高二数学知识点总结大全(必修)
高二数学知识点总结大全(必修)
- 1 -高二数学几何部分知识点总结大全(必修)第1章 空间几何体11 三视图:画三视图的原则:长对齐、高对齐、宽相等 直观图:斜二测画法2空间几何体的表面积与体积 表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+=4 圆台的表面积22R Rl r rl S ππππ+++=5 球的表面积24R S π= 体积1柱体的体积 h S V ⨯=底2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上(4球体的体积 334R V π=第二章 直线与平面的位置关系1直线、平面之间的位置关系 2 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈αB ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
公理2作用:确定一个平面的依据。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L公理3作用:判定两个平面是否相交的依据3 直线与直线之间的位置关系222r rl S ππ+=L A· α C ·B· A · α P · α Lβ空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。
公理4:平行于同一条直线的两条直线互相平行。
2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
高二必修数学知识点归纳
高二必修数学知识点归纳数学作为一门学科,无论在学校还是社会生活中都有着重要的地位。
在高中阶段,数学作为一门必修课程,对于学生的综合素质和学术水平的培养起着至关重要的作用。
在高二阶段,学生将学习更加深入的数学知识,包括函数、三角函数、数列等等。
本文将对高二必修数学知识点进行归纳总结。
1.函数函数是数学中的基本概念,也是高中数学的基础。
函数的定义是,给定一个集合A和集合B,如果对于集合A中的每一个元素a,都有一个唯一的元素b与之对应,那么就称为函数。
函数可以表示为f:A→B,其中f 表示函数名,A为自变量的取值范围,B为函数的值域。
在高二阶段,学生将学习到函数的性质、图像、性质等等。
2.三角函数三角函数是数学中的重要内容之一,在高中数学中占据着重要的地位。
三角函数包括正弦函数、余弦函数和正切函数等等。
它们是由单位圆上的点的坐标值来定义的。
在高二阶段,学生将学习到三角函数的定义、性质、图像、变换等等。
3.数列数列是由一系列实数按照一定规律排列而成的序列。
数列可以分为等差数列和等比数列两种。
等差数列是指数列中相邻两项之间的差值是一个常数,等比数列是指数列中相邻两项之间的比值是一个常数。
在高二阶段,学生将学习到数列的概念、通项公式、前n项和等等。
4.解析几何解析几何是数学的一个分支,它将几何问题转化为代数问题来解决。
在高二阶段,学生将学习到平面直角坐标系、直线和曲线的方程、圆的方程等等。
通过解析几何的学习,学生可以更好地理解几何问题,并且能够运用代数方法解决问题。
这些是高二必修数学的一些重要知识点的简单归纳。
当然,除了这些之外,高二数学课程还包括概率论、数学推理、数学建模等内容。
通过系统学习这些知识,学生可以提高数学思维能力,培养逻辑思维和分析问题的能力,为以后的学习和职业发展打下坚实的基础。
高二数学知识点总结(精选15篇)
高二数学知识点总结(精选15篇)高二数学知识点总结1第一章:解三角形。
掌握正弦余弦公式及其变式和推论和三角面积公式即可。
第二章:数列。
考试必考。
等差等比数列的通项公式、前n 项和及一些性质。
这一章属于学起来很容易,但做题却不会做的类型。
考试题中,一般都是要求通项公式、前n项和,所以拿到题目之后要带有目的的去推导。
第三章:不等式。
这一章一般用线性规划的形式来考察。
这种题一般是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图。
然后再根据实际问题的限制要求求最值。
选修中的简单逻辑用语、圆锥曲线和导数:逻辑用语只要弄懂充分条件和必要条件到底指的是前者还是后者,四种命题的真假性关系,逻辑连接词,及否命题和命题的否定的区别,考试一般会用选择题考这一知识点,难度不大;圆锥曲线一般作为考试的压轴题出现。
而且有多问,一般第一问较简单,是求曲线方程,只要记住圆锥曲线的表达式难度就不大。
后面两到三问难打一般会很大,而且较费时间。
所以不建议做。
这一章属于学的比较难,考试也比较难,但是考试要求不高的内容;导数,导数公式、运算法则、用导数求极值和最值的方法。
一般会考察用导数求最值,会用导数公式就难度不大。
高二数学知识点总结2一、集合、简易逻辑(14课时,8个)1、集合;2、子集;3、补集;4、交集;5、并集;6、逻辑连结词;7、四种命题;8、充要条件。
二、函数(30课时,12个)1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。
12、函数的应用举例。
三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。
四、三角函数(46课时,17个)1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。
