气动机械手设计
气动机械手 毕业设计
气动机械手毕业设计气动机械手毕业设计随着科技的不断进步,机器人技术在工业领域的应用越来越广泛。
其中,气动机械手作为一种重要的机器人类型,具有灵活、高效、精准的特点,被广泛应用于生产线上的装配、搬运、喷涂等工作。
本文将探讨气动机械手的设计与优化,以及其在工业生产中的应用前景。
一、气动机械手的设计与优化1.1 气动机械手的结构与原理气动机械手主要由气动执行器、传动机构、控制系统和机械结构等组成。
其中,气动执行器是实现机械手运动的关键部件,常用的气动执行器包括气缸和气动马达。
传动机构通过传递气动能量,将气动执行器的运动传递给机械结构,实现机械手的动作。
1.2 气动机械手的设计要点在气动机械手的设计过程中,需要考虑以下几个要点:首先,根据实际应用需求确定机械手的工作范围、负载能力和精度要求。
不同的应用场景对机械手的要求不同,因此需要根据具体情况来确定设计参数。
其次,选择合适的气动执行器和传动机构。
气缸和气动马达具有不同的特点,需要根据机械手的工作特点来选择适合的气动执行器。
传动机构的设计也需要考虑传递效率、运动平稳性等因素。
最后,进行机械结构的设计与优化。
机械结构的设计要考虑刚度、稳定性、重量等因素,通过优化设计,提高机械手的工作效率和精度。
二、气动机械手在工业生产中的应用前景2.1 气动机械手的优势相比于其他类型的机械手,气动机械手具有以下几个优势:首先,气动机械手具有较高的工作速度和响应速度。
由于气动执行器的特点,气动机械手能够快速完成各种动作,提高生产效率。
其次,气动机械手具有较高的负载能力。
气动执行器能够提供较大的推力和扭矩,适合于承载较重的物体。
最后,气动机械手具有较低的成本。
相比于电动机械手,气动机械手的成本较低,适合于中小型企业的应用。
2.2 气动机械手的应用案例气动机械手在工业生产中有着广泛的应用。
以汽车制造业为例,气动机械手可以用于汽车零部件的装配、焊接和喷涂等工作。
在电子行业,气动机械手可以用于电子产品的组装和测试。
气动机械手的设计毕业设计
气动机械手的设计毕业设计首先是气动机械手的机械结构设计。
机械结构设计是气动机械手设计中的核心部分,它直接影响机械手的运动轨迹、载荷能力和稳定性。
在设计过程中,需要考虑机械手的工作空间、自由度、运动速度和负载要求等因素。
根据任务需求,可以选择不同类型的机械结构,例如直线型、旋转型、球面型等。
在选定机械结构后,需要进行强度计算和动力学仿真分析,以确定各种零部件的尺寸和材料,保证机械手的稳定性和可靠性。
其次是气动机械手的气动系统设计。
气动机械手的气动系统是实现机械手动作的关键,它由气源、气缸、气控阀和管路组成。
在气源选择上,一般采用压缩空气作为动力源,可以通过压缩机、气瓶或者空气压缩机组来提供气源。
气缸的选择和配置要根据机械手的设计要求和工作负载来确定,需要考虑气缸的工作压力、行程长度和移动速度等因素。
气控阀的种类有很多,例如单向阀、双向阀、比例阀等,根据具体的动作要求选用合适的气控阀。
管路设计可以采用集中式或分布式设计,根据机械手的运动方式和工作空间来确定。
最后是气动机械手的控制系统设计。
控制系统设计是实现机械手自动化操作和精确控制的关键,它包括传感器、执行器、控制器和人机界面等部分。
传感器可以添加在气缸或机械手关节处,用于检测气压、位置、力量等参数,实现机械手的反馈控制和保护功能。
执行器可以是气缸或其他电动执行器,用于实现机械手的各种动作。
控制器可以采用PLC或微控制器等设备,用于编程、逻辑控制和通信功能。
人机界面可以通过触摸屏、键盘或按钮等设备与机械手进行交互,实现操作和监视。
综上所述,气动机械手的设计涉及机械结构、气动系统和控制系统三个方面。
通过合理设计机械结构,选择适当的气动元件和配置气动系统,以及设计稳定可靠的控制系统,可以实现气动机械手的高效、精确和安全操作。
在毕业设计中,可以进一步深入探究气动机械手的优化设计和性能测试,以满足不同工作环境和任务需求的应用。
气动机械手设计
2012-6-17
1.3 驱动机构的选择
LOGO
• 驱动机构是工业机械手的重要组成部分, 工业机械手的性能价格比在 很大程度上取决于驱动方案及其装置。根据动力源的丌同, 工业机械 手的驱动机构大致可分为液压、气动、电动和机械驱动等四类。气动 机械手因为结构简单、成本低廉、重量轻、动作迅速、平稳、安全、 可靠、节能和丌污染环境等优点而被广泛应用在生产自动化的各个行 业。因此,机械手的驱动方案选择气压驱动。
• 1.1 机械手基本形式的选择
LOGO
2012-6-17
LOGO
2012-6-17
LOGO
2012-6-17
• 1.2 机械手的主要部件及运动
LOGO
本设计的机械手主要由3个大部件和3个气缸组成: (1)手部,采用一个气爪,通过机构运动实现手爪的张合。 (2)臂部,采用直线缸来实现手臂的伸缩。 (3)机身,采用一个直线缸和一个回转缸来实现手臂升降 和回转。
2012-6-17
1.4 机械手的技术参数列表
LOGO
• • • • • • • • • • •
一、用途:车间皮带机之间的搬运 二、设计技术参数: 1、抓重:2Kg (夹持式手部) 2、自由度数:3个自由度 3、坐标型式:圆柱坐标 4、最大工作半径:335mm 5、机身最大中心高:415mm 6、主要运动参数: 手臂伸缩行程:200mm 手臂伸缩速度:200mm/s 机身升降行程:100mm 机身升降速度:100mm/s 机身回转范围:0- 190° 机身回转速度:60°/s
2012-6-17
LOGO
2012-6-17
2.2.1 机械手手臂的设计要求
LOGO
• 在进行机械手手臂设计时,要遵循下述原则: • 1.应尽可能使机械手手臂各关节轴相互平行,相互垂直的轴应尽可能 相交于一点,这样可以使机械手运动学正逆运算简化,有利于机械手 的控制。 • 2.机械手手臂的结构尺寸应满足机械手工作空间的要求。工作空间的 形状和大小不机械手手臂的长度,手臂关节的转动范围有密切的关系。 但机械手手臂末端工作空间并没有考虑机械手手腕的空间姿态要求, 如果对机械手手腕的姿态提出具体的要求,则其手臂末端可实现的空 间要小于上述没有考虑手腕姿态的工作空间。 • 3.机械手手臂在结构上要考虑各关节的限位开关和具有一定缓冲能力 的机械限位块,以及驱动装置,传动机构及其它元件的安装。
气动机械手控制系统设计机电控制综合设计
气动机械手控制系统设计机电控制综合设计气动机械手是一种机电一体化的设备,它主要使用气压来实现机械手的运动控制。
相对于传统的液压、电磁控制,气动机械手具有结构简单、体积小、控制精度高、快速响应等优点,因此被广泛应用于自动化生产线与加工制造现场。
本文将从以下几个方面阐述气动机械手控制系统设计问题。
一、气动机械手的基本结构气动机械手一般由气缸、气源、气路及控制系统等组成,其中气缸是机械手的主要执行机构,气源则提供气压能量,气路则通过调节阀门实现气体的流程控制。
在控制器方面,气动机械手控制系统一般由PLC、传感器以及执行机构组成,传感器用于对机械手运动的状态进行反馈,执行机构通过气控阀对气缸进行控制,而PLC则通过程序控制执行机构实现机械手的精确运动。
二、气动机械手控制系统的设计分析2.1 控制系统的工作原理气动机械手控制系统的设计中,主要需要考虑的是气路控制和电路控制,其中气路控制主要包括气源和气路的设计,而电路控制则主要包括PLC控制程序及传感器的选择及布置。
气路方面,可以根据气动机械手的运动需求,设计相应的气路分配方案,通过不同的气路阀门控制气缸的运动。
而控制电路方面,需要根据机械手的运行所需,选用合适的传感器进行布置,如接近开关、压力传感器等反馈信号,同时编写PLC控制程序,实现机械手的运动动作。
2.2 气路系统设计气路系统是气动机械手的核心,其设计应考虑到工作环境、机械手的运动需求和气压来源等因素。
在设计气路时,需要选择合适的气缸、气路输配件和气控阀门等,同时根据实际仿真测试,匹配合适压力、流量和噪音水平等参数,以保证机械手对负载物件的运动符合要求。
