2q ﹣3=0, 解得q=﹣1〔舍去〕,或q=3, 故==q 2=9.应选:D .【点评】此题考察等差数列和等比数列的通项公式,求出公比是解决问题的关键,属根底题.9.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,那么等于〔 〕A .11B .5C .﹣8D .﹣11【考点】等比数列的性质. 【专题】等差数列与等比数列.【分析】由题意可得数列的公比q ,代入求和公式化简可得. 【解答】解:设等比数列{a n }的公比为q ,〔q≠0〕 由题意可得8a 2+a 5=8a 1q+a 1q 4=0,解得q=﹣2,故====﹣11应选D【点评】此题考察等比数列的性质,涉及等比数列的求和公式,属中档题.10.等比数列{a n }的公比为正数,且a 3a 9=2a 52,a 2=2,那么a 1=〔 〕 A .B .C .D .2【考点】等比数列的通项公式. 【专题】计算题.【分析】设公比为q >0,由题意可得=2,a 1q=2,由此求得a 1的值.【解答】解:设公比为q >0,由题意可得=2,a 1q=2,解得 a 1==q ,应选C .【点评】此题主要考察等比数列的通项公式的应用,属于根底题.11.数列{a n } 的前n 项和S n =3n ﹣2,n ∈N *,那么〔 〕 A .{a n }是递增的等比数列B .{a n }是递增数列,但不是等比数列C .{a n }是递减的等比数列D .{a n }不是等比数列,也不单调【考点】等比数列的通项公式;数列的函数特性. 【专题】等差数列与等比数列.【分析】由数列的前n 项和,分别求出a 1及n≥2时的通项公式,经历证数列从第二项起构成首项是6,公比为3的等比数列,所以得到结论数列{a n }是递增数列,但不是等比数列. 【解答】解:由S n =3n ﹣2,当n=1时,.当n≥2时, =2•3n ﹣1.n=1时上式不成立.所以.因为a 1=1,a 2=6, 当n≥2时,.所以数列{a n } 从第二项起构成首项是6,公比为3的等比数列. 综上分析,数列{a n }是递增数列,但不是等比数列. 应选B .【点评】此题考察了等比数列的通项公式,考察了数列的函数特性,对于给出了前n 项和求通项的问题,一定要讨论n=1和n≥2两种情形,此题是根底题.12.不等式x 2+2x <对任意a ,b ∈〔0,+∞〕恒成立,那么实数x 的取值围是〔 〕A .〔﹣2,0〕B .〔﹣∞,﹣2〕∪〔0,+∞〕C .〔﹣4,2〕D .〔﹣∞,﹣4〕∪〔2,+∞〕【考点】一元二次不等式的解法. 【专题】计算题;不等式的解法及应用. 【分析】由,只需x 2+2x 小于的最小值即可,可利用根本不等式求出最小值.【解答】解:对任意a ,b ∈〔0,+∞〕,,所以只需x 2+2x <8即〔x ﹣2〕〔x+4〕<0,解得x ∈〔﹣4,2〕 应选C【点评】此题考察不等式恒成立问题,往往转化为函数最值问题.二、填空题:〔本大题共4小题,每题5分,共20分〕 13.如图,从高为米的气球〔A 〕上测量铁桥〔BC 〕的长,如果测得桥头B 的俯角是60°,桥头C 的俯角是30°,那么桥BC 长为 400 米.【考点】解三角形.【专题】应用题;方程思想;综合法;解三角形.【分析】由条件求出∠DAB 的大小,结合AD=200,通过解直角三角形求出AB 的长度,在等腰三角形ABC 中,由腰长相等得BC 的长度.【解答】解:如图,由∠EAB=60°,得∠DAB=30°,在Rt△ADB 中,∵AD=200,∠DAB=30°,∴AB=400.又∠EAC=30°,∴∠ACB=30°.∠EAB=60°,∠EAC=30°,∴∠BAC=30°.在△ABC 中,∵∠ACB=∠BAC,∴BC=AB=400.故答案为:400.【点评】此题考察了解三角形的实际应用,关键是把实际问题转化为数学问题,是中档题.14.S n 为等差数列a n 的前n 项和,S 2=S 6,a 4=1那么a 5= ﹣1 .【考点】等差数列的性质.【专题】计算题;压轴题.【分析】由S 2=S 6,a 4=1,先求出首项和公差,然后再求a 5的值.【解答】解:由题设知,∴a 1=7,d=﹣2,a=7+4×〔﹣2〕=﹣1.5故答案为:﹣1.【点评】此题考察等差数列的性质和应用,解题时要注意公式的灵活运用.15.设a>0,b>0,假设a+b=4,那么的最小值为.【考点】根本不等式.【专题】计算题;转化思想;综合法;不等式.【分析】由得=,由此利用均值定理能求出的最小值.【解答】解:∵a>0,b>0,a+b=4,∴==++≥+2=.当且仅当时取等号,∴的最小值为.故答案为:.【点评】此题考察代数式和的最小值的求法,是根底题,解题时要认真审题,注意均值定理的合理运用.16.在ABC中,角A,B,C所对的边分别为a,b,c,a=1,且〔1﹣b〕〔sinA+sinB〕=〔c﹣b〕sinC,那么△ABC周长的取值围为〔2,3].【考点】余弦定理;正弦定理.【专题】方程思想;转化思想;解三角形.【分析】a=1,〔1﹣b〕〔sinA+sinB〕=〔c﹣b〕sinC,可得〔a﹣b〕〔sinA+sinB〕=〔c﹣b〕sinC,由正弦定理可得:〔a﹣b〕〔a+b〕=〔c﹣b〕c,利用余弦定理可得A,再利用正弦定理即可得出.【解答】解:在ABC中,∵a=1,〔1﹣b〕〔sinA+sinB〕=〔c﹣b〕sinC,∴〔a﹣b〕〔sinA+sinB〕=〔c﹣b〕sinC,由正弦定理可得:〔a﹣b〕〔a+b〕=〔c﹣b〕c,化为:b2+c2﹣a2=bc.∴cosA==,A∈〔0,π〕,∴A=.由正弦定理可得:==,∴b=sinB,c=sinC,∴△ABC周长=1+b+c=1+sinB+sinC=1+=1+2,∵B∈,∴∈,∴∴△ABC周长的取值围是〔2,3].故答案为:〔2,3].【点评】此题考察了正弦定理余弦定理、和差化积、三角函数求值,考察了推理能力与计算能力,属于中档题.三、解答题17.三角形ABC中,BC=7,AB=3,且.〔Ⅰ〕求AC;〔Ⅱ〕求∠A.【考点】余弦定理;正弦定理.【专题】计算题.【分析】〔Ⅰ〕由正弦定理,根据正弦值之比得到对应的边之比,把AB的值代入比例式即可求出AC的值;〔Ⅱ〕利用余弦定理表示出cosA,把BC,AB及求出的AC的值代入求出cosA的值,由A为三角形的角,利用特殊角的三角函数值即可求出A的度数.【解答】解:〔Ⅰ〕由AB=3,根据正弦定理得:〔Ⅱ〕由余弦定理得:,所以∠A=120°.【点评】此题考察了正弦定理、余弦定理的应用,利用正弦、余弦定理可以很好得解决了三角形的边角关系,熟练掌握定理是解此题的关键.18.数列{a n }的前n 项和为S n ,a 1=1,a n+1=S n 〔n ∈N *〕.〔1〕求a 2,a 3,a 4的值;〔2〕求数列{a n }的通项公式.【考点】数列递推式;等比关系确实定.【专题】点列、递归数列与数学归纳法.【分析】〔1〕根据a n+1=S n ,分别令n=1,2,3即可求得a 2,a 3,a 4的值;〔2〕由a n+1=S n ,得,两式相减可得数列递推式,由递推式可判断{a n }从第2项起,以后各项成等比数列,从而得通项公式;【解答】解:〔1〕∵a n+1=S n , ∴==, ∴=, ∴==; 〔2〕∵a n+1=S n ,∴, 两式相减得:=, ∴,∴数列{a n }从第2项起,以后各项成等比数列,, 故数列{a n }的通项公式为.【点评】此题考察由数列递推公式求数列通项公式,解决〔2〕问关键是明确关系式:.19.{a n },是递增的等差数列,a 2,a 4是方程x 2﹣6x+8=0的根.〔Ⅰ〕求{a n }的通项公式;〔Ⅱ〕求数列{}的前n 项和.【考点】数列的求和.【专题】等差数列与等比数列.【分析】〔Ⅰ〕由题意列式求出a 2,a 4,代入等差数列的通项公式求得公差,再代入等差数列的通项公式得答案;〔Ⅱ〕把等差数列的通项公式代入数列{},然后由错位相减法求其和.【解答】解:〔Ⅰ〕在递增等差数列{a n }中,∵a 2,a 4是方程x 2﹣6x+8=0的根,那么 ,解得. ∴d=.∴a n =a 2+〔n ﹣2〕×d=2+n﹣1=n+1; 〔Ⅱ〕∵=, ∴{}的前n 项和:①,②, ①﹣②得: =1+.∴.【点评】此题考察了等差数列的通项公式,考察了错位相减法求数列的和,是中档题.20.在△ABC中,角A,B,C所对边分别为a,b,c,且=.〔1〕求角B的大小;〔2〕如果b=2,求△ABC面积的最大值.【考点】余弦定理;正弦定理.【专题】三角函数的求值;解三角形.【分析】〔1〕等式利用正弦定理化简,求出tanB的值,即可确定出B的度数;〔2〕利用余弦定理表示出cosB,将b与cosB的值代入,整理得到关系式,利用根本不等式化简求出ac的最大值,再由sinB的值,利用三角形面积公式即可求出三角形ABC面积的最大值.【解答】解:〔1〕等式=,由正弦定理得=,即tanB=,∴B=;〔2〕∵b=2,cosB=,∴cosB==,∴a2+c2=ac+4,又∴a2+c2≥2ac,∴ac≤4,当且仅当a=c取等号,∴S=acsinB≤,=.那么△ABC为正三角形时,Smax【点评】此题考察了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解此题的关键.21.小于年初支出50万元购置一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,假设该车在第x年年底出售,其销售收入为25﹣x万元〔国家规定大货车的报废年限为10年〕.〔1〕大货车运输到第几年年底,该车运输累计收入超过总支出?〔2〕在第几年年底将大货车出售,能使小获得的年平均利润最大?〔利润=累计收入+销售收入﹣总支出〕【考点】根据实际问题选择函数类型;根本不等式.【专题】综合题;函数的性质及应用.【分析】〔1〕求出第x 年年底,该车运输累计收入与总支出的差,令其大于0,即可得到结论; 〔2〕利用利润=累计收入+销售收入﹣总支出,可得平均利润,利用根本不等式,可得结论.【解答】解:〔1〕设大货车运输到第x 年年底,该车运输累计收入与总支出的差为y 万元, 那么y=25x ﹣[6x+x 〔x ﹣1〕]﹣50=﹣x 2+20x ﹣50〔0<x≤10,x ∈N 〕由﹣x 2+20x ﹣50>0,可得10﹣5<x <10+5 ∵2<10﹣5<3,故从第3年,该车运输累计收入超过总支出;〔2〕∵利润=累计收入+销售收入﹣总支出, ∴二手车出售后,小的年平均利润为=19﹣〔x+〕≤19﹣10=9 当且仅当x=5时,等号成立∴小应当在第5年将大货车出售,能使小获得的年平均利润最大.【点评】此题考察函数模型的构建,考察根本不等式的运用,考察学生的计算能力,属于中档题.22.在递增等差数列{a n }中,a 1=2,a 3是a 1和a 9的等比中项.〔Ⅰ〕求数列{a n }的通项公式;〔Ⅱ〕假设b n =,S n 为数列{b n }的前n 项和,是否存在实数m ,使得S n <m 对于任意的n ∈N +恒成立?假设存在,请数m 的取值围,假设不存在,试说明理由.【考点】数列递推式;等差数列的通项公式.【专题】方程思想;转化思想;等差数列与等比数列;不等式的解法及应用.【分析】〔I 〕利用等差数列与等比数列的通项公式即可得出. 〔Ⅱ〕存在.由于b n ==,利用“裂项求和〞方法即可得出.【解答】解:〔Ⅰ〕由{a n }为等差数列,设公差为d ,那么a n =a 1+〔n ﹣1〕d ,∵a 3是a 1和a 9的等比中项, ∴=a 1•a 9,即〔2+2d 〕2=2〔2+8d 〕,解得d=0〔舍〕或d=2,∴a n =2+2〔n ﹣1〕=2n . 〔Ⅱ〕存在.b n ==,∴数列{b n }的前n 项和S n =+…+=, ∴存在实数m ,使得S n <m 对于任意的n ∈N +恒成立.【点评】此题考察了等差数列与等比数列的通项公式、“裂项求和〞、“放缩法〞,考察了推理能力与计算能力,属于中档题.。
高一数学必修3、5综合试卷
高一下学期数学必修二、五综合复习试题一、选择题:(本大题共12小题,每小题5分,共60分.) 1.下列命题正确的是( )A. 经过三点确定一个平面B. 经过一条直线和一个点确定一个平面C. 三条平行直线必共面D. 两两相交且不共点的三条直线确定一个平面 2.已知A(2,4)与B(3,3)关于直线l 对称,则直线l 的方程为(A) x +y =0 (B) x -y =0 (C) x +y -6=0 (D) x -y +1=0 3.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A. 20πB. 24πC. 28πD. 32π4.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从A 到B 的路径中,最短路径的长度为A. B. C. D. 25.如图,在正方体1111ABCD A B C D -中, E 为线段11A C 的中点,则异面直线DE 与1B C 所成角的大小为( )A.3π B. 4π C. 6πD. 12π6.若直线l 过点()0,A a ,斜率为1,圆224x y +=上恰有1个点到l 的距离为1,则a 的值为( )A. 32B. 32±C. 2±D. 2±7.在△ABC 中,45,2==A a ,若此三角形有两解,则b 的范围为( ) A .222<<b B .b > 2 C .b<2 D .221<<b8.在△ABC 中,若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形9.设,x y 满足约束条件2330233030x y x y y +-≤⎧⎪++≥⎨⎪+≥⎩,则2z x y =+的最小值是A. B. C. D.10.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是A. B.C. D.11.甲船在岛A 的正南方B 处,10AB =千米,甲船以每小时千米的速度向正北航行,同时乙船自出发以每小时千米的速度向北偏东的方向驶去,当甲,乙两船相距最近时,它们所航行的时间是( )A. 分钟B. 分钟C. 分钟D. 分钟 12.对于使22x x M -+≤成立的所有常数M 中,我们把M 的最小值1叫做22x x -+的上确界,若,,1a b R a b +∈+=且,则122a b--的上确界为( ) A .92 B .92- C .41D .4-二、填空题(本大题共4小题,每小题5分,共20分.)13.如图,正方形''''A B C D 的边长为(0)acm a >,它是一个水平放置的平面图形的直观图,则它的原图形ABCD 的周长是__________2cm .14.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________. 15.已知直线(1)20k x y +++=恒过定点C ,且以C 为圆心,5为半径的圆与直线3410x y ++=17.已知圆C 的方程:224x y +=和直线l 的方程:34120x y ++=,点P 是圆C 上动点,直线l 与两坐标轴交于A 、B 两点.(1)求与圆C 相切且垂直于直线l 的直线方程; (2)求ABC ∆面积的取值范围。
2021-2022高中数学必修三期末试题含答案
一、选择题1.甲、乙两人约定某天晚上6:00~7:00之间在某处会面,并约定甲早到应等乙半小时,而乙早到无需等待即可离去,那么两人能会面的概率是()A.58B.13C.18D.382.抛掷一枚质地均匀的骰子,记事件A为“向上的点数是偶数”,事件B为“向上的点数不超过3”,则概率()P A B ()A.12B.13C.23D.563.如图的折线图是某公司2018年1月至12月份的收入与支出数据,若从6月至11月这6个月中任意选2个月的数据进行分析,则这2个月的利润(利润=收入﹣支出)都不高于40万的概率为()A.15B.25C.35D.454.赵爽是三国时期吴国的数学家,他创制了一幅“勾股圆方图”,也称“赵爽弦图”,如图,若在大正方形内随机取-点,这一点落在小正方形内的概率为15,则勾与股的比为()A.13B.12C3D25.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y的值为2,则输入的x的值为()A.74B.5627C.2D.164816.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b分别为10,14,则输出的a=()A.6 B.4 C.2 D.07.某程序框图如图所示,若运行该程序后输出S=()A.53B.74C.95D.1168.执行如图所示的程序框图,若输出的结果为5,则输入的实数a的范围是( )A .[)6,24B .[)24,120C .(),6-∞D .()5,249.2015年年岁史诗大剧《芈月传》风靡大江南北,影响力不亚于以前的《甄嬛传》.某记者调查了大量《芈月传》的观众,发现年龄段与爱看的比例存在较好的线性相关关系,年龄在[]10,14,[]15,19,[]20,24,[]25,29,[]30,34的爱看比例分别为10%,18%,20%,30%,%t .现用这5个年龄段的中间值x 代表年龄段,如12代表[]10,14,17代表[]15,19,根据前四个数据求得x 关于爱看比例y 的线性回归方程为( 4.68)%y kx =-,由此可推测t 的值为( )A .33B .35C .37D .3910.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( ) A .70和50B .70和67C .75和50D .75和6711.网上大型汽车销售某品牌A 型汽车,在2017年“双十一”期间,进行了降价促销,该型汽车的价格与月销量之间有如下关系 价格(万元) 25 23.5 22 20.5 销售量(辆)30333639已知A 型汽车的购买量y 与价格x 符合如下线性回归方程:8ˆ0ˆybx =+,若A 型汽车价格降到19万元,预测月销量大约是( ) A .39B .42C .45D .5012.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x 人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x 为( ) A .64B .96C .144D .160二、填空题13.北京市某银行营业点在银行大厅悬挂着不同营业时间段服务窗口个数的提示牌,如图所示. 设某人到达银行的时间是随机的,记其到达银行时服务窗口的个数为X,则E X=______________.()14.三位同学参加跳高、跳远、铅球项目的比赛.若每人只选择一个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).15.在[0,1]上随机取两个实数,a b,则,a b满足不等式221+≤的概率为________.a b16.执行如图所示的程序框图,输出的值为__________.17.执行如图所示的程序框图,输出S的值为___________.18.已知流程图如图,则输出的i=________.19.用系统抽样方法从400名学生中抽取容量为20的样本,将400名学生随机地编号为1~400,按编号顺序平均分为20个组.若第1组中用抽签的方法确定抽出的号码为11,则第17组抽取的号码为________.20.《数术记遗》相传是汉末徐岳(约公元2世纪)所著.该书主要记述了:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算、计数共14种计算方法.某研究学习小组共6人,他们搜集整理该14种算法的相关资料所花费的时间(单位:min)分别为:93,93,88,81,94,91则这组时间数据的标准差为___________.三、解答题21.一个盒子里装有m个均匀的红球和n个均匀的白球,每个球被取到的概率相等,已知从盒子里一次随机取出1个球,取到的球是红球的概率为13,从盒子里一次随机取出2个球,取到的球至少有1个是白球的概率为10 11.(1)求m ,n 的值;(2)若一次从盒子里随机取出3个球,求取到的白球个数不小于红球个数的概率. 22.某校抽取了100名学生期中考试的英语和数学成绩,已知成绩都不低于100分,其中英语成绩的频率分布直方图如图所示,成绩分组区间是[100,110),[110,120),[120,130),[130,140),[140,150].(1)根据频率分布直方图,估计这100名学生英语成绩的平均数和中位数(同一组数据用该区间的中点值作代表);(2)若这100名学生数学成绩分数段的人数y 的情况如下表所示: 分组区间 [100,110)[110,120)[120,130)[130,140)[140,150]y154040mn且区间内英语人数与数学人数之比为,现从数学成绩在的学生中随机选取2人,求选出的2人中恰好有1人数学成绩在[140,150]的概率.23.给出求满足不等式122010n ++⋅⋅⋅+>的最小正整数n 的一种算法,并作出程序框图. 24.某城市规定,在法定工作时间内每小时的工资是8元,在法定工作时间外每小时的加班工资为16元,某人在一周内工作60小时,其中加班20小时.编写程序,计算这个人这一周所得的工资.25.2020年1月末,新冠疫情爆发,经过全国人民的努力,2月中旬,疫情得到了初步的控制,湖北省以外地区的每日新增确诊人数开始减少,某同学针对这个问题,选取他在统计学中学到的一元线性回归模型,作了数学探究:他于2月17日统计了2月7日至16日这十天湖北省以外地区的每日新增确诊人数,表格如下: 日期 2.7 2.8 2.9 2.10 2.11 2.12 2.132.14 2.15 2.16 代号x 123 45 678910新增确558 509444381 377 312267 221166 115计算出: 5.5,335x y ==,()()1013955iii x x y y =--=-∑,()210182.5ii x x =-=∑(1)请你帮这位同学计算出y 与x 的线性回归方程(精确到0.1),然后根据这个方程估计湖北省以外地区新增确诊人数为零时的大概日期;附:回归方程y bx a =+中斜率和截距的最小二乘法估计公式分别为:()()()1012101iii ii x x y y b x x ==--=-∑∑,a y bx =-(2)实际上2月17日至2月22日的新增确诊人数如下:出评价.26.某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:(1)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y 关于x 的线性回归方程y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠? 附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()1122211nniii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意知本题是一个几何概型,试验包含的所有事件是{(,)|01x y x Ω=,01}y ,写出满足条件的事件是{(,)|01A x y x =,01y ,12y x -≤,}x y ≤,算出事件对应的集合表示的面积,根据几何概型概率公式得到结果. 【详解】解:由题意知本题是一个几何概型,设甲到的时间为x ,乙到的时间为y ,则试验包含的所有事件是{(,)|01x y x Ω=,01}y , 事件对应的集合表示的面积是1S =,满足条件的事件是{(,)|01A x y x =,01y ,12y x -≤,}x y ≤, 则()1,1B ,1,12C ⎛⎫⎪⎝⎭,10,2D ⎛⎫ ⎪⎝⎭, 则事件A 对应的集合表示的面积是111131122228⨯⨯-⨯⨯=,根据几何概型概率公式得到33818P ==; 所以甲、乙两人能见面的概率38P =. 故选:D .【点睛】本题主要考查几何概型的概率计算,要解决此问题,一般要通过把试验发生包含的事件所对应的区域求出,根据集合对应的图形面积,用面积的比值得到结果.2.D解析:D 【分析】满足向上的点数是偶数或向上的点数不超过3的点数有:1,2,3,4,6五种情况,得到答案. 【详解】满足向上的点数是偶数或向上的点数不超过3的点数有:1,2,3,4,6五种情况, 故5()6P AB =. 故选:D . 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.3.B解析:B 【分析】从7月至12月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)低于40万的有6月,9月,10月,由此即可得到所求. 【详解】如图的折线图是某公司2017年1月至12月份的收入与支出数据, 从6月至11月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)不高于40万的有6月,8月,9月,10月,∴这2个月的利润(利润=收入-支出)都不高于40万包含的基本事件个数246m C ==, ∴这2个月的利润(利润=收入-支出)都低于40万的概率为62155m P n ===, 故选:B 【点睛】本题主要考查了古典概型,考查了运算求解能力,属于中档题.4.B解析:B 【分析】分别求解出小正方形和大正方形的面积,可知面积比为15,从而构造方程可求得结果. 