高二数学课本知识点总结归纳(8篇)
高二数学课本知识点总结归纳(8篇)高二数学课本知识点总结归纳(8篇)你知道哪些高二数学知识点是真正对我们有帮助的吗在平凡的学习生活中,大家都背过各种知识点吧知识点就是一些常考的内容,或者考试经常出题的地方。
下面是小编给大家整理的高二数学课本知识点总结归纳,仅供参考希望能帮助到大家。
高二数学课本知识点总结归纳篇1高二数学知识点11、导数的定义:在点处的导数记作、2、导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。
V=s/(t)表示即时速度。
a=v/(t)表示加速度。
3、常见函数的导数公式:4、导数的四则运算法则:5、导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
高二数学知识点2等差数列:对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。
那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:将以上n—1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n—1个d,如此便得到上述通项公式。
此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。
值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。
等比数列:对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。
(高二)高二数学知识点及公式总结5篇
高二数学知识点及公式总结5篇相信有很多同学到了高中会认为数学是理科,所以没必要死记硬背。
其实这是错误的想法,高中数学知识点众多,光靠一个脑袋是记不全的,好记性不如烂笔头,要想学好数学,同学们还是要多做知识点的总结。
以下是我精心收集整理的高二数学知识点及公式总结,下面我就和大家分享,来欣赏一下吧。
高二数学知识点及公式总结11、圆的定义平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程(x-a)^2+(y-b)^2=r^2(1)标准方程,圆心(a,b),半径为r;(2)求圆方程的方法:一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,假设利用圆的标准方程,需求出a,b,r;假设利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,那么有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),那么过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2练习题:2.假设圆(x-a)2+(y-b)2=r2过原点,那么()A.a2-b2=0B.a2+b2=r2C.a2+b2+r2=0D.a=0,b=0【解析】选B.因为圆过原点,所以(0,0)满足方程,即(0-a)2+(0-b)2=r2,所以a2+b2=r2.高二数学知识点及公式总结2空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。
②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。
高二数学知识点归纳(15篇)
高二数学知识点归纳(15篇)高二数学知识点归纳1、圆锥曲线(18课时,7个)1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。
直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。
排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质。
概率(12课时,5个)1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验。
选修Ⅱ(24个)概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。
高二数学知识点归纳2一、集合、简易逻辑(14课时,8个)1、集合;2、子集;3、补集;4、交集;5、并集;6、逻辑连结词;7、四种命题;8、充要条件。
二、函数(30课时,12个)1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。
高二数学都学哪些知识点
高二数学都学哪些知识点高二数学学习的知识点数学是一门重要的科学学科,对于高中学生来说,数学是必修的一门学科。
高二是数学学科的重要阶段,学生在这一年需要掌握并牢固基础知识,为高考做好准备。
下面将重点介绍高二数学学习的知识点。
一、函数与方程1.1 函数的概念和性质:自变量、因变量、定义域、值域、奇偶性、单调性等。
1.2 一次函数:直线的斜率和截距,两点确定一条直线等。
1.3 二次函数:顶点、对称轴、平移、拉伸等。
1.4 不等式与方程:一元一次方程、一元二次方程、一元一次不等式、一元二次不等式等。
二、三角函数与解三角形2.1 三角函数的定义和性质:正弦、余弦、正切等。