2.3 传感器的选用及布置传感器是气动机械手控制系统的另一重要组成部分,它能够实时监测气缸的运动状态,向PLC控制系统反馈运动状态信号。
常见的气动机械手传感器一般有接近开关、压力传感器、位移传感器等,在选择传感器时应考虑信号响应速度、精度、灵敏度、可靠性等因素,并根据需要放置位置和连接方式。
气动机械手的设计
第一章绪论1.1气动机械手的概述我国国家标准(GB/T12643–90)对机械手的定义:“具有和人手臂相似的动作功能,可在空间抓放物体,或进行其它操作的机械装置。
”机械手可分为专用机械手和通用机械手两大类。
专用机械手:它作为整机的附属部分,动作简单,工作对象单一,具有固定(有时可调)程序,使用大批量的自动生产。
如自动生产线上的上料机械手,自动换刀机械手,装配焊接机械手等装置。
通用机械手:它是一种具有独立的控制系统、程序可变、动作灵活多样的机械手。
它适用于可变换生产品种的中小批量自动化生产。
它的工作范围大,定位精度高,通用性强,广泛应用于柔性自动线。
机械手最早应用在汽车制造工业,常用于焊接、喷漆、上下料和搬运。
机械手扩大了人的手足和大脑功能,它可替代人从事危险、有害、有毒、低温和高热等恶劣环境中的工作;代替人完成繁重、单调的重复劳动,提高劳动生产率,保证产品质量。
目前主要应用于制造业中,特别是电器制造、汽车制造、塑料加工、通用机械制造及金属加工等工业。
机械手与数控加工中心,自动搬运小车与自动检测系统可组成柔性制造系统(FMS )和计算机集成制造系统(CIMS ),实现生产自动化。
随着生产的发展,功能和性能的不断改善和提高,机械手的应用领域日益扩大。
1.1.1气动技术气动技术—这个被誉为工业自动化之“肌肉”的传动与控制技术,在加工制造业领域越来越受到人们的重视,并获得了广泛应用。
目前,伴随着微电子技术、通信技术和自动化控制技术的迅猛发展,气动技术也不断创新,以工程实际应用为目标,得到了前所未有的发展。
气动技术(Pneumatics)是以压缩空气为介质来传动和控制机械的一门专业技术。
“Pneumatics”一词起源于希腊文的“Pneuma”,其原义为“呼吸”,后来才一演变成“气动技术”。
气动技术因具有节能、无污染、高效、低成本、安全可靠、结构简单,以及防火、防爆、抗电磁干扰、抗幅射等优点广泛应用于汽车制造、电子、工业机械、食品等工业产业中。
气动机械手控制系统设计
气动机械手控制系统设计气动机械手是一种应用气动技术的机械手执行器,通过气动元件驱动来实现抓取、搬运、装配等动作。
气动机械手控制系统设计是指设计控制气动机械手运动的电气、电子、液压等各种控制设备和控制方式。
本文将从气动机械手的工作原理、控制系统的设计要点和实现方法三方面进行详细介绍。
一、气动机械手的工作原理具体来说,气源通常会提供一定的压力,一般使用压缩空气。
气控元件包括气缸、气阀等,用于对压缩空气进行控制,如控制气缸的进气和排气,实现气缸的伸缩和运动方向的改变。
而工作执行器则是机械手的关键组成部分,它是气缸和机械手夹具的组合,通过气缸的控制,实现机械手的抓取、搬运等动作。
二、气动机械手控制系统设计要点1.选择合适的气源和气控元件:在设计气动机械手控制系统时,需要根据机械手的负载要求选择合适的气源和气控元件。
气源的压力和流量要满足机械手的工作需求,而气控元件的类型和数量要根据机械手的动作来确定。
2.设计合理的控制回路:气动机械手的控制回路包括气源控制回路和气缸控制回路。
气源控制回路主要控制气源的启动和停止,而气缸控制回路则控制气缸的进气和排气,实现机械手的运动。
控制回路的设计要合理布置元件,使其在工作过程中能够有序工作,减少能量损失。
3.合理安排气缸的布局:气缸的布局对机械手的工作效果有很大影响。
在布置气缸时,需要考虑机械手的工作空间、抓取点的位置和安全性等因素,尽量将气缸设在合适的位置,以提高机械手的工作效率和稳定性。
三、气动机械手控制系统的实现方法1.纯气动控制:纯气动控制是指完全依靠气源和气控元件来控制机械手的运动。
这种控制方式结构简单,控制精度较低,主要适用于对动作精度要求不高的场合。
2.气动与电气联合控制:在气动机械手的控制系统中,可以结合电气元件和电气控制方式,与气动元件共同控制机械手的运动。
在这种控制方式下,电气元件可用于控制气控元件的工作,提高气动机械手的控制精度。
3.PLC控制:PLC控制是指使用可编程序控制器(PLC)对气动机械手进行控制。
气动机械手毕业设计论文
气动机械手毕业设计论文气动机械手毕业设计论文引言气动机械手是一种基于气动原理实现运动的机械手臂,具有结构简单、成本低、负载能力强等优点。
在工业自动化领域,气动机械手的应用越来越广泛。
本篇论文旨在探讨气动机械手的设计和优化,以提高其性能和应用范围。
一、气动机械手的工作原理气动机械手的工作原理基于气动原理,通过气压的控制来实现机械手臂的运动。
气动机械手主要由气动缸、气控阀和传动机构组成。
当气压作用于气动缸时,气动缸会产生线性运动,从而带动机械手臂的运动。
而气控阀则用于控制气压的开关,从而控制机械手臂的动作。
二、气动机械手的设计要点1. 结构设计气动机械手的结构设计是保证其稳定性和负载能力的关键。
设计者需要考虑机械手臂的长度、材料强度、关节连接方式等因素。
此外,还需要合理安排气动缸和气控阀的位置,以确保机械手臂的运动路径和速度符合要求。
2. 控制系统设计气动机械手的控制系统设计是实现精确控制的关键。
设计者需要选择合适的气控阀和传感器,并设计相应的控制电路。
此外,还需要考虑气压的稳定性和控制精度,以确保机械手臂的动作准确可靠。
3. 优化设计为了提高气动机械手的性能和应用范围,设计者可以进行优化设计。
例如,可以采用多关节结构,增加机械手臂的自由度;可以采用高效的气控阀和传感器,提高机械手臂的控制精度;还可以采用轻量化材料,降低机械手臂的重量。
三、气动机械手的应用领域气动机械手在工业自动化领域有着广泛的应用。
它可以用于装配线上的零部件组装,可以用于搬运重物,还可以用于危险环境下的作业。
此外,气动机械手还可以应用于医疗、食品加工等领域,为人们的生活提供便利。
四、气动机械手的发展趋势随着科技的不断进步,气动机械手也在不断发展。
未来,气动机械手有望实现更高的负载能力和更高的控制精度。
同时,随着机器学习和人工智能的发展,气动机械手还可以实现自主学习和自主决策,从而更好地适应复杂的工作环境。
结论气动机械手作为一种基于气动原理的机械手臂,具有广泛的应用前景。
气动机械手毕业设计
气动机械手毕业设计气动机械手是一种基于气动元件和气动控制系统的自动化设备,主要用于工厂生产线上的物料搬运、装配和处理等工作。
气动机械手具有结构简单、运动灵活、成本低廉、维护方便等优点,在工业领域得到了广泛应用。
本文将从气动机械手的结构设计、气动系统设计和控制系统设计三个方面进行讨论。
首先是气动机械手的结构设计。
气动机械手的结构设计要考虑到工作范围、负载能力、精度要求等因素。
首先需要确定机械手的工作范围,即能够覆盖的空间范围,这决定了机械手的臂长和关节点的位置。
然后需要根据工作负载的大小和要求确定机械手的负载能力,从而确定气缸和驱动装置的规格。
最后还需要考虑机械手的运动精度,这需要合理选择传动装置和关节点的位置,以确保机械手能够准确地完成任务。
其次是气动系统设计。
气动机械手的气动系统主要由气源、气压调节装置、气缸和气动阀组成。
在气源方面,可以选择压缩空气作为动力源,需要考虑气源的稳定性和供应能力。
气压调节装置用于调整气缸的工作压力,以满足不同的工作需求。
气缸是气动机械手的执行机构,一般选择双作用气缸,通过气源的压力差来实现前后运动。
气动阀则用于控制气缸的开闭和运动方向。
最后是控制系统设计。
气动机械手的控制系统一般采用PLC或者单片机控制。
在控制系统设计中,首先需要确定机械手的工作方式,可以是自动化连续工作,也可以是手动操作。
然后需要确定机械手的控制模式,可以是位置控制、力控制或者速度控制,根据不同的工作需求选择合适的控制模式。
同时还需要设计机械手的控制程序和界面,以实现对机械手的控制和监控。
综上所述,气动机械手的毕业设计主要包括结构设计、气动系统设计和控制系统设计三个方面。