【详解】由图形可知,小正方形边长为b a -∴小正方形面积为:()2b a -,又大正方形面积为:2c()()2222222221115b a b a ab a b c a b a b b a--∴==-=-=+++,即:25a b b a ⎛⎫+= ⎪⎝⎭ 解得:12a b = 本题正确选项:B 【点睛】本题考查几何概型中的面积型的应用,关键是能够利用概率构造出关于所求量的方程.5.C解析:C 【分析】根据程序框图依次计算得到答案. 【详解】34y x =-,1i =;34916y y x =-=-,2i =;342752y y x =-=-,3i =;3481160y y x =-=-,4i =;34243484y y x =-=-,此时不满足3i ≤,跳出循环,输出结果为243484x -,由题意2434842y x =-=,得2x =. 故选:C 【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.6.C解析:C 【分析】由程序框图,先判断,后执行,直到求出符合题意的a . 【详解】由题意,可知10a =,14b =, 满足a b ,不满足a b >,则14104b =-=, 满足a b ,满足a b >,则1046a =-=, 满足a b ,满足a b >,则642a =-=, 满足a b ,不满足a b >,则422b =-=, 不满足a b ,输出2a =.故选C. 【点睛】本题考查了算法和程序框图,考查了学生对循环结构的理解和运用,属于基础题.7.D解析:D【分析】通过分析可知程序框图的功能为计算211n S n +=+,根据最终输出时n 的值,可知最终赋值S 时5n =,代入可求得结果. 【详解】根据程序框图可知其功能为计算:()111111111211111112231223111n S n n n n n n +=+++⋅⋅⋅+=+-+-+⋅⋅⋅+-=+-=⨯⨯++++初始值为1n =,当6n =时,输出S 可知最终赋值S 时5n = 25111516S ⨯+∴==+ 本题正确选项:D 【点睛】本题考查根据程序框图的功能计算输出结果,关键是能够明确判断出最终赋值时n 的取值.8.A解析:A 【解析】 【分析】模拟程序的运行,依次写出每次循环得到的x ,n 的值,由题意判断退出循环的条件即可得解. 【详解】模拟程序的运行,可得 n =1,x =1不满足条件x >a ,执行循环体,x =1,n =2 不满足条件x >a ,执行循环体,x =2,n =3 不满足条件x >a ,执行循环体,x =6,n =4 不满足条件x >a ,执行循环体,x =24,n =5此时,由题意应该满足条件x >a ,退出循环,输出n 的值为5. 可得:6≤a <24. 故选:A . 【点睛】本题考查的知识点是循环结构的程序框图的应用,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.9.B解析:B 【解析】前4个数据对应的19.5x = ,0.195y = (把百分数转化为小数),而0( 4.68)0y kx ∧=-=0.0468bx -,0.19519.50.0468b ∧∴=⨯-,0.0124b ∧∴=,0(1.24 4.68)0y x ∧∴=- ,当3034322x +==, 1.2432 4.6835t =⨯-=.10.B解析:B 【解析】 【分析】根据平均数、方差的概念表示出更正前的平均数、方差和更正后的平均数、方差,比较其异同,然后整体代入即可求解. 【详解】设更正前甲,乙,…的成绩依次为a 1,a 2,…,a 50, 则a 1+a 2+…+a 50=50×70,即60+90+a 3+…+a 50=50×70, (a 1﹣70)2+(a 2﹣70)2+…+(a 50﹣70)2=50×75, 即102+202+(a 3﹣70)2+…+(a 50﹣70)2=50×75. 更正后平均分为x =150×(80+70+a 3+…+a 50)=70; 方差为s 2=150×[(80﹣70)2+(70﹣70)2+(a 3﹣70)2+…+(a 50﹣70)2] =150×[100+(a 3﹣70)2+…+(a 50﹣70)2] =150×[100+50×75﹣102﹣202]=67. 故选B . 【点睛】本题考查平均数与方差的概念与应用问题,是基础题.11.B解析:B 【解析】分析:先求均值,确定ˆb,再求自变量为19对应函数值得结果. 详解:因为2523.52220.5330333639122,344442x y ++++++====,所以1348022,3224ˆb-==- 所以19(2)8042y =⨯-+=选B.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,a b,写出回归方程,回归直线方程恒过点(,)x y.12.D解析:D【解析】【分析】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81= 12816,因为共抽出30人,所以总人数为3016=480⨯人,即可求出20~30岁年龄段的人数.【详解】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81= 12816,因为共抽出30人,所以总人数为3016=480⨯人,所以,20~30岁龄段的人有480128192160--=,故选D.【点睛】本题主要考查了分层抽样,抽样,样本容量,属于中档题二、填空题13.【解析】【分析】列出随机变量的分布列求解【详解】由题意知某人到达银行的概率为几何概型所以:其到达银行时服务窗口的个数为的分布列为:5 4 3 4 2 则【点睛】本题考查几何概型及随解析:3.5625【解析】【分析】列出随机变量的分布列求解.【详解】由题意知某人到达银行的概率为几何概型,所以:其到达银行时服务窗口的个数为的分布列为:则()54342 3.56258161648E X=⨯+⨯+⨯+⨯+⨯=.【点睛】本题考查几何概型及随机变量的分布列.14.【详解】每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球三个同学共有3×3×3=27种有且仅有两人选择的项目完全相同有种其中表示3个同学中选2个同学选择的项目表示从三种组合中选一个表示剩下的解析:23【详解】每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球三个同学共有3×3×3=27种,有且仅有两人选择的项目完全相同有21133218C C C⨯⨯=种,其中23C表示3个同学中选2个同学选择的项目,13C表示从三种组合中选一个,12C表示剩下的一个同学有2中选择,故有且仅有两人选择的项目完全相同的概率是182273=.考点:古典概型及其概率计算公式.15.【解析】【分析】画出不等式组表示的平面区域结合图形利用几何概型的概率公式可求得对应的概率【详解】根据题意画出不等式组表示的平面区域如图所示在上随机取两个实数则满足不等式的概率为故答案为【点睛】本题主解析:4π【解析】【分析】画出不等式组2201011aba b≤≤⎧⎪≤≤⎨⎪+≤⎩表示的平面区域,结合图形利用几何概型的概率公式可求得对应的概率.【详解】根据题意,画出不等式组2201011aba b≤≤⎧⎪≤≤⎨⎪+≤⎩表示的平面区域,如图所示,在[]0,1上随机取两个实数,a b,则,a b满足不等式221a b+≤的概率为2211414Pππ⨯==,故答案为4π.【点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.16.【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件即可得到输出的的值【详解】输入第一次循环;第二次循环;第三次循环;第四次循环;第五次循环;第六次循环退出循环输出故答案为 解析:42【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的S 的值. 【详解】输入0,2,1S a i ===, 第一次循环,2,4,2S a i ===; 第二次循环,6,6,3S a i ===; 第三次循环,12,8,4S a i ===; 第四次循环,20,10,5S a i ===; 第五次循环,30,12,6S a i ===; 第六次循环,42,14,7S a i ===, 退出循环,输出42S =,故答案为42. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.17.48【解析】第1次运行成立第2次运行成立第3次运行成立第3次运行不成立故输出的值为48解析:48 【解析】第1次运行,1,2,122,4i S S i ===⨯=<成立 第2次运行,2,2,224,4i S S i ===⨯=<成立 第3次运行,3,4,3412,4i S S i ===⨯=<成立 第3次运行,4,12,41248,4i S S i ===⨯=<不成立, 故输出S 的值为4818.9【解析】根据流程图可得:否;否;否;否;是输出故答案为9解析:9 【解析】根据流程图可得:1,3S i ==,否,133S =⨯=,3i =;否339S =⨯=,5i =; 否9545S =⨯=,7i =;否457315S =⨯=,9i =;是输出9i =,故答案为9.19.331【分析】分段抽样由抽取时的分段间隔是20利用等差数列知识得解【详解】由抽取时的分段间隔是20即抽取20名同学其编号构成首项为11公差为20的等差数列第17组抽取的号码故答案为:331【点睛】本解析:331 【分析】分段抽样由抽取时的分段间隔是20,利用等差数列知识得解. 【详解】由抽取时的分段间隔是20.即抽取20名同学,其编号构成首项为11,公差为20的等差数列,第17组抽取的号码11(171)20331+-⨯= 故答案为:331 【点睛】本题考查系统抽样,属于基础题.20.【分析】由搜集算法所费的时间的数据求得数据的平均数再结合方差的计算公式即可求解【详解】由题意搜集算法所费的时间的数据可得数据的平均数为所以方差为所以标准差故答案为:【点睛】本题主要考查了数据的平均数解析:【分析】由搜集算法所费的时间的数据,求得数据的平均数,再结合方差的计算公式,即可求解. 【详解】由题意,搜集算法所费的时间的数据, 可得数据的平均数为939388819491906x +++++==,所以方差为2222222(9390)(9390)(8890)(8190)(9490)(9190)206s -+-+-+-+-+-==,所以标准差s ==故答案为: 【点睛】本题主要考查了数据的平均数和方差的计算,其中解答中熟记数据的平均数和方差的计算公式,准确计算是解答的关键,着重考查运算与求解能力.三、解答题21.(1)4m =,8n =(2)4255【分析】(1)设该盒子里有红球m 个,白球n 个,利用古典概型、对立事件概率计算公式列出方程组,能求出m ,n .(2) “一次从盒子里任取3个球,取到的白球个数不少于红球个数”分为“一次从盒子里任取3个球,取到的白球个数为3个”和“一次从盒子里任取3个球,取到的白球个数为2个,红球数为1个”,由此能求出取到的白球个数不小于红球个数的概率. 【详解】解:(1)设该盒子里有红球m 个,白球n 个.根据题意得221310111m m n m m n C C +⎧=⎪+⎪⎨⎪-=⎪⎩, 解方程组得4m =,8n =, 故红球有4个,白球有8个.(2)设“一次从盒子里任取3个球,取到的白球个数不少于红球个数”为事件A .设“一次从盒子里任取3个球,取到的白球个数为3个”为事件B ,则3831214()55C P B C ==设“一次从盒子里任取3个球,取到的白球个数为2个,红球个数为1个”为事件C ,则218431228()55C C P C C ==,故42()()()55P A P B P C =+=. 因此,从盒子里任取3个球,取到的白球个数不少于红球个数的概率为4255. 【点睛】本题考查实数值、概率的求法,考查古典概型、对立事件概率计算公式、互斥事件概率加法公式等基础知识,考查理解能力、运算求解能力,属于中档题.22.(1)这100名学生英语成绩的平均数和中位数分别为124,123.75(2)35【分析】(1)利用频率分布直方图求平均数,中位数的方法求解即可; (2)利用题设条件得出,m n 的值,再由古典概型的概率公式求解即可. 【详解】(1)这100名学生英语成绩的平均数为1050.051150.31250.41350.21450.05124⨯+⨯+⨯+⨯+⨯= 设这100名学生英语成绩的中位数为x直方图可知[100,110),[110,120),[120,130)对应的频率分别为0.05,0.3,0.40.050.30.40.750.5,0.5(0.30.05)0.15++=>-+= (120)0.040.15x ∴-⨯=,解得123.75x =则这100名学生英语成绩的中位数为123.75 (2)区间[130,140)内英语人数为1000.220⨯=人∴区间[130,140)内数学人数为120210⨯=人 2,100(1540402)3m n ∴==-+++=设数学成绩在[130,140)的人记为12,a a ,数学成绩在[140,150]的人记为123,,b b b 则从数学成绩在[130,150]的学生中随机选取2人的所有情况为()()()()12111213,,,,,,,a a a b a b a b ,()()()212223,,,,,a b a b a b ,()()()121323,,,,,b b b b b b ,共10种,其中选出的2人中恰好有1人数学成绩在[140,150]有6种 即选出的2人中恰好有1人数学成绩在[140,150]的概率为63105= 【点睛】本题主要考查了由频率分布直方图计算平均数,中位数以及古典概型概率的求解,属于中档题. 23.见解析 【分析】本题先要求12n ++⋅⋅⋅+,即每一项的变量都加一,设置两个变量:每一项的变量n ,且在循环中每次加一;每一项的和的变量T ,随着每一项的变量的增加而增加;再由题意得到退出循环的条件为2010T >. 【详解】 算法:1:1S n ←;2:0S T ←; 3:S T T n ←+;4S ;如果2010T >,输出n ,结束;否则1n n ←+,回到3S .程序框图如下:【点睛】本题考查了算法和框图的知识,考查学生分析解决问题的能力,对于循环结构的分析可以先写出循环的部分,再确定最终循环结束的条件,本题属于中等题。
(word完整版)高中数学必修三期末测试题(2021年整理)
(word完整版)高中数学必修三期末测试题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高中数学必修三期末测试题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高中数学必修三期末测试题(word版可编辑修改)的全部内容。
必修三期末测试题考试时间:90分钟 试卷满分:100分一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.1.如果输入n =3,那么执行右图中算法的结果是( ). A .输出3B .输出4C .输出5D .程序出错,输不出任何结果2.一个容量为1 000的样本分成若干组,已知某组的频率为0。
4,则该组的频数是( ). A .400B .40C .4D .6003.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率是( ). A .61B .41C .31D .214.用样本估计总体,下列说法正确的是( ). A .样本的结果就是总体的结果 B .样本容量越大,估计就越精确C .样本的标准差可以近似地反映总体的平均状态D .数据的方差越大,说明数据越稳定 5.把11化为二进制数为( ). A .1 011(2)B .11 011(2)C .10 110(2)D .0 110(2)6.已知x 可以在区间[-t ,4t ](t >0)上任意取值,则x ∈[-21t ,t ]的概率是( ).(word 完整版)高中数学必修三期末测试题(word 版可编辑修改)A .61 B .103C .31D .217.执行右图中的程序,如果输出的结果是4,那么输入的只可能是( )。
【人教版】高中数学必修三期末试卷带答案
一、选择题1.已知点(,)P x y 满足||||2x y +≤,则到坐标原点O 的距离1d ≤的点P 的概率为( ) A .16π B .8π C .4π D .2π 2.如图的折线图是某公司2018年1月至12月份的收入与支出数据,若从6月至11月这6个月中任意选2个月的数据进行分析,则这2个月的利润(利润=收入﹣支出)都不高于40万的概率为( )A .15B .25C .35D .453.素数指整数在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。
我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。
哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如1037=+。
在不超过15的素数中,随机选取两个不同的数,其和小于18的概率是( ) A .15B .1115C .35D .134.赵爽是三国时期吴国的数学家,他创制了一幅“勾股圆方图”,也称“赵爽弦图”,如图,若在大正方形内随机取-点,这一点落在小正方形内的概率为15,则勾与股的比为( )A .13B .12C 3D .225.若执行如图所示的程序框图,则输出S 的值是( )A.63 B.15 C.31 D.32 6.执行如图的程序框图,若输入1t=-,则输出t的值等于( )A.3 B.5 C.7 D.15 7.执行如图所示的程序框图,若输入的6n=,则输出S=A.514B.13C.2756D.3108.执行如图所示的程序框图,输出的结果为()A .201921-B .201922-C .202022-D .202021- 9.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+10.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( ) A .70和50B .70和67C .75和50D .75和6711.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,812.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位二、填空题13.在区间[2,4]-上随机地取一个实数x ,若实数x 满足||x m ≤的概率为23,则m =_______.14.现有编号为1,2,3,…,100的100把锁,利用中国剩余定理的原理设置开锁密码,规则为:将锁的编号依次除以3,5,7所得的三个余数作为该锁的开锁密码,这样,每把锁都有一个三位数字的开锁密码.例如,编号为52的锁所对应的开锁密码是123,开锁密码为232所对应的锁的编号是23.若一把锁的开锁密码为203,则这把锁的编号是__________.15.如图,在平放的边长为1的正方形中随机撒1000粒豆子,有380粒落到红心阴影部分上,据此估计红心阴影部分的面积为____.16.如果执行如图的程序框图,那么输出的S =__________.17.执行如图所示的程序框图,若1ln2a=,22be=,ln22c=(其中e是自然对数的底),则输出的结果是__________.18.一个算法的程序框图如图所示,则该程序运行后输出的结果是.19.某社会爱心组织面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45),得到的频率分布直方图如图所示.若从第3,4,5组中用分层抽样的方法抽取6名志愿者参与广场的宣传活动,应从第3组抽取__________名志愿者.20.已知一组数据126,,,x x x ⋅⋅⋅的方差是2,并且()()()22212611118x x x -+-+⋅⋅⋅+-=,0x ≠,则x =______.三、解答题21.某校从高三年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:(1)估计这次考试的及格率(60分及以上为及格)和平均分;(2)按分层抽样从成绩是80分以上(包括80分)的学生中选取6人,再从这6人中选取两人作为代表参加交流活动,求他们在不同分数段的概率.22.手机运动计步已经成为一种新时尚.某单位统计了职工一天行走步数(单位:百步),绘制出如下频率分布直方图:(1)求直方图中a 的值,并由频率分布直方图估计该单位职工一天步行数的中位数; (2)若该单位有职工200人,试估计职工一天行走步数不大于13000的人数; (3)在(2)的条件下,该单位从行走步数大于15000的3组职工中用分层抽样的方法选取6人参加远足拉练活动,再从6人中选取2人担任领队,求这两人均来自区间150,(170]的概率.23.某算法框图如图所示.(1)求函数()y f x =的解析式及7[()]6f f -的值;(2)若在区间[2,2]-内随机输入一个x 值,求输出y 的值小于0的概率.24.某城市规定,在法定工作时间内每小时的工资是8元,在法定工作时间外每小时的加班工资为16元,某人在一周内工作60小时,其中加班20小时.编写程序,计算这个人这一周所得的工资.25.某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量y (单位:万只)与相应年份x (序号)的数据表和散点图(如图所示),根据散点图,发现y 与x 有较强的线性相关关系,李四提供了该县山羊养殖场的个数z (单位:个)关于x 的回归方程ˆ230z x =-+.年份序号x 1 2 3 4 5 6 7 8 9 年养殖山羊y /万只1.21.51.61.61.82.52.52.62.7y x (2)试估计:①该县第一年养殖山羊多少万只? ②到第几年,该县养殖山羊的数量与第1年相比减少了? 参考统计量:()92160ii x x =⋅-=∑,()()9112i i i x x y y =⋅--=∑.附:对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线v u βα=+的斜率和截距的最小二乘估计分别为()()()121ˆnii i ni i uu v v u u β==--=-∑∑,ˆˆv u αβ=-. 26.学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:古文迷 非古文迷 合计 男生 26 24 50 女生 30 20 50 合计5644100(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】作出图象,得到点P 的坐标围成的图形是以原点为中心的边长为O 的距离1d ≤的点P 围成的图形是以原点为圆心,半径为1的圆,由此利用几何概型能求出到坐标原点O 的距离1d ≤的点P 的概率. 【详解】点(),P x y 满足2x y +≤,∴当0x ≥,0y ≥时,2x y +≤;当0x ≥,0y ≤时,2x y -≤; 当0x ≤,0y ≥时,2x y -+≤; 当0x ≤,0y ≤时,2x y --≤. 作出图象,得到点P 的坐标围成的图形是以原点为中心的边长为2正方形,到坐标原点O 的距离1d ≤的点P 围成的图形是以原点为圆心,半径为1的圆,∴到坐标原点O 的距离1d ≤的点P 的概率为:282222S p S π===⨯圆正方形.故选:B . 【点睛】本题考查概率的求法,几何概型等基础知识,考查运算求解能力,是中档题.2.B解析:B 【分析】从7月至12月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)低于40万的有6月,9月,10月,由此即可得到所求. 【详解】如图的折线图是某公司2017年1月至12月份的收入与支出数据, 从6月至11月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)不高于40万的有6月,8月,9月,10月,∴这2个月的利润(利润=收入-支出)都不高于40万包含的基本事件个数246m C ==,∴这2个月的利润(利润=收入-支出)都低于40万的概率为62155m P n ===, 故选:B 【点睛】本题主要考查了古典概型,考查了运算求解能力,属于中档题.3.B解析:B 【分析】找出不超过15的素数,从其中任取2个共有多少种取法,找到取出的两个和小于18的个数,根据古典概型求解即可. 