2.2 三角函数的图像与性质:周期性、奇偶性等。
2.3 解三角形:正弦定理、余弦定理、面积公式等。
三、向量与坐标系3.1 向量的定义和性质:向量的模、方向、垂直、平行、共线等。
3.2 平面直角坐标系:直角坐标系的表示、距离公式等。
3.3 向量的运算:向量的加法、减法、数量积、向量积等。
四、数列与数列的极限4.1 数列的概念和性质:通项、公比、和等。
4.2 等差数列与等比数列:首项、公差、公比等。
4.3 数列求和:等差数列求和公式、等比数列求和公式等。
4.4 数列的极限:极限的定义、收敛与发散等。
五、导数与微分5.1 导数的概念和性质:导数的定义、导数的几何意义、导数的运算法则等。
5.2 常见函数的导数:常数函数、幂函数、指数函数、对数函数等。
5.3 函数的最值和单调性:极值点、临界点、函数单调性的判断等。
5.4 微分:微分的定义、微分的应用等。
六、概率与统计6.1 概率的基本概念:随机事件、样本空间、几何概率等。
6.2 条件概率与独立性:条件概率的计算、独立事件与互斥事件等。
6.3 统计与频率分布:频数、频率、频率分布表等。
6.4 统计图表的应用:条形图、折线图、饼图、直方图等。
以上是高二数学学习中的主要知识点,这些知识点涵盖了数学的基本理论和应用技巧,对于学生的数学学习和解题能力的提升至关重要。
数学必修知识点总结高二
数学必修知识点总结高二高中数学是一门重要的学科,对于学生的综合素质和学术能力有着重要的影响。
高二是学生深入学习数学的阶段,掌握必修知识点对于提升数学水平至关重要。
本文将对数学高二必修知识点进行总结和梳理,帮助学生全面复习和掌握这些知识点。
一、函数基础知识函数是数学中非常重要的概念,对于高二数学来说,函数的概念和性质是必修的基础知识。
学生需要掌握函数的定义、函数的图像、函数的性质等内容,并能够应用函数解决实际问题。
1. 函数的定义:函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素上。
函数的定义包括定义域、值域和对应关系。
2. 函数的图像:函数的图像是函数在坐标系中的表示,可以通过绘制函数的图像来观察函数的性质和变化规律。
3. 函数的性质:函数有奇偶性、单调性、最值等性质,学生需要了解并掌握这些性质,并能够应用这些性质进行问题求解。
二、三角函数与三角恒等变换三角函数是高中数学中的重要内容,学生需要掌握三角函数的定义、性质和应用,同时还需要学习三角恒等变换,以便解决更加复杂的三角函数问题。
1. 三角函数的定义:学生需要了解正弦、余弦、正切等三角函数的定义,并能够应用三角函数进行角度计算和边长计算。
2. 三角函数的性质:学生需要掌握三角函数的周期性、奇偶性、单调性以及与角度相关的性质,以便进行函数图像的绘制和性质的分析。
3. 三角恒等变换:学生需要学习三角函数的恒等变换,如同角三角函数、余角三角函数等,以便简化三角函数的计算和推导过程。
三、概率与统计概率与统计是高中数学中的一门应用性较强的课程,学生需要掌握概率与统计的基本概念、计算方法和理论,以应用于实际问题的解决。
1. 概率的基本概念:学生需要了解事件与样本空间的关系、事件的概率与频率的区别,掌握概率计算的基本方法和公式。
2. 统计的基本概念:学生需要了解统计数据的收集和整理方法,掌握统计量的计算和表示方法,以及统计图表的绘制和分析。
3. 概率与统计的应用:学生需要应用概率与统计理论解决实际问题,如事件的独立性、条件概率、贝叶斯定理、抽样与估计等,以培养解决实际问题的能力。
高二数学知识点总结大大全(必修)
高二数学知识点总结大全(必修)第1章空间几何体11 .1柱、锥、台、球的结构特征1. 2空间几何体的三视图和直观图11 三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下22 画三视图的原则:长对齐、高对齐、宽相等33直观图:斜二测画法44斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积(一)空间几何体的表面积1棱柱、棱锥的表面积:各个面面积之和2 圆柱的表面积3 圆锥的表面积2rrlSππ+=4 圆台的表面积22RRlrrlSππππ+++=5 球的表面积24RSπ=(二)空间几何体的体积1柱体的体积hSV⨯=底2锥体的体积hSV⨯=底313台体的体积hSSSSV⨯++=)31下下上上(4球体的体积334RVπ=第二章直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面222rrlSππ+=D CBAαAC 、平面ABCD 等。
3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈αB ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
公理2作用:确定一个平面的依据。
高二数学必修知识点总结归纳5篇
高二数学必修知识点总结归纳5篇【高二数学必修知识点总结归纳】一、函数函数是高中数学的核心内容,考试中出现的概率非常高。
必修的函数知识包括:函数的概念、函数的图像、函数的性质、函数的极值、函数的导数、函数的微分等。
例子:1、已知函数f(x)=x^3-3x^2+2,求它的极值。
2、设函数f(x)在区间[-1,1]上有连续导数,且f(-1)=f(1)=0,证明至少有一个x∈[-1,1],使得f'(x)=f(x)/(1-x^2)。
