2017-2018学年广东省深圳市宝安区七年级期末数学试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年广东省深圳市宝安区七年级(下)期末数学试卷
一、选择题(每小题3分,共36分,每小题有四个选项,其中只有一个是正确的,请把答案按要求填涂到答题卡相应位置上)
1.(3分)计算3﹣2的结果是()
A.﹣9 B.9 C.D.
2.(3分)以下是各种交通标志指示牌,其中不是轴对称图形的是()
A.B.C.D.
3.(3分)数字0.0000072用科学记数法表示正确的是()
A.7.2×106B.7.2×107C.7.2×10﹣6D.7.2×10﹣7 4.(3分)下列事件是必然事件的是()
A.阴天一定会下雨
B.购买一张体育彩票,中奖
C.打开电视机,任选一个频道,屏幕上正在播放新闻联播
D.任意画一个三角形,其内角和是180°
5.(3分)下列计算错误的是()
A.(x2)3=x6B.﹣x2•(﹣x)2=﹣x4
C.x3+x2=x5D.(﹣x2y)3=﹣x6y3
6.(3分)如图,一个质地均匀的骰子,每个面上分别刻有1、2、3、4、5、6点,任意掷出骰子后,掷出的点数大于5的概率是()
A.B.C.D.
7.(3分)小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,BO=OC,CD⊥BC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,从而可通过测量CD的长度得知小河的宽度AB.在这个问题中,可作为证明△ABO≌△DCO的依据的是()
A.SAS或SSS B.AAS或SSS C.ASA或AAS D.ASA或SAS 8.(3分)如图,Rt△ABC中,∠A=90°,∠ABC=56°,将△ABC沿着DE翻折,使得点C恰好与点B重合,连接BE,则∠AEB的度数为()
A.68°B.58°C.22°D.34°
9.(3分)一列火车由甲市驶往相距600km的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图表示正确的是()
A.B.
C.D.
10.(3分)如图,矩形的长、宽分别为a、b,周长为10,面积为6,则a2b+ab2的值为()
A.60B.30C.15D.16
11.(3分)如图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG ⊥FG于点G,若∠CFN=110°,则∠BEG=()
A.20°B.25°C.35°D.40°
12.(3分)如图,在平面内有一等腰Rt△ABC,∠ACB=90°,点A在直线l上.过点C 作CE⊥1于点E,过点B作BF⊥l于点F,测量得CE=3,BF=2,则AF的长为()
A.5B.4C.8D.7
二、填空题(每小题3分,共12分,请把答案填到答题卷相应位置上)
13.(3分)计算:a(2a﹣b)=.
14.(3分)如图,转动的转盘停止转动后,指针指向白色区域的概率是.
15.(3分)如图,在Rt△ABC中,∠B=90°,CD是∠ACD的平分线,若BD=2,AC=8,则△ACD的面积为.
16.(3分)如图,在等腰△ABC中,AB=AC,BC=8,作AD⊥BC于点D,AD=AB,点E为AC边上的中点,点P为BC上一动点,则P A+PE的最小值为.
三、解答题(第17题10分,第18题6分,第19题6分,第20题7分,第21题8分,第22题6分,第23题9分,共52分)
17.(10分)计算:
(1)(π﹣3)0+(﹣)﹣2﹣23+(﹣1)2018
(2)8a3b2÷(2ab)2﹣a(2﹣b)
18.(6分)先化简,再求值:[(3x+y)(3x﹣y)+(x﹣y)2]÷2x,其中x=1,y=2 19.(6分)在一个不透明的盒子里装有红、黑两种颜色的球共60只,这些球除颜色外其余完全相同.为了估计红球和黑球的个数,七(4)班的数学学习小组做了摸球实验.他们]将球搅匀后,从盒子里随机摸出一个球记下颜色,再把球放回盒子中,多次重复上述过程,得到下表中的一组统计数据:
摸球的次数n5010030050080010002000摸到红球的次数m143395155241298602摸到红球的频率0.280.330.3170.310.3010.2980.301(1)请估计:当次数n足够大时,摸到红球的频率将会接近;(精确到0.1)(2)假如你去摸一次,则摸到红球的概率的估计值为;
(3)试估算盒子里红球的数量为个,黑球的数量为个
20.(7分)如图,已知△ABC中(AB<BC<AC),
(1)尺规作图:作线段AB的垂直平分线,交AC于点P(不写做法,保留作图痕迹);
(2)连接PB,若AC=6,BC=4,求△PBC的周长.
21.(8分)近日,宝安区提出了“绿色环保,安全骑行”的倡议,号召中学生在骑自行车时要遵守交通规则,注意交通安全.周末,小峰骑共享单车到图书馆,他骑行一段时间后,在某一路口等待红绿灯,待绿灯亮起后继续向图书馆方向前进,途中突然发现钥匙不见了,于是着急地原路返回,在等红绿灯的路口处找到了钥匙,便继续前往图书馆.小峰离家距离与所用时间的关系示意图如图所示.请根据图中提供的信息回答下列问题:(1)图中自变量是,因变量是,
(2)小峰等待红绿灯花了分钟;
(3)在前往图书馆的途中,小峰一共骑行米;
(4)小峰在时间段的骑行速度最快,最快的速度是米/分.
22.(6分)如图,BA=BE,∠A=∠E,∠ABE=∠CBD,ED交BC于点F,且∠FBD=∠D.
求证:AC∥BD.
证明:∵∠ABE=∠CBD(已知)
∴∠ABE+∠EBC=∠CBD+∠EBC()
即∠ABC=∠EBD
在△ABC和△EBD中,
∴△ABC≌△EBD()
∴∠C=∠D()
∵∠FBD=∠D
∴∠C=(等量代换)
∴AC∥BD()
23.(9分)如图1,在四边形ABCD中,AB=BC=CD=AD=4cm,∠BAD=∠B=∠C=