【详解】不超过15的素数为2,3,5,7,11,13,共6个,任取2个分别为2,3(),2,5(),2,7(),2,11(),2,13(),3,5(),3,7(),3,11(),3,13(),5,7(),5,11(),5,13(),7,11(),7,13(),11,13(),共15个基本事件,其中两个和小于18的共有11个基本事件,根据古典概型概率公式知1115P=. 【点睛】本题主要考查了古典概型,基本事件,属于中档题. 4.B解析:B【分析】 分别求解出小正方形和大正方形的面积,可知面积比为15,从而构造方程可求得结果. 【详解】由图形可知,小正方形边长为b a - ∴小正方形面积为:()2b a -,又大正方形面积为:2c()()2222222221115b a b a ab a b c a b a b b a --∴==-=-=+++,即:25a b b a ⎛⎫+= ⎪⎝⎭ 解得:12a b = 本题正确选项:B【点睛】本题考查几何概型中的面积型的应用,关键是能够利用概率构造出关于所求量的方程.5.C解析:C【分析】根据程序框图模拟程序计算即可求解.【详解】模拟程序的运行,可得1S =,1i =;满足条件5i <,执行循环体,3S =,2i =;满足条件5i <,执行循环体,7=S ,3i =;满足条件5i <,执行循环体,15S =,4i =;满足条件5i <,执行循环体,31S =,5i =;此时,不满足条件5i <,退出循环,输出S 的值为31.故选:C【点睛】本题主要考查了程序框图,循环结构,属于中档题.6.C【分析】直接根据程序框图依次计算得到答案.【详解】模拟执行程序,可得1t =-,不满足条件0t >,0t =,满足条件()()250t t +-<,不满足条件0t >,1t =,满足条件()()250t t +-<,满足条件0t >,3t =,满足条件()()250t t +-<,满足条件0t >,7t =,不满足条件()()250t t +-<,退出循环,输出t 的值为7.故选:C.【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.7.B解析:B【解析】【分析】首先确定流程图所实现的功能,然后利用裂项求和的方法即可确定输出的数值.【详解】 由流程图可知,程序输出的值为:1111023344556S =++++⨯⨯⨯⨯, 即1111111123344556S ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111263=-=. 故选B .【点睛】本题主要考查流程图功能的识别,裂项求和的方法等知识,意在考查学生的转化能力和计算求解能力.8.C解析:C【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量2320192222S =+++⋯+的值,利用等比数列的求和公式即可计算得解.【详解】模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量2320192222S =+++⋯+的值,由于()2019232019202021222222212S -=+++⋯+==--.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.D解析:D【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+.故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.10.B解析:B【解析】【分析】根据平均数、方差的概念表示出更正前的平均数、方差和更正后的平均数、方差,比较其异同,然后整体代入即可求解.【详解】设更正前甲,乙,…的成绩依次为a 1,a 2,…,a 50,则a 1+a 2+…+a 50=50×70,即60+90+a 3+…+a 50=50×70,(a 1﹣70)2+(a 2﹣70)2+…+(a 50﹣70)2=50×75,即102+202+(a 3﹣70)2+…+(a 50﹣70)2=50×75. 更正后平均分为x =150×(80+70+a 3+…+a 50)=70; 方差为s 2=150×[(80﹣70)2+(70﹣70)2+(a 3﹣70)2+…+(a 50﹣70)2] =150×[100+(a 3﹣70)2+…+(a 50﹣70)2] =150×[100+50×75﹣102﹣202]=67. 故选B .【点睛】本题考查平均数与方差的概念与应用问题,是基础题.11.C解析:C【解析】试题分析:由题意得5x =,116.8(915101824)85y y =+++++⇒=,选C. 考点:茎叶图 12.C解析:C【解析】【分析】 细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论.【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位,即减少1.5个单位,故选C.【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目.二、填空题13.2【分析】画出数轴利用满足的概率可以求出的值即可【详解】如图所示区间的长度是6在区间上随机地取一个数若满足的概率为则有解得故答案是:2【点睛】该题考查的是有关长度型几何概型的问题涉及到的知识点有长度解析:2【分析】画出数轴,利用x 满足||x m ≤的概率,可以求出m 的值即可.【详解】如图所示,区间[2,4]-的长度是6,在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为23, 则有2263m =,解得2m =, 故答案是:2.【点睛】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.14.80【分析】本道题一一列举把满足条件的编号一一排除即可【详解】该数可以表示为故该数一定是5的倍数所以5的倍数有5101520253035404550556065707580859095100该数满足解析:80【分析】本道题一一列举,把满足条件的编号一一排除,即可.【详解】该数可以表示为32,5,73k m n ++,故该数一定是5的倍数,所以5的倍数有5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,该数满足减去3能够被7整除,只有10,45,80,而同时要满足减去2被3整除,所以只有80.【点睛】本道题考查了列举法计算锁编号问题,难度一般.15.38【解析】【分析】根据几何槪型的概率意义即可得到结论【详解】正方形的面积S =1设阴影部分的面积为S ∵随机撒1000粒豆子有380粒落到阴影部分∴由几何槪型的概率公式进行估计得即S =038故答案为:解析:38【解析】【分析】根据几何槪型的概率意义,即可得到结论.【详解】正方形的面积S =1,设阴影部分的面积为S ,∵随机撒1000粒豆子,有380粒落到阴影部分,∴由几何槪型的概率公式进行估计得38011000S =, 即S =0.38,故答案为:0.38.【点睛】本题主要考查几何槪型的概率的计算,利用豆子之间的关系建立比例关系是解决本题的关键,比较基础. 16.42【分析】输入由循环语句依次执行即可计算出结果【详解】当时当时当时当时当时当时故答案为42【点睛】本题主要考查了程序框图中的循环语句的运算求出输出值较为基础解析:42【分析】输入1k =,由循环语句,依次执行,即可计算出结果【详解】当1k =时,0212S =+⨯=当2k =时,021226S =+⨯+⨯=当3k =时,021222312S =+⨯+⨯+⨯=当4k =时,021********S =+⨯+⨯+⨯+⨯=当5k =时,0212223242530S =+⨯+⨯+⨯+⨯+⨯=当6k =时,021222324252642S =+⨯+⨯+⨯+⨯+⨯+⨯=故答案为42【点睛】本题主要考查了程序框图中的循环语句的运算,求出输出值,较为基础17.(注:填也得分)【解析】分析:执行如图所示的程序框图可知该程序的功能是输出三个数的大小之中位于中间的数的数值再根据指数函数与对数函数的性质得到即可得到输出结果详解:由题意执行如图所示的程序框图可知该 解析:ln 22(注:填c 也得分). 【解析】 分析:执行如图所示的程序框图可知,该程序的功能是输出,,a b c 三个数的大小之中,位于中间的数的数值,再根据指数函数与对数函数的性质,得到b c a <<,即可得到输出结果.详解:由题意,执行如图所示的程序框图可知,该程序的功能是输出,,a b c 三个数的大小之中,位于中间的数的数值, 因为212ln 2,,ln 22a b c e ===,则221ln 21132ln 2e <<<<,即b c a <<, 所以此时输出ln 22c =. 点睛:识别算法框图和完善算法框图是近年高考的重点和热点.解决这类问题:首先,要明确算法框图中的顺序结构、条件结构和循环结构;第二,要识别运行算法框图,理解框图解决的问题;第三,按照框图的要求一步一步进行循环,直到跳出循环体输出结果,完成解答.近年框图问题考查很活,常把框图的考查与函数和数列等知识考查相结合.18.4【分析】执行程序当时循环结束即可得出【详解】因为第一次进入循环后;第二次进入循环后;第三次进入循环后;第四次进入循环后循环结束所以输出的结果为4【点睛】本题主要考查了程序框图求输出的值做题时要仔细解析:4【分析】执行程序,当4K =时循环结束,即可得出【详解】因为第一次进入循环后1,1S K ==;第二次进入循环后3,2S K ==;第三次进入循环后11,3S K ==;第四次进入循环后2059,4S K ==,循环结束,所以输出的结果为4【点睛】本题主要考查了程序框图求输出的值,做题时要仔细点,属于基础题.19.【分析】先分别求出这3组的人数再利用分层抽样的方法即可得出答案【详解】第3组的人数为第4组的人数为第5组的人数为所以这三组共有60名志愿者所以利用分层抽样的方法在60名志愿者中抽取6名志愿者第三组应解析:3【分析】先分别求出这3组的人数,再利用分层抽样的方法即可得出答案.【详解】第3组的人数为10050.0630⨯⨯=,第4组的人数为10050.0420⨯⨯=,第5组的人数为1000.02510⨯⨯=,所以这三组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,第三组应抽取306360⨯=名, 故答案为:3.【点睛】关键点点睛:该题考查的是有关频率分布直方图的识别以及分层抽样某层抽取个数的问题,正确解题的关键是掌握在抽取过程中每个个题被抽到的机会均等. 20.2【解析】【分析】由题意结合方差的定义整理计算即可求得最终结果【详解】由题意结合方差的定义有:①而②①-②有:③注意到将其代入③式整理可得:又故故答案为2【点睛】本题主要考查方差的计算公式整体的数学解析:2【解析】【分析】由题意结合方差的定义整理计算即可求得最终结果.【详解】由题意结合方差的定义有:()()()22212612x x x x x x -+-++-= ①, 而()()()22212611118x x x -+-+⋅⋅⋅+-=, ②,①-②有:()()212612666226x x x x x x x x --+++++++=-, ③,注意到1266x x x x +++=,将其代入③式整理可得:26120x x -+=, 又0x ≠,故2x =.故答案为2.【点睛】本题主要考查方差的计算公式,整体的数学思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(1)及格率是80%;平均分是72分(2)13【分析】(1)由频率分布直方图直接可计算得及格率以及平均分;(2)按分层抽样知[80,90)5人A ,B ,C ,D ,E ,[90,100]”1人F ,写出基本事件,事件“不同分数段”所包含的基本事件数5种,利用古典概型即可得到结论.【详解】(1)依题意,60及以上的分数所在的第三、四、五、六组,频率和为(0.0200.0300.0250.005)100.80+++⨯=,所以抽样学生成绩的合格率是80%.-利用组中值估算抽样学生的平均分:123456455565758595f f f f f f ⋅+⋅+⋅+⋅+⋅+⋅450.05550.15650.2750.3850.25950.05=⨯+⨯+⨯+⨯+⨯+⨯72=.估计这次考试的平均分是72分(2)按分层抽样抽取[80,90)5人A ,B ,C ,D ,E ,[90,100]”1人F .,则基本事件(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种,事件“不同分数段”所包含的基本事件数5种, 故所求概率为:51153p ==. 【点睛】本题考查利用频率分布直方图求平均数,考查分层抽样的定义,古典概型,属于基础题. 22.(1)0.012a =,125;(2)112人;(3)25 【分析】(1)根据频率分布直方图中矩形的面积和为1求出0.012a =,再求中位数得解;(2)直接利用频率分布直方图估计职工一天行走步数不大于13000的人数;(3)先求出在区间(]150,170中有32人,在区间(]170,190中有8人,在区间(]190,210中有8人,再利用古典概型的概率公式求出这两人均来自区间150,(170]的概率.【详解】(1)由题意得0.002200.006200.00820200.010200.008200.002200.002201a ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=解得0.012a = .设中位数为110x +,则0.002200.006200.008200.0120.5x ⨯+⨯+⨯+=解得15x = .∴中位数是125.(2)由()2000.002200.006200.008200.01220112⨯⨯+⨯+⨯+⨯=∴估计职工一天步行数不大于13000步的人数为112人(3)在区间(]150,170中有2000.0082032⨯⨯=人在区间(]170,190中有2000.002208⨯⨯=人在区间(]190,210中有2000.002208⨯⨯=人按分层抽样抽取6人,则从(]150,170抽取4人,(]170,190抽取1人,(]190,210抽取1人设从(]150,170抽取职工为1A ,2A ,3A ,4A ,从(]170,190抽取职工为B ,从(]190,210抽取职工为C ,则从6人中抽取2人的情况有12A A ,13A A ,41A A ,1A B ,1A C ,23A A ,24A A ,2A B ,2A C ,34A A ,3A B ,3A C ,4A B ,4A C ,BC 共15种情况,它们是等可能的,其中满足两人均来自区间(]150,170的有12A A ,13A A ,41A A ,23A A ,24A A ,34A A 共有6种情况, ∴62155P == ∴两人均来自区间(]150,170的概率为25. 【点睛】本题主要考查频率分布直方图的应用,考查频率分布直方图中中位数的计算,考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力》23.(1)24;(2)14 【分析】 (1)从程序框图可提炼出分段函数的函数表达式,从而计算得到76f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦的值; (2)此题为几何概型,分类讨论得到满足条件下的函数x 值,从而求得结果.【详解】(1)由算法框图得:当0x >时,2πcos 2x y =,当0x =时,0y =,当0x <时,1y x =--,()2πcos ,020,01,0x xy f xx x x ⎧>⎪⎪∴===⎨⎪--<⎪⎩7711666f ⎛⎫⎛⎫-=---= ⎪ ⎪⎝⎭⎝⎭,2π1cos 71π236cos 66122f f f +⎡⎤+⎛⎫⎛⎫∴-==== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ (2)当02x ≤≤时,()[]0,1f x ∈,当20x -≤<时,由0y <得10x -<< 故所求概率为()()011224P --==-- 【点睛】本题主要考查分段函数的应用,算法框图的理解,意在考查学生分析问题的能力. 24.见解析;【解析】试题分析: 先利用INPUT 语句输入法定工作时间以及加班工作时间,再分别赋值法定工作时间工资,加班工作时间工资以及总工资,最后输出一周所得的工资.试题程序如下:点睛:25.(1)ˆ0.21yx =+;(2)①33.6万只;②到第10年该县养殖山羊的数量相比第1年减少了.【分析】(1)由已知求得,x y ,进一步套公式求出ˆb 和ˆa 的值,就求出线性回归方程; (2)由题意求得()()2ˆˆ0.212300.4430z y x x x x ⋅=+⋅-+=-++, 在①中,令x =1求解,在②中,令20.443033.6x x -++<,解不等式即可.【详解】解:(1)设y 关于x 的线性回归方程为y bx a =+,12345678959x ++++++++==, 1.2 1.5 1.6 1.6 1.8 2.5 2.5 2.6 2.729y ++++++++==, ()()()9192112ˆ0.260i ii i i x x y y b x x ==--===-∑∑, ˆ20.251a=-⨯=. 所以y 关于x 的线性回归方程为ˆ0.21yx =+. (2)估计第x 年山羊养殖的只数为()()2ˆˆ0.212300.4430z y x x x x ⋅=+⋅-+=-++ 令1x =,则0.443033.6-++=,故该县第一年养殖山羊约33.6万只.由题意,得20.443033.6x x -++<,整理得()()910x x -->,解得9x >或1x <(舍去),所以到第10年该县养殖山羊的数量相比第1年减少了.【点睛】方法点睛:求线性回归方程的步骤:(1)先求 x 、y 的平均数,x y ;(2)套公式求出ˆb和ˆa 的值:()()()91921ˆi i i i i x x y y b x x ==--=-∑∑,ˆa y b x =-⨯; (3)写出回归直线的方程.26.(I )没有的把握认为“古文迷”与性别有关;(II )“古文迷”的人数为3,“非古文迷”有2;(III )分布列见解析,期望为95. 【详解】(I)由列联表得所以没有的把握认为“古文迷”与性别有关.(II)调查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分层抽样的方法抽出5人,则“古文迷”的人数为人,“非古文迷”有人.即抽取的5人中“古文迷”和“非古文迷”的人数分别为3人和2人(III)因为为所抽取的3人中“古文迷”的人数,所以的所有取值为1,2,3.,,.所以随机变量ξ的分布列为123于是.。
高中数学必修三期末试题(附答案)
一、选择题1.第24届国际数学大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形的一个锐角为θ,且πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭.若在大正方形内随机取一点,则该点取自小正方形区域的概率为( ).A .14B .15C .25D .352.从单词“book ”的四个字母中任取2个,则取到的2个字母不相同的概率为( ) A .13B .12C .23D .343.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字为奇数的概率为( )A .13B .49C .59D .234.设向量()()1,,a x y x y R =-∈,若1a ≤,则y x ≥的概率为( ) A .14B .1142π- C .114π-D .3142π+ 5.执行如图所示的程序框图,结果是( )A.11 B.12 C.13 D.14 6.下列赋值语句正确的是 ()A.S=S+i2B.A=-AC.x=2x+1 D.P=7.执行如图所示的程序框图,若输出的结果为48,则输入k的值可以为A.6B.10C.8D.4) 8.执行如图所示程序框图,当输入的x为2019时,输出的y(A .28B .10C .4D .29.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差10.已知变量,x y 之间的线性回归方程为0.47.6=-+y x ,且变量,x y 之间的一组相关数据如表所示,则下列说法错误的是( )A .变量,x y 之间呈现负相关关系B .m 的值等于5C .变量,x y 之间的相关系数0.4=-rD .由表格数据知,该回归直线必过点()9,411.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表:根据上表数据,用最小二乘法求出y 与x 的线性回归方程是( )参考公式:121()()()niii ni i x x y y b x x ==--=-∑∑,a y b x =-⋅;参考数据:108x =,84y =;A .0.6274ˆ.2yx =+ B .0.7264ˆ.2y x =+ C .0.7164ˆ.1y x =+ D .0.6264ˆ.2y x =+ 12.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经统计,得到一个卖出的热饮杯数与当天气温的对比表:根据上表数据确定的线性回归方程应该是( )A .ˆ 2.352147.767yx =-+ B .ˆ 2.352127.765yx =-+ C .ˆ 2.35275.501yx =+D .ˆ 2.35263.674yx =+ 二、填空题13.甲、乙两人进行象棋比赛,采取五局三胜制(不考虑平局,先赢得三场的人为获胜者,比赛结束).根据前期的统计分析,得到甲在和乙的第一场比赛中,取胜的概率为0.5,受心理方面的影响,前一场比赛结果会对甲的下一场比赛产生影响,如果甲在某一场比赛中取胜,则下一场取胜率提高0.1,反之,降低0.1,则甲以3:1取得胜利的概率为______________.14.如图所示,分别以,,A B C 为圆心,在ABC 内作半径为2的三个扇形,在ABC内任取一点P ,如果点P 落在这三个扇形内的概率为13,那么图中阴影部分的面积是____________.15.从1,2,3,4中任取两个不同的数,则取出的2个数之差的绝对值小于或等于2的概率为__________.16.执行如图所示的程序框图,输出S 的值为___________.17.用秦九韶算法求多项式()5432357911f x x x x x x =+-+-+当4x =时的值为____________.18.如图是一个算法的流程图,则输出的a 的值是___________.19.为了了解2100名学生早晨到校时间,计划采用系统抽样的方法从全体学生中抽取容量为100栋样本,则分段间隔为__________.20.已知一组数据:5.7,5.8,6.1,6.4,6.5,则该数据的方差是__________.三、解答题21.从广安市某中学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155160,,第二组[)160165,,...,第八组[)190,195,如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率;(2)估计该校800名男生的身高的中位数。
高一数学下学期期末六(必修5+必修3)