3、确定函数y=ln[tan(x/2+π/4)]的定义域、值域、基本性质及图像。
二、三角函数三角函数是高中数学中另一个非常重要的内容,考试中也常常涉及。
必修的三角函数知识包括:正弦函数、余弦函数、正切函数等,以及它们的图像、性质、三角函数的应用等。
例子:1、设y=a∙sin(bx+c)+d为正弦曲线,已知过点(0,4)、(π/6,5)、(5π/6,-1),求a、b、c、d的值。
2、证明sinx/cos(π/2-x)=tanx。
3、已知sinθ-√3cosθ=a,cosθ+√3sinθ=b,求tanθ的值。
三、数列与数学归纳法数列是高中数学中比较基础的内容,但也要求掌握一定的思维能力。
必修的数列知识包括:数列的概念、公式、通项公式、等差数列、等比数列、数列的求和公式、数列极限等。
数学归纳法也是数列的重要证明方法之一。
例子:1、已知数列{an}的通项公式为an=n^3+n^2,求S10的值。
2、已知数列{an}是等比数列,且a1+a2=10,a2+a3=40,求数列的通项公式。
3、证明:对于任意正整数n,有1+2+...+n=n(n+1)/2,然后用这个结论证明1^3+2^3+...+n^3=[n(n+1)/2]^2。
四、平面向量平面向量是高中数学中的另一个重要内容,它的思想贯穿着整个数学课程。
必修的平面向量知识包括:向量的概念、向量的坐标表示法、向量的加减、数量积、向量积等。
2024年高二数学必修一到五知识点总结
2024年高二数学必修一到五知识点总结第一章算法与方程1.算式的计算规则(加减乘除)。
2.带括号的算式的计算。
3.一次方程的解法(倒数法、交换法、消元法)。
4.含有单变元一次方程组的解法。
5.二次方程的解法(配方法、公式法、因式分解法)。
第二章函数与图像1.函数的概念及表示方法。
2.函数的性质(奇偶性、周期性)。
3.函数的平移、伸缩、翻折及其对图像的影响。
4.简单函数的图像绘制。
5.函数与方程的关系。
第三章三角函数1.角度与弧度的转换及相关公式。
2.常用角的正弦、余弦、正切关系。
3.三角函数的周期性及图像特点。
4.三角函数的性质及相关公式。
5.简单三角方程的解法。
第四章指数与对数1.指数的性质及相关公式。
2.对数的概念及表示方法。
3.反函数的概念及性质。
4.指数与对数的基本运算。
5.常用指数与对数函数的图像绘制。
第五章排列与组合1.排列与组合的概念及表示方法。
2.排列与组合的性质及相关公式。
3.简单的排列与组合问题的解法。
4.二项式定理及其应用。
5.容斥原理的概念及应用。
第六章统计与概率1.统计学的基本概念及方法。
2.频数分布表及其应用。
3.描述性统计量(均值、中位数、众数、标准差)的计算及应用。
4.概率的概念及计算方法。
5.事件的互斥与独立性。
第七章线性函数1.函数的定义及性质。
2.线性函数的概念及表示方法。
3.线性函数与方程的关系。
4.线性函数的性质及相关公式。
5.简单线性方程组的解法。
第八章二次函数1.二次函数的定义及表示方法。
2.二次函数的图像特点及其与一次函数的比较。
3.二次函数图像的平移、伸缩、翻折及其对图像的影响。
4.二次函数的性质及相关公式。
5.简单二次方程的解法。
第九章平面向量1.向量的定义及表示方法。
2.向量的加减法及数量积、向量积的计算方法。
3.向量的线性相关与线性无关的概念及判定条件。
4.向量在平面几何中的应用。
5.平面向量和空间向量的相互转化及应用。
第十章立体几何1.立体几何的基本概念(点、线、面、体)及表示方法。
高二数学知识点必修总结
高二数学知识点必修总结高二数学是中学阶段的重要学科之一,也是理科学生必修的一门课程。
在高二数学学习过程中,我们需要掌握一系列的知识点,下面将对这些知识点进行必修总结,并提供一些学习建议。
一、函数与方程1. 函数与映射函数是数学中一种重要的关系,可以用来描述两个变量之间的对应关系。
在函数的学习过程中,我们需要了解函数的定义、函数的性质以及函数的图像等相关内容。
2. 一次函数与二次函数一次函数是一种最简单的函数形式,可以表示为y = kx + b的形式,其中k和b为常数。
二次函数是一种常见的函数形式,可以表示为y = ax^2 + bx + c的形式,其中a、b和c为常数。
我们需要学习一次函数和二次函数的性质、图像以及应用等内容。
3. 线性方程与二次方程线性方程与二次方程是常见的数学方程形式。
线性方程可以表示为ax + b = 0的形式,其中a和b为常数。
二次方程可以表示为ax^2 + bx + c = 0的形式,其中a、b和c为常数。
我们需要学习解线性方程和二次方程的方法以及应用。
二、平面几何1. 直线与曲线直线是最简单的几何图形,可以通过两点确定。
我们需要学习直线的性质、方程以及直线的相关定理和推论。
曲线是指不是直线的线段,常见的曲线包括圆、椭圆、双曲线等。
我们需要学习曲线的定义、性质以及相关定理和推论。
2. 三角形与多边形三角形是平面几何中最基本的多边形,我们需要学习三角形的性质、分类以及相关定理,如勾股定理、正弦定理、余弦定理等。
多边形是指边数大于三的几何图形,我们需要学习多边形的性质、分类以及相关定理,如多边形的内角和定理等。
三、立体几何1. 空间几何体空间几何体包括球体、圆柱体、锥体、棱柱体等。
我们需要学习这些几何体的性质、表面积、体积以及相关定理,如球的体积公式、圆柱体的表面积公式等。
2. 空间坐标与向量空间坐标系统是用来描述空间位置的一种方法,我们需要学习三维坐标的表示方法以及空间点的坐标计算。