在设计过程中,需要综合考虑机械手的工作范围、负载能力、精度要求等因素,选择合适的气缸和传动装置,并设计相应的气动系统和控制系统,以实现机械手的自动化操作。
气动机械手的毕业设计
气动机械手的毕业设计一、设计背景随着工业自动化程度的不断提高,机械手成为了现代工业领域中不可或缺的设备之一、传统的机械手多使用电动执行器,但其存在着噪音大、体积大、成本高等问题。
而气动机械手则可以通过利用空气压缩机产生的压缩气体驱动,具有噪音低、操作简单、灵活性高等优点。
因此,设计一种气动机械手是十分有意义的。
二、设计目标本设计的目标是设计一种具有良好性能的气动机械手,能够完成一定的操作任务,提高工作效率和工作质量。
三、设计内容1.气体动力系统设计设计气动机械手需要一套稳定的气体动力系统,包括压缩气体供应、处理和控制等。
需要选择适合的气体源,选用合适的过滤器、减压阀和控制阀等气动元件,并设计相应的管路系统。
2.机械结构设计机械结构设计是气动机械手设计的关键环节,需要确定机械手的自由度和工作范围,设计适合的关节结构和工具夹持装置。
同时,需要考虑机械手的刚度和稳定性,确保机械手能够稳定地完成工作任务。
3.控制系统设计控制系统设计是气动机械手设计过程中的另一个重要环节。
需要设计合适的传感器来感知工作环境,采集与控制相关的数据。
并通过合适的控制算法将输入信号转化为执行器动作。
同时,需要设计合适的控制面板和操作界面,方便对机械手进行操作和监控。
四、设计步骤1.确定设计目标和需求,包括气动机械手的工作负荷、工作环境和操作需求等。
2.进行气体动力系统的选型和设计,确定适合的气体源和气动元件,并设计相应的管路系统。
3.进行机械结构的设计,确定适当的自由度和工作范围,设计合适的关节结构和工具夹持装置。
4.进行控制系统的设计,选择合适的传感器和控制算法,设计控制面板和操作界面。
5.进行整体系统的组装和调试,测试气动机械手的性能和工作效果。
六、预期成果通过本设计,预期可以实现一种具有良好性能的气动机械手,能够完成一定的操作任务,提高工作效率和工作质量。
同时,能够对气动机械手的设计过程和性能进行评估和改进。
七、计划进度本设计计划在10个月内完成,按照以下进度进行:1.确定设计目标和需求:1个月2.气体动力系统的选型和设计:2个月3.机械结构的设计:3个月4.控制系统的设计:2个月5.整体系统的组装和调试:2个月1.王晓华,李骥.气动机械手的设计[J].科技创新与应用。
气动机械手的设计
气动机械手的设计气动机械手是一种通过空气压缩来推动工作的机械手。
它具有高效性、灵活性和经济性等特点,被广泛应用于工业生产中。
在设计气动机械手时,需要考虑到机械手的结构、工作原理、控制系统和安全保护等方面。
下面将详细介绍气动机械手的设计。
首先,气动机械手的结构设计是设计的重点之一、机械手的结构应该能够满足工作的要求,并且具有足够的稳定性和强度。
通常,气动机械手由底座、活动臂、末端执行器和控制系统等部分组成。
底座是机械手的支撑结构,应该能够提供足够的稳定性,并且能够旋转和移动。
活动臂是机械手的延伸部分,通常由多节连接的臂组成,可以实现多个自由度的运动。
末端执行器是机械手的工作部分,通常用来夹取、举起和放置物体等操作。
控制系统是机械手的大脑,负责控制机械手的运动和工作。
其次,气动机械手的工作原理非常重要。
在设计气动机械手时,需要确定它是通过何种方式来实现工作。
一种常用的方法是利用空气压缩来推动机械手的动作。
这种方式具有操作简单、成本低廉和动力充足等优点,但也存在着一定的缺点,如速度较慢、噪音较大等。
另一种方法是利用气体的膨胀和收缩来实现机械手的动作。
这种方式通常使用气囊或者气缸来完成,具有速度快、精度高和噪音小等优点,但也存在着限制压力和动力不足等缺点。
此外,气动机械手的控制系统是设计的关键之一、控制系统负责控制机械手的运动和工作,通常采用基于计算机的控制系统。
这种控制系统能够实现对机械手的精确控制,并且可以根据需要进行编程。
在设计控制系统时,需要考虑到参数调整、运动规划和故障检测等方面。
另外,为了提高控制系统的可靠性和安全性,还需要设计相应的安全保护措施,如急停按钮、限位开关和防护罩等。
最后,气动机械手的安全保护是设计的重要部分。
由于气动机械手通常用于工业生产中,工作环境复杂,存在着一定的安全隐患。
因此,在设计气动机械手时,需要考虑到安全保护的方面。
首先,机械手的结构应该能够满足安全要求,并且能够防止意外事故的发生。
气动机械手毕业设计
气动机械手毕业设计气动机械手毕业设计在现代工业领域,机械手被广泛应用于各种生产线和制造过程中。
随着科技的进步和工业自动化的发展,气动机械手作为一种重要的工具,被越来越多的企业所采用。
本文将探讨气动机械手的毕业设计,并讨论其在工业应用中的重要性和挑战。
首先,我们需要了解气动机械手的基本原理和结构。
气动机械手是一种通过气动力驱动的机械手臂,它使用气动元件(如气缸和气动阀)来实现运动控制。
与传统的电动机械手相比,气动机械手具有结构简单、成本低、响应速度快等优点。
因此,它在一些特定的工业应用中表现出色。
在进行气动机械手的毕业设计时,我们需要考虑以下几个方面。
首先是机械结构设计。
机械手的结构设计直接影响其运动能力和稳定性。
我们需要根据具体的应用需求,选择合适的机械结构,如平行机械臂、串联机械臂等。
同时,还需要考虑机械手的负载能力和工作范围,确保其能够满足实际工作环境的要求。
其次是气动系统设计。
气动机械手的运动控制依赖于气动系统的设计和优化。
我们需要选择合适的气缸和气动阀,并设计合理的气路布局,以确保机械手的运动平稳和准确。
此外,还需要考虑气动系统的能耗和噪音控制,以提高机械手的工作效率和环境友好性。
另外一个重要的方面是控制系统设计。
气动机械手的运动控制需要依靠先进的控制算法和系统。
我们可以采用传统的PID控制方法,也可以使用先进的模糊控制或神经网络控制方法。
无论采用何种方法,都需要进行系统建模和参数调整,以实现机械手的精确控制和运动规划。
此外,还可以考虑一些创新的设计元素,以提升气动机械手的性能和功能。
例如,可以加入视觉识别系统,使机械手能够自动识别并抓取目标物体。
还可以加入力觉反馈系统,使机械手能够感知外部力的大小和方向,从而更好地适应复杂的工作环境。
在进行气动机械手的毕业设计时,我们还需要考虑实际的制造和装配过程。
机械手的制造和装配需要考虑到材料的选择、加工工艺的优化以及装配工艺的设计。
同时,还需要进行严格的测试和验证,以确保机械手的性能和可靠性。
毕业设计(论文)-PLC气动机械手设计
摘要为工业机械手研制一个技术性能优良的控制系统,对于提高工业机械手的整体技术性能来说具有十分重要的意义。
本论文正是针对这一课题,选择了可编程控制器(PLC)作为工业机械手的控制系统,这对提升工业机械手的整体技术性能起到了良好的作用。
本论文的控制对象是由三个搬运机械手组成的机械手群,每个机械手完成八个根本动作,三个机械手互相配合动作。
机械手由气缸驱动,气缸受电磁阀控制。
限位开关检测机械手是否到达固定位置。
可编程控制器(PLC)控制每个机械手的动作,实现机械手群的自动运行。
本论文可编程控制器(PLC)选用西门子〔SIEMENS〕公司S7–200系列的CPU224,并扩展了EM221数字量输入模块和EM222继电器输出模块。
机械手的开关量信号直接输入PLC,PLC通过中间继电器对电磁阀加以控制。
在软件上,设计了主程序和子程序。
主程序控制机械手群动作,子程序控制每个机械手动作。
本论文的重点放在PLC各硬件局部的设计和介绍、PLC梯形图的编写上。
在整体设计过程中按照“提出问题,分析问题,解决问题〞的主导思想,对整个系统的设计工作做出了细致的阐述。