1高一数学下学期期末六(必修5+必修3)一.选择题1.各项均为正数的等比数列{}n a 中,1235aa a =,78910a a a =,则456a a a =( )A.B .7C .6D.2.{}n a 是前n 项和为n S 的等差数列,135105a a a ++=,24699a a a ++=,则n S 最大时相应的n 为( ) A .21B .20C .19D .183.若0<<b a ,则下列不等式成立的是( ) A .22a b <B.a b +>-C .ba 11> D .33ab >5.为估计某鱼池中鱼的数量,做了如下试验:第一天捕捞出120条鱼,做了记号后放回池中,第二天再 从池中捕捞出100条鱼,统计得知其中有记号的鱼有10条,由此估计鱼池中鱼的条数约为( ) A .1000 B .1200 C .230 D .13006.在△ABC 中,内角A 、B 、C 的对边长分别是a 、b 、c ,已知A 是B 、C 的等差中项,1b =,△ABC 的面积B 的大为( ) A .30°B .60°C .90°D .30°或150°7.数列{}n a 中,1n n a qa +=(q 是非零常数),前n 项和为3n n S k =+,则k =( )A .0B .1C .-1D .28.设y x ,满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则2Z x y =-的最大值为( )A .12-B .2C .6D .79.若不等式210ax ax ++>对任意实数x 恒成立,则实数a 的取值范围是( ) A .()0,4a ∈B .(](),04,a ∈-∞+∞C .[)0,4a ∈D .[]0,4a ∈10.等比数列{}n a 各项是不相等的正数,21212nn aa -=(*n N ∈),2log n n b a =,则1321n b b b -++= ( ) A .22n n - B .221n n ++ C .2nD .221n n -+11.在图(1)所示的程序框图中,若输出值是12,则输入值x 的取值集合是( )A .{}3,3-B .{}3,6-C .{}3,6D .{}3,3,6-12.A 是圆上固定的一定点,在圆上其他位置任取一点B,连接A 、B 两点,它是一条弦它的长度大于等于半径长度的概率为( ) A. 12 B. 23142二.填空题 13.函数1()2f x x x =+-的定义域是(,2)-∞,则该函数的值域为 ; 14.《九章算术》中有如下的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,最上面3节的容积共3升,最下面3节的容积共4升,则第5节竹子的容积为________ 升. 15.某产品的广告费用x 与销售额y 的统计数据如下表所示:根据上表数据可得回归方程 y bxa =+ 中的b 值为9.4,据此模型估计当广告费为6万元时的销售额大约为 万元;16.数据n x x x x ,,,,321 的方差为2σ,平均数为μ,则(1).数据)0(,,,,321≠++++kb b kx b kx b kx b kx n 的标准差为 ,平均数为 ,方差为(2).数据)0)((,),(),(),(321≠++++kb b x k b x k b x k b x k n ,(0)kb ≠的标准差为 ,平均数为 方差为 三.解答题17.如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)79.589.5 这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的及格率(60分及以上为及格)(3)根据图形,算出这组数据的平均数、众数、平均数。
人教版高一数学下必修三、五期末考试
人教版必修三、五一、选择题(本大题共12小题,共60.0分)1.设a,b为非零实数,且a<b,则下列不等式恒成立的是()A. a−b>0B. a2<b2C. 1ab <1a bD. 1b<1a2.不等式x2−16x−16<0的解集为()A. (−13,12) B. (−∞,−13)∪(12,+∞)C. (−12,13) D. (−∞,−12)∪(13,+∞)3.对一个容量为m(m≥2017,m∈N)的总体抽取容量为3的样本,当选取系统抽样方法抽取样本时,总体中每个个体被抽中的概率是32017,则选取分层抽样抽取样本时总体中的每个个体被抽中的概率是()A. 12019B. 12018C. 32017D. 320164.已知△ABC中,a=1,b=2,B=45∘,则角A等于()A. 150∘B. 90∘C. 60∘D. 30∘5.如图所示的程序框图中,若f(x)=x2,g(x)=x,且ℎ(x)≥m恒成立,则m的最大值是()A. 4B. 3C. 1D. 06.设变量x,y满足约束条件x−y+1≥0x+2y−2≥02x+y−7≤0,则z=x+y的最大值为()A. 2B. 3C. 4D. 57.设S n为等比数列{a n}的前n项和,8a12−a15=0,则S4S2=()A. 5B. 8C. −8D. 158.小明忘记了微信登录密码的后两位,只记得最后一位的字母A,a,B,b中的一个,另一位数字4,5,6中的一个,则小明输入一次密码能够成功登录的概率是()A. 12B. 14C. 18D. 1129.某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),估计该次考试的平均分x(同一组中的数据用该组的区间中点值代表)为()A. 70B. 72C. 74D. 7610.已知a>0,b>0,a、b的等比中项是1,且m=b+1a ,n=a+1b,则m+n的最小值是()A. 3B. 4C. 5D. 611.公差不为0的等差数列{a n}中,S n为其前n项和,S8=S13,且a15+a m=0,则m的值为()A. 5B. 6C. 7D. 812.已知数列{a n}满足a1=0,对任意k∈N∗,有a2k−1,a2k,a2k+1成公差为k的等差数列,若b n=(2n+1)2a2n+1,则数列{b n}的前10项和S10=()A. 45011B. 43911C. 45211D. 44111二、填空题(本大题共4小题,共20.0分)13.某中学早上7:50打预备铃,8:00打上课铃,若学生小明在早上7:30至8:10之间到校,且在该时间段的任何时刻到校都是等可能的,则小明在打上课铃前到校的概率为______.14.如图所示,该程序框图输出的结果是______.15.已知数列{a n}的通项公式为a n=an2+n(n∈N∗),若满足a1<a2<a3<a4<a5<a6,且a n>a n+1,对任意n≥10恒成立,则实数a的取值范围是______.16.在△ABC中,角A,B,C的对边分别为a,b,c,已知a cos B+b cos A=a+b2,则C 的最大值为______.三、解答题(本大题共6小题,共72.0分)17.在△ABC中,内角A,B,C对边分别为a,b,c,已知ba+c =a+b−ca+b(Ⅰ)求角A(Ⅱ)若a=15,b=10,求cos B的值.18.数列{a n}的前n项和为S n=2n+1−2(Ⅰ)求数列{a n}的通项公式(n∈N∗),求数列{b n}的前n项和T n.(Ⅱ)若b n=2nn(n+1)a n19.吊瓜是一种名贵的中药材,皮,籽,根均可入药,某地区农业科学院研究所依据本地实际情况种植了两种新型的吊瓜品种,在该地区选择了10亩地,平均分成面积相等的两部分,分别种植甲,乙两个品种的吊瓜,收获时测得吊瓜籽的亩产量如图所示:(Ⅰ)请问甲,乙两种吊瓜籽哪种亩产量更稳定,并说明理由(Ⅱ)求从种植甲种吊瓜的5亩土地中任选2亩,这两亩土地的吊瓜籽亩产量均超过种植甲种吊瓜的5亩土地的平均亩产量的概率.20.如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3,cos B=3.3(Ⅰ)求△ADC的面积(Ⅱ)若BC=23,求AB的长.21.某公司于2015年底建成了一条生产线,自2016年1月份产品投产上市一年来,该公司的营销状况所反映出的每月获得的利润y(万元)与月份x之间的函数关系为:26x−56(1≤x≤5,x∈N∗)y=210−20x(5<x≤12,x∈N∗)(Ⅰ)2016年第几个月该公司的月利润最大?最大值是多少万元?(Ⅱ)若公司前x个月的月平均利润(w=前x个月的利润总和)达到最大时,公司下个月就x应采取改变营销模式,拓宽销售渠道等措施,以保持盈利水平,求w(万元)与x(月)之间的函数关系,并指出这家公司在2016年的第几个月就应采取措施.22.已知数列{a n}的所有项均为正值,其前n项积为T=2 n(n−1)n(Ⅰ)求数列{a n}的通项公式(Ⅱ)求和:S n=a1+2a2+⋯+(n+2)a n+2−(n+1)a n+3−1.答案和解析【答案】1. C2. A3. C4. D5. D6. D7. A8. D9. C10. B11. C12. A13. 3414. 1515. [−112,−120]16. π317. 解:(Ⅰ)∵ba+c =a+b−ca+b,整理可得:b2+c2−a2=bc,∴cos A=b2+c2−a22bc =bc2bc=12,∵A∈(0,π),∴A=π3.(Ⅱ)∵A=π3,a=15,b=10,a>b,∴B为锐角,∴sin B=b⋅sin Aa =10×3215=33,可得:cos B=1−sin2B=6318. 解:(Ⅰ)数列{a n}的前n项和为S n=2n+1−2,可得n=1时,a1=S1=4−2=2;n≥2时,a n=S n−S n−1=2n+1−2−2n+2=2n.上式对n=1也成立,则数列{a n}的通项公式为a n=2n.n∈N∗;(Ⅱ)b n=2nn(n+1)a n =2nn(n+1)⋅2=1n(n+1)=1n−1n+1,数列{b n}的前n项和T n=1−12+12−13+⋯+1n−1n+1=1−1n+1=nn+1.19. 解:(Ⅰ)乙种吊瓜籽亩产量更稳定,理由如下:由茎叶图得甲种吊瓜亩产量的平均数为:x1=15(95+102+105+107+111)=104,甲种吊瓜亩产量的方差为:S12=15[(95−104)2+(102−104)2+(105−104)2+(107−104)2+(111−104)2]=1445.乙种吊瓜亩产量的平均数为:x2=15(98+103+104+105+110)=104,乙种吊瓜亩产量的方差为:S 22=15[(98−104)2+(103−104)2+(104−104)2+(105−104)2+(110−104)2]=745.∵x 1=x 2,S 1<S 2,∴乙种吊瓜籽亩产量更稳定.(Ⅱ)从种植甲种吊瓜的5亩土地中任选2亩,基本事件总数n =C 52=10,∵种植甲种吊瓜的5亩土地中有3亩土地的吊瓜籽亩产量均超过种植甲种吊瓜的5亩土地的平均亩产量,∴这两亩土地的吊瓜籽亩产量均超过种植甲种吊瓜的5亩土地的平均亩产量包含的基本事件个数m =C 32=3,∴这两亩土地的吊瓜籽亩产量均超过种植甲种吊瓜的5亩土地的平均亩产量的概率p =m n=310.20. 解:(Ⅰ)cos D =cos2B =2cos 2B −1=−13…(2分)因为∠D ∈(0,π),所以sin D =2 23,…(4分)所以△ACD 的面积S =12⋅AB ⋅CD ⋅sin D = 2…(6分)(Ⅱ)在△ACD 中,AC 2=AD 2+DC 2−2AD ⋅DC ⋅cos D =12,所以AC =2 3.(8分) 在△ACD 中,AC 2=AB 2+BC 2−2AB ⋅BC ⋅cos B =12…(10分)把已知条件代入并化简得:AB 2−4AB =0因为AB ≠0,所以.AB =4…(12分)21. 解:(Ⅰ)因为y =26x −56(1≤x ≤5,x ∈N ∗)单增,当x =5时,y =74(万元); y =210−20x (5<x ≤12,x ∈N ∗)单减,当x =6时,y =90(万元). 所以y 在6月份取最大值,且y max =90万元. (Ⅱ)当1≤x ≤5,x ∈N ∗时,w =−30x +x (x−1)2×26x=13x −43,当5<x ≤12,x ∈N ∗时,w =110+90(x−5)+(x−5)(x−6)2×(−20)x=−10x +200−640x.∴w = 13x −43,(1≤x ≤5,x ∈N +)−10x −640x+200,(5<x ≤12,x ∈N +)当1≤x ≤5时,w ≤22; 当5<x ≤12时,w =200−10(x +64x)≤40,当且仅当x =8时取等号.从而x =8时,w 达到最大.故公司在第9月份就应采取措施.22. 解:(I )数列{a n }的所有项均为正值,其前n 项积为T n =2 n (n −1)2,∴n ≥2时,a n =T n T n −1=2n (n −1)22(n −1)(n −2)2=2n−1.又a 1=T 1=1.对于上式也成立.∴a n =2n−1.(II )设A n =a 1+2a 2+⋯+(n +2)a n +2=1+2×2+3×22+⋯+(n +2)⋅2n +1. ∴2A n =2+2×22+⋯+(n +1)⋅2n +1+(n +2)⋅2n +2, 相减可得:−A n =1+2+22+⋯+2n +1−(n +2)⋅2n +2=2n +2−12−1−(n +2)⋅2n +2,∴A n =(n +1)⋅2n +2+1.∴S n=a1+2a2+⋯+(n+2)a n+2−(n+1)a n+3−1=(n+1)⋅2n+2+1−(n+1)×2n+2−1=0.【解析】1. 解:∵a、b为非零实数,且a<b,∴a−b<0,故A不成立由于a,b符号不确定,故a2与b2的大小不能确定,故B不恒成立;由于a2b2>0,故aa2b2<ba2b2恒成立,即1ab<1a b恒成立,即C恒成立,若a=−2,b=1,则不满足D,故D不成立,故选:C.根据不等式的基本性质,结合已知中a、b为非零实数,且a<b,逐一分析四个答案中的不等式是否一定成立,可得答案.本题考查的知识点是不等式的基本性质,熟练掌握不等式的基本性质,是解答的关键.2. 解:x2−16x−16<0等价于(x−12)(x+13)<0,解得−13<x<12,故不等式的解集为(−13,12 ),故选:A利用因式分解法即可求出.本题考查了一元二次不等式的解法,属于基础题3. 解:由系统抽样的定义知,总体中每个个体被抽中的概率是32017,则利用分层抽样抽取样本时总体中的每个个体被抽中的概率也是32017,故选:C根据系统抽样和分层抽样的性质进行判断即可.本题主要考查抽样的性质,根据抽样中每个个体被抽到的概率相同是解决本题的关键.4. 解:∵a=1 , b=2,B=45∘根据正弦定理可知asin A =bsin B∴sin A=a sin Bb=12∴A=30∘故选D.根据正弦定理asin A =bsin B,将题中数据代入即可求出角B的正弦值,进而求出答案.本题主要考查正弦定理的应用.属基础题.5. 解:由已知中的程序框图可得该程序的功能是:计算并输出分段函数:ℎ(x)=x,0<x<1x2,x≥1或x≤0的值,在同一坐标系,画出f(x)=x2,g(x)=x 的图象如下图所示:(实线部分为ℎ(x)的图象)由图可知:当x=0时,ℎ(x)取最小值0,又∵ℎ(x)≥m恒成立,∴m ≤0,即m 的最大值是0; 故选:D由已知中的程序框图可得该程序的功能是计算并输出分段函数:ℎ(x )= x ,0<x <1x 2,x≥1或x≤0的值,数形结合求出ℎ(x )的最小值,可得答案. 本题主要考查了程序框图,分段函数的应用,函数恒成立问题;考查了数形结合的解答方法;属于中档题.6. 解:作出约束条件 x −y +1≥0x +2y −2≥02x +y −7≤0,对应的平面区域如图:变形z =x +y ,得y =−x +z平移此直线,由图象可知当直线y =−x +z 经过A 时,直线在y 轴的截距最大,得到z 最大,由 2x +y −7=0x−y +1=0,到A (2,3)所以z =x +y 的最大值为2+3=5 故选:D作出不等式组对应的平面区域,利用z 的几何意义,即可求出z 的最大值.本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合是解决本题的关键.属于中档题.7. 解:∵S n 为等比数列{a n }的前n 项和,8a 12−a 15=0, ∴8a 1q 12=a 1q 15,解得q =2, ∴S 4S 2=a 1(1−24)a 1(1−2)=1+22=5.故选:A .由等比数列的通项公式得到8a 1q 12=a 1q 15,从而得到q =2,再由等比数列的前n 项和公式能求出S 4S 2的值.本题考查等比数列的前4项和与前2项和的比值的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.8. 解:微信登录密码的后两位,只记得最后一位的字母A ,a ,B ,b 中的一个,另一位数字4,5,6中的一个,则基本事件总数n =4×3=12,∴小明输入一次密码能够成功登录的概率是p =112. 故选:D .先求出基本事件总数n=4×3=12,由此能求出小明输入一次密码能够成功登录的概率.本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.9. 解:由频率分布直方图得:a=12(110−0.03−0.04−0.02)=0.005,∴估计该次考试的平均分:x=55×0.005×10+65×0.03×10+75×0.04×10+85×0.02×10+95×0.005×10=74.故选:C.由频率分布直方图求出a,从而能估计该次考试的平均分.本题考查平均分的求法,是基础题,解题时要认真审题,注意频率分布直方图的合理运用.10. 解:∵a、b的等比中项是1,∴ab=1.∴1a =b,1b=a,又a>0,b>0,∴m+n=2(a+b)≥4ab=4,当且仅当a=b=1时取等号.∴m+n的最小值是4.利用等比中项和基本不等式的性质即可得出.熟练掌握等比中项和基本不等式的性质是解题的关键,11. 解:公差d不为0的等差数列{a n}中,S n为其前n项和,S8=S13,可得8a1+12×8×7d=13a1+12×13×12d,化为a1=−10d,且a15+a m=0,即为a1+14d+a1+(m−1)d=0,即为(14−20+m−1)d=0,(d≠0),解得m=7.故选:C.设公差d不为0的等差数列{a n},由等差数列的求和公式可得a1=−10d,再由等差数列的通项公式可得m的值.本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.12. 解:当k=1时,a1,a2,a3成公差为1的等差数列,由于a1=0,故a2=1,a3=2;同理可得当k=2,3,4时,可以求得a4=4,a5=6,a6=9,a7=12,a8=16,a9=20;∴a3−a1=2,a5−a3=4,a7−a5=6,…∴a2n+1−a2n−1=2n,∴将上述n个等式相加得:a2n+1−a1=n(2+2n)2=n2+n,∴a2n+1=n2+n,∴b n=(2n+1)2a2n+1=(2n+1)2n+n=4(n2+n)+1n+n=4+1n+n=4+(1n−1n+1),∴S n=b1+b2+⋯+b n=4n+[(1−1)+(1−1)+⋯+(1−1)] =4n+(1−1n+1)=4n+nn+1.则S10=40+1011=45011.故选:A.依题意,讨论k=1,2,3,4,可求得a2,a3,…,a9,…,从而利用累加法可求得a2n+1=n2+n,代入b n=(2n+1)2a2n+1,用分组求和与裂项法求和即可求得答案.本题考查数列的求和,着重考查等差数列的通项公式,求得a2n+1=n2+n是关键,也是难点,考查裂项法求和与分组求和,属于难题.13. 解:某中学早上7:50打预备铃,8:00打上课铃,小明在早上7:30至8:10之间到校,且在该时间段的任何时刻到校都是等可能的,则小明在打上课铃前到校的时间段为30分钟,由几何概型的公式得到所求概率为3040=34;故答案为:34由题意,本题是几何概型,利用时间段的比求得概率.本题考查几何概率模型与模拟方法估计概率,求解的关键是掌握两种求概率的方法的定义及规则,求出对应所时间段,利用时间段的比求概率是解决本题的关键14. 解:模拟执行程序框图,可得①y=20−1=19,x=20+19=39,②y=18,x=39+18=57;③y=17,x=57+17=74;④y=16,x=74+16=90>90不成立;⑤y=15,x=90+15=105>90成立,所以输出15;故答案为:15.模拟执行框图,依次写出每次循环得到的x,y值,直到满足条件退出循环,输出y的值.本题主要考查了程序框图和算法,依次得到每次循环x,y的值是解题的关键,属于基础题.15. 解:由题意可得:a<06≤−12a≤10,解得:−112≤a≤−120.∴实数a的取值范围是[−112,−120].故答案为:[−112,−120].由题意可得:a<06≤−12a≤10,解出即可得出.本题考查了不等式的性质与解法、函数的单调性、数列的单调性,考查了推理能力与计算能力,属于中档题.16. 解:∵a cos B+b cos A=a+b2,∴由正弦定理得:sin A cos B+sin B cos A=sin A+sin B2,∴2sin(A+B)=sin A+sin B,而A+B=π−C,∴2sin C=sin A+sin B,即c=a+b2.∴cos C=a 2+b2−(a+b2)22ab=38(ba+ab)−14≥12,当且仅当a=b时取等号,∴C的最大值为π3.故答案为:π3.根据正弦定理将条件进行转化化简,结合两角和差的正弦公式及余弦定理进行求解即可.本题主要考查正弦定理的应用,根据正弦定理结合两角和差的正弦公式及余弦定理是解决本题的关键,是基础题.17. (Ⅰ)由已知整理可得:b2+c2−a2=bc,利用余弦定理可求cos A=12,结合范围A∈(0,π),可求A的值.(Ⅱ)利用大边对大角可求B为锐角,利用正弦定理可求sin B=b⋅sin Aa,进而利用同角三角函数基本关系式可得cos B的值.本题主要考查了余弦定理,大边对大角,正弦定理,同角三角函数基本关系式在解三角形中的应用,考查了转化思想,属于基础题.18. (Ⅰ)运用数列的递推式:n=1时,a1=S1;n≥2时,a n=S n−S n−1,计算即可得到所求通项公式;(Ⅱ)计算b n=1n(n+1)=1n−1n+1,运用数列的求和方法:裂项相消求和,即可得到所求和.本题考查数列通项公式的求法,注意运用数列的递推式,考查数列的求和方法:裂项相消求和,考查运算能力,属于中档题.19. (Ⅰ)由茎叶图分别求出甲、乙种吊瓜亩产量的平均数和方差,得到乙种吊瓜籽亩产量更稳定.(Ⅱ)从种植甲种吊瓜的5亩土地中任选2亩,基本事件总数n=C52=10,这两亩土地的吊瓜籽亩产量均超过种植甲种吊瓜的5亩土地的平均亩产量包含的基本事件个数m=C32=3,由此能求出这两亩土地的吊瓜籽亩产量均超过种植甲种吊瓜的5亩土地的平均亩产量的概率.本题考查平均数、方差、概率的求法及应用,考查茎叶图、古典概型等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.20. (Ⅰ)求出sin D=223,即可求△ABC的面积;(Ⅱ)在△ACD中,求出AC,在△ACD中,AC2=AB2+BC2−2AB⋅BC⋅cos B=12,把已知条件代入并化简求AB的长.本题考查二倍角的余弦公式及余弦定理等有关知识的综合运用,属于中档题.21. (Ⅰ)利用分段函数,结合函数的单调性,即可得出结论;(Ⅱ)利用w=前x个月的利润总和x,求出函数解析式,结合基本不等式,即可得出结论.本题考查的知识点是分段函数,函数求值,函数的最值,难度不大,属于中档题,找到等量关系准确的列出方程是解决问题的关键.22. (I)数列{a n}的所有项均为正值,其前n项积为Tn =2 n(n−1),可得n≥2时,a n=T nT n−1,a1=T1.(II)利用错位相减法即可得出.本题考查了数列递推关系、等比数列的通项公式与求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.第11页,共11页。
高一数学下学期期末三(必修5+必修3)