高中数学必修2知识点总结归纳(人教版最全)
高中数学必修2知识点总结归纳(人教版最全)高中数学必修二知识点汇总第一章:立体几何初步1、柱、锥、台、球的结构特征1) 棱柱:是由两个平行的多边形底面和若干个侧面组成的几何体。
根据底面多边形的边数不同,可以分为三棱柱、四棱柱、五棱柱等。
棱柱的侧面和对角面都是平行四边形,侧棱平行且相等,平行于底面的截面是与底面全等的多边形。
2) 棱锥:是由一个多边形底面和若干个三角形侧面组成的几何体。
根据底面多边形的边数不同,可以分为三棱锥、四棱锥、五棱锥等。
棱锥的侧面和对角面都是三角形,平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
3) 棱台:是由一个平行于棱锥底面的平面截取棱锥,截面和底面之间的部分组成的几何体。
根据底面多边形的边数不同,可以分为三棱台、四棱台、五棱台等。
棱台的上下底面是相似的平行多边形,侧面是梯形,侧棱交于原棱锥的顶点。
4) 圆柱:是由一个圆形底面和一个平行于底面的圆柱面组成的几何体。
底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。
5) 圆锥:是由一个圆形底面和一个以底面圆心为顶点的锥面组成的几何体。
底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。
6) 圆台:是由一个圆形底面和一个平行于底面的圆台面组成的几何体。
上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个弓形。
7) 球体:是由一个半圆面绕其直径旋转一周所形成的几何体。
球的截面是圆,球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图三视图是指正视图(光线从几何体的前面向后面正投影)、侧视图(从左向右)和俯视图(从上向下)组成的视图。
正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度。
俯视图和侧视图是用来反映物体在不同方向上的位置关系的,前者反映长度和宽度,后者反映高度和宽度。
斜二测画法是一种直观的图示方法,它的特点是原来与x轴平行的线段仍然与x轴平行且长度不变,原来与y轴平行的线段仍然与y轴平行,但长度为原来的一半。
高二数学知识点总结(15篇)
高二数学知识点总结(15篇)高二数学知识点总结1排列组合排列P------和顺序有关组合C-------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法."排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m)表示.c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk 这n个元素的全排列数为n!/(n1!_2!_.._k!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m20xx-07-0813:30公式P是指排列,从N个元素取R个进行排列。
高中数学必修知识点总结
高中数学必修知识点总结一、集合。
1. 集合的概念。
- 集合是由一些确定的、不同的对象所组成的整体。
这些对象称为集合的元素。
例如,全体自然数组成一个集合,记为N={0,1,2,·s}。
- 元素与集合的关系:属于(∈)和不属于(∉)。
如果a是集合A中的元素,就说a∈ A;如果a不是集合A中的元素,就说a∉ A。
2. 集合的表示方法。
- 列举法:把集合中的元素一一列举出来,写在大括号内。
如{1,2,3}。
- 描述法:用确定的条件表示某些对象是否属于这个集合的方法。
一般形式为{xp(x)},其中x是集合中的代表元素,p(x)是元素x所具有的性质。
例如{xx > 0,x∈ R}表示所有大于0的实数组成的集合。
3. 集合间的基本关系。
- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记为A⊆ B(或B⊇ A)。
如果A⊆ B且A≠ B,则A是B的真子集,记为A⊂neqq B。
- 相等:如果A⊆ B且B⊆ A,那么A = B。
- 空集:不含任何元素的集合,记为varnothing。
空集是任何集合的子集,是任何非空集合的真子集。
4. 集合的基本运算。
- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B ={xx∈ A或x∈ B}。
- 补集:设U是全集,A⊆ U,则∁_U A={xx∈ U且x∉ A}。
二、函数。
1. 函数的概念。
- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
其中x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{yy = f(x),x∈ A}叫做函数的值域。
2. 函数的表示法。
- 解析法:就是用数学表达式表示两个变量之间的对应关系,如y = x^2+1。
高二数学必修课重点知识点总结(8篇)
高二数学必修课重点知识点总结(8篇)高二数学必修课重点知识点总结(8篇)高二数学必修课知识点总结怎么写才能发挥它的作用呢总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,下面是小编给大家整理的高二数学必修课重点知识点总结,仅供参考希望能帮助到大家。