关键词:可编程控制器(PLC);气动机械手;梯形图;CPU224;AbstractDevelops a technical performance fine control system for the industry manipulator, regarding enhances the industry manipulator's overall technical performance to have the extremely vital significance. The present paper is precisely in view of this topic, chose programmable logical controller (PLC) to take the industry manipulator's control system, this to promoted the industry manipulator's overall technical performance toplay the good role.The present paper controlled member is by three the manipulator group which transports the manipulator to be posed, each manipulator pletes eight elementary actions, three manipulators coordinate the movement mutually. The manipulator actuates by the air cylinder, air cylinder solenoid valve control. The limit switch examines the manipulator whether arrives the stationary position.The programmable logical controller (PLC) controls each manipulator's movement, realizes the manipulator group automatic movement. Present paper programmable logical controller (PLC) selects SIEMENS Corporation S7–200 series CPU224, and expanded the EM221 numeral quantity load module and the EM222 relay output module. Manipulator's switch quantity signal direct input PLC, PLC controls through the intermediate relay to the solenoid valve. On the software, has designed the master routine and the subroutine. The master routine controls the manipulator group movement, the subroutine controls each manipulator to act.The present paper key point places the PLC various hardware part the design and the introduction, in the PLC trapezoidal chart pilation. Defers to in the overall design process “asks the question, the analysis question, solves the problem〞 the guiding ideology, has made the careful elaboration to the overall system design workKey words:Programmable Logical Controller (PLC) ;Air Ooperated Mmanipulator;Trapezoidal Cchart;CPU224;目录第1章绪论11.1 机械手的概念11.2 气动机械手的简介11.2.1 气动技术11.2.2 气动机械手21.2.3 气动机械手的开展趋势3第2章方案论证42.1 机械手的设计42.1.1 气动搬运机械手的结构42.1.2 气动搬运机械手的工作原理42.2 气动搬运机械手群52.2.1 气动搬运机械手群结构52.2.2 气动搬运机械手群工作原理62.3 本论文的主要内容与达到的目标62.4 本系统的控制方案6第3章系统硬件电路的设计73.1 PLC的简介773.1.2 PLC的应用领域83.1.3 PLC的系统组成83.1.4 PLC的工作原理103.2 输入/输出信号123.3 PLC的选型143.4 I/O地址分配163.5 PLC外部接线183.6 电气控制原理21第4章软件设计224.1 机械手1控制程序224.2 机械手2控制程序254.3 机械手3控制程序284.4 机械手群主程序31第5章结论34参考文献35致谢35附录Ⅰ37附录Ⅱ53附录Ⅲ58第1章绪论机械手是近几十年开展起来的一种高科技自动化生产设备。
《2024年基于PLC的气动机械手控制系统设计》范文
《基于PLC的气动机械手控制系统设计》篇一一、引言随着工业自动化程度的不断提高,气动机械手作为一种重要的自动化设备,其控制系统的设计变得越来越关键。
本文旨在介绍一种基于PLC的气动机械手控制系统设计,以提高机械手的控制精度、稳定性和可靠性。
二、系统概述基于PLC的气动机械手控制系统主要由气动执行机构、传感器、PLC控制器、上位机监控系统等部分组成。
气动执行机构负责完成机械手的各项动作,传感器负责检测机械手的位置、速度等信息,PLC控制器负责接收传感器的信号并控制气动执行机构的动作,上位机监控系统则用于实时监控机械手的运行状态。
三、系统设计1. 气动执行机构设计气动执行机构是机械手的核心部分,包括气缸、气动阀等。
气缸的选型应根据机械手的负载、行程等要求进行,气动阀则负责控制气缸的进气、排气,以实现机械手的各项动作。
2. 传感器设计传感器是机械手控制系统中的重要组成部分,用于检测机械手的位置、速度等信息。
常用的传感器包括光电传感器、接近传感器等。
这些传感器应具有高精度、高稳定性的特点,以保证机械手控制的准确性。
3. PLC控制器设计PLC控制器是整个控制系统的核心,负责接收传感器的信号并控制气动执行机构的动作。
在选择PLC时,应考虑其处理速度、可靠性、扩展性等因素。
此外,还需要根据机械手的控制要求,编写相应的控制程序。
4. 上位机监控系统设计上位机监控系统用于实时监控机械手的运行状态,包括机械手的位置、速度、工作状态等信息。
通过上位机监控系统,可以实现对机械手的远程控制、故障诊断等功能。
四、控制系统实现在控制系统实现过程中,需要完成以下步骤:1. 根据机械手的控制要求,编写相应的PLC控制程序。
2. 将传感器与PLC控制器进行连接,确保传感器能够正常工作并输出信号。
3. 将气动执行机构与PLC控制器进行连接,确保PLC能够控制气动执行机构的动作。
4. 搭建上位机监控系统,实现对机械手的远程控制和实时监控。
气动机械手的设计毕业设计(完整)