高一数学下学期期末三(必修5+必修3)一.选择题1.某中学有教师150人,其中年龄在55岁及以上有15人,40岁及以上55岁以下的有45人,40 岁以下的有90人,学校为了解三个年龄段教师的身体健康状况,从中抽取30人进行统计,则三个年龄段抽取的人数分别为( )A.3,9,18B.5,10,15C.3,10,17D.5,9,16 2.不等式0162>-+x x 的解集为( )A.11,32⎛⎫- ⎪⎝⎭ B.11,,32⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ C. 11,,23⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ D.11,23⎛⎫- ⎪⎝⎭3.设0<+b a ,且0>a ,则ab b a -,,22的大小关系是( )A.22b ab a <-< B.22a ab b <-< C.ab b a -<<22 D.22a b ab <<- 4.在ABC ∆中,已知8:7:5::=c b a ,则ABC ∆的最大内角与最小内角之和为 ( ) A.︒105 B.︒120 C.︒135 D.︒1505.在钝角ABC ∆中,已知1,30,AB AC B =∠=︒则ABC ∆的面积是( )C.32D.346.已知数列{}n a 满足:)2(021≥=--n a a n n ,且11=a ,则2a 与4a 的等差中项是( )A.-5B.5C.-10D.10 7.将389 化成四进位制数的末位是 ( )A. 1B. 2C. 3D. 08.轻度污染.该城市2010年空气质量达到良或优的概率为 ( )A.53 B.1801 C.191 D.65 9.已知0,0>>y x ,且191=+yx ,则y x +的最小值为 ( )A.8B.12C.16D.20 10.已知数列{}n a 满足:())(111*N n nn n n a n∈+++=,则9921a a a +++ =( )A.98B.1110C.1011D.109二.填空题11.甲、乙两个小组各5名同学数学测试成绩的茎叶图如图所示,记甲、乙两组中数学测试成绩的标准差分别为乙甲s s ,,则乙甲s s ,的大小关系为 12.已知x b x a 2,,,依次成等差数列,则b a := 13.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若222()tan ,a c b B +-=则角B 的值为14.设实数y x ,满足0122=-+xy x ,则y x +的取值范围是(第11题图)三.解答题15.已知集合{}2230A x x x =--<,集合{}2211140B x x x =-+>.(1)求A B . (2)若不等式20x ax b ++<的解集为A B ,求不等式20ax x b ++<的解集.16.某校在举办以"碳排放对气候变化的影响"为主题的环保知识竞赛之后,学生会从参加竞赛的3000名学生中,随机抽取60名学生的成绩,将其得分(均为整数)分成六组[)[)[)100,90,,60,50,50,40 后画出如图部分频率分布直方图.观察图形的信息. 回答下列问题:(1).求第四小组的频率,并补全这个频率分布直方图; (2).估计这3000名学生考试成绩的及格率(60分及以上为及格)和优秀人数(80分及以上为优秀);(3).利用各组组中值估计这次考试平均分(组中值即某组数据区间的中点值,如[)80,60的组中值为70).17.设ABC ∆的内角C B A ,,的对边分别为c b a ,,,面积为ABC S ∆,且A bc S ABC cos =∆. (1).求A A A cos sin sin 2+的值. (2).若5,2222=-+=b ac c a b ,求c .18.有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1,2,3,4.(1).甲从其中一个箱子中摸出一个球,乙从另外一个箱子中摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率.(2).摸球的方法与(1)相同,若规定:俩人摸到的球上所标数字相同甲获胜,所标数字不同则乙获胜,这样规定公平吗?试说明理由.19.已知b x a a x x f +-+-=)5(3)(2,其中R b a ∈,.(1).当不等式0)(>x f 的解集为)3,1(-时,求实数b a ,的值. (2).若对任意实数0)2(,<f a 恒成立,求实数b 的取值范围.20.已知等差数列{}n a 中,n S 为{}n a 的前n 项和,51a =-,315S =. (1).求{}n a 的通项n a 与n S . (2).当n 为何值时,n S 为最大?最大值为多少?21.在等差数列}{n a 中,首项11=a ,数列}{n b 满足.641,)21(321==b b b b n a n 且 (1)求数列}{n a 的通项公式. (2)求证:.22211<+++n n b a b a b a22.已知数列{}n a 的前n 项和为n S ,且)(2*N n a S n n ∈-=,等差数列{}n b 满足12321=++b b b . 设{}n b 的前n 项和为n T ,909=T ,求{}n a 与{}n b 的通项公式.22.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(1)若ABC ∆的面积等于3,求b a ,. (2)若A A B A B 2sin 2)sin()sin(=-++,求ABC ∆的面积.。
高一数学期末(必修1、3、4、5)综合测试参考答案
高一数学期末(必修1、3、4、5)综合测试参考答案一、选择题:共10小题,每题5分,满分50分.题号 1 2 3 4 5 6 7 8 9 10 答案 B B D A A B C A D B二、填空题:共4小题,每题5分,满分20分. 11. 21n - 12.23 13.122⎡⎤⎢⎥⎣⎦, 14. 6 , 30 , 10 。
三、解答题:本大题共6小题,满分80分 15.(本小题满分13分)解:(1)在△ABC 中,A B C π++=,由角A ,B ,C 成等差数列,得2B A C =+.解得3B π=.(2)由()2sin 2A B +=,即()2sin 2C π-=,得2sin 2C =. 所以4C π=或34C π=. 由(1)知3B π=,所以4C π=,即512A π=. 所以5sin sinsin 1246A πππ⎛⎫==+ ⎪⎝⎭sincoscossin4646ππππ=+23212222=⨯+⨯ 264+=. 16.(本小题满分13分) 解:(1)由题意可得,3243648x y==, 解得2x =,4y =.(2)记从兴趣小组A 中抽取的2人为1a ,2a ,从兴趣小组B 中抽取的3人为1b ,2b ,3b ,则从兴趣小组A ,B 抽取的5人中选2人作专题发言的基本事件有()12,a a ,()11,a b ,()12,a b ,()13,a b ,()21,a b ,()22,a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b 共10种.设选中的2人都来自兴趣小组B 的事件为X ,则X 包含的基本事件有()12,b b ,()13,b b ,()23,b b 共3种.所以()310P X =. 故选中的2人都来自兴趣小组B 的概率为310. 17.(本小题满分13分)设数列{}n a 的公比为q ,依题意,()()()().8511,1,2,25511,1,2.2,31,)1(8,2,31)1(88,64)1..(.........., (241818181812312231312)315323146=--=-=-==--===±==-=-=-=--=±=∴===-=-q q a S a q q q a S a q q q q a q q q a q a q a a a q q a a a 当当得式代入到将舍去。
高一下数学期末考试必修三必修五)含答案
高一年级(下)期末考试一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知数列}{n a 为等比数列,且8,141==a a ,则公比=q(A )1 (B )2 (C )4 (D )8 (2)已知ABC ∆中, 60,3,2===B b a ,那么角=A(A )135 (B )90 (C )45 (D )30(3)已知⎪⎩⎪⎨⎧≤+≥≥200y x y x ,则y x z 2-=的最小值为(A )2 (B )0 (C )2- (D )4- (4)若0<<b a ,那么下列不等式中正确的是(A )b a 11> (B )ba 11< (C )2b ab < (D )2a ab > (5)袋内装有6个球,每个球上都记有从1到6的一个号码,设号码为n 的球重1262+-n n 克,这些球等可能地从袋里取出(不受重量、号码的影响).若任意取出1球,则其重量大于号码数的概率为(A )61 (B )31 (C )21 (D )32(6)实数b a ,均为正数,且2=+b a ,则ba 21+的最小值为(A )3 (B )223+ (C )4 (D )223+(7)为了解某校身高在m m 78.1~60.1的高一学生的情况,随机地抽查了该校100名高一学生,得到如图1所示频率直方图.由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为m ,身高在m m 74.1~66.1的学生数为n ,则n m ,的值分别为(A )78,27.0 (B )83,27.0 (C )78,81.0 (D )83,09.0 (8)若执行如图2所示的程序框图,当输入5,1==m n ,则输出p 的值为(A )4- (B )1 (C )2 (D )59)锐角三角形ABC 中,内角C B A ,,的对边分别为c b a ,,,若2B A =,则ba的取值范围是 (A) (B)(1 (C) (D)(10)已知数列}{n a 满足)1(431≥=++n a a n n ,且91=a ,其前n 项之和为n S ,则满足不等式12516<--n S n 的最小整数是 (A )5 (B )6 (C )7 (D )8二.填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上. (11)已知等差数列}{n a ,若1359a a a ++=,则24a a +=__________.(12)某校有教师400人,男学生3000人,女学生3200人.现用分层抽样的方法,从所有师生中抽取一个容量为n 的样本,已知从男生中抽取的人数为100人,则=n __________.(13)现有红、黄、蓝、绿四种不同颜色的灯泡各一个,从中选取三个分别安装在ABC ∆的三个顶点处,则A 处不安装红灯的概率为__________. 14.已知数列{}n a 满足23123222241n n n a a a a ++++=-则{}n a 的通项公式(15)在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,若60C =,且2325a b c =-,则ABC ∆的面积最大值为__________.三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. (16)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.)设}{n a 是公差大于0的等差数列,21=a ,10223-=a a . (Ⅰ)求}{n a 的通项公式;(Ⅱ)设}{n b 是首项为1,公比为2的等比数列,求数列}{n n b a +的前n 项和n S .图1 图20.01频率组距17.(本题满分13分)在△ABC 中,sin B +sin C =sin(A -C ).(1)求A 的大小;(2)若BC =3,求△ABC 的周长l 的最大值.18. 某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[)50,40,[)60,50…[]100,90后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求第四小组的频率,并补全这个频率分布直方图; (Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分; (Ⅲ) 从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.19.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }, (1)求a ,b ;(2)解不等式ax 2-(ac +b )x +bc <0.20.设ABC ∆的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I)求B(II)若sin sin A C =,求C .21. 设等比数列{n a }的前n 项和n S ,首项11a =,公比()(1,0)1q f λλλλ==≠-+.(Ⅰ)证明:(1)n n S a λλ=+-;(Ⅱ)若数列{n b }满足112b =,*1()(,2)n n b f b n N n -=∈≥,求数列{n b }的通项公式; (Ⅲ)若1λ=,记1(1)n n nc a b =-,数列{n c }的前项和为n T ,求证:当2n ≥时,24n T ≤<.数学试题参考答案一、选择题BCDAD DACCC9.由题意得22264222B A A A A B A ππππππ⎧⎧+>+>⎪⎪⎪⎪⇒⇒<<⎨⎨⎪⎪<<⎪⎪⎩⎩,又sin sin 22sin cos 2cos sin sin sin b B A A A A a A A A ====,所以2cos 2cos 2cos 46A ππ<<2cos bA a<=<10.因为111341(1)3n n n n a a a a +++=⇒-=--,所以118()13n n a -=-+,所以用分组求和可得166()3n n S n =+-⋅-,所以163750125n n S n --<⇒>显然最小整数为7.二、填空题11. 6 12.220 13.34 14.541515.由余弦定理可得222c a b ab =+-,所以22325ab a b ab =--+,化简可得2225222a b ab ab ab =++≥+即254ab ≥当且仅当a b =时等号成立,所以三角形ABC的面积1125sin 224216S ab C =≤⨯⨯=,所以最大值为16.三、解答题16. 解:(Ⅰ)由题意2112()10a d a d +=+-由12a =得222(2)10d d +=+-…………………………3分 化简得2280d d +-=解得2d =或4d =-(舍) 所以2(1)22n a n n =+-⨯=………………6分(Ⅱ)由题意12n n b -=………………8分所以1122()()()n n n S a b a b a b =++++++1212()()n n a a a b b b =+++++++1(242)(122)n n -=+++++++0.030.01频率组距2(22)1221212n n n n n n +-=+=++--………13分21. 解:(Ⅰ)因为n n n a a S +=22……① ,所以21112a a a =+得110a =或(舍) 且21112n n n S a a ---=+……②,①-②得22112n n n n n a a a a a --=-+-化简得11(1)()0n n n n a a a a ----+=因为数列}{n a 各项均为正数,所以110n na a ---=即11n n a a -=+ 所以}{n a 为等差数列,n a n =经检验,11a =也符合该式 ………………………………5分 (Ⅱ)当3n ≥时,22222222222222222111112312221()2231111111(11)22233111(12)2(12221(1)21223(1)12222221(1)21223(1)121312(3)222n T n n n nn nn n n n n n n n n =+++=+++=++++++++>++-=+++++⨯⨯-⨯=+-+-++-+--=-+=+2n 得证…………12分18. 解:(1)将sin B +sin C =sin(A -C )变形得sin C (2cos A +1)=0, (2分)而sin C ≠0,则cos A =21-,又A ∈(0,π),于是A =32π; (6分) (2)记B =θ,则C =3π-θ(0<θ<3π),由正弦定理得⎪⎩⎪⎨⎧-π==)3sin(32sin 32θAB θAC , (8分) 则△ABC 的周长l =23[sin θ+sin(3π-θ)]+3=23sin(θ+3π)+3≤23+3, (11分) 当且仅当θ=6π时,周长l 取最大值23+3. (13分) 19. 解:(Ⅰ)因为各组的频率和等于1,故第四组的频率:41(0.0250.01520.010.005)100.3f =-+*++*=直方图如右所示 (3分)(Ⅱ)依题意,60及以上的分数所在的第三、四、五、六组,频率和为 (0.0150.030.0250.005)100.75+++*=所以,抽样学生成绩的合格率是75%利用组中值估算抽样学生的平均分123456455565758595f f f f f f ⋅+⋅+⋅+⋅+⋅+⋅=450.1550.15650.15750.3850.25950.05⨯+⨯+⨯+⨯+⨯+⨯=71 估计这次考试的平均分是71分。
高一下期末考试数学试题必修3必修5
高一期末考试数学试题一.选择题(本大题共12小题,每小题5分,共60分)1.由11a =,3d =确定的等差数列{}n a ,当298n a =时,序号n 等于A.99B.100C.96D.1012.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为A .21B .23 C.1D.33.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 A .99 B .49 C .102 D . 1014.已知0x >,函数4y x x=+的最小值是A .5B .4C .8D .65.在等比数列中,112a =,12q =,132n a =,则项数n 为 (A. 3B. 4C. 5D. 6 6.不等式20(0)ax bx c a ++<≠的解集为R ,那么A. 0,0a <∆<B. 0,0a <∆≤C. 0,0a >∆≥D. 0,0a >∆>7.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为A . 5 B. 3 C. 7 D. -8 8.若一组数据a 1,a 2,…,a n 的方差是5,则一组新数据2a 1,2a 2,…,2a n 的方差是A.5B.109.在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cos C 等于2A.3 2B.-3 1C.-3 1D.-410.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为A 、63B 、108C 、75D 、83 11.右面的程序框图,如果输入三个实数a ,b ,c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( ) A .c x > B .x c > C .c b > D .b c > 12.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中{},1,2,3,4,5,6a b ∈,若1a b -≤,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为 A.19B.29C.718 D .49二.填空题(本大题共4小题,每小题5分,共20分) 13.在ABC ∆中,04345,22,3B c b ===,那么A =_____________; 14.已知等差数列{}n a 的前三项为32,1,1++-a a a ,则此数列的通项公式为________15.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95),由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[55,75)的人数是 .16.有一个简单的随机样本:10, 12, 9, 14, 13,则样本平均数x =______ ,样本方差2s =______ 。
人教A版高中数学必修三试卷下学期期末联考高一数学试题.docx
下学期期末联考高一数学试题第I 卷注意事项:⒈第Ⅰ卷共2页,答第Ⅰ卷前,考生务必将自己的姓名、班级、学号、考试科目用铅笔涂写在机读卡上。
⒉每小题选出答案后,用铅笔把机读卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案,不能答在试卷上。
一.选择题(本大题共12小题,每小题3分,共36分)1. 已知等差数列{}n a 中,首项为4,公差2d =-,则通项公式n a =( )A.42n -B.24n -C.62n -D.26n -2. 设实数,a b c d >>,则下列不等式成立的是( )A.a c b d ->-B. b d a c +<+C.a b cd > D. ac bd > 3. 如果内接于球的一个长方体的长、宽、高分别为2、1、1,则该球的体积为( )B.2π4. 已知l 、m 为直线,α为平面,且l α⊥,则下列命题中:①若l //m ,则m α⊥; ②若m l ⊥,则m //α;③若m //α,则m l ⊥; ④若m α⊥,则l //m 其中正确的是( )A. ①②③B. ①③④C. ②③④D. ①②④5.已知等比数列{}n a 中,1322a a a =-,则公比是( )A. 1-或2-B.1或2C.1-或2D. 06. 点E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点,则空间四边形的4条边和2条对角线中与平面EFGH 平行的条数是( )A.0B.1C.2D.37.在等比数列{}n a 中,公比2q =-,前5项的和522S =,则1a 的值是( )A.2-B.1-C.1D.28. 点P 是等腰三角形ABC 所在平面外一点,ABC PA ABC PA ∆=⊥,在,平面8中,底边BC P AB BC 到,则点,56==的距离为( ) A.54 B.3 C.33 D.329.已知等差数列{}n a 中,79416,1a a a +==,则12a 的值是( ).A. 15B. 30C. 31D. 6410. 已知长方体''''ABCD A B C D -中,'2AA AB =,E 为'CC 中点,则异面直线DE 与'AB 所形成角的余弦值为A. 10B. 310C. 15D. 3511. 把正方形ABCD 沿对角线AC 折起,当以A 、B 、C 、D 四点为顶点的正棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( )A. 90°B. 60°C. 45°D. 30°12. 湖面上漂着一球,湖结冰后将球取出,冰面上留下了一个直径为cm 24,深为cm 8的空穴,则该球的表面积为( )A.64πB.320π C.576π D. 676π第II 卷1.第Ⅱ卷共4页,答第Ⅱ卷前,考生务必将自己的班级、学号、姓名等项目填写在试卷相关处。
必修五 必修三有答案
2()2a b ab +≤必修五 必修三一、解三角形:(1)、三角形的面积公式:(2)正弦定理:(3)余弦定理:A bc c b a cos 2222-+= ,B ac c a b cos 2222-+=,C ba a b c cos 2222-+=求角:二. 数列1、数列的前n 项和:n n a a a a S ++++= 321; 数列前n 项和与通项的关系:2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数;(2)、通项公式:d n a a n )1(1-+= (其中首项是1a ,公差是d ;)(3)、前n 项和:1. (4)、等差中项: A 是a 与b 的等差中项: 或b a A +=2,三个数成等差常设:a-d ,a ,a+d3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,(0≠q )。
(2)、通项公式:11-=n n q a a (其中:首项是1a ,公比是q )(3)、前n 项和:(4)、等比中项: G 是a 与b 的等比中项:, 即ab G =2(或ab G ±=,等比中项有两个) 三:不等式1、 均值不等式:(1)、 ab b a 222≥+ (2)、a >0,b >0;ab b a 2≥+或一正、二定、三相等 一、频率分布直方图:注:频率分布直方图中小正方形的面积=组距×频率。
古典概型的概率二、求出事件A 所包含的基本事件数,然后利用公式P (A )=总的基本事件个数包含的基本事件数AP (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A1一个三角形的三边长依次是4、6、,这个三角形的面积等于( B )D. 2.在ABC ∆中,A ∠、B ∠、C ∠所对的边长分别是2、3、4,则cos B ∠的值为 11/16 3.在△ABC 中,A B C ∠∠∠、、则cos C ∠的值为B.4.△ABC 中,,,a b c 分别是角A,B,C 所对的边,若75A = ,45B =,c =b 等于5..在△ABC 中,,,A B C 行 所对的边长分别是,,a b c,若60,45,a AB鞍=??,则b 等于( D )A.111(1)(2)n n n a S n a S S n -==⎧=⎨-≥⎩1()2n n n a a S +=1(1)2n n na d -=+2a b A +=111,(1)(1),(1)11n n n na q S a a q a q q q q=⎧⎪=--⎨=≠⎪--⎩G ba G=222a b ab +≤2,2sin ,2sin 2sin sin sin sin a b cR a R A b R B c R CA B C======边用角表示: ,222222222cos cos cos 222b c a a c b a b cA B C bc ac ab +-+-+-=== 111sin sin sin 222S ab C ac B bc A ∆===7.已知等差数列{}n a 中,22a =,46a =,则前4项的和4S 等于( C ).8A .10B .12C .14D 8.已知等比数列{}n a 中,1416,2,a a =-=则前4项的和4S 等于( D )A. 20B. -20 C. 10D. -10 9.已知三个实数,,a b c 依次成等差数列,则b 一定等于( A ) A.2a c+ B.a c + C.ac11.在等比数列{}n a 中,公比1q >,且14239,8a a a a +==.⑴求1a 和q 的值;⑵求{}n a 的前6项和6S1a =1. q =2 6S =6312.已知等比数列{}n a 的前n 项和为n S ,若1451,8,a a S ==则等于( C )A.2 B. 15 C. 31 D.6313.两个非负实数x 、y 满足44,x y z x y +≤=+则的最大值等于( A )A. 4 B. 3 C. 2D. 114.已知实数x 、y 满足04x y x y ⎧⎪⎨⎪+⎩≥≥0≥4,则z x y =+的最小值等于(B ).0A .1B .4C .5D15.已知实数x 、y 满足0,0,33,x y x y ≥⎧⎪≥⎨⎪+≥⎩则z x y =+的最小值等于( B )A. 0 B. 1 C. 2 D. 316.已知x,y 满足约束条件10101x y x y y ì-- ïïï+- íïï£ïïî,则目标函数2z x y =+的最小值为___17.若x>0,则4x x+的最小值为_____4________. 18.已知x,y 满足约束条件24122x y x y x y ì+ ïïï- íïï- ïïî,则z x y =+的最小值为________.19.某交警部门对城区上下班交通情况作抽样调查,上下班时间各抽取12辆机动车的行驶速度(单位:km/h )作为样本进行研究,做出样本的茎叶图如右,则上班、下班时间行驶速度的中位数分别是(C ) A. 28 27.5 B. 28 28.5 C. 29 27.5 D. 29 28.520.如图是某中学高二年级举办的演讲比赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的中位数为 86 . 21.甲、乙两位射击选手射击10次所得成绩,经计算得各自成绩的标准差分别为1.29s =乙甲和s =1.92,则___甲______成绩稳定。