高二数学必修课重点知识点总结篇1(1)总体和样本:①在统计学中,把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,_研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
(3)简单随机抽样常用的方法:①抽签法②随机数表法③计算机模拟法在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
(4)抽签法:①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查高二数学必修课重点知识点总结篇21、几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。
2、几何概型的概率公式:P(A)=构成事件A的区域长度(面积或体积);试验的全部结果所构成的区域长度(面积或体积)3、几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等、4、几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学知识点总结大全(必修)第1章空间几何体11 .1柱、锥、台、球的结构特征1. 2空间几何体的三视图和直观图11 三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下22 画三视图的原则:长对齐、高对齐、宽相等33直观图:斜二测画法44斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积(一)空间几何体的表面积1棱柱、棱锥的表面积:各个面面积之和. . . 资料. .. . . 资 料. .2 圆柱的表面积3 圆锥的表面积2r rl S ππ+=4 圆台的表面积22R Rl r rl S ππππ+++=5 球的表面积24R S π= (二)空间几何体的体积 1柱体的体积 h S V ⨯=底2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上(4球体的体积 334R V π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系 2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
3 三个公理:(1)公理1:如果一条直线上的两点在一个平面,那么这条直线在此平面 符号表示为A ∈LB ∈L => L α A ∈α B ∈α222r rl S ππ+= D CBAαLA ·α. . . 资 料. .公理1作用:判断直线是否在平面(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
公理2作用:确定一个平面的依据。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面,有且只有一个公共点; 平行直线:同一平面,没有公共点;异面直线: 不同在任何一个平面,没有公共点。
2 公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相C ·B·A· α P· αLβ共面直线=>a ∥c2垂直,记作a⊥b;④两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面——有无数个公共点(2)直线与平面相交——有且只有一个公共点(3)直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
符号表示:a αb β => a∥αa∥b2.2.2 平面与平面平行的判定1、两个平面平行的判定定理:一个平面的两条交直线与另一个平面平行,则这两个平面平行。
. . . 资料. .符号表示:a βb βa∩b = P β∥αa∥αb∥α2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行。
2.2.3 — 2.2.4直线与平面、平面与平面平行的性质1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行则线线平行。
符号表示:a∥αa β a∥bα∩β= b作用:利用该定理可解决直线间的平行问题。
2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。
符号表示:α∥βα∩γ= a a∥bβ∩γ= b作用:可以由平面与平面平行得出直线与直线平行2.3直线、平面垂直的判定及其性质. . . 资料. .2.3.1直线与平面垂直的判定1、定义如果直线L与平面α的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。
如图,直线与平面垂直时,它们唯一公共点P叫做垂足。
Lpα2、判定定理:一条直线与一个平面的两条相交直线都垂直,则该直线与此平面垂直。
注意点: a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。