毕业设计(论文)课题名称:气动机械手的设计专业班级:13机械电子工程***名:***指导教师:201 年月目录摘要 (4)第一章前言1.1机械手概述 (5)1.2机械手的组成和分类 (5)1.2.1机械手的组成.......................................41.2.2机械手的分类.......................................6 第二章机械手的设计方案2.1机械手的坐标型式与自由度.............................. 82.2机械手的手部结构方案设计.............................. 82.3机械手的手腕结构方案设计.............................. 92.4机械手的手臂结构方案设计...............................92.5机械手的驱动方案设计...................................92.6机械手的控制方案设计...................................92.7机械手的主要参数.......................................92.8机械手的技术参数列表...................................9 第三章手部结构设计3.1夹持式手部结构.........................................113.1.1手指的形状和分类.................................113.1.2设计时考虑的几个问题.............................143.1.3手部夹紧气缸的设计...............................14 第四章手腕结构设计4.1手腕的自由度.......................................... 194.2手腕的驱动力矩的计算.................................. 194.2.1手腕转动时所需的驱动力矩........................ 204.2.2回转气缸的驱动力矩计算...........................22 第五章手臂伸缩,升降,回转气缸的设计与校核5.1手臂伸缩部分尺寸设计与校核.............................235.1.1尺寸设计.........................................235.1.2尺寸校核.........................................245 .1 .3导向装置.......................................255 .1 .4平衡装置.......................................255.2手臂升降部分尺寸设计与校核.............................265.2.1尺寸设计.........................................26.5.2.2尺寸校核.........................................265.3手臂回转部分尺寸设计与校核.............................275.3.1尺寸设计.........................................275.3.2尺寸校核.........................................27第六章机械手的PLC控制设计...................................276.1可编程序控制器的选择及工作过程.........................276.1.1可编程序控制器的选择.............................276.1.2可编程序控制器的工作过程.........................276.2可编程序控制器的使用步骤...............................23 第七章结论....................................................24 致谢...........................................................29 参考文献.......................................................30 专业相关的资料.................................................31摘要在设计机械手臂座的时候,用两个电机提供动力。
气动四自由度机械手结构设计正文
摘要针对数控车床设计的一种套类零件自动上下料机构,实现了坯料的抓取、自动定位、夹紧以及工件的回放。
该机构主要由自动安装夹具,坯料、工件拾取机械手,动力及控制系统组成。
零件的自动定位、夹紧由弹簧涨胎心轴实现,涨胎心轴是以工件的内孔表面定位,由气缸驱动弹性筒夹向外扩涨,实现工件的定位和夹紧的。
坯料、工件的拾取、回放是由单臂形式的机械手通过伸缩、旋转以及俯仰等运动实现的,这些运动均由气缸驱动获得。
本设计中,为实现工件的自动上下料,单臂机械手的运动与涨胎心轴的张合需进行紧密配合。
考虑到所夹持工件的实际尺寸、质量等因素,本机构采用气动夹具、电气控制实现了坯料和工件的拾取、安装、回放过程的自动完成。
本文对气动机械手进行总体方案设计,确定了机械手的坐标形式和自由度。
同时,设计了机械手的夹持式手部结构。
关键词:自动上下料;气动机械手;气动夹具;套类零件IAbstractThi s paper is aim ed at desi gn i ng a sl eeve part s aut om ati c bai ti ng a genci es for a C NC l athe.It s func t ion is process i ng the crawls, aut om ati c pos it ioning and cl amping of t he workpi ece.The aut om at i c bait i ng agenci es m ainl y con si st of t he autom at i c fixt ure, the m ani pul at o r for pi ck ing up t he workpi ece and bi ll et s and t he dri ve and cont rol s ys t em.Am ong t hem,the aut om at i c pos it i oni ng and cl am p ing of t he s ets part s i s achi eve d b y t he axi s fet al heart rat e ris ing t o t he workpi ece cent eri ng hol e.W hen cl am pi ng t he workpi ece,fl ex ibl e tube fol der can cent er and cl am p t he c yli ndri cal hol e through t he expansi on and i n fl a ti on;bl ank gras p ing of t he workpi ece and the i nt ervals are achi eve d b y t he m anipul at or arm b y st ret chi ng and rot at ing.In t h e i ssue,i t i s neces s ar y for t he movem ent s of t he m anipul at or arm and the autom at i cal fixt ure Zhang t o requi re t he coordi nat i on.Taki ng int o account that t he actual workpi ece siz e,t he quali t y and t he vari ous feat ures of t he dri ven approach t o the s yst em,we deci de to adopt t he aerod ynam i c cont rol,us i ng com pressed ai r t o achi eve t he movem ent s of t he cl am pi ng fixt ure and m ani pul at or.Keyw ord s:Aut om at i c b ait i ng;P neum ati c m ani pul at or;P neum ati c fixt ure;sl eeve part sII目录摘要............................................................ 错误!未定义书签。