高一数学必修下册期末试卷与答案(三)
A.0.864B.A.3-B.【答案】C【详解】∵1 AP mAC+=.B.C.D.【答案】DMN EF AC,MN⊄平面ABC,AC⊂平面ABC,【详解】对于A,由正方体的性质可得////MN平面ABC,能满足;所以直线//MN AD,MN⊄平面ABC,AD⊂对于B,作出完整的截面ADBCEF,由正方体的性质可得//MN平面ABC,能满足;平面ABC,所以直线//MN,MN⊄平面ABC,BD⊂平对于C,作出完整的截面ABCD,由正方体的性质可得//BD面ABC,MN平面ABC,能满足;所以直线//对于D,作出完整的截面,如下图ABNMHC,可得MN在平面ABC内,不能得出平行,不能满足.故选:D.7.投掷一枚均匀的骰子,记事件下列说法正确的是()A.事件A与事件B互斥C.事件A与事件B相互独立A .()f x 的图像关于点1,06⎛- ⎝B .()f x 的图像关于直线x =C .()f x 在11,23⎡⎤-⎢⎥⎣⎦上为增函数D .把()f x 的图像向右平移A.应从第3,4,5组中分别抽取3人、2人、1人B.第4组志愿者恰有一人被抽中的概率为8 15C.第5组志愿者被抽中的概率为1 3D.第3组志愿者至少有一人被抽中的概率为23【答案】ABCA .这三个全等的钝角三角形不可能是等腰三角形B .若3BB '=,53sin 14ABB '∠=,则2A B ''=C .若2AB A B ''=,则5AB BB '='D .若A '是AB '的中点,则三角形ABC 的面积是三角形【答案】ABD若AM MN +最小,则A 、因为11//CC DD ,截面为BDEF的面积为S对于C:直线AB与平面弦值,即cos BAM∠,如图所示:连接在正方体1111ABCD A B C D -中,结合同理可证11A D AC ⊥,因为1A D BD D ⋂=,所以1AC ⊥平面易知1A BD 是边长为22的等边三角形,其面积为123(22)234A BD S =⨯= ,周长为设E 、F 、Q 、N 、G 、H 分别是易知六边形EFQNGH 是边长为2正六边形EFQNGH 的周长为62,面积为则1A BD 的面积小于正六边形EFQNGH 故选:ABC.三、填空题:(本题共4小题,每小题【答案】4【详解】由在直角梯形则90DAB ∠=︒,则以设AB a =,设(,0)P x ,则B 故(,1),(,2)PC a x PD x =-=-所以2(23,4)PC PD a x +=- 当且仅当230a x -=即23x =即|2|PC PD +的最小值为【答案】15π【详解】由题图知2A=.由则由图象可知3ππ882K⎛⎫--=⎪⎝⎭又π84T<,所以π2T>.所以K【答案】39π27 4π【详解】解:由题意可知,当平面图所示,取DE的中点G,连接1A G,则△处,设BC的中点为2O,连接OO(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生比赛成绩的中位数(结果精确到(3)根据样本频率分布直方图,估计该校3000名学生中约有多少名学生能在公里马拉松比赛?a=【答案】(1)0.005(2)71.67(3)2250人【详解】(1)解:由频率分布直方图中所有矩形的面积之和为(1)求大学M与站A的距离AM;(2)求铁路AB段的长AB.【答案】(1)62km(2)302km由图可知,当[){}0,23a ∈ 时,直线因此,实数a 的取值范围是[(1)过Q作AB的垂面QEF,(2)当PQ与平面BCD所成最大角的正切值是值.【答案】(1)证明见解析;(2)155.⊥,AB(2)因为PQ AB=平面ABC⋂平面QEF EF由EF⊥平面ABM,EF⊂所以AB在平面BCD的射影是直线∠是直线PQ与平面BCDQPH由PH⊂平面BCD,得QH.。
2021-2022年高中数学必修三期末试卷带答案
一、选择题1.已知点(,)P x y 满足||||2x y +≤,则到坐标原点O 的距离1d ≤的点P 的概率为( ) A .16π B .8π C .4π D .2π 2.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是( )A .116B .18 C .38D .3163.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A .15B .625C .825D .254.在一个棱长为3cm 的正方体的表面涂上颜色,将其适当分割成棱长为1cm 的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是() A .49B .827C .29D .1275.执行如图所示的程序框图,输出a的值为118,则 的值可以是()A.0.06B.0.03C.0.2D.0.04 6.某程序框图如图所示,该程序运行后输出的S的值是( )A.1010 B.2019 C.2020 D.30307.若执行如图所示的程序框图,输出S的值为511,则输入n的值是()A .7B .6C .5D .48.若执行如图所示的程序框图,则输出S 的值为( )A .10072015B .10082017C .10092019D .101020219.2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象.在政府部门的牵头下,部分工厂转业生产口罩,下表为某小型工厂2-5月份生产的口罩数(单位:万) 月份x 2 3 4 5 口罩数y4.5432.5口罩数y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是0.7y x a =-+,则a 的值为( ) A .6.1B .5.8C .5.95D .6.7510.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是()A.成绩B.视力C.智商D.阅读量11.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是()A.抽样表明,该校有一半学生为阅读霸B.该校只有50名学生不喜欢阅读C.该校只有50名学生喜欢阅读D.抽样表明,该校有50名学生为阅读霸12.从8名女生4名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为()A .112种B .100种C .90种D .80种二、填空题13.在区间[2,4]-上随机地取一个实数x ,若实数x 满足||x m ≤的概率为23,则m =_______.14.如图,M 是半径为R 的圆周上一个定点,在圆周上等可能的任取一点N ,连接MN ,则弦MN 的长度不超过3R 的概率是__________.15.三位同学参加跳高、跳远、铅球项目的比赛.若每人只选择一个项目,则有且仅有 两人选择的项目完全相同的概率是 (结果用最简分数表示). 16.执行如图所示的程序框图,输出的值为__________.17.如图,运行伪代码所示的程序,则输出的结果是________.18.某程序流程框图如图所示,现执行该程序,输入下列函数()2sin3f x x π=, ()2cos3f x x π=,()4tan 3f x x π=,则可以输出的函数是()f x =__________.19.如图是某地区2018年12个月的空气质量指数以及相比去年同期变化幅度的数据统计图表,根据图表,下面叙述正确的是______.①2月相比去年同期变化幅度最小,3月的空气质量指数最高;②第一季度的空气质量指数的平均值最大,第三季度的空气质量指数的平均值最小;③第三季度空气质量指数相比去年同期变化幅度的方差最小;④空气质量指数涨幅从高到低居于前三位的月份为6、8、4月.20.现有10个数,其平均数为3,且这10个数的平方和是100,则这组数据的标准差是______.三、解答题21.新冠病毒肆虐全球,尽快结束疫情是人类共同的期待,疫苗是终结新冠疫情最有力的科技武器,为确保疫苗安全性和有效性,任何疫苗在投入使用前都要经过一系列的检测及临床试验,周期较长.我国某院士领衔开发的重组新冠疫苗在动物猕猴身上进行首次临床试验.相关试验数据统计如下:没有感染新冠病毒感染新冠病毒总计没有注射重组新冠疫苗10x A注射重组新冠疫苗20y B总计303060已知从所有参加试验的猕猴中任取一只,取到“注射重组新冠疫苗”猕猴的概率为5 12.(1)根据以上试验数据判断,能否有99.9%以上的把握认为“注射重组新冠疫苗”有效?(2)若从上述已感染新冠病毒的猕猴中任取三只进行病理分析,求至少取到两只注射了重组新冠疫苗的猕猴的概率.附:22(), ()()()()nad bcK n a b c da b a c c d b d-==+++++++()2P K k0.050.0100.0050.001k 3.841 6.6357.87910.82822.一工厂对某条生产线加工零件所花费时间进行统计,得到如下表的数据:零件数x(个)1020304050加工时间y(分钟)6268758288(1)从加工时间的五组数据中随机选择两组数据,求该两组数据中至少有一组数据小于加工时间的均值的概率;(2)若加工时间y与零件数x具有相关关系,求y关于x的回归直线方程;若需加工80个零件,根据回归直线预测其需要多长时间.(121()()()ˆni iiniix x y ybx x==--=-∑∑,^^a yb x=-)23.输入x,求函数y=32,22,2x xx-≥⎧⎨-<⎩的值的程序框图如图C1-7所示.(1)指出程序框图中的错误之处并写出正确的算法步骤.(2)重新绘制程序框图,并回答下面提出的问题.①要使输出的值为7,则输入的x的值应为多少?②要使输出的值为正数,则输入的x应满足什么条件?24.已知函数2()32,(3)(5)f x x x f f =--+-求的值,设计一个算法并画出算法的程序框图.25.某大学生利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价x 和销售量y 之间的一组数据如表所示:月份i 7 8 9 10 11 12 销售单价i x (元) 9 9.5 10 10.5 11 8.5 销售量i y (元)111086514y x(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过2件,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多元才能获得最大利润?(注:利润=销售收入-成本). 参考数据:51392i ii x y==∑,521502.5i i x ==∑.参考公式:回归直线方程ˆˆˆybx a =+,其中1221ˆni ii nii x y nx yb xnx ==-=-∑∑,ˆˆay bx =-. 26.某学校因为今年寒假延期开学,根据教育部的停课不停学指示,该学校组织学生线上教学,高一年级在线上教学一个月后,为了了解线上教学的效果,在线上组织了学生数学学科考试,随机抽取50名学生的成绩并制成频率分布直方图如图.(1)求m 的值并估计这50名学生的平均成绩;(2)估计高一年级所有学生数学成绩在[90,100)分与[)70,100分的学生所占的百分比.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】作出图象,得到点P 的坐标围成的图形是以原点为中心的边长为22正方形,到坐标原点O 的距离1d ≤的点P 围成的图形是以原点为圆心,半径为1的圆,由此利用几何概型能求出到坐标原点O 的距离1d ≤的点P 的概率. 【详解】点(),P x y 满足2x y +≤,∴当0x ≥,0y ≥时,2x y +≤;当0x ≥,0y ≤时,2x y -≤; 当0x ≤,0y ≥时,2x y -+≤; 当0x ≤,0y ≤时,2x y --≤. 作出图象,得到点P 的坐标围成的图形是以原点为中心的边长为2正方形,到坐标原点O 的距离1d ≤的点P 围成的图形是以原点为圆心,半径为1的圆,∴到坐标原点O 的距离1d ≤的点P 的概率为:282222S p S π===⨯圆正方形.故选:B . 【点睛】本题考查概率的求法,几何概型等基础知识,考查运算求解能力,是中档题.2.B解析:B 【分析】设阴影部分正方形的边长为a ,计算出七巧板所在正方形的边长,并计算出两个正方形的面积,利用几何概型概率公式可计算出所求事件的概率. 【详解】如图所示,设阴影部分正方形的边长为a ,则七巧板所在正方形的边长为22a ,由几何概型的概率公式可知,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率()2218a =,故选:B. 【点睛】本题考查几何概型概率公式计算事件的概率,解题的关键在于弄清楚两个正方形边长之间的等量关系,考查分析问题和计算能力,属于中等题.3.A解析:A 【分析】阳数:1,3,5,7,9,阴数:2,4,6,8,10,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率. 【详解】因为阳数:1,3,5,7,9,阴数:2,4,6,8,10,所以从阴数和阳数中各取一数差的绝对值有:5525⨯=个,满足差的绝对值为5的有:()()()()()1,6,3,8,5,10,7,2,9,4共5个,则51255P ==. 故选A. 【点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:P =目标事件的个数基本本事件的总个数.4.C解析:C 【分析】由在27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,根据古典概型及其概率的计算公式,即可求解. 【详解】由题意,在27个小正方体中,恰好有三个面都涂色有颜色的共有8个,恰好有两个都涂有颜色的共12个,恰好有一个面都涂有颜色的共6个,表面没涂颜色的1个,可得试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,所以所求概率为62279=. 故选:C . 【点睛】本题主要考查了古典概型及其概率的计算公式的应用,其中解答根据几何体的结构特征,得出基本事件的总数和所求事件所包含基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5.C解析:C 【分析】该程序是二分法求方程的近似解的方法,模拟执行程序框图,计算端点处的函数值,再由中点处的函数值,结合函数零点存在定理,即可得到所求值. 【详解】解:该程序是二分法求方程的近似根的方法, 由流程图可得()1120g =-<,()20f >,可得32m =,302f ⎛⎫< ⎪⎝⎭, 可得方程的根介于(1,2),进而介于31,2⎛⎫⎪⎝⎭,由52520416f ⎛⎫=-< ⎪⎝⎭,可得方程的根介于5(4,3)2, 由118m =,1112120864f ⎛⎫=-< ⎪⎝⎭,可得方程的根介于11(8,3)2,由31110.2288-=<,可得输出的值为118, 故选:C . 【点睛】本题主要考查了程序框图和算法的应用,模拟执行程序框图,考查二分法求方程近似值的方法,属于基础题.6.D解析:D 【分析】模拟程序框图的运行过程,得出该程序运行后输出的算式S 是求数列的和,且数列每四项和是定值,由此得出S 的值. 【详解】模拟程序框图的运行过程,得出该程序运行后输出的算式: 由于cos,42xy T π==,且循环数为0,-1,0,1123420132014201520162017201820192020...+++++++(01210141)+...+(0+1201410120161)(01201810120201)S a a a a a a a a a a a a =++++=+-+++++-+++++++-+++++20206=30304=⨯故选:D 【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理,数学运算的能力,属于中档题. 7.C解析:C 【分析】将所有的算法循环步骤列举出来,得出5i =不满足条件,6i =满足条件,可得出n 的取值范围,从而可得出正确的选项. 【详解】110133S =+=⨯,112i =+=; 2i n =>不满足,执行第二次循环,1123355S =+=⨯,213i =+=; 3i n =>不满足,执行第三次循环,2135577S =+=⨯,314i =+=; 4i n =>不满足,执行第四次循环,3147799S =+=⨯,415i =+=; 5i n =>不满足,执行第五次循环,415991111S =+=⨯,516i =+=; 6i n =>满足,跳出循环体,输出S 的值为511,所以,n 的取值范围是56n ≤<.因此,输入的n 的值为5,故选C. 【点睛】本题考查循环结构框图的条件的求法,解题时要将算法的每一步列举出来,结合算法循环求出输入值的取值范围,考查分析问题和推理能力,属于中等题.8.C解析:C 【解析】 【分析】首先确定流程图的功能为计数111113355720172019S =++++⨯⨯⨯⨯的值,然后利用裂项求和的方法即可求得最终结果. 【详解】由题意结合流程图可知流程图输出结果为111113355720172019S =++++⨯⨯⨯⨯,11(2)111(2)2(2)22n n n n n n n n +-⎛⎫=⨯=- ⎪+++⎝⎭,111113355720172019S ∴=++++⨯⨯⨯⨯11111111123355720172019⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1110091220192019⎛⎫=-=⎪⎝⎭.本题选择C 选项. 【点睛】识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.9.C解析:C 【分析】求得 3.5x y ==,得到样本中心点(3.5,3.5),再把样本中心点代入回归直线方程得解. 【详解】由表可得 3.5x y ==,带入线性回归方程中有 3.50.7 3.5 5.95=+⨯=a , 故选:C . 【点睛】本题考查利用线性相关关系求回归直线方程,属于基础题.10.D解析:D 【解析】试题分析:由表中数据可得 表1:()25262210140.00916362032K ⨯⨯-⨯=≈⨯⨯⨯;表2: ()2524201216 1.76916362032K ⨯⨯-⨯=≈⨯⨯⨯;表3: ()252824128 1.316362032K ⨯⨯-⨯=≈⨯⨯⨯;表4: ()25214302623.4816362032K ⨯⨯-⨯=≈⨯⨯⨯.其中23.48最大,所以阅读量与性别有关联的可能性最大.故D 正确. 考点:独立性检验.11.A解析:A 【分析】根据频率分布直方图得到各个时间段的人数,进而得到结果. 【详解】根据频率分布直方图可列下表:故选A.【点睛】这个题目考查了频率分布直方图的实际应用,以及样本体现整体的特征的应用,属于基础题.12.A解析:A 【解析】分析:根据分层抽样的总体个数和样本容量,做出女生和男生各应抽取的人数,得到女生要抽取2人,男生要抽取1人,根据分步计数原理得到需要抽取的方法数. 详解:∵8名女生,4名男生中选出3名学生组成课外小组, ∴每个个体被抽到的概率是14, 根据分层抽样要求,应选出8×14=2名女生,4×14=1名男生, ∴有C 82•C 41=112. 故答案为:A .点睛:本题主要考查分层抽样和计数原理,意在考查学生对这些知识的掌握水平.二、填空题13.2【分析】画出数轴利用满足的概率可以求出的值即可【详解】如图所示区间的长度是6在区间上随机地取一个数若满足的概率为则有解得故答案是:2【点睛】该题考查的是有关长度型几何概型的问题涉及到的知识点有长度解析:2 【分析】画出数轴,利用x 满足||x m ≤的概率,可以求出m 的值即可. 【详解】 如图所示,区间[2,4]-的长度是6,在区间[2,4]-上随机地取一个数x , 若x 满足||x m ≤的概率为23, 则有2263m =,解得2m =, 故答案是:2. 【点睛】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.14.【分析】先根据题意先找出弦的长度不超过对应的点其构成的区域是点M 两侧各圆周既而求得概率【详解】根据题意满足条件弦的长度不超过对应的点其构成的区域是点M 两侧各圆周所以弦MN 的长度不超过的概率是故答案为解析:23【分析】先根据题意,先找出弦MN 对应的点,其构成的区域是点M 两侧各13圆周,既而求得概率. 【详解】根据题意,满足条件“弦MN ”对应的点,其构成的区域是点M 两侧各13圆周,所以弦MN 的概率是23P = 故答案为23【点睛】本题主要考查了几何概型的意义,关键是找出满足条件弦MN 的图形测度,再带入公式求解.15.【详解】每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球三个同学共有3×3×3=27种有且仅有两人选择的项目完全相同有种其中表示3个同学中选2个同学选择的项目表示从三种组合中选一个表示剩下的解析:23【详解】每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球三个同学共有3×3×3=27种,有且仅有两人选择的项目完全相同有21133218C C C ⨯⨯=种,其中23C 表示3个同学中选2个同学选择的项目,13C 表示从三种组合中选一个,12C 表示剩下的一个同学有2中选择,故有且仅有两人选择的项目完全相同的概率是182273=. 考点:古典概型及其概率计算公式.16.【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件即可得到输出的的值【详解】输入第一次循环;第二次循环;第三次循环;第四次循环;第五次循环;第六次循环退出循环输出故答案为 解析:42【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的S 的值. 【详解】输入0,2,1S a i ===, 第一次循环,2,4,2S a i ===; 第二次循环,6,6,3S a i ===; 第三次循环,12,8,4S a i ===; 第四次循环,20,10,5S a i ===; 第五次循环,30,12,6S a i ===; 第六次循环,42,14,7S a i ===, 退出循环,输出42S =,故答案为42. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.17.34【解析】由题设循环体要执行3次第一次循环结束后第二次循环结束后;第三次循环结束后;故答案为34点睛:本题考查循环结构解决此题关键是理解其中的算法结构与循环体执行的次数然后依次计算得出结果;由于的解析:34 【解析】由题设循环体要执行3次, 第一次循环结束后3a a b =+=,5b a b =+=,2i = 第二次循环结束后8a a b =+=,13b a b =+=,4i =;第三次循环结束后21a a b =+=,34b a b =+=,6i =;故答案为34.点睛:本题考查循环结构,解决此题关键是理解其中的算法结构与循环体执行的次数,然后依次计算得出结果;由于a b ,的初值是12,,故在第一次循环中,3a a b =+=,5b a b =+=,计数变量从2开始,以步长为2的速度增大到6,故程序中的循环体可以执行3次,于是可以逐步按规律计算出a 的值.18.