2.3.2平面与平面垂直的判定1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形A梭 l βBα2、二面角的记法:二面角α-l-β或α-AB-β3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。
2.3.3 — 2.3.4直线与平面、平面与平面垂直的性质1、定理:垂直于同一个平面的两条直线平行。
2性质定理:两个平面垂直,则一个平面垂直于交线的直线与另一个平面垂直。
本章知识结构框图. . . 资料. .第三章直线与方程3.1直线的倾斜角和斜率3.1倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.2、倾斜角α的取值围: 0°≤α<180°.当直线l与x轴垂直时, α= 90°. 3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式:3.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即. . . 资料. .. . . 资 料. .3.2.1 直线的点斜式方程1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k)(00x x k y y -=-2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(bb kx y +=3.2.2 直线的两点式方程1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠),(1212112121y y x x x x x x y y y y ≠≠--=--2、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a3.2.3 直线的一般式方程1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)2、各种直线方程之间的互化。
3.3直线的交点坐标与距离公式3.3.1两直线的交点坐标 1、给出例题:两直线交点坐标L1 :3x+4y-2=0L1:2x+y +2=0解:解方程组 34202220x y x y +-=⎧⎨++=⎩得 x=-2,y=2所以L1与L2的交点坐标为M (-2,2)3.3.2 两点间距离 两点间的距离公式12PP =3.3.3 点到直线的距离公式. . . 资 料. .1.点到直线距离公式:点),(00y x P 到直线0:=++C By Ax l 的距离为:2200B A CBy Ax d +++=2、两平行线间的距离公式:已知两条平行线直线1l 和2l 的一般式方程为1l :01=++C By Ax ,2l :02=++C By Ax ,则1l 与2l 的距离为2221BA C C d +-=第四章圆与方程4.1.1 圆的标准方程1、圆的标准方程:222()()x a y b r -+-=圆心为A(a,b),半径为r 的圆的方程2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法: (1)2200()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上(3)2200()()x a y b -+-<2r ,点在圆4.1.2 圆的一般方程1、圆的一般方程:022=++++F Ey Dx y x2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
. . . 资 料. .4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(ED --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点:(1)当r d >时,直线l 与圆C 相离; (2)当r d =时,直线l 与圆C 相切; (3)当r d <时,直线l 与圆C 相交; 4.2.2 圆与圆的位置关系 两圆的位置关系.设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点:(1)当21r r l +>时,圆1C 与圆2C 相离; (2)当21r r l +=时,圆1C 与圆2C 外切;(3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交; (4)当||21r r l -=时,圆1C 与圆2C 切; (5)当||21r r l -<时,圆1C 与圆2C 含; 4.2.3 直线与圆的方程的应用1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题; 第三步:将代数运算结果“翻译”成几何结论. 4.3.1空间直角坐标系v .. . ... . . 资 料. .1、点M 对应着唯一确定的有序实数组),,(z y x ,x 、y 、z 分别是P 、Q 、R 在x 、y 、z 轴上的坐标2、有序实数组),,(z y x ,对应着空间直角坐标系中的一点3、空间中任意点M 的坐标都可以用有序实数组),,(z y x 来表示,该数组叫做点M 在此空间直角坐标系中的坐标,记M ),,(z y x ,x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标。