气动机械手的设计.
题目:气动机械手的设计专业:机械设计制造及其自动化学生:(签名)__________指导教师:(签名)__________摘要气动机械手是能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。
它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。
本文主要进行了气动机械手的总体结构设计和气动设计。
机械手的机械结构由气缸、气爪和连接件组成,可按预定轨迹运动,实现对工件的抓取、搬运和卸载。
气动部分的设计主要是选择合适的控制阀,设计合理的气动控制回路,通过控制和调节各个气缸压缩空气的压力、流量和方向来使气动执行机构获得必要的力、动作速度和改变运动方向,并按规定的程序工作。
关键词:气动机械手;气缸;气动回路。
Subject: The design of pneumatic manipulator.AbstractPneumatic manipulator is a automated devices that can mimic the human hand and arm movements to do something,aslo can according to a fixed procedure to moving objects or control tools. It can replace the heavy labor in order to achieve the production mechanization and automation, and can work in dangerous working environments to protect the personal safety, Therefore widely used in machine building, metallurgy, electronics, light industry and atomic energy sectors.This article is mainly of the pneumatic manipulator the overall design, and pneumatic design.This mechanism of manipulator includes cylinders and claws and connectors parts,it can move according to the due track on the movement of grabbing, carrying and unloading. The pneumatic part of the design is primarily to choose the right valves and design a reasonable pneumatic control loop, by controlling and regulating pressure, flow and direction of the compressed air to make it get the necessary strength, speed and changed the direction of movement in the prescribed procedure work.Key word: pneumatic manipulator;cylinder;pneumatic loop.目录1 绪论 (1)1.1 机械手简史 (1)1.2 机械手的分类 (3)1.3 机械手的组成 (6)1.4 应用机械手的意义 (8)2 机械手总体设计方案和气动回路的设计 (10)2.1 机械手的运动规划 (10)2.2 机械手基本形式的选择 (12)2.3 机械手的主要部件及运动 (13)2.4 驱动机构的选择 (13)2.5 机械手的技术参数列表 (13)2.6 气动回路的设计 (14)3 气动机械手的机械结构设计 (15)3.1 机械手末端执行器的设计 (15)3.1.1 末端执行器的概述 (15)3.1.2 末端执行器的运动和驱动方式 (16)3.1.3 末端执行器的典型结构 (16)3.1.4 末端执行器的具体设计 (17)3.2 机械手手臂的设计 (19)3.2.1 机械手手臂的设计要求 (19)3.2.2 机械手手臂的具体设计方案 (20)3.2.3 伸缩手臂的设计 (21)3.2.4 升降手臂的设计 (24)3.2.5 回转臂设计 (26)4 结论 (30)致谢 (31)参考文献 (32)1 绪论机械工业是国民的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。
四个自由度气动机械手结构设计
四个自由度气动机械手结构设计四个自由度气动机械手是一种具有四个独立运动自由度的机械手,常用于工业生产线上的自动化操作。
它采用了气动驱动技术,能够在高速下快速、准确地完成各种复杂任务。
在这篇文章中,将介绍四个自由度气动机械手的结构设计。
四个自由度气动机械手一般由基座、转台、前臂、前臂臂杆以及末端执行器等主要部件组成。
其中,基座是机械手的支撑部分,承载机械手的整体结构;转台是机械手的第一旋转关节,使机械手能够在水平面上进行转动;前臂是机械手的第二旋转关节,使机械手能够在竖直方向上进行旋转;前臂臂杆是机械手的伸缩部分,通过伸缩前臂臂杆,可以使机械手的工作范围更加灵活;末端执行器是机械手的最后一个关节,通过末端执行器可以实现机械手的精确定位和抓取动作。
在四个自由度气动机械手的设计中,需要考虑以下几个方面:结构刚度、重量、精度和可靠性。
首先,结构刚度是机械手设计的重要指标之一、为了保证机械手在高速运动中不产生振动和形变,需要采用合适的结构材料和设计参数,提高机械手的整体刚度。
其次,重量是机械手设计的另一个重要指标。
较轻的机械手可以提高其加速度和速度,使其能够更快地完成任务。
因此,在设计中需要尽量减小机械手的自重,采用轻量化的材料。
第三,精度是机械手设计的关键要素之一、在一些需要高精度定位和抓取的任务中,机械手需要具备较高的精度。
在设计中,需要合理选择驱动器、传感器和控制系统,以确保机械手的精确定位和抓取动作。
最后,可靠性是机械手设计的关键要素之一、机械手在工作过程中需要承受较大的负载和惯性力,因此需要采用可靠的结构和驱动系统,以保证机械手在长时间工作中不发生故障。
总结而言,四个自由度气动机械手的结构设计涉及结构刚度、重量、精度和可靠性等多个方面。
在设计过程中,需要综合考虑这些因素,选择合适的驱动器、传感器和控制系统,以实现机械手的高速、准确和可靠的运动。
这样的机械手在工业生产线上能够提高生产效率,实现自动化操作。
气动机械手设计调研报告
气动机械手设计调研报告气动机械手是利用空气压缩机产生气动力驱动的机械手。
它的设计和应用在各个领域都具有重要意义。
本调研报告将对气动机械手的设计和应用进行调研,并分析其优点和不足之处。
一、气动机械手的设计原理气动机械手的设计原理基于空气压缩机产生的气动力。
气压通过管道传输到机械手的气缸中,使活塞运动,从而驱动机械手实现抓取、搬运等动作。
气动机械手具有结构简单、体积小、重量轻、成本低的优点,适用于需要快速、精确和连续运动的场合。
二、气动机械手的应用场景气动机械手广泛应用于工业生产线、仓储物流、自动化仪器等领域。
在工业生产线上,气动机械手可以承担物料的搬运和组装任务,提高生产效率和质量。
在仓储物流领域,气动机械手可以实现货物的快速装卸和分拣,减少人力成本。
在自动化仪器领域,气动机械手可以用于实验操作、样品处理等任务。
三、气动机械手的优点1. 结构简单:气动机械手由气缸、活塞、连接杆等简单组件组成,易于制造和维护。
2. 快速响应:气动机械手响应速度快,可以实现高频率和高精度的动作。
3. 负载能力大:气动机械手可以通过增加气源的压力来增加负载能力,适用于重物搬运等任务。
4. 成本低:相比于电动机或液压机械手,气动机械手的成本较低。
四、气动机械手的不足之处1. 控制复杂:气动机械手的控制需要通过气源的压力和流量控制来实现,相对复杂。
2. 动力不稳定:由于气压在工作过程中会波动,气动机械手的力和速度也会有所波动,不够稳定。
3. 环境要求高:气动机械手的工作环境需要保持相对清洁和无尘,否则容易影响气缸的正常运动。
五、发展趋势和展望随着自动化技术的进步和工业生产的需求增长,气动机械手将会有更广泛的应用。
未来的气动机械手可能会在控制系统和驱动方式上有所创新,以提高其精度和稳定性。
此外,利用智能传感器和人工智能技术,可以实现气动机械手的自主控制和智能操作,提高其效率和灵活性。
综上所述,气动机械手具有结构简单、体积小、重量轻、成本低等优点,在工业生产线、仓储物流、自动化仪器等领域有广泛的应用前景。
气动机械手系统设计(含全套CAD图纸)
说明书设计题目:气动机械手系统设计专业年级: 2011级机械制造及其自动化学号: ********* 姓名:指导教师、职称:2015 年 05 月 27 日目录摘要 (I)Abstract (II)第一章引言 .......................................................... - 1 -1.1 本课题的目的和意义 ............................................ - 1 -1.2 本课题研究的主要内容、预期结果、关键问题和相关发展趋势 ........ - 1 -1.2.1 本课题研究的主要内容 .................................... - 1 -1.2.2 预期设计结果 ............................................ - 1 -1.2.3 关键问题 ................................................ - 1 -1.2.4 相关发展趋势 ............................................ - 2 -1.3 本课题的设计方法 .............................................. - 2 -1.4 系统功能说明 .................................................. - 3 - 第二章机械手气动系统设计 ............................................ - 4 -2.1 明确机械手的工作要求 ......................................... - 4 -2.1.1 气动机械手结构示意图分析 ................................ - 4 -2.1.2 工作要求 ................................................ - 5 -2.1.3 运动要求 ................................................ - 5 -2.1.4 动力要求 ................................................ - 5 -2.2 设计气动控制回路 ............................................. - 5 -2.2.1 列出气动执行元件的工作程序 .............................. - 5 -2.2.2 作X-D线图,写出执行信号的逻辑表达式 .................... - 6 -2.2.3 画出系统的逻辑原理图 .................................... - 7 -2.2.4 画出系统的气动回路原理图 ................................ - 7 - 第三章气缸及气动元件设计 ........................................... - 10 -3.1 手臂回转、伸缩、夹紧、升降气缸的设计 ........................ - 10 -3.3.1 确定气缸类型 ........................................... - 10 -3.3.2 气缸内径计算 ........................................... - 10 -3.3.3 选择气缸 ............................................... - 11 -3.3.4 验算气缸力的大小 ....................................... - 11 -3.3.5 活塞杆直径d的校核 ..................................... - 12 -3.3.6 耗气量计算 ............................................. - 13 -3.2 选择气动控制元件 ............................................ - 14 -3.2.1 选择主控气动换向阀 ..................................... - 14 -3.2.2 选择行程阀 ............................................. - 14 -3.2.3 选择手控换向阀 ......................................... - 15 -第四章机械手控制系统的设计 ......................................... - 16 -4.1 控制系统分析 ................................................ - 16 -4.1.1 总体控制要求 ........................................... - 16 -4.1.2 PLC机械手的动作分析.................................... - 16 -4.1.3 系统硬件配置 ........................................... - 17 -4.2 系统变量定义及分配表 ........................................ - 17 -4.2.1 输入/输点数分配 ........................................ - 17 -4.2.2 输入/输出点地址分配 .................................... - 18 -4.2.3 系统接线图 ............................................. - 18 -4.2.4 PLC外围接线图.......................................... - 19 -4.3 控制系统程序设计 ............................................ - 20 -4.3.1 控制程序流程图设计 ..................................... - 20 -4.3.2 程序设计(梯形图) ..................................... - 21 - 第五章 PLC机械手的程序调试.......................................... - 28 -5.1 系统调试及结果分析 .......................................... - 28 -5.1.1 PLC程序调试及解决的问题................................ - 28 -5.1.2 PLC与上位机联调........................................ - 28 -5.1.3 结果分析 ............................................... - 28 - 第六章设计总结 ..................................................... - 30 - 参考文献 ............................................................ - 31 - 致谢词 .............................................................. - 32 -摘要机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
YA4
YA5 YA6 YA7 KA1
手臂收缩电磁阀
上升电磁阀 下降电磁阀 手腕右转电磁阀 手腕左转电磁阀
程序图
Page 23
Page 24
Page 25
Page 26
機械手運動剪影
Page 27
结论
本文所设计的气动机械手结构比较简单,功能比较简单,设计比较合理,能够满足部分 不同形状的工件的转移、夹取、安装等功能,方便快捷。其设计主要考虑以下几个方面 : (1)机械手气动回路设计 选用合适的气动元件,通过控制和调节各个气缸压缩空气的压力、流量和方向来使气动 执行机构获得必要的力、动作速度和改变运动方向,并按规定的程序工作。
标记 处数 设计 更改文件号 标准化 签名 年·月·日
2013.10.29
图样标记
重量
比例 标记
Page 20
审核 工艺 日期
共——页第1页
PLC控制
考虑到机械手的通用性,同时使用点位控制,因此我们采 用可编程序控制器(PLC)对机械手进行控制.当机械手的动 作流程改变时,只需改变PLC程序即可实现,非常方便快 捷。
Page 13
在本气动机械手中,直线和旋转模块均可采用气缸驱动,气动机械手 所能执行的运动示意图如图3-3所示。
机 械 部 分 示 意 总 图
图3-3 机械手运动示意图
Page 14
2.2.3伸缩手臂的设计
图3-4 新薄型带导杆气缸 根据本机械手的设计技术参数,伸缩手臂的行程为200mm,气 爪抓重约为2Kg,加上末端执行器(气爪)和连接板的重量,总 质量约为3Kg,由此,伸缩手臂的最大横向负载 F=mg=3×9.8=29.4N。
这种手爪通过活塞推动齿条,齿条带动齿轮旋转,产生手爪的夹紧与松开动作。
5.平行杠杆式手爪 采用平行四边形机构,因此不需要导轨就可以保证手爪的两手指保持平行运动,比 带有导轨的平行移动手爪的摩擦力要小很多。
Page 9
2.1.3末端执行器的具体设计
图3-1平行开闭型气爪结构原理图 1-活塞杆 2-杠杆 3-钢球 4-手指 5-导轨 6止动块 7-定位销 8-杠杆轴
Page 5
1.3 机械手的技术参数列表
一、用途:车间皮带机之间的搬运 二、设计技术参数: 1、抓重:2Kg (夹持式手部)
2、自由度数:3个自由度
3、坐标型式:圆柱坐标 4、最大工作半径:335mm
5、机身最大中心高:415mm
6、主要运动参数: 手臂伸缩行程:200mm 机身升降行程:100mm 手臂伸缩速度:200mm/s 机身升降速度:100mm/s
Page 1臂的设计要求
在进行机械手手臂设计时,要遵循下述原则:
1.应尽可能使机械手手臂各关节轴相互平行,相互垂直的轴应尽可能相 交于一点,这样可以使机械手运动学正逆运算简化,有利于机械手的控 制。
2.机械手手臂的结构尺寸应满足机械手工作空间的要求。工作空间的形 状和大小与机械手手臂的长度,手臂关节的转动范围有密切的关系。但 机械手手臂末端工作空间并没有考虑机械手手腕的空间姿态要求,如果 对机械手手腕的姿态提出具体的要求,则其手臂末端可实现的空间要小 于上述没有考虑手腕姿态的工作空间。 3.机械手手臂在结构上要考虑各关节的限位开关和具有一定缓冲能力的 机械限位块,以及驱动装置,传动机构及其它元件的安装。
2.电动驱动方式 3.液压驱动方式
2.1.2末端执行器的典型结构
1.楔块杠杆式手爪 利用楔块与杠杆来实现手爪的松开和夹紧,来实现抓取工件。 2.滑槽式手爪 当活塞向前运动时,滑槽通过销子推动手爪合并,产生夹紧动作和夹紧力,当活塞 向后运动时,手爪松开。这种手爪开合行程较大,适应抓取大小不同的物体。 3.连杆杠杆式手爪 这种手爪在活塞的推力下,连杆和杠杆使手爪产生夹紧(放松)运动,由于杠杆的 力放大作用,这种手爪有可能产生较大的夹紧力。通常与弹簧联合使用。 4.齿轮齿条式手爪
Page 3
Page 4
1.2 驱动机构的选择
驱动机构是工业机械手的重要组成部分, 工业机械手的性能 价格比在很大程度上取决于驱动方案及其装置。根据动力 源的不同, 工业机械手的驱动机构大致可分为液压、气动、 电动和机械驱动等四类。气动机械手因为结构简单、成本 低廉、重量轻、动作迅速、平稳、安全、可靠、节能和不 污染环境等优点而被广泛应用在生产自动化的各个行业。 因此,机械手的驱动方案选择气压驱动。
(2)末端执行器的设计
末端执行器采用平行开闭型气爪,结构简单,直接采用成品材料。针对实际的要求,可 以换用其他各种末端执行器,对不同种类的工件实现夹取、转移、安装。 (3)机械手手臂的设计 将旋转气缸安装在底板上,实现机械手的回转运动,使机械手向左或向右摆动。机械手 末端执行器的水平伸缩运动和竖直升降运动各由一个气缸控制,即以最简单的形式,在 两个位置(完全伸出和回缩位置)之间进行切换。 由于个人知识及能力水平有限,论文中难免会有一些纰漏或错误之处,恳请各位老师批 评指正,不胜感谢!
Page 28
Thank You !
Page 6
1.4 气动回路的设计
主轴气缸
Page 7
2.1.1末端执行器的运动和驱动方式
末端执行器即机械手手爪,多为双指手爪。按手指的运动 方式,可分为回转型和移动型,按夹持方式来分,有外夹 式和内撑式两种。 机械手夹持器(手爪)的驱动方式主要有三种
Page 8
1.气动驱动方式
湖北轻工职业技术学院
机电工程系
毕业设计
LOGO
气动机械手设计
目录
LOGO
总体设计方案和气动回路的设计内容
气动机械手的机械结构设计
结论
Page 2
LOGO
课题
本课题是一个用于传送带上轻型平动搬运机械手的 设计。本设计主要任务是完成机械手的结构方面设 计,以及气动回路的设计。在本章中对机械手的坐 标形式、自由度、驱动机构等进行了确定。因此, 在机械手的执行机构、驱动机构是本次设计的主要 任务。
Page 12
2.2.2机械手手臂的具体设计方案
(1)双导杆手臂伸缩机构。 (2)手臂的典型运动形式有:直线运动,如手臂的伸缩, 升降和横向移动;回转运动,如手臂的左右摆动,上下摆 动;复合运动,如直线运动和回转运动组合,两直线运动 的双层气缸空心结构。
(3)双活塞杆气缸结构。
(4)活塞杆和齿轮齿条机构。
Page 15
双导杆气缸参数
Page 16
电磁阀选择
SMC
Page 17
2.2.4 升降手臂的设计
(1)手臂置于升降手臂之下的结构。
(2)手臂转臂置于升降手臂之上的结构。
(3)活塞缸和齿条齿轮机构。
Page 18
Page 19
机械总装图
湖北轻工职业技术学院 机电工程系
我们采用的是三菱GX works2系列PLC.
Page 21
端口控制表
4.5.2 系统输入/输出分布表
输入 X0 金属接近开关 Y0 Y1 Y2 输出 YA1 YA2 YA3 右旋电磁阀 左旋电磁阀 手臂伸长电磁阀
Page 22
Y3
Y4 Y5 Y6 Y7