【分析】根据得知函数的图象关于点对称由可得知函数的周期为于此可在题中三个函数中找出合乎条件的函数作出输出结果【详解】可知函数的图象关于点对称由得所以函数的周期为由三角函数的周期公式可知函数和的最小正解析:()2cos 3f x x π=. 【分析】根据()302f x f x ⎛⎫+--= ⎪⎝⎭得知函数()y f x =的图象关于点3,04⎛⎫- ⎪⎝⎭对称,由()f x + 302f x ⎛⎫+= ⎪⎝⎭可得知函数()y f x =的周期为3,于此可在题中三个函数中找出合乎条件的函数作出输出结果. 【详解】()302f x f x ⎛⎫+--= ⎪⎝⎭,可知函数()y f x =的图象关于点3,04⎛⎫- ⎪⎝⎭对称,由()302f x f x ⎛⎫++=⎪⎝⎭,得()3322f x f x f x ⎛⎫⎛⎫+=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数()y f x =的周期为3.由三角函数的周期公式可知,函数()2sin3f x x π=和()2cos 3f x x π=的最小正周期为3,函数()4tan3f x x π=的最小正周期为34,不合乎要求; 对于函数()2sin 3f x x π=,323sin sin 04342f ππ⎡⎤⎛⎫⎛⎫-=⨯-=-≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;对于函数()2cos3f x x π=,323cos cos 04342f ππ⎡⎤⎛⎫⎛⎫⎛⎫-=⨯-=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,合乎题意. 所以,函数()2cos3f x x π=的图象关于点3,04⎛⎫- ⎪⎝⎭对称, 故输出的函数为()2cos 3f x x π=,故答案为()2cos 3f x x π=. 【点睛】本题考查程序框图,考查三角函数的周期性和对称性,能根据抽象函数关系式得出函数的基本性质,是解本题的关键,属于中等题.19.①②③【分析】根据折线的变化率得到相比去年同期变化幅度、升降趋势逐一验证即可【详解】根据折现统计图可得2月相比去年同期变化幅度最小3月的空气质量指数最高故①正确;第一季度的空气质量指数的平均值最大第解析:①②③ 【分析】根据折线的变化率,得到相比去年同期变化幅度、升降趋势,逐一验证即可. 【详解】根据折现统计图可得,2月相比去年同期变化幅度最小,3月的空气质量指数最高,故①正确;第一季度的空气质量指数的平均值最大,第三季度的空气质量指数的平均值最小,故②正确;第三季度空气质量指数相比去年同期变化幅度的方差最小,故③正确; 空气质量指数涨幅从高到低居于前三位的月份为6、8、9月,故④错误, 故答案为:①②③. 【点睛】本题考查条形统计图和折线图的应用,重点考查数据分析,从表中准确获取信息是关键,属于中档题型.20.1【解析】【分析】设这10个数为则这组数据的方差为:由此能求出这组数据的标准差【详解】现有10个数其平均数为3且这10个数的平方和是100设这10个数为则这组数据的方差为:这组数据的标准差故答案为1解析:1 【解析】 【分析】设这10个数为1x ,2x ,3x ,⋯,10x ,则12310310x x x x +++⋯+=,222212310100x x x x +++⋯+=,这组数据的方差为:()()22222222212310123101231011[()()())69101010S x x x x x x x x x x x x x x x x ⎛⎤⎤⎡=-+-+-+⋯+-=+++⋯+-+++⋯++⨯ ⎥⎥⎢⎦⎣⎝⎦,由此能求出这组数据的标准差. 【详解】现有10个数,其平均数为3,且这10个数的平方和是100, 设这10个数为1x ,2x ,3x ,⋯,10x , 则12310310x x x x +++⋯+=,222212310100x x x x +++⋯+=,∴这组数据的方差为:()()22222222212310123101231011[()()())691011010S x x x x x x x x x x x x x x x x ⎛⎤⎤⎡=-+-+-+⋯+-=+++⋯+-+++⋯++⨯= ⎥⎥⎢⎦⎣⎝⎦,∴这组数据的标准差1S =.故答案为1. 【点睛】本题考查一组数据的标准差的求法,考查平均数、方差等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.三、解答题21.(1)有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)13203. 【分析】(1)先求出,x y ,再根据独立性检验可得结论;(2)由组合的应用和古典概率公式可求得其概率. 【详解】 (1)由题知2056012y +=,即5y =,∴25x =,35A =,25B =, ∴2260(1052520)10815.42910.828352530307K ⨯⨯-⨯==≈>⨯⨯⨯,故有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)由题知试验样本中已感染新冠病毒的猕猴有30只,其中注射了重组新冠疫苗的猕猴有5只,则213525533013203C C C P C +==. 【点睛】本题考查补全列联表,独立性检验,以及组合的应用和古典概率公式,求解时注意“至少”,“至多”等,属于中档题. 22.(1)710(2)108分钟. 【分析】(1)利用列举法和古典概型的概率公式计算可得;(2)根据公式计算可得回归方程,根据回归公式计算可得答案. 【详解】 解:(1)6268758288755y ++++==记:“两组数据中至少有一组数据小于加工时间的均值” 为事件A ,基本事件:(62,68),(62,75),(62,82),(62,88),(68,75),(68,82),(68,88),(75,82),(75,88),(82,88)共10种,其中事件A :(62,68),(62,75),(62,82),(62,88),(68,75),(68,82),(68,88)共7个,所以7()10P A =. (2)由题,1020304050305x ++++==,()5214001001004001000i i x x =-=+++=∑()()5126070070260660iii x x y y =--=++++=∑()()()121ˆ0.66,niii nii x x y y bx x ==--==∴-∑∑ˆˆ55.2a y bx=-= 所以回归方程为ˆ0.6655.2yx =+.80x =时,ˆ0.668055.2108yx =⨯+=,即预测其加工80个零件需要108分钟. 【点睛】本题考查了利用列举法和古典概型概率公式计算概率,考查了求线性回归方程,考查了运算求解能力,属于中档题.23.见解析【分析】⑴因为函数32? 22,?2x x y x -≥⎧=⎨-<⎩,故程序框图中的错误之处在于当2x <时,程序框图没有求出y 的值,根据条件即可重新绘制解决该问题的程序框图⑵①要使输出的值为7,则327x -=,解出即可②要使输出的值为正数,则 2320? x x ≥⎧⎨->⎩,解出即可得到答案 【详解】(1)函数y =是分段函数,其程序框图中应该有判断框,应该有条件结构,不应该只用顺序结构.正确的算法步骤如下所示:第一步,输入x .第二步,判断 2x ≥是否成立.若是,则32y x =-;否则2y =-.第三步,输出y.(2)根据(1)中的算法步骤,可以画出程序框图如图所示.①要使输出的值为7,则327x =-,故3x =,即输入的x 的值应为3.②要使输出的值为正数,则 2320?x x ≥⎧⎨->⎩得 2x ≥.故当 2x ≥时,输出的值为正数.【点睛】本题主要考查的是程序框图和算法,理解程序图和算法才能找出错误并加以修改,属于基础题.24.见解析【解析】试题分析:根据已知的函数解析式,分别令自变量为3,5-,并将其代入函数解析式求出各函数值,最后累加各个函数值,并输出,利用顺序结构可得算法及流程图.试题第一步:求()3f 的值.第二步:求()5f -的值.第三步:将前两步的结果相加,存入y .第四步:输出y 的值.所求程序框图如下:25.(1) 3.240ˆyx =-+;(2)可以认为所得的回归直线方程是理想的;(3)该产品的销售单价为7.5元/件时,获得的利润最大.【分析】(1)计算x 、y ,求出回归系数,写出回归直线方程;(2)根据回归直线方程,计算对应的数值,判断回归直线方程是否理想;(3)求销售利润函数W ,根据二次函数的图象与性质求最大值即可.【详解】(1)因为1(99.51010.511)105x =++++=,1(1110865)85y =++++=,所以23925108ˆ 3.2502.5510b -⨯⨯==--⨯,则8( 3.2)00ˆ14a =--⨯=, ∴y 关于x 的回归直线方程为 3.240ˆyx =-+ (2)剩余数据为12月份,此时8.5x =,14y =,现进行检测,当8.5x =时, ˆ 3.28.54012.8y=-⨯+=,则ˆ||12.814 1.22y y -=-=<,所以可以认为所得的回归直线方程是理想的.(3)令销售利润为W ,则22( 2.5)( 3.240) 3.248100 3.2(7.5)80W x x x x x =--+=-+-=--+.x=时,W取最大值.∴当7.5所以该产品的销售单价为7.5元/件时,获得的利润最大.【点睛】函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系,如果线性相关,则直接根据x y.用公式求,a b,写出回归方程,回归直线方程恒过点(,)m=;76.2;(2)16%;70%.26.(1)0.016【分析】(1)由频率分布直方图的性质,求得m,再利用频率分布直方图的平均数计算公式求得50名学生的平均成绩.(2)由频率分布直方图计算[90,100)这一组的频率即可;[70,100)计算三组的频率和即可.【详解】(1)由频率分布直方图性质可得,(0.0040.0060.0200.0240.030)101+++++⨯=,得0.016mm=,设平均成绩为x,x=⨯+⨯+⨯+⨯+⨯+⨯=∴.0.04450.06550.2650.3750.24850.169576.2⨯=(2)由频率分布直方图可估计在[90,100)分的学生所占总体百分比为0.016100.16++⨯=,即为即为16%,[70,100)分的学生所占的百分比(0.0300.0240.016)100.770%.【点睛】本题主要考查频率分布直方图的性质.。
2021-2022高中数学必修三期末试卷(带答案)
一、选择题1.从单词“book ”的四个字母中任取2个,则取到的2个字母不相同的概率为( )A .13B .12C .23D .342.已知sin y x =,在区间[],ππ-上任取一个实数x ,则y ≥12-的概率为( ) A .712B .23C .34D .563.若数列{a n }满足a 1=1,a 2=1,a n +2=a n +a n +1,则称数列{a n }为斐波那契数列,斐波那契螺旋线是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形中画一个圆心角为90°的扇形,连起来的弧线就是斐波那契螺旋线,如图所示的7个正方形的边长分别为a 1,a 2,…,a 7,在长方形ABCD 内任取一点,则该点不在任何一个扇形内的概率为( )A .1103156π-B .14π-C .17126π-D .681237π-4.已知0.5log 5a =、3log 2b =、0.32c =、212d ⎛⎫= ⎪⎝⎭,从这四个数中任取一个数m ,使函数()32123x mx x f x =+++有极值点的概率为( ) A .14B .12C .34D .15.执行如图所示的程序框图输出的结果是( )A .8B .6C .5D .36.执行如图所示的程序框图,输出S 的值为( )A .1-B .0C .1D .27.如图所给的程序运行结果为41S =,那么判断框中应填入的关于k 的条件是( )A .7k ≥?B .6k ≥?C .5k ≥?D .6k >?8.执行如图所示的程序框图,输出S 的值等于( )A .1111238+++⋅⋅⋅+ B .1111237+++⋅⋅⋅+ C .11111237+++++ D .11111238++++⋅⋅⋅+ 9.下表是某两个相关变量x ,y 的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆ0.70.35yx =+,那么表中t 的值为( ) x 3 4 5 6 y2.5t44.5A .3B .3.15C .3.5D .4.510.图1是某学习小组学生数学考试成绩的茎叶图,1号到16号的同学的成绩依次为1A ,216,,A A ⋯,图2是统计茎叶图中成绩在一定范围内的学生情况的程序框图,那么该程序框图输出的结果是( )A .10B .6C .7D .1611. 2.5PM 是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即 2.5PM 日均值在335/g m μ以下空气质量为一级,在335~75/g m μ空气量为二级,超过375/g m μ为超标.如图是某地12月1日至10日的 2.5PM (单位:3/g m μ)的日均值,则下列说法不正确...的是( )A .这10天中有3天空气质量为一级B .从6日到9日 2.5PM 日均值逐渐降低C .这10天中 2.5PM 日均值的中位数是55D .这10天中 2.5PM 日均值最高的是12月6日 12.已知x ,y 的取值如表: x 2 6 7 8y若x ,y 之间是线性相关,且线性回归直线方程为,则实数a 的值是A .B .C .D .二、填空题13.有一个底面半径为2,高为2的圆柱,点1O ,2O 分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P ,则点P 到点1O 或2O 的距离不大于1的概率是________.14.高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A 的概率分别为56、78、34,这三门科目考试成绩的结果互不影响,则这位考生至少得1个A 的概率为____15.过点(0,0)O 作直线与圆22(45)(8)169x y -+-=相交,则在弦长为整数的所有直线中,等可能的任取一条直线,则弦长长度不超过14的概率为______________. 16.某程序框图如图所示,则该程序运行后输出的S 值是_____________.17.如图是某算法流程图,则程序运行后输出S 的值为____.18.运行如图所示的程序框图,则输出的所有y值之和为___________.19.某超市统计了一个月内每天光顾的顾客人数,得到如图所示的频率分布直方图,根据该图估计该组数据的中位数为__________.20.某种活性细胞的存活率y(%)与存放温度x(℃)之间具有线性相关关系,样本数据如下表所示存放温度x(℃)104-2-8存活率y(%)20445680经计算得回归直线方程的斜率为-3.2,若存放温度为6℃,则这种细胞存活的预报值为_____%.三、解答题21.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15︒,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?22.学校从参加高一年级期中考试的学生中抽出50名学生,并统计了她们的数学成绩(成绩均为整数且满分为150分),数学成绩分组及各组频数如下:[)[)[)[)[)[]60,75,2;75,90,3;90,105,14;105,120,15;120,135,12;135,150,4;样本频率分布表:分组频数频率[)60,7520.04[)75,9030.06[)90,105140.28[)105,120150.30[)120,135A B[]135,15040.08合计C DA B C D的值;(1)在给出的样本频率分布表中,求,,,(2)估计成绩在120分以上(含120分)学生的比例;(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在[]60,75中的某一位同学.已知甲同学的135,150的学生中选两位同学,共同帮助成绩在[)成绩为62分,乙同学的成绩为120分,求甲、乙两同学恰好被安排在同一小组的概率.1,2上的近似根的算法.(近似根与精确解的差23.用二分法设计一个求方程230x-=在[]的绝对值不超过0.0005)24.某算法框图如图所示.(1)求函数()y f x =的解析式及7[()]6f f -的值;(2)若在区间[2,2]-内随机输入一个x 值,求输出y 的值小于0的概率.25.两台机床同时生产直径为10的零件,为了检验产品质量,质量质检员从两台机床的产品中各抽取4件进行测量,结果如下: 机床甲109.81010.2机床乙10.1109.910如果你是质量检测员,在收集到上述数据后,你将通过怎样的运算来判断哪台机床生产的零件质量更符合要求.26.如表为某中学近5年被卓越大学联盟录取的学生人数.记2015年的年份序号为1,2016年的年份序号为2,…,2019年的年份序号为5. 年份序号x 1 2 3 4 5 录取人数y100130170200250(1)求y 关于x 的线性回归方程,并估计2020年该中学被卓越大学联盟录取的学生人数.(2)若在2015年和2019年被卓越大学联盟录取的学生中分层抽样7人,再从这7人中任选2人,求这2人恰好来自同一年份的概率.参考数据:521ii x=∑=55,51i ii x y =∑=2920.参考公式:b =1221ni ii nii x ynx y xnx ==--∑∑,a y bx =-【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】从四个字母中取2个,列举出所有的基本事件,即得所求的概率. 【详解】从四个字母中取2个,所有的基本事件为:,,,bo bk oo ok ,共有4个; 其中“取到的2个字母不相同”含有,,bo bk ok 3个, 故所求概率为34. 故选:D. 【点睛】本题考查古典概型,属于基础题.2.B解析:B 【分析】 求出满足12y ≥-的角x 的范围,由长度比,即可得到该几何概型的概率. 【详解】1sin ,[,]2y x x ππ=≥-∈-,5[,][,]66x ππππ∴∈--⋃-, 则满足12y ≥-的概率为: 5()()266()3P ππππππ---+--==--.故选:B. 【点睛】本题考查了三角不等式的求解,几何概型的计算,属于中档题.3.D解析:D 【分析】由题意求得数列{}n a 的前8项,求得长方形ABCD 的面积,再求出6个扇形的面积和,由测度比是面积比得答案. 【详解】由题意可得,数列{}n a 的前8项依次为:1,1,2,3,5,8,13,21.∴长方形ABCD 的面积为1321273⨯=.6个扇形的面积之和为222222(1235813)684ππ+++++=.∴所求概率681273P π=-. 故选:D . 【点睛】本题考查几何概型概率的求法,考查扇形面积公式的应用,是基础题.4.B解析:B 【分析】求出函数的导数,根据函数的极值点的个数求出m 的范围,通过判断a ,b ,c ,d 的范围,得到满足条件的概率值即可. 【详解】f ′(x )=x 2+2mx +1, 若函数f (x )有极值点, 则f ′(x )有2个不相等的实数根, 故△=4m 2﹣4>0,解得:m >1或m <﹣1,而a =log 0.55<﹣2,0<b =log 32<1、c =20.3>1,0<d =(12)2<1, 满足条件的有2个,分别是a ,c , 故满足条件的概率p 2142==, 故选:B . 【点睛】本题考查了函数的单调性、极值问题,考查导数的应用以及对数、指数的性质,是一道中档题.5.A解析:A 【分析】根据程序框图循环结构运算,依次代入求解即可.【详解】根据程序框图和循环结构算法原理,计算过程如下:1,1,x y z x y ===+第一次循环2,1,2z x y === 第二次循环3,2,3z x y === 第三次循环5,3,5z x y ===第四次循环8z =,退出循环输一次8z =. 所以选A 【点睛】本题考查了程序框图的基本结构和运算,主要是掌握循环结构在何时退出循环结构,属于基础题.6.C解析:C 【分析】 由函数()πsin2xf x =,可求周期为4,()(1)(2)(3)40+++=f f f f ,由题意可知()(1)(2)(2021)=2021(1)1=+++==S f f f f f【详解】由函数()πsin 2x f x =的周期为2π4π2T ==, ()π1sin 12f ==,()2π2sin 02f ==,()3π3sin12f ==-,()4π4sin 02f ==,()(1)(2)(3)40+++=f f f f ()(1)(2)(2021)=2021(1)1∴=+++==S f f f f f .故选:C 【点睛】本题考查了程序框图求和,正弦型三角函数的周期等基本知识,考查了运算求解能力和逻辑推理能力,属于一般题目.7.B解析:B 【分析】程序运行结果为41S =,执行程序,当6k =时,判断条件成立,当5k =时,判断条件不成立,输出41S =,即可选出答案. 【详解】根据程序框图,运行如下: 初始10,1k S ==,判断条件成立,得到11011S =+=,1019k =-=; 判断条件成立,得到11920S =+=,918k =-=; 判断条件成立,得到20828S =+=,817k =-=; 判断条件成立,得到28735S =+=,716k =-=; 判断条件成立,得到35641S =+=,615k =-=; 判断条件不成立,输出41S =,退出循环,即6k ≥符合题意. 故选:B. 【点睛】本题考查了程序框图的识别与判断,弄清进入循环体和跳出循环体的条件是解决本题的关键,考查了学生的推理能力,属于基础题.8.C解析:C 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的,k S 的值,当8k 时不满足条件8k <,退出循环,输出S 的值为11111237S +++=++,即可得解. 【详解】模拟执行程序框图,可得1,1k S ==, 执行循环体,11,2S k =+=, 满足条件18,11,32k S k <=++=; 满足条件118,11,423k S k <=+++=; …观察规律可知,当7k =时,满足条件,11111,8237S k ++++=+=; 此时,不满足条件8k <,退出循环,输出11111237S +++=++. 故选C . 【点睛】本题主要考查了循环结构的程序框图,解题时应模拟程序框图的运行过程,即可得出正确的结论,着重考查了推理与运算能力,属于基础题.9.A解析:A 【分析】计算得到 4.5x =,114t y +=,代入回归方程计算得到答案. 【详解】3456 4.54x +++==, 2.54 4.51144t t y ++++==,中心点(),x y 过ˆ0.70.35yx =+, 即114.50.70.354t +=⨯+,解得3t =. 故选:A . 【点睛】本题考查了回归方程的相关问题,意在考查学生的计算能力.10.A解析:A 【分析】先弄清楚程序框图中是统计成绩不低于90分的学生人数,然后从茎叶图中将不低于90分的个数数出来,即为输出的结果. 【详解】176A =,1i =,16i ≤成立,190A ≥不成立,112i =+=; 279A =,2i =,16i ≤成立,290A ≥不成立,112i =+=;792A =,7i =,16i ≤成立,790A ≥成立,011n =+=,718i =+=;依此类推,上述程序框图是统计成绩不低于90分的学生人数,从茎叶图中可知,不低于90分的学生数为10,故选A . 【点睛】本题考查茎叶图与程序框图的综合应用,理解程序框图的意义,是解本题的关键,考查理解能力,属于中等题.11.C解析:C 【分析】认真观察题中所给的折线图,对照选项逐一分析,求得结果. 【详解】这10天中第一天,第三天和第四天共3天空气质量为一级,所以A 正确; 从图可知从6日到9日 2.5PM 日均值逐渐降低,所以B 正确; 从图可知,这10天中 2.5PM 日均值最高的是12月6日,所以D 正确; 由图可知,这10天中 2.5PM 日均值的中位数是4145432+=,所以C 不正确; 故选C. 【点睛】该题考查的是有关利用题中所给的折线图,描述对应变量所满足的特征,在解题的过程中,需要逐一对选项进行分析,正确理解题意是解题的关键.12.B解析:B 【解析】 【分析】根据所给的两组数据,做出横标和纵标的平均数,写出这组数据的样本中心点,根据线性回归方程一定过样本中心点,得到线性回归直线一定过的点的坐标. 【详解】 根据题意可得,,由线性回归方程一定过样本中心点,.故选:B . 【点睛】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题.二、填空题13.【分析】本题利用几何概型求解先根据到点的距离等于1的点构成图象特征求出其体积最后利用体积比即可得点到点的距离不大于1的概率;【详解】解:由题意可知点P 到点或的距离都不大于1的点组成的集合分别以为球心解析:16【分析】本题利用几何概型求解.先根据到点的距离等于1的点构成图象特征,求出其体积,最后利用体积比即可得点P 到点1O ,2O 的距离不大于1的概率; 【详解】解:由题意可知,点P 到点1O 或2O 的距离都不大于1的点组成的集合分别以1O 、2O 为球心,1为半径的两个半球,其体积为314421233ππ⨯⨯⨯=,又该圆柱的体积为22228V r h πππ==⨯⨯=,则所求概率为41386P ππ==.故答案为:16【点睛】本题主要考查几何概型、圆柱和球的体积等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.关键是明确满足题意的测度为体积比.14.【分析】先求对立事件概率:三门科目考试成绩都不是A 再根据对立事件概率关系求结果【详解】这位考生三门科目考试成绩都不是A 的概率为所以这位考生至少得1个A 的概率为故答案为:【点睛】本题考查利用对立事件求 解析:191192【分析】先求对立事件概率:三门科目考试成绩都不是A ,再根据对立事件概率关系求结果. 【详解】这位考生三门科目考试成绩都不是A 的概率为5731(1)(1)(1)684192---=, 所以这位考生至少得1个A 的概率为11911192192-= 故答案为:191192【点睛】本题考查利用对立事件求概率,考查基本分析求解能力,属基础题.15.【分析】根据圆的性质可求得最长弦和最短弦的长度从而得到所有弦长为整数的直线条数从中找到长度不超过的直线条数根据古典概型求得结果【详解】由题意可知最长弦为圆的直径:在圆内部且圆心到的距离为最短弦长为: 解析:932【分析】根据圆的性质可求得最长弦和最短弦的长度,从而得到所有弦长为整数的直线条数,从中找到长度不超过14的直线条数,根据古典概型求得结果. 【详解】由题意可知,最长弦为圆的直径:221326r =⨯=()0,0O 在圆内部且圆心到O 12=∴最短弦长为:210=∴弦长为整数的直线的条数有:()22510232⨯-+=条其中长度不超过14的条数有:()2141019⨯-+=条∴所求概率:932p =本题正确结果:932【点睛】本题考查古典概型概率问题的求解,涉及到过圆内一点的最长弦和最短弦的长度的求解;易错点是忽略圆的对称性,造成在求解弦长为整数的直线的条数时出现丢根的情况.16.【分析】按照程序框图运行程序可确定输出结果利用裂项相消法可求得结果【详解】由程序框图运行程序输入则循环;循环;……输出结果故答案为:【点睛】本题考查根据程序框图计算输出结果涉及到裂项相消法求和的问题 解析:20152016【分析】按照程序框图运行程序可确定输出结果111122320152016S =++⋅⋅⋅+⨯⨯⨯,利用裂项相消法可求得结果. 【详解】由程序框图运行程序,输入1k =,0S = 则112S =⨯,2k =,循环;111223S =+⨯⨯,3k =,循环;……111122320152016S =++⋅⋅⋅+⨯⨯⨯,2016k =,输出结果 11111111112232015201622320152016S ∴=++⋅⋅⋅+=-+-+⋅⋅⋅+-⨯⨯⨯12015120162016=-=故答案为:20152016【点睛】本题考查根据程序框图计算输出结果,涉及到裂项相消法求和的问题,属于基础综合题.17.41【分析】根据给定的程序框图计算逐次循环的结果即可得到输出的值得到答案【详解】由题意运行程序框图可得第一次循环不满足判断框的条件;第二次循环不满足判断框的条件;第三次循环不满足判断框的条件;第四次解析:41 【分析】根据给定的程序框图,计算逐次循环的结果,即可得到输出的值,得到答案. 【详解】由题意,运行程序框图,可得第一次循环,1n =,不满足判断框的条件,1415S =+⨯=; 第二次循环,2n =,不满足判断框的条件,54213S =+⨯=; 第三次循环,3n =,不满足判断框的条件,134325S =+⨯=; 第四次循环,4n =,不满足判断框的条件,254441S =+⨯=; 第五次循环,5n =,满足判断框的条件,输出41S =, 故答案为41. 【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处理框、判断框的功能,不可混用,着重考查了分析问题和解答问题的能力,属于基础题.18.【解析】【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件即可得到所有输出的的值然后求和即可【详解】输入第一次循环;第二次循环;第三次循环;第四次循环;退出循环可得所有值 解析:10【解析】 【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到所有输出的y 的值,然后求和即可. 【详解】 输入2n =-,第一次循环,8,1y n ==-; 第二次循环,3,0y n ==; 第三次循环,0,1y n ==; 第四次循环,1,2y n =-=; 退出循环,可得所有y 值之和为830110++-=,故答案为10. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.19.75【解析】分析:由频率分布直方图算出各频率然后计算中位数详解:由图可知的频率为的频率为的频率为的频率为的频率为前两组频率前三组频率中位数在第三组设中位数为则解得故该组数据的中位数为点睛:本题考查了解析:75. 【解析】分析:由频率分布直方图算出各频率,然后计算中位数 详解:由图可知,10~20的频率为0.1420~30的频率为0.24 30~40的频率为0.32 40~50的频率为0.2 50~60的频率为0.1前两组频率0.140.240.380.5=+=< 前三组频率0.140.240.320.70.5=++=>∴中位数在第三组设中位数为x ,则()300.380.320.510x -+⨯=解得33.75x =故该组数据的中位数为33.75点睛:本题考查了在频率分布直方图中求中位数,此类题目需要先确定中位数所在的组,然后根据公式计算求得结果,较为基础.20.34【解析】分析:根据表格中数据求出代入公式求得的值从而得到回归直线方程将代入回归方程即可得到结果详解:设回归直线方程由表中数据可得代入归直线方程可得所以回归方程为当时可得故答案为点睛:求回归直线方解析:34 【解析】分析:根据表格中数据求出,x y ,代入公式求得a 的值,从而得到回归直线方程,将6x =代入回归方程即可得到结果.详解:设回归直线方程3,ˆ2yx a =-+, 由表中数据可得1,50x y ==, 代入归直线方程可得53.2a =,所以回归方程为3,253.ˆ2yx =-+ 当6x =时,可得 3.2653.4ˆ23y=-⨯+=,故答案为34. 点睛:求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算211,,,nniiii i x y x x y==∑∑的值;③计算回归系数,a b ;④写出回归直线方程为ˆy bx a =+;回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.三、解答题21.乙商场中奖的可能性大. 【解析】试题分析:分别计算两种方案中奖的概率.先记出事件,得到试验发生包含的所有事件,和符合条件的事件,由等可能事件的概率公式得到. 试题如果顾客去甲商场,试验的全部结果构成的区域为圆盘的面积2R π,阴影部分的面积为224153606R R ππ⨯=,则在甲商场中奖的概率为212166R P R ππ==; 如果顾客去乙商场,记3个白球为1a ,2a ,3a ,3个红球为1b ,2b ,3b ,记(x ,y )为一次摸球的结果,则一切可能的结果有:()12,a a ,()13,a a ,()11,a b ,()12,a b ,()13,a b ,()23,a a ,()21,a b ,()22,a b ,()23,a b ,()31,a b ,()32,a b ,()33,a b ,()12,b b ,()13,b b ,()23,b b ,共15种, 摸到的是2个红球有()12,b b ,()13,b b ,()23,b b ,共3种,则在乙商场中奖的概率为231155P ==, 又12p p <,则购买该商品的顾客在乙商场中奖的可能性大. 22.(1)1250,12,,150C A BD ====;(2)0.32;(3)14P =.【解析】分析:(1)由样本频率分布表,能求出A ,B ,C ,D 的值.(2)由频率分布表能估计成绩在120分以上(含120分)的学生比例.(3)成绩在[60,75)内有2人,记为甲、A ,成绩在[135,150]内有4人,记为乙,B ,C ,D ,由此利用列举法能求出甲、乙同学恰好被安排在同一小组的概率. 详解:(1)由样本频率分布表,得:1250,12,,150C A BD ====. (2)估计成绩在以上120分(含120分)的学生比例为:0.240.080.32+= (3)成绩在[)60,75内有2人,记为甲、A 成绩在[]135,150内有4人,记为乙,,,B C D . 则“二帮一”小组有以下12种分钟办法:,,,,,,,,,,,B C D BC BD CD A B A C A D ABC ABD ACD 甲乙甲乙甲乙甲甲甲乙乙乙其中甲、乙两同学被分在同一小组有种办法:甲乙B ,甲乙C ,甲乙D , ∴甲、乙同学恰好被安排在同一小组的概率为:31124P == 点睛:本题考查频率分布列的应用,考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用. 23.见解析 【分析】计算(1)0,(2)0f f <>,设121,2x x ==,122x x m +=,判断()f m 的符号,根据零点存在定理得到算法.【详解】第一步:令2()3f x x =-,(1)20,(2)10f f =-<=>,∴设121,2x x ==;第二步:令122x x m +=,判断()f m 是否为0,若是,则m 为所求;若不是,则继续判断()1()f x f m ⋅大于0还是小于0;第三步:若()1()0f x f m ⋅>,则令1x m =;否则,令2x m =;第四步:判断120.0005x x -≤是否成立?若是,则12,x x 之间的任意值均为满足条件的近似根;若不是,则返回第二步. 【点睛】本题考查了求方程近似根的算法,意在考查学生对于算法的理解和应用. 24.(1;(2)14【分析】(1)从程序框图可提炼出分段函数的函数表达式,从而计算得到76f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦的值;(2)此题为几何概型,分类讨论得到满足条件下的函数x 值,从而求得结果. 【详解】(1)由算法框图得:当0x >时,2πcos2xy =,当0x =时,0y =,当0x <时,1y x =--, ()2πcos ,020,01,0xx y f x x x x ⎧>⎪⎪∴===⎨⎪--<⎪⎩7711666f ⎛⎫⎛⎫-=---= ⎪ ⎪⎝⎭⎝⎭,2π1cos 71π6cos 66122f f f +⎡⎤⎛⎫⎛⎫∴-==== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ (2)当02x ≤≤时,()[]0,1f x ∈,当20x -≤<时,由0y <得10x -<< 故所求概率为()()011224P --==-- 【点睛】本题主要考查分段函数的应用,算法框图的理解,意在考查学生分析问题的能力. 25.机床乙的零件质量更符合要求,运算见解析. 【详解】先考虑各自的平均数:设机床甲的平均数、方差分别为211x s 、;机床乙的平均数、方差分别为222x s 、.1109.81010.2104x +++==,210.1109.910104x +++==∴两者平均数相同,再考虑各自的方差: 2222211[(1010)(9.810)(1010)(10.210)]0.024s =-+-+-+-=2222221[(1010)(10.110)(1010)(9.910)]0.0054s =-+-+-+-=∵2212s s >,∴机床乙的零件质量较稳定,乙更符合要求. 26.(1)3759y x =+;281;(2)1121. 【分析】(1)由题意计算平均数,代入公式求出回归系数,写出线性回归方程,再利用线性回归方程计算6x =时的值即可;(2)由分层抽样求出抽取的人数,再利用概率公式求出对应的概率即可. 【详解】(1)由表格可求()11234+5=35x =+++,()1100130170200+250=1705y =+++, 且521ii x=∑=55,51i ii x y =∑=2920,所以12221292053170375553ni ii nii x y nx yxnx b ==--⨯⨯==-⨯-=∑∑,17037359a y bx =-=-⨯=,所以y 关于x 的线性回归方程为3759y x =+,当6x =时,37659281y =⨯+=,所以2020年该中学被卓越大学联盟录取的学生人数约为281;(2)由分层抽样可知7人中有10072100250⨯=+ 人来自2015年,有25075100250⨯=+人来自2019年,从中随机抽取两人共有21种结果,抽取的两人恰好来自同一年的有11种,所以所求概率为1121P =. 【点睛】本题主要考查线性回归方程和古典概型求概率,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一年级(下)期末考试一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知数列}{n a 为等比数列,且8,141==a a ,则公比=q(A )1 (B )2 (C )4 (D )8(2)已知ABC ∆中, 60,3,2===B b a ,那么角=A(A ) 135 (B ) 90 (C ) 45 (D ) 30(3)已知⎪⎩⎪⎨⎧≤+≥≥200y x y x ,则y x z 2-=的最小值为(A )2 (B )0 (C )2- (D )4-(4)若0<<b a ,那么下列不等式中正确的是(A )b a 11> (B )ba 11< (C )2b ab < (D )2a ab > (5)袋内装有6个球,每个球上都记有从1到6的一个号码,设号码为n 的球重1262+-n n 克,这些球等可能地从袋里取出(不受重量、号码的影响).若任意取出1球,则其重量大于号码数的概率为(A )61 (B )31 (C )21 (D )32(6)实数b a ,均为正数,且2=+b a ,则ba 21+的最小值为 (A )3 (B )223+ (C )4 (D )223+ (7)为了解某校身高在m m 78.1~60.1的高一学生的情况,随机地抽查了该校100名高一学生,得到如图1所示频率直方图.由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为m ,身高在m m 74.1~66.1的学生数为n ,则n m ,的值分别为(A )78,27.0 (B )83,27.0 (C )78,81.0 (D )83,09.0(8)若执行如图2所示的程序框图,当输入5,1==m n ,则输出p 的值为(A )4- (B )1 (C )2 (D )59)锐角三角形ABC 中,内角C B A ,,的对边分别为c b a ,,,若2B A =,则ba的取值范围是(A ) (B ) (C ) (D )(10)已知数列}{n a 满足)1(431≥=++n a a n n ,且91=a ,其前n 项之和为n S ,则满足不等式12516<--n S n 的最小整数是 (A )5 (B )6 (C )7 (D )8二.填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.(11)已知等差数列}{n a ,若1359a a a ++=,则24a a +=__________.0.01频率组距(12)某校有教师400人,男学生3000人,女学生3200人.现用分层抽样的方法,从所有师生中抽取一个容量为n 的样本,已知从男生中抽取的人数为100人,则=n __________.(13)现有红、黄、蓝、绿四种不同颜色的灯泡各一个,从中选取三个分别安装在ABC ∆的三个顶点处,则A 处不安装红灯的概率为__________.14.已知数列{}n a 满足23123222241n n n a a a a ++++=-则{}n a 的通项公式 (15)在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,若60C =,且2325ab c =-,则ABC ∆的面积最大值为__________.三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.(16)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.)设}{n a 是公差大于0的等差数列,21=a ,10223-=a a .(Ⅰ)求}{n a 的通项公式;(Ⅱ)设}{n b 是首项为1,公比为2的等比数列,求数列}{n n b a +的前n 项和n S . 17.(本题满分13分)在△ABC 中,sin B +sin C =sin(A -C ).(1)求A 的大小;(2)若BC =3,求△ABC 的周长l 的最大值.18. 某校从参加高一年级期末考试的学生中抽出60名学分成六段[)50,40,[)60,50…[]100,90后画出如下部分频率分布直方图.观察图形的信息,回答下列问题: (Ⅰ)求第四小组的频率,并补全这个频率分布直方图; (Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分;(Ⅲ) 从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.19.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b },(1)求a ,b ;(2)解不等式ax 2-(ac +b )x +bc <0.20.设ABC ∆的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I)求B(II)若1sin sin 4A C =,求C . 21. 设等比数列{n a }的前n 项和n S ,首项11a =,公比()(1,0)1q f λλλλ==≠-+.(Ⅰ)证明:(1)n n S a λλ=+-; (Ⅱ)若数列{n b }满足112b =,*1()(,2)n n b f b n N n -=∈≥,求数列{n b }的通项公式; (Ⅲ)若1λ=,记1(1)n n nc a b =-,数列{n c }的前项和为n T ,求证:当2n ≥时,24n T ≤<. 数学试题参考答案一、 选择题9.由题意得22264222B A A A A B A ππππππ⎧⎧+>+>⎪⎪⎪⎪⇒⇒<<⎨⎨⎪⎪<<⎪⎪⎩⎩,又sin sin 22sin cos 2cos sin sin sin b B A A A A a A A A ====,所以2cos 2cos 2cos 46A ππ<<2cos bA a<=<10.因为111341(1)3n n n n a a a a +++=⇒-=--,所以118()13n n a -=-+,所以用分组求和可得166()3n n S n =+-⋅-,所以163750125n n S n --<⇒>显然最小整数为7.二、 填空题11. 6 12.220 13.34 14.541515.由余弦定理可得222c a b ab =+-,所以22325ab a b ab =--+,化简可得2225222a b ab ab ab =++≥+即254ab ≥当且仅当a b =时等号成立,所以三角形ABC的面积1125sin 224S ab C =≤⨯=.三、解答题16. 解:(Ⅰ)由题意2112()10a d a d +=+-由12a =得222(2)10d d +=+-…………………………3分 化简得2280d d +-=解得2d =或4d =-(舍)所以2(1)22n a n n =+-⨯=………………6分 (Ⅱ)由题意12n n b -=………………8分 所以1122()()()n n n S a b a b a b =++++++2(22)1221212n n n n n n +-=+=++--………13分21. 解:(Ⅰ)因为n n n a a S +=22……① ,所以21112a a a =+得110a =或(舍)且21112n n n S a a ---=+……②,①-②得22112n n n n n a a a a a --=-+-化简得11(1)()0n n n n a a a a ----+=因为数列}{n a 各项均为正数,所以110n n a a ---=即11n n a a -=+所以}{n a 为等差数列,n a n =经检验,11a =也符合该式 ………………………………5分(Ⅱ)当3n ≥时,得证…………12分18. 解:(1)将sin B +sin C =sin(A -C )变形得sin C (2cos A +1)=0, (2分)而sin C ≠0,则cos A =21-,又A ∈(0,π),于是A =32π; (6分)0.030.01频率组距(2)记B =θ,则C =3π-θ(0<θ<3π),由正弦定理得⎪⎩⎪⎨⎧-π==)3sin(32sin 32θAB θAC , (8分)则△ABC 的周长l =23[sin θ+sin(3π-θ)]+3=23sin(θ+3π)+3≤23+3, (11分)当且仅当θ=6π时,周长l 取最大值23+3. (13分)19. 解:(Ⅰ)因为各组的频率和等于1,故第四组的频率:直方图如右所示 (3分)(Ⅱ)依题意,60及以上的分数所在的第三、四、五、六组,频率和为 (0.0150.030.0250.005)100.75+++*=所以,抽样学生成绩的合格率是75%利用组中值估算抽样学生的平均分=450.1550.15650.15750.3850.25950.05⨯+⨯+⨯+⨯+⨯+⨯=71估计这次考试的平均分是71分。
(7分)(Ⅲ)[70,80),[80,90) ,[90,100]”的人数是18,15,3。
所以从成绩是70分以上(包括70分)的学生中选两人,他们在同一分数段的概率为702935362314151718=⨯⨯+⨯+⨯=p (12分)20.解:(1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,且b >1.由根与系数的关系,得⎩⎨⎧1+b =3a ,1×b =2a .解得⎩⎪⎨⎪⎧ a =1,b =2.所以⎩⎪⎨⎪⎧a =1,b =2.(5分)(2)所以不等式ax 2-(ac +b )x +bc <0, (6分)即x 2-(2+c )x +2c <0,即(x -2)(x -c )<0. (7分)①当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c }; (9分)②当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2}; (11分)③当c =2时,不等式(x -2)(x -c )<0的解集为?. (12分)综上所述:当c >2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |2<x <c };当c <2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |c <x <2};当c =2时,不等式ax 2-(ac +b )x +bc <0的解集为?.21.解:(Ⅰ)111[1()](1)1(1)[1()](1)()11111n nn n n a a q S q λλλλλλλλλλλ---+===+-=+--++-+而111()()11n n n a a λλλλ--==++ 所以(1)n n S a λλ=+- ………………………………3分(Ⅱ)()1f λλλ=+,11111,11n n n n n b b b b b ---∴=∴=++, ……………………5分1{}nb ∴是首项为112b =,公差为1的等差数列,12(1)1n n n b =+-=+,即11n b n =+. ………………7分 (Ⅲ) 1λ=时, 11()2n n a -=, 111(1)()2n n n n c a n b -∴=-= ………………8分相减得211111111()()()()2[1]()222222n n n n n T n n -∴=++++-=--1()2 21114()()422n n n T n --∴=--<, ………………10分又因为11()02n n c n -=>,n T ∴单调递增,22,n T T ∴≥=故当2n ≥时, 24n T ≤<